

Finanziert von der Europäischen Union NextGenerationEU

SUSTAINABLE INDUSTRIAL GLASS PRODUCTION THROUGH POWER-TO-FUEL CONCEPTS (SYN-METHANE AND SYN-MEOH) A COMPARATIVE TECHNO-ECONOMIC ASSESSMENT

Project Glas-CO2: Carbon Capture and Utilization Cycles for a CO₂ Neutral Glass Production KlimPro BMBF 01LJ2005 (A+B)

DECHEMA Jahrestreffen der Fachsektion Energie, Chemie und Klima Frankfurt am Main, 12.03.2024

Y. Rahmat^a, F. Drünert^b, J. Weyand^a, F. Moser^a, S. Maier^a, B. Fleischmann^b, R.-U. Dietrich^a

^a Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Stuttgart ^b Hüttenteschnische Vereinigung der Deutschen Glasindustrie e.V. (HVG-DGG), Offenbach am Main GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Motivation

- EU Climate Neutral Goal by 2050 (Germany already by 2045)^{[1][2]}
- Closing the carbon cycle in the glass production
 - ca. 3.2 Mt CO₂ from fuel combustion, 1 Mt CO₂ from carbonates in Germany 2021
- Valorization of the difficult-to-avoid CO₂ emissions from carbonates
- Power-to-Fuel technology is an alternative to full electrification
 - Currently, only 60-80 % electrification of glass production possible (hybrid)
- Syn-methane / SNG:
 - Direct substitute of natural gas, relatively clean combustion due to lower impurities content
 - Storage and handling could be challenging
- Syn-MeOH:
 - Fuel as well as basic chemicals, simple storage and handling
 - Adjustment of the glass furnace might be required

Albrecht et al. (2016): https://doi.org/10.1016/j.fuel.2016.12.003
 Maier et al. (2021): https://doi.org/10.1016/j.enconman.2021.114651
 Mutel (2017): https://doi.org/10.21105/joss.00236
 Wernet et al. (2016): https://doi.org/10.1007/s11367-016-1087-8

Rahmat et al., Sustainable glass production, DECHEMA, 12.03.2024

3

[1] Albrecht et al. (2016): https://doi.org/10.1016/j.fuel.2016.12.003
 [2] Maier et al. (2021): https://doi.org/10.1016/j.enconman.2021.114651
 [3] Mutel (2017): https://doi.org/10.21105/joss.00236
 [4] Wernet et al. (2016): https://doi.org/10.1007/s11367-016-1087-8

Rahmat et al., Sustainable glass production, DECHEMA, 12.03.2024

4

Methodology Key performance indicator (KPI)

 LHV

 H2
 : 120 MJ/kg

 Methane
 : 50 MJ/kg

 MeOH
 : 19.9 MJ/kg

[1] Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production https://doi.org/10.1016/j.apenergy.2023.121738
[2] Rönsch, S., et al., *Review on methanation – From fundamentals to current projects*. Fuel, 2015. 166: p. 276-296.
[3] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation

Rahmat et al., Sustainable glass production, DECHEMA, 12.03.2024

Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production</u>.
 Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>

Process description Equipment design and parameters

Equipment ^[1-3]	AspenPlus [®] model	Parameters	Remarks	
Heat exchangers	HeatX/Heater	$\Delta p = 0.2 \text{ bar}^{[4]}, \Delta T_{\text{approach}} = 10 \text{ K}^{[4]}$	U-values ^[5] method	
Compressors	Compr/MCompr	Max. CR = $3^{[4]}$ $\eta_{isentropic} = 80 \%^{[4]}$, $\eta_{mech.} = 95 \%$	range CR = 2.5-4 ^[4]	
Pumps	Pump	η _{pump} = 95 %, η _{driver} = 95 %		
Flash drums	Flash2	$Q = 0 \text{ kW}, \Delta p = 0.2 \text{ bar}^{[4]}$	adiabatic	
Distillation columns	RadFrac	$p_{cond.} = 1.36 \text{ bar}^{[1]}, \Delta p_{col.} = 0.34 \text{ bar}^{[1]}$ $n_{stage} = 55$, reflux ratio = 1	$d_{col.} = f(\dot{V}_{gas,col.})^{[6]}$	
Electrolyzer PEM / AEL	RStoic (Stack) Flash2, Sep, Pump (BoP)	$\begin{array}{l} {\sf PEM}: \eta_{\sf energetic} = 51 \ \% \ ({\sf LHV})^{[2]} \\ {\sf AEL} \ : \eta_{\sf energetic} = 53.3 \ \% \ ({\sf LHV})^{[2]} \end{array}$	simplified model	
Wet scrubber (limestone)	Flash2, Sep	100 % separation of SO_2 , SO_3 , HCl, HF	black-box	
Membrane PMP	Sep	N ₂ separation = 92.75 % ^[8]	black-box	

Color coding process parameters: Blue \rightarrow taken from literature

Green \rightarrow own assumption/calculation

Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>
 Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production</u>.
 Heimann, N. et al (2023), Standardized tea of sCNG and HCNG, to be submitted
 Woods (2007) Rules of Thumb in Engineering Practices
 VDI-Gesellschaft (2006) VDI-Wärmeatlas. <u>978-3-540-32218-4_13.pdf (springer.com)</u>
 Towler (2008) Chemical Engineering Design

Rahmat et al., Sustainable glass production, DECHEMA, 12.03.2024

[7] Sorrels (2021) Chapter 1 – Wet and Dry Scrubbers for Acid Gas Control. <u>www.epa.gov</u>
 [8] Samei and Raisi (2022) Separation of nitrogen from methane by multi-stage membrane

Process description Reactor design and parameters: Syn-methane / SNG

TREMPTM reactor design^[1]: high energetic efficiency & steam cycle applicable

Kinetic model: **Rönsch et al.**^[3-5] Combination of WGS and CO-Methanation

AspenPlus® model: RPlug

- $T_{max,R1}^{[3]} = 700 \,^{\circ}C$
- $T_{in,R1} = 250 \,^{\circ}C$
- p^[2] = 20-30 bar
- GHSV^[2] = 4200-8900

Catalyst^[2] MCR-2X (Ni-based)

G-DGG

 \rightarrow Gas cleaning required

N. Heimann, <u>12 March 2023</u> at <u>9:45 am</u> Standardized techno-economic analysis SNG and H-SNG?

[1] Topsøe, H., From coal to clean energy. 2011

[2] in range of: Harms, H., B. Höhlein, and A. Skov, 1980, Methanisierung kohlenmonoxidreicher Gase beim Energie-Transport.
 [3] Rönsch et al., 2016, Review on methanation – From fundamentals to current projects.

[4] Klose, J., 1984, Kinetics of the methanation of carbon monoxide on an alumina-supported nickel catalyst. Journal of Catalysis
[5] Zhang, J., et al., 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas
[6] Meylan et al., 2016, Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation

Process description Reactor design and parameters: Syn-MeOH

p^[1,2]

Lurgi reactor design^[2]: high energetic efficiency & steam generated

AspenPlus[®] model^[1]: RPlug $T_{max,R1}^{[2,5]}= 280-300 \text{°C}$ $T_{in,R1}^{[1]} = 230 \text{°C}$

= 80 bar

Catalyst^[3] Cu/ZnO/Al₂O₃

 \rightarrow Gas cleaning required

Kinetic model: Vanden Bussche and Froment^[1,3] MeOH synthesis from $CO/CO_2/H_2$ represented as CO_2 hydrogenation & RWGS reactions

Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>
 Metallgesellschaft AG (1996) – EP 0 790 226 B1

[3] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO_2 hydrogenation [4] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed.

Rahmat et al., Sustainable glass production, DECHEMA, 12.03.2024

Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production</u>.
 Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>

Techno-economic assessment (TEA) Results – KPI

12

Techno-economic assessment (TEA) Input – basis conditions & OPEX

Basis conditions	
Plant location	Germany
Base year	2022
Basis currency	€
Full-load hours	8000 h/a
Plant lifetime (y)	15 a
Interest rate (IR)	7 %
Labor costs	41 €/h

Raw materials	
CO ₂	Flue gas & carbonates
H ₂	Electrolysis PEM / AEL
Electricity ^[1]	60*-250 €/MWh _{el}
Utilities	taken from [2]

*discussed "Industriestrompreis"

$$NPC \left[\frac{\text{(MWh}_{LHV}}{\text{(MWh}_{LHV}} \right] = \frac{ACC + \sum OPEX + labor costs}{\dot{m}_{synfuel} * LHV_{synfuel}}$$

ACC = FCI Annuity factor

$$FCI_i = \underbrace{EC_i} \sum CAPEX \ cost \ factors$$

See next slide!

Drünert et al. (2023) <u>Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production.</u>
 Heimann et al. (2023) Contribution to the standardization of the economic and ecological analysis of PtX-process [in submission]
 Peters et al. (2002) *Design and Economics for Chemical Engineers*. Europe: McGraw-Hill Education.

Techno-economic assessment (TEA) Input – CAPEX cost functions

$EC_{i,ref} = EC_{ref} \times \left(\frac{1}{S}\right)$	sizing _i sizing _{ref}) ⁿ	×	$\left(\begin{array}{c} CEPCI_i \\ \hline CEPCI_{ref} \end{array} \right)$
---	---	---	---

$$EC_{i,poly} = \left[e \cdot (sizing_i)^2 + f \cdot sizing_i + g \right] \times \left(\frac{CEPCI_i}{CEPCI_{ref}} \right)$$

Reference function (EC _{i,ref})	EC _{ref}	Currency	sizing _{ref}	Unit	n	Year _{ref}	Source
Compressor	3 035	\$	1	kW _{el}	0.68	2002	[1]
Centrifugal pump	16 809	\$	1	m³ s ⁻¹	0.36	2002	[1]
Distillation column	286 343	\$	100	size factor = HxD ^{1.5} [m ^{2.5}]	0.53	2007	[2,3]
PEM electrolysis	957	€	1	kW _{el}	1	2016	[4]
AEL stack	800	k€	0.005	kg/s	1	2019	[5]
AEL balance of plant	1	m€	0.025	kg/s	0.8	2019	[5]
Wet scrubber (limestone)	13 061	k\$	14	MW_{th}	0.72	2012	[6]
Membrane PMP	9.76	m\$	525.6	kmol/h	0.6	2020	[7]**
Methanation fixed-bed reactor	57 794	\$	14 000	m³∕h	0.52	2007	[2]
Polynomial function (EC _{i,poly})	е	f	g	Sizing unit	Currency	Year _{ref}	Source
MeOH Lurgi reactor, D _{tube} 2 in.*	0	156.03	11 910	Number of tubes [-]	\$	2002	[1]**
Shell & tube heat exchanger*	0	201.29	3853.3	Heat transfer area [m ²]	\$	2002	[1]
Flash drum	-2.21	369.75	805.42	Length & diameter [m]	\$	2002	[1]

*stainless steel as the material construction **with own reformulation

[1] Peters et al. (2002) Design and Economics for Chemical Engineers. Europe: McGraw-Hill Education.

[2] Woods (2007) Rules of Thumb in Engineering Practices

[3] Towler (2008) Chemical Engineering Design

[4] DLR, Ludwig Bölkow Systemtechnik, Fhg ISE, KBB (2014) Abschlussbericht der Studie Plan-DelyKad, Stuttgart.

[5] Habermayer et al. (2023) Sustainable aviation fuel from forestry residue and hydrogen. <u>https://doi.org/10.1039/d3se00358b</u> [6] Sorrels (2021) Chapter 1 – Wet and Dry Scrubbers for Acid Gas Control. <u>www.epa.gov</u>

[7] Samei and Raisi (2022) Separation of nitrogen from methane by multi-stage membrane

TEA for 12.2 MWGlass FurnaceHVG-DGGResults - CAPEX Fixed Capital Investment (FCI) with PEM

HVG-DGG TEA for 12.2 MW_{th} Glass Furnace Results – NPC with PEM and electricity price 60 €2022/MWhe

Techno-economic assessment (TEA) Results – NPC sensitivity analysis

Conclusion

- Implementation of Power-to-Fuel concepts for a sustainable industrial glass production
 → Valorization of the difficult-to-avoid CO₂ emissions from carbonates
- Glass industry can be CO₂-neutral and CCU is theoretically applicable
 → Practical tests must be conducted
- Eco-friendly container glass (beer bottle) would cost almost twice of the current price
 → depending on electricity costs

Realization = f(user-acceptance) Industry? Market?

Outlook

- Alternative concept with direct H_2 combustion for the glass furnace \rightarrow CO₂ from carbonates will still be transformed into syn-fuels
- Conducting life cycle assessment of the sustainable glass production
- Concept adaptation to other industries, e.g. cement, steel, chemical
- Pilot plant in the follow-up project
 - \rightarrow Currently looking for project partners

Finanziert von der Europäischen Union NextGenerationEU

THANK YOU FOR YOUR ATTENTION!

Contact: Yoga Rahmat, M.Sc. Research fellow Techno-economic Analysis DLR Institute of Engineering Thermodynamics Yoga.Rahmat@dlr.de

Dr.-Ing. Ralph-Uwe Dietrich Group leader Techno-Economic Analysis DLR Institute of Engineering Thermodynamics Ralph-Uwe.Dietrich@dlr.de

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung