

Finanziert von der Europäischen Union NextGenerationEU

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

ArdaghGlass

POWER-TO-X FOR SUSTAINABLE GLASS PRODUCTION (SYN-METHANE, SYN-MEOH, AND DIRECT H₂ COMBUSTION) A TECHNO-ECONOMIC AND LIFE CYCLE ASSESSMENT

Project Glas-CO2: Carbon Capture and Utilization Cycles for a CO₂ Neutral Glass Production KlimPro BMBF 01LJ2005 (A+B)

<u>Y. Rahmat</u>^a, F. Drünert^b, J. Weyand^a, F. Moser^(a), S. Maier^a, B. Fleischmann^b, R.-U. Dietrich^a ^a Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Stuttgart ^b Hüttenteschnische Vereinigung der Deutschen Glasindustrie e.V. (HVG-DGG), Offenbach am Main

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Background

Fig.2: German climate neutrality goal^[2]

Germany to achieve climate neutrality earlier

- Greenhouse gas emissions
- \rightarrow By 2030: 65% less CO2 (current target 55 %)
- \rightarrow By 2040: 88% less CO2
- \rightarrow 2045: Climate neutrality (current target 2050)
- Permissible annual CO2 emissions for individual sectors such as energy, industry, transport and buildings to be reduced.

Background

<u>Challenge</u>: Glass furnace journey (campaign) 15 years with 24/7 operation

- Power-to-X: alternative to full electrification
 - only 60-80 % electrification possible (hybrid)
- Valorization difficult-to-avoid CO₂ from carbonates

 $4.2 \text{ Mt CO}_2 \implies 1 \text{ Mt CO}_2$

Case	Gas cleaning	Heating fuel	Surplus	
SNG/SNG	 Image: A set of the set of the	SNG	SNG	
MeOH/MeOH	 Image: A set of the set of the	Syn-MeOH	Syn-MeOH	
H ₂ /SNG	~	H ₂	SNG	
H ₂ /MeOH	~	H ₂	Syn-MeOH	
H ₂ /CO ₂	N/A	H ₂	CO ₂	

Process description

[1] Albrecht et al. (2016): https://doi.org/10.1016/j.fuel.2016.12.003
[2] Maier et al. (2021): https://doi.org/10.1016/j.enconman.2021.114651
[3] Mutel (2017): https://doi.org/10.21105/joss.00236
[4] Wernet et al. (2016): https://doi.org/10.1007/s11367-016-1087-8

Process description Reactor design and parameters: SNG

TREMP[™] reactor design^[1]: high energetic efficiency & steam cycle applicable

Kinetic model: **Rönsch et al.**^[3-5] Combination of WGS and CO-Methanation

Catalyst^[2] MCR-2X (Ni-based) → Gas cleaning required

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024 [1] Topsøe, H., From coal to clean energy. 2011

[2] in range of: Harms, H., B. Höhlein, and A. Skov, 1980, Methanisierung kohlenmonoxidreicher Gase beim Energie-Transport.
 [3] Rönsch et al., 2016, Review on methanation – From fundamentals to current projects.

[4] Klose, J., 1984, Kinetics of the methanation of carbon monoxide on an alumina-supported nickel catalyst. Journal of Catalysis
 [5] Zhang, J., et al., 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas
 [6] Meylan et al., 2016, Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

[1] Drünert et al. (2023) Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production

Lurgi reactor design^[2]: high energetic efficiency & steam generation applicable

Kinetic model: Vanden Bussche and Froment^[1,3] MeOH synthesis from $CO/CO_2/H_2$ represented as CO_2 hydrogenation & RWGS reactions

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>
 Metallgesellschaft AG (1996) – EP 0 790 226 B1

[3] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation
 [4] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed.

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

[1] Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production</u> [2] Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>

Process description Equipment design and parameters

Equipment ^[1-3]	AspenPlus [®] model	Parameters	Remarks
Heat exchangers	HeatX/Heater	$\Delta p = 0.2 \text{ bar}^{[4]}, \Delta T_{\text{approach}} = 10 \text{ K}^{[4]}$	U-values ^[5] method
Compressors	Compr/MCompr	Max. CR = $3^{[4]}$ $\eta_{isentropic} = 80 \%^{[4]}$, $\eta_{mech.} = 95 \%$	range CR = $2.5 - 4^{[4]}$
Pumps	Pump	η _{pump} = 95 %, η _{driver} = 95 %	
Flash drums	Flash2	Q = 0 kW, Δp = 0.2 bar ^[4]	adiabatic
Distillation columns	RadFrac	$p_{cond.} = 1.36 \text{ bar}^{[1]}, \Delta p_{col.} = 0.34 \text{ bar}^{[1]}$ n _{stage} = 55, reflux ratio = 1	$d_{col.} = f(\dot{V}_{gas,col.})^{[6]}$
Electrolyzer AEL	RStoic (Stack) Flash2, Sep, Pump (BoP)	η _{energetic} = 53.3 % (LHV) ^[2]	simplified model
Wet scrubber (limestone)	Flash2, Sep	100 % separation of SO_2 , SO_3 , HCl, HF	black-box
Membrane PMP	Sep	N_2 separation = 92.75 % ^[8]	black-box

[1] Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production https://doi.org/10.1016/j.apenergy.2023.121738
[2] Sánchez et al. (2020) Aspen Plus model of an alkaline electrolysis system for hydrogen production. https://doi.org/10.1016/j.ijhydene.2019.12.027
[3] Heimann, N. et al (2023), Standardized tea of sCNG and HCNG, to be submitted
[4] Woods (2007) Rules of Thumb in Engineering Practices
[5] VDI-Gesellschaft (2006) VDI-Wärmeatlas. gravital.g

[8] Samei and Raisi (2022) Separation of nitrogen from methane by multi-stage membrane

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Techno-economic assessment (TEA) Efficiencies: SNG/SNG

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

[1] Drünert et al. (2023) Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production.

Techno-economic assessment (TEA) Efficiencies

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Techno-economic assessment (TEA) Input – basis conditions & OPEX

Basis conditions	
Plant location	Germany
Base year	2022
Basis currency	€
Full-load hours	8000 h/a
Plant lifetime (y)	15 a
Interest rate (IR)	7 %
Labor costs	41 €/h

	Raw materials			
	CO ₂	Flue gas & carbonates		
	H ₂	AEL electrolysis		
	Electricity ^[1]	60-250 €/MWh _{el}		
	Utilities	taken from [2]		
$NPC \left[\frac{\text{(MWh}_{LHV}}{\text{(MWh}_{LHV}} \right] = \frac{\text{(ACC)} + \sum OPEX + labor costs}{\dot{m}_{synfuel} * LHV_{synfuel}}$				

ACC = FCI Annuity factor

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production.</u>
 Heimann et al. (2023) Contribution to the standardization of the economic and ecological analysis of PtX-process [in submission]
 Peters et al. (2002) *Design and Economics for Chemical Engineers*. Europe: McGraw-Hill Education.

Techno-economic assessment (TEA) Input – CAPEX cost functions

$$EC_{i,ref} = EC_{ref} \times \left(\frac{sizing_i}{sizing_{ref}}\right)^n \times \left(\frac{CEPCI_i}{CEPCI_{ref}}\right)$$

A)

$$EC_{i,poly} = \left[e \cdot (sizing_i)^2 + f \cdot sizing_i + g \right] \times \left(\frac{CEPCI_i}{CEPCI_{ref}} \right)$$

LR

Reference function (EC _{i,ref})	EC _{ref}	Currency	sizing _{ref}	Unit	n	Year _{ref}	Source
Compressor	3 035	\$	1	kW _{el}	0.68	2002	[1]
Centrifugal pump	16 809	\$	1	m³ s ⁻¹	0.36	2002	[1]
Distillation column	286 343	\$	100	size factor = HxD ^{1.5} [m ^{2.5}]	0.53	2007	[2,3]
AEL stack	800	k€	0.005	kg/s	1	2019	[4]
AEL balance of plant	1	m€	0.025	kg/s	0.8	2019	[4]
Wet scrubber (limestone)	13 061	k\$	14	MW_{th}	0.72	2012	[5]
Membrane PMP	9.76	m\$	525.6	kmol/h	0.6	2020	[6]**
Methanation fixed-bed reactor	57 794	\$	14 000	m³∕h	0.52	2007	[2]
Polynomial function (EC _{i,poly})	е	f	g	Sizing unit	Currency	Year _{ref}	Source
MeOH Lurgi reactor, D _{tube} 2 in.*	0	156.03	11 910	Number of tubes [-]	\$	2002	[1]**
Shell & tube heat exchanger*	0	201.29	3853.3	Heat transfer area [m ²]	\$	2002	[1]
Flash drum	-2.21	369.75	805.42	Length & diameter [m]	\$	2002	[1]

*stainless steel as the material construction **with own reformulation

[1] Peters et al. (2002) Design and Economics for Chemical Engineers. Europe: McGraw-Hill Education.

[2] Woods (2007) Rules of Thumb in Engineering Practices

[3] Towler (2008) Chemical Engineering Design

[4] Habermayer et al. (2023) Sustainable aviation fuel from forestry residue and hydrogen. <u>https://doi.org/10.1039/d3se00358b</u>

[5] Sorrels (2021) Chapter 1 – Wet and Dry Scrubbers for Acid Gas Control. <u>www.epa.gov</u>

[6] Samei and Raisi (2022) Separation of nitrogen from methane by multi-stage membrane

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

TEA for 12.2 MW_{th} **Glass Furnace** Results – CAPEX Fixed Capital Investment (FCI)

- AEL: SNG / requires more H₂ feedstock than MeOH \sqrt{s
- Reactors: SNG fixed-bed mu

SNG fixed-bed **multi-stage** *↗* MeOH multi-tube **single-stage** *↘*

> Compressors:

p_{reactor} SNG **30 bar №** p_{reactor} MeOH **80 bar** *7*

Steam cycle:
 SNG in recuperator & reactor
 MeOH in recuperator only

Storage
 Flash drums & columns
 Steam cycle

- Heat exchangers
- Compressors & pumps
- Reactors
- Wet scrubber & membrane
- AEL electrolyzer

TEA for 12.2 MW_{th} **Glass Furnace** Results – NPC with electricity price 60 €₂₀₂₂/MWh_{el}

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

<u>EU Natural Gas TTF - Price - Chart - Historical Data - News (tradingeconomics.com)</u>
 HVG-DGG internal price estimation

Techno-economic assessment (TEA) Results – NPC sensitivity analysis

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

[1] <u>EU Natural Gas TTF - Price - Chart - Historical Data - News (tradingeconomics.com)</u>
 [2] <u>SMARD.de</u>

18

LCA results (preliminary) SNG/SNG vs MeOH/MeOH vs H₂/CO₂

Rahmat et al., PtX sustainable glass production, DECHEMA Forum, Friedrichshafen, 12.09.2024

Conclusion

- Implementation of Power-to-X concepts for a sustainable industrial glass production
 → Example for industry decarbonization
- Glass industry can be sustainable, depending on the electricity source
 Case SNG/SNG is the most suitable as direct substitution for natural gas
- Glass furnace requires adjustments for direct H₂ combustion
- CCU is theoretically applicable
 Practical tests must be conducted

Realization = f(**user-acceptance**) Industry? Market?

- Eco-friendly container glass (beer bottle) would cost almost twice of the current price
 → depending on the electricity costs
- Preliminary LCA shows good potential of the PtX concepts, however a trade-off is expected, e.g. material resources impact

Finanziert von der Europäischen Union NextGenerationEU

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

ArdaghGlass

THANK YOU FOR YOUR ATTENTION!

Yoga Rahmat, M.Sc. Research fellow Techno-economic Analysis DLR Institute of Engineering Thermodynamics Yoga.Rahmat@dlr.de

Dr.-Ing. Ralph-Uwe Dietrich Group leader Techno-Economic Analysis DLR Institute of Engineering Thermodynamics <u>Ralph-Uwe.Dietrich@dlr.de</u>

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung