OPTICAL DESIGN OF A MINIATURISED LASER ALTIMETER IMPLEMENTING SINGLE-PHOTON COUNTING DETECTION FOR TOPOGRAPHIC MAPPING USING SMALL SATELLITES

Affatato, V.^{1,2}, Althaus, C.¹, Binger, J.¹, Grott, M.¹, Hussman, H.¹, Hüttig, C.¹, Lingenauber, K.¹, Potin, S.², Saathof, R.², and Stark, A.¹

 ¹ DLR Institute of Planetary Research, Berlin, Germany
 ² Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

TUDelft

Contact Details: vincent.affatato@dlr.de

Measurement principle of laser altimeters

Transmission and Detection

- Sending the **laser pulse** to the target
- Capturing the returning pulse with a **telescope**

Analysis

 Identification (threshold crossing) and evaluation (time of flight, pulse spread, pulse intensity)

Interpretation

• Global maps for altitude, terrain slope and roughness, and albedo

A widespread tool in space applications

Main applications:

Earth Observation

Atmospheric and climate change monitoring

Navigation & Landing

- Scanning and approaching small asteroids
 Topographic Mapping
- Global map of rocky bodies

Credit: DLR, Hayabusa 2

Credit: DLR, GALA

A widespread tool in space applications

Main applications:

Earth Observation

• Atmospheric and climate change monitoring Navigation & Landing

Scanning and approaching small asteroids

Topographic Mapping

Global map of rocky bodies

State-of-the-art technology: BELA: BepiColombo Laser Altimeter GALA: Ganymede Laser Altimeter

But why they cannot directly fit in microsatellites?

Credit: DLR, Hayabusa 2

Credit: DLR, GALA

Classic approach downsides

1. Detection approach Waveform processing and analysis

- 1. Telescope size
- 2. Laser power consumption
- 3. Data handling system

Single Photon Counting

DIR

2. Optical Design Transmitter-Receiver differentiation 1. Two optical systems 2. Volume allocation

Mission Proposal

SER3NE mission

- ESA OSIP call
- Selected for **Pre-Phase A** studies
- New Laser Altimeter (NLA) from the SER3NE mission proposal
- Enhance the precision of lunar topographic data
- Characterisation of future landing sites
- 6-12 U CubeSat

Optical Design 1

Overview

- **Commercial Off-The-Shelf** mirrors and lenses
- Shared **borehole mirror** ۲
- Transceiver optics

Trade-off analysis

- Zemax optical simulations to ۲ assess performance:
- **1. Volume constraints** (2 U)
- **2. Optical performance** (footprint size, easiness of alignment, misalignment budget, transmittance losses, thermal stability)
- 3. Laser cross-coupling to detector

mm

173 mm

Optical Design 2

Misalignment

- The capability of the candidate to provide a footprint size **as close as possible to the nominal case**
- Not shorter: to allow for misalignment margins
- Not too large: to avoid energy dissipation

Criterion	Direc t Beam	60° Deflectio n	90° Deflectio n	45° Doubl. Defl.	Weight
Misalignment	5	7	8	10	9

Optical Design 3

Straylight

- The capability of the candidate to limit the energy density level reflected internally to the detector
- Back reflection of both telescope lenses, comparing their size with the nominal and limit position of the detector

	Direct Beam	60° Deflection	90° Deflection	45° Doubl. Defl.	Weight
Straylight	4 1	5 (2)	7 3	10 ④	9

Vincent Affatato, EPSC, 09/09/2024

- Modular CAD design to accommodate optics
- Three different sections:

PCB: Printed Circuit Board

Mounted prototype on test bench

Baseline Performance

- Induced aberrations in starting and returning signals
- The main telescope tube is assumable as aberrationfree (Strehl Ratio ~ 0.8)
- The Receiver distorts the • wavefront within an acceptable limit (Strehl Ratio ~ 0.5)

Korrigierte Wellenfront / lambda=0,52μm

Baseline Performance

- Expansion quality of the main telescope tube
- The divergence of the exiting beam, interpolated by hyperbolic fitting, is **predictable** using Zemax simulations

Alignment procedure

- Use of **autocollimator** to adjust orientation
- Three control surfaces:
- **1.** Telescope lens
- **2.** Laser source
- 3. Detector

Vincent Affatato, EPSC, 09/09/2024

Ranging Measurements

 Timing measurements with single-pixel APD and SPAD

• The SPAD range is higher to deal with the **dead time** of the detector

APD: Avalanche Photodiode | SPAD: Single Photon Avalanche Diode

Conclusions and Recommendations

Research Outcomes

- Single photon detection and transceiver optics can drive the miniaturisation of topographic laser altimeters
- Optical design optimising the performance required by the SER3NE mission proposal
- Manufacturing a prototype, verification of the baseline optical performance and feasibility of ranging measurements

Future Work

- Implementation of SPAD array with coincident detection
- Measurements in relevant environment →
 Flight campaign in November
- Electronics development for subsystems

