OPTICAL DESIGN OF A **MINIATURISED LASER ALTIMETER** IMPLEMENTING **SINGLE-PHOTON COUNTING** DETECTION FOR **TOPOGRAPHIC MAPPING** USING **SMALL SATELLITES**

Affatato, V.1,2, Althaus, C.¹ , Binger, J.¹ , Grott, M.¹ , Hussman, H.¹ , Hϋttig, C.¹ , Lingenauber, K.¹ , Potin, S.² , Saathof, R.² , and Stark, A.¹

¹ DLR Institute of Planetary Research, Berlin, Germany ² Faculty of Aerospace Engineering, Delft University of Technology, Delft, **The Netherlands**

TUDelft

Contact Details: vincent.affatato@dlr.de

Measurement principle of laser altimeters

Transmission and Detection

- Sending the **laser pulse** to the target
- Capturing the returning pulse with a **telescope**

Analysis

• **Identification** (threshold crossing) and **evaluation** (time of flight, pulse spread, pulse intensity)

Interpretation

• Global maps for altitude, terrain slope and roughness, and albedo

A widespread tool in space applications

Main applications:

Earth Observation

- Atmospheric and climate change monitoring **Navigation & Landing**
- Scanning and approaching small asteroids

Topographic Mapping

• Global map of rocky bodies

Credit: DLR, Hayabusa 2

Credit: DLR, GALA

A widespread tool in space applications

Main applications:

Earth Observation

• Atmospheric and climate change monitoring **Navigation & Landing**

• Scanning and approaching small asteroids

Topographic Mapping

• Global map of rocky bodies

State-of-the-art technology: BELA: BepiColombo Laser Altimeter **GALA:** Ganymede Laser Altimeter

But why they cannot directly fit in microsatellites?

Credit: DLR, Hayabusa 2

Credit: DLR, GALA

Classic approach downsides

Waveform processing and analysis 1. Detection approach Single Photon Counting

- 1. Telescope size
- 2. Laser power consumption
- 3. Data handling system

DLR

2. Optical Design Transceiver OpticsTransmitter-Receiver differentiation $M2$ 1. Two optical systems **SOLUTION** 2. Volume allocation $L1$ 50 mm

Mission Proposal

SER3NE mission

- ESA **OSIP** call
- Selected for **Pre-Phase A** studies
- New Laser Altimeter (**NLA**) from the **SER3NE** mission proposal
- **Enhance the precision** of lunar topographic data
- Characterisation of **future landing sites**
- **6-12 U CubeSat**

Optical Design 1

Overview

- **Commercial Off-The-Shelf mirrors** and lenses
- Shared **borehole mirror**
- Transceiver optics

Trade -off analysis

- Zemax **optical simulations** to assess performance:
- **1. Volume constraints** (2 U)
- **2. Optical performance** (footprint size, easiness of alignment, misalignment budget, transmittance losses, thermal stability)
- **3. Laser cross -coupling** to detector

7

Optical Design 2

Misalignment

- The capability of the candidate to provide a footprint size **as close as possible to the nominal case**
- Not shorter: to allow for **misalignment margins**
- Not too large: to avoid **energy dissipation**

Optical Design 3

Straylight

- The capability of the candidate to limit the **energy density level** reflected internally to the detector
- Back reflection of **both telescope lenses**, comparing their size with the nominal and **limit** position of the detector

Vincent Affatato, EPSC, 09/09/2024

- **Modular** CAD design to accommodate optics
- **Three** different sections:

Vincent Affatato, EPSC, 09/09/2024 **PCB: Printed Circuit Board**

Mounted prototype on test bench

Baseline Performance

- **Induced aberrations** in starting and returning signals
- The main telescope tube is assumable as **aberration free** (Strehl Ratio ~ 0.8)
- The Receiver distorts the wavefront within an **acceptable limit** (Strehl Ratio ~ 0.5)

igierte Wellenfront / lambda=0,52µm

Baseline Performance

- **Expansion quality** of the main telescope tube
- The divergence of the exiting beam, interpolated by hyperbolic fitting, is **predictable** using Zemax simulations

Alignment procedure

- Use of **autocollimator** to adjust orientation
- Three control surfaces:
- **1. Telescope lens**
- **2. Laser source**
- **3. Detector**

Ranging Measurements

• **Timing measurements** with single-pixel APD and SPAD

The SPAD range is higher to deal with the **dead time** of the detector

Vincent Affatato, EPSC, 09/09/2024 **APD: Avalanche Photodiode | SPAD: Single Photon Avalanche Diode**

Conclusions and Recommendations

Research Outcomes

- **Single photon detection** and **transceiver optics** can drive the miniaturisation of topographic laser altimeters
- **Optical design** optimising the performance required by the **SER3NE mission proposal**
- Manufacturing a prototype, verification of the **baseline optical performance** and feasibility of **ranging measurements**

Future Work

- Implementation of **SPAD array** with coincident detection
- Measurements in relevant environment \rightarrow **Flight campaign** in November
- **Electronics** development for subsystems

