
Acta Astronautica 219 (2024) 128–137

A
0
B

Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Research paper

Experimental and Simulative Evaluation of a Reinforcement Learning Based
Cold Gas Thrust Chamber Pressure Controller
Till Hörger ∗, Lukas Werling, Kai Dresia, Günther Waxenegger-Wilfing, Stefan Schlechtriem
German Aerospace Center (DLR), Institute of Space Propulsion, Im Langen Grund, Lampoldshausen, 74239, Germany

A R T I C L E I N F O

Keywords:
Reinforcement learning
Rocket engine control
Intelligent control
Thrust chamber pressure controller
Sim-to-real transfer

A B S T R A C T

At DLR neural networks, as potential future controller for rocket engines, are studied. A neural network-based
chamber pressure controller for a simplified cold gas thruster is presented and analyzed in simulation and
experiment. The goal of the controller is twofold: It can track a trajectory with different changes of setpoints
and it allows to set and control a wide variety of steady state chamber pressures. The neural network gets
feeding line pressure measurement data as input and calculates valve positions as output values. The training
phase of the controller is done with a reinforcement learning algorithm in an EcosimPro/ESPSS simulation,
that is validated with data from the corresponding experimental set up. To increase the robustness and to allow
a transfer from the simulation directly to the test facility domain randomization is applied. The controller is
evaluated in simulations and experiment. It was found that – in the range of physically possible operation
points – the controller achieves a constantly high reward which corresponds to a low error and a good control
performance. In the simulation the controller was able to adjust all required set points with a steady state error
of less than 0.1 bar while retaining a small overshoot and an optimal settling time. It is found that the controller
is also able to regulate all desired set points in the real experiment. A reference trajectory with different steps,
linear and sinus changes in target pressure is tested in simulation and experiment. The controller was in both
cases able to successfully follow the given trajectory.
1. Introduction and motivation

Rocket engine thrust control is essential for many applications that
are currently of high interest. Particularly for propulsive landing of
launchers as well as planetary or lunar landing systems. In Europe
various projects are developing vertical take of and landing technol-
ogy [1–4]. This applications have high demands on the engine control
system. Precise thrust control, restart capabilities and deep throttling
are needed to assure soft landing. Moreover, the potential reuse of
engines requires optimal transients e.g. with low thermal loads to
avoid damage. Adaptive control systems are beneficial to handle system
changes due to degradation of components over their live-time.

Literature about control methods for rocket engines is limited, an
overview on publicly available reports is given in [5]. The general goal
of rocket engine controllers is to regulate engine thrust at an optimal
efficiency. Thrust is mainly influenced by the combustion chamber
pressure and hence the total injected mass flow. The mixture ratio
control influences the specific impulse and therefor the efficiency of
thrust generation per propellant mass [5]. In parallel to thrust and

∗ Corresponding author.
E-mail addresses: till.hoerger@dlr.de (T. Hörger), lukas.werling@dlr.de (L. Werling), kai.dresia@dlr.de (K. Dresia), guenther.waxenegger@dlr.de

(G. Waxenegger-Wilfing), stefan.schlechtriem@dlr.de (S. Schlechtriem).

mixture ratio control, several temperature and pressure constraints are
in place in order to protect the hardware from damage. The controlled-
variables are coupled in a nonlinear way resulting in a non linear
multiple-input–multiple-output problem. Actuators in a rocket engine
are usually adjustable control valves that regulate the flow rate of
the propellant. Pressure, temperature, turbopump speed and mass flow
sensors are used as feedback.

Closed loop control of transients in rocket engines, like start-up of
the engine, is challenging, due to the designated non-linear behavior.
Classic control approaches like PI and PID are successfully used for
example in the space shuttle main engine for control of steady state
operating points or minor set point changes [6]. In [7,8] throttling
from 21% to 109% of a rocket engine controlled by a PI controller is
reported. The PI parameters were tuned to step and frequency response
test results. More recently, model-based methods like linear–quadratic
regulators (LQR), model predictive control (MPC), H-infinity control as
well as the inclusion of machine learning techniques are successfully
investigated for rocket engine closed loop transient control [5,9,10].
vailable online 2 March 2024
094-5765/© 2024 Deutsches Zentrum für Luft- und Raumfahrttechnik. Published
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.actaastro.2024.02.039
Received 19 October 2023; Received in revised form 17 January 2024; Accepted 2
by Elsevier Ltd on behalf of IAA. This is an open access article under the CC

6 February 2024

https://www.elsevier.com/locate/actaastro
https://www.elsevier.com/locate/actaastro
mailto:till.hoerger@dlr.de
mailto:lukas.werling@dlr.de
mailto:kai.dresia@dlr.de
mailto:guenther.waxenegger@dlr.de
mailto:stefan.schlechtriem@dlr.de
https://doi.org/10.1016/j.actaastro.2024.02.039
https://doi.org/10.1016/j.actaastro.2024.02.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2024.02.039&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acta Astronautica 219 (2024) 128–137T. Hörger et al.

i
t
s
l
p
s
s

d
s
t
d
r
e
o

s
f
i
t
a
a

𝜏

T
t
R
f
a
c
𝐺
e
i
i
e
d

𝐺

The benefits of an intelligent engine control system used for control
reconfiguration and condition monitoring, have already been investi-
gated in the space shuttle era [11,12]. In 2019 German Aerospace Cen-
ter (DLR) started investigating machine learning methods for support-
ing the design and operation of liquid rocket engines and thrusters [13,
14]. Control systems including machine learning methods promise
several advantages for rocket propulsion systems: Side conditions can
be included easily. For example the fatigue life of engine components
at a given thrust level could be expanded with an appropriate damage
model included in the control policy. Wall temperatures at specific
combustion pressures can be kept under a certain level. The efficiency
at a particular operation point or during throttling of an engine can be
increased. The controller can also deal with pre-trained failure models
as well as react intelligently to changes in the system due to anomalies
and possibly reconfigure the system.

One approach to design closed-loop optimal control laws using
machine learning is deep reinforcement learning (DRL) [15]. DRL is
applied successfully to complex control tasks like robot control [16,17],
drone flight control [18] and autonomous driving [19]. One advantage
of DRL is that the controller can be derived directly from nonlinear
high sophisticated simulation models, in which gradient information
is potentially not accessible to the user [10]. No derivation of state–
space models, model order reduction or linearization is needed as it is
required for PID, LQR and MPC controllers. Furthermore, once the con-
troller is trained, the response time is very short [20]. The utilization
of deep neural networks as controller offers the possibility to design
highly non-linear multiple-input multiple-output controllers, that incor-
porate all kind of side conditions while delivering a optimal control
performance. Nevertheless, since the stability of these algorithms is not
mathematically proven until now, the stability and robustness of the
controller has to be carefully evaluated before use. Further challenges
in using reinforcement learning are the high amount of training data
and computational power needed to converge, especially for complex
tasks [21]. Transferring controllers, trained in simulation only, to the
real application can be challenging as the simulation never perfectly
fits the real system [22]. Furthermore it is hard to assure safety and ro-
bustness of the controller. One possibility to evaluate the performance
and stability of the control algorithm is testing in multiple simulations
and experiments.

In this work, a simplified cold gas system is utilized to demonstrate
the basic functionality of an artificial neural network trained by a
reinforcement learning algorithm as rocket engine controller. This set
up allows rapid, cheep and safe testing while offering the opportunity to
conduct real world experiments. Goal of the work is to show the prin-
cipal functionality of the presented method in an academic example,
rather than outperforming other control methods in this task.

A simulation model of the thruster was set up in EcosimPro/ESPSS
and validated with experimental data. Further, a Python interface
allows the use of state of the art deep reinforcement learning algorithms
for training and at the test facility. Based on the simulation model a
thrust chamber pressure controller for the named cold gas system is
trained. The goal of the controller is to set different thrust chamber
pressures at different feeding line pressures as well as to follow pressure
trajectories. The steady state control deviation should be less than
0.1 bar. Further overshot of less than 0.5 bar and a optimal settling time
s required. The paper discusses the control performance achieved by
he neural network in simulation as well as at the test facility. The
econd chapter gives background information about the used machine
eaning methods. In section three the experimental set up and the im-
lementation of the controller is described. Chapter four discusses the
imulative evaluation of the controller performance while in chapter
129

ix the experimental results are shown.
Fig. 1. Reinforcement learning schematic based on [24].

2. Method and theoretical background

2.1. Reinforcement learning

Reinforcement Learning is a sub-field of machine learning (ML). In
machine learning a large amount of training data is used to find solu-
tions for complex problems. Three categories (supervised, unsupervised
and reinforcement learning) can be distinguished in ML, depending on
the quality of information give in the problem [23]. Supervised learning
can be applied if the training dataset contains the input and the desired
output data. This can be useful to find corresponding mapping rules
between input and output, that can be used for example for image
classification. Whereas in unsupervised learning, the target output data
is unknown. The goal is to discover structures, similarities or hidden
patterns in the input. Such algorithms can be used e.g. for cluster
analysis or to find similarities in data.

Reinforcement learning (RL) is different from supervised and un-
supervised learning because no predefined training datasets is needed.
A so-called agent learns self-employed through interaction with a sim-
ulation or real-world data. RL operates in discrete time steps. The
underlying principle of RL is visualized in Fig. 1: An agent interacts
in discrete time steps 𝑡 with the environment. The environment has
efined states 𝑠𝑡. In every time step the agent gets information about the
ystem state from the environment. Environment information known to
he agent is called observation space. The state is rated with a user
efined scalar value called reward 𝑟𝑡. The goal is to maximize the
eward in order to achieve the desired behavior of the controller. Hence
xperience from interaction with the environment is used to learn an
ptimal control strategy.

Reinforcement learning methods are bounded to problems that are
tated as Markov decision process (MDP) [25]. MDP’s are a general
ramework for decision making processes where the probability to get
n the next state 𝑠′ only depends on 𝑠 and the current action 𝑎 and not
o steps prior to 𝑠 (Markov-Property) [24]. The rule, which defines the
ction is called policy 𝜋. A trajectory 𝜏 is defined as a sequence of states
nd actions.

= (𝑠0, 𝑎0, 𝑠1, 𝑎1,… , 𝑠𝑛, 𝑎𝑛) (1)

he overall goal is to find a decision rule for choosing actions (policy)
hat maximizes the expected cumulative reward of a trajectory. In deep
L the policy is represented by a artificial neural network that acts as

unction approximation of the policy. It maps a state of the system to
n action 𝑎𝑡. The agent develops a strategy to maximize the expected
umulative reward 𝐺(𝜏) = E{𝛴𝑟𝑡} that it gets. The cumulative reward
(𝜏) is the sum of all single reward values in one episode, where the
pisode is one sequence of simulation following the policy 𝜋. Through
nteraction with the environment the agent gets information, encoded
n the reward, which action is best in which situation. To avoid the
xpected cumulative reward for long episodes growing to infinity, a
iscount factor 0 ≤ 𝛾 ≤ 1 is introduced (See Eq. (2)).

(𝜏) = E

{ ∞
∑

𝛾 𝑡𝑟(𝑠𝑡)

}

(2)

𝑡=0

Acta Astronautica 219 (2024) 128–137T. Hörger et al.

t
c
f
R

d
i
w
o
s
a
d
o
c
p
I
i
i
t
S
m
o
p
t
e
s
t

𝜋

Table 1
Key terms in reinforcement learning [15,20].

Expression Description

Agent The algorithm or controller. It optimizes the policy.

Environment System that interacts with the agent. In this case the
rocket thruster

State Physical state of the system

Reward Scalar value that rates the state of the system.
Calculated by a user defined reward function

Action Control output of the agent. Sent to the environment

Observation space Variables that serve as input values and system
description for the agent

Policy Decision rule of the agent. A function that maps states
to actions. It defines how the agent reacts to different
system states. In deep RL the policy is an artificial
neural network. During training the policy is
optimized through the agent to find actions delivering
the maximum reward

The value of 𝛾 defines how much future rewards come into account for
he current action because 𝛾 is raised to the power of 𝑡. This process
an be seen as a trial and error method with integrated feedback in the
orm of reward. Table 1 gives an overview on important concepts in
L.

In literature a wide variety of RL-algorithms is described. It is
ifferentiated between model-based and model-free RL. In the follow-
ng it is focused on model-free methods, as these were used in this
ork. Different learning paradigms can be distinguished, depending
n what function exactly is optimized: In (Deep) Q-learning [26] the
o called optimal action-value function is learned. Policy optimization
lgorithms directly optimize a parameterized policy e.g. by policy gra-
ient methods [27]. Actor critic algorithms try to combine the strengths
f Q-learning and policy gradients [28,29]. On-policy algorithms need
ompletely new training samples after each policy update, while off-
olicy algorithms can learn from past samples using replay buffers.
n this study, the off-policy Soft-Actor–Critic (SAC) algorithm [30],
mplemented in the Ray RLlib framework is used [31]. SAC, released
n 2018, can handle continuous state and action spaces. Compared
o on-policy algorithms like the widely used PPO [32] or A3C [33],
AC is characterized by a comparatively high sample efficiency which
ay lead to faster training success. Furthermore, in comparison to

ther off-policy algorithms like DDPG [29] or TD3 [28], the training
rocess is stable and less hyper parameter tuning is needed. Beside
he cumulative reward, the SAC algorithm also maximizes the policy-
ntropy , as a measure of how random the agent acts. This can be
een in the following equation for calculating the optimal policy 𝜋∗

aken from [30]:
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜋

∑

𝑡
E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋

[

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼(𝜋(⋅|𝑠𝑡))
]

(3)

Besides the first term in the expectation representing the reward
𝑟(𝑠𝑡, 𝑎𝑡), a second part 𝛼(𝜋(⋅|𝑠𝑡)) is added. 𝛼 is a hyper-parameter
controlling the influence of the policy-entropy on the overall maxi-
mization. In this way the task is completed successfully while acting
as randomly as possible [30]. The policy is therefore encouraged
to exploration while being robust concerning model and estimation
errors [30]. However, several million time steps of training can be
required to train a controller with reinforcement learning. Therefore,
it is beneficial that SAC can also be trained in a distributed manner to
take advantage of multi-CPU machines, further reducing the training
time.

2.2. Domain randomization

In the first phase of training, the agent randomly explores the
130

environment. Hence, it will possibly happen, that the agent enters states
that are dangerous for the system. Therefore the training has to take
place in a simulation environment. One main challenge when using
reinforcement learning based controllers is the transfer from the simu-
lation based training environment to the real world application. This is
also called Sim-to-Real transfer [34]. Even carefully tuned simulations
will always contain small deviations from the real system. The RL
algorithm learns to make use of these simulation inaccuracies and the
application in the real world may fail due to unforeseen input values.
This is problematic for the application of RL based controllers, as they
react very sensitively to changes in the simulation environment [35].

Domain randomization can help to overcome the Sim-to-Real gap
[35–37]. The idea behind Domain Randomization (DR) is to randomly
change crucial variables like friction, delays, temperatures or pressure
loss in the simulation environment during the training [38]. In this way
policies with a wider area of validity can be generated, as the reality
becomes a subset of the randomizes simulation environments [39].

In order to apply the DR method to a specific use case a set of simu-
lation parameters 𝑁𝑟𝑎𝑛𝑑 that will be changed randomly during training
has to be defined. Each parameter 𝜉𝑖 is bounded on a randomization
interval [𝜉𝑖𝑙𝑜𝑤, 𝜉

𝑖
ℎ𝑖𝑔ℎ] resulting in a randomization space 𝛯 ⊂ R𝑁𝑟𝑎𝑛𝑑 .

The choice of the randomization space 𝛯 depends on the problem
and has a high influence on the training and the resulting policy [39].
𝛯 has to be general enough to cover all possible discrepancies between
simulation and the real application. Anyway it has to be as small as
possible, as a huge randomization space produces more conservative
policies which deliver not optimal solutions for the specific environ-
ment [40]. The choice of the randomized parameters has to avoid
nonphysical solutions like for example negative pressures. The correct
assortment and range of the randomized parameters demands high do-
main knowledge [40]. The training on a randomized environment takes
more steps and consequently more computing time, as the variance
of the environment is higher [39]. Also the reward achieved on the
baseline simulation environment is tending to be inferior to an agent
trained solely on the baseline simulation [39].

3. Experimental set-up

A suitable application for a reinforcement learning based con-
troller is for example a 22N thruster fueled with gaseous nitrous oxide
and ethane. Such a system can be constructed either as premixed
monopropellant- [41,42] or bipropellant system. For the control task,
the bipropellant system offers more degrees of freedom. Because of the
high vapor pressure of fuel and oxidizer it is possible to operate the
system in self pressurized mode. The propellants are stored as liquefied
gases with two phases in separate tanks. In a self-pressurized system the
tank pressure decreases over burn-time, as the propellant evaporates,
and the enthalpy of vaporization cools the remaining propellant. This
is especially the case, when the thruster is fed from the gas phase.
Therefore, to achieve a constant thrust level, an active control sys-
tem is needed. Nitrous oxide/ethane offer a green alternative to the
widely used satellite propellant monomethylhydrazine and dinitrogen
tetroxide [43]. The latter are attempted to be replace due to their toxic,
carcinogenic and environmentally harmful properties. At DLR several
encouraging green propellants are under investigation [44–46]. Nitrous
oxide/ethane are comparably cheap, widely accessible and offer a high
𝐼𝑠𝑝 ≈ 300 s [43].

3.1. Cold gas test set-up

Since the DRL-control method was never before experimentally
tested in the field of combustion chamber pressure control, before
conducting hot fire tests with nitrous oxide/ethane, a reduced nitrogen
cold gas system is used for the first tests. Nitrogen is chosen as simulant
for two reasons: Firstly, in comparison to nitrous oxide less safety
regulation and concern due to oxidizing atmosphere has to be applied.
Secondly, releasing large amounts of un-burned nitrous oxide in the

Acta Astronautica 219 (2024) 128–137T. Hörger et al.
Fig. 2. P&ID of the test set up.
𝑅
𝑅
A
d
p
v
t
a
t
F
1
t
i
o

t
i
p
l
h
a

m
T
w
T
s

c

Table 2
Input and output variables of the controller.

Input (Observation space) Output (Action space) Controlled variable

𝑃 _𝐹𝐷𝐿 𝑑𝐶𝑉 _𝑃𝑂𝑆∕𝑑𝑡 𝑃 _𝑇𝐶
𝑃 _𝑃𝑅𝐸
𝑃 _𝑇𝐶
𝐸𝑅𝑅
𝑃 _𝑆𝑂𝐿𝐿
𝐶𝑉 _𝑃𝑂𝑆

atmosphere contributes to climate change [47], while with nitrogen
for cold gas experiments less climate impact accounts. The P&ID of the
test set up can be seen in Fig. 2. Nitrogen is feed by 200 bar supply
pressure. The nitrogen pressure is reduced to a maximum of 100 bar by
a PID controlled automatic pressure regulator of type Tescom ER5000.
The pressure controller allows to set different feeding line pressures. An
automatic main valve is used to start and stop the gas flow. After the
main valve a Rheonik coriolis mass flow meter is installed, followed by
a proportional control valve of type m-tech MPG 03 PR. The nitrogen
is then expanded through a chamber, initially designed for use with
nitrous oxide and ethane. The goal of the controller is to set the
chamber pressure to a desired value by changing the position of the
control valve for varying feeding line pressures. All testing is conducted
at DLR Lampoldshausen M11.5 test position [46,48].

Three pressure sensors, 𝑃 _𝐹𝐷𝐿, 𝑃 _𝑃𝑅𝐸 and 𝑃 _𝑇𝐶 (see Fig. 2), are
used as input variables for the controller. Further, the current position
of the control valve 𝐶𝑉 _𝑃𝑂𝑆, the desired chamber pressure 𝑃 _𝑆𝑂𝐿𝐿
and the error 𝐸𝑅𝑅 (difference between the desired pressure and the
measured 𝑃 _𝑇𝐶) are used as input to the neural network. Based on
these values the network calculates the action value. The output is
defined as the relative change of the position of the control valve
𝑑𝐶𝑉 _𝑃𝑂𝑆∕𝑑𝑡. This value is sent to the test facility and changes the
position of the control valve. The change in position of the control valve
is limited to 5% in each time step, due to low movement speed of the
valve. The control frequency is 10Hz. Since the control valves used for
the experiments, have a dead time of about 300 ms and additionally
an opening time of about 2 s to fully open, 10Hz are sufficient for this
setup. In a later set up, faster valves will be used. The control frequency
is then planned to be higher. For comparison, the engine controller
of the space shuttle main engine operated at 50Hz [6]. Table 2 gives
an overview about the input and output parameters of the controller.
The test facility is controlled and operated by a python based user
interface, that allows the simple inclusion of neural networks in the
workflow [20].

3.2. Training of the controller

The controller is essentially an artificial neural network (NN). The
NN is used as function approximation to map pressure measurement
data to valve positions. To act successfully as controller the internal
weights of the NN have to be adapted via training. Essential for good
results is the choice of the reward function. This function should return
high values, if the controller is close to the desired thrust chamber
131

pressure and low values if it is far away from the set point. Furthermore i
unnecessary valve movement and oscillations should be punished. The
gradient of the reward function with respect to the pressure very
close to the set point should be high enough to allow finding the
terminal position. Designing a good reward function is a key challenge
when applying reinforcement learning to a specific problem. For this
application the approach in the following algorithm is chosen:

𝑟(𝑡) = 𝑅𝑒𝑤1 + 𝑅𝑒𝑤2 + 𝑅𝑒𝑤3

if 𝐸𝑅𝑅 < 2 bar then
𝑅𝑒𝑤1 = −

√

𝐸𝑅𝑅
else

𝑅𝑒𝑤1 = −10
end if

𝑅𝑒𝑤2 = −|𝑣𝑎𝑙𝑣𝑒𝑠𝑝𝑒𝑒𝑑|

if more than 3 time steps 𝐸𝑅𝑅 ≤ 0.1 bar then
𝑟𝑒𝑤3 = 10

else
𝑅𝑒𝑤3 = 0

end if

The reward function 𝑟(𝑡) is subdivided in three parts 𝑅𝑒𝑤1, 𝑅𝑒𝑤2,
𝑒𝑤3, each of which evaluates a different aspect of the control goal.
𝑒𝑤1 = −10 if the deviation from the set point is 2 bar or higher.
part from that 𝑅𝑒𝑤1 is equal to minus the square root of the control
eviation. 𝑅𝑒𝑤1 is mainly important at the beginning of the training
hase, because large deviations are punished with a large negative
alue while the square root function offers a steeper gradient close the
arget pressure than a linear function. 𝑅𝑒𝑤2 penalizes valve motion
nd especially fast valve motion. This helps to avoid oscillations around
he target pressure. However this may also increase the settling time.
inally, 𝑅𝑒𝑤3 supports finding and holding the target pressure. 𝑅𝑒𝑤3 =
0 only if the control deviation was less than 0.1 bar for more than three
ime steps in succession. The maximum possible reward in one time step
s therefor 𝑟(𝑡) = 10 and the undiscounted maximum cumulative reward
f one episode is 𝐺 = 10 ⋅ (𝑛 − 3) with 𝑛 time steps in one episode.

The training of the controller described in this paper is done with
he off-policy soft actor critic (SAC) algorithm [30] in the RAY Rllib
mplementation [31] (see Table 3). 6 CPUs are used for training in
arallel. The neural network representing the policy has two hidden
ayers with 256 neurons each. The Activation function is ReLu. All
yper-parameters of the algorithm are implemented in the same way
s in the standard implementation [30,31]

During the training or exploration phase the controller intentionally
ay enter system states, that are possibly dangerous for the system.
his is fined with a low reward and is part of a nominal training process
here also low reward areas have to be observed by the algorithm.
herefore, to save cost and to avoid damage of the test facility or test
pecimen the training process takes place in a simulation environment.

EcosimPro ESPSS [49] is used as simulator. For training of the
ontroller, a simulation model of the cold gas test setup up described

n Section 3.1 is created. The simulation model is validated with data

Acta Astronautica 219 (2024) 128–137T. Hörger et al.
Table 3
Relevant variables for the training of cold gas thrust chamber pressure controller.

Variable Value or range

𝑃 _𝐹𝐷𝐿 {𝑃 _𝐹𝐷𝐿 ∈ N|𝑃 _𝐹𝐷𝐿 ≥ 60 ∧ 𝑃 _𝐹𝐷𝐿 ≤ 90} bar

𝑃 _𝑆𝑂𝐿𝐿 ({𝑃 _𝑆𝑂𝐿𝐿 ∈ N|𝑃 _𝑆𝑂𝐿𝐿 ≥ 50 ∧ 𝑃 _𝑆𝑂𝐿𝐿 ≤ 𝑃 _𝐹𝐷𝐿})∕10
bar

𝑇 _𝐹𝐷𝐿 {𝑇 _𝐹𝐷𝐿 ∈ N|𝑇 _𝐹𝐷𝐿 ≥ 268 ∧ 𝑇 _𝐹𝐷𝐿 ≤ 298} K

Sensor noise Gaussian distribution with 𝜇 = Sensor value and 𝜎 = 1.
The random number is multiplied with 0.5% of the
sensor value

Simulated pipe length Randomized with normal distribution [0.6, 1.4]

Valve Speed Randomized with normal distribution [0.1, 0.5]

Algorithm SAC
Implementation RAY Rllib 3.0.0.dev
Number CPU 6
Framework Torch
Neural net Activation function: ReLu

Two hidden layers of size 256

from the experimental setup. The measured thrust chamber pressure at
corresponding mass flow rates can be reproduced in simulation with
a maximum error of 3% for different feeding line pressures and valve
positions.

In order to train a robust control policy that gives useful results also
in the experiment, domain randomization as described in Section 2.2
is used. The intervals in which the parameters are randomized have
to be chosen wisely. Large randomization intervals massively increases
the training effort while narrowly defined randomization intervals may
exclude the areas relevant for the real application. For the cold gas set
up described in this paper, it was found that the speed of the control
valves as well as calculating correct pressure losses in the system are
the most challenging parts of the simulation. Hence valve speed and the
length of the feeding lines in the simulation was used as randomization
space 𝛯. The length of each simulated pipe in the feeding line is
multiplied by a factor (interval see Table 3) randomly changing after
each episode and therefore varying the pressure loss in the feeding
lines. The valve speed is varied after each episode in the interval given
in Table 3.

During training one episode comprises 40 s simulation time. To fur-
ther increase the robustness of the controller the following procedures
are implemented: During simulation every 10 s the feeding line pressure
𝑃 _𝐹𝐷𝐿, feeding line temperature 𝑇 _𝐹𝐷𝐿 as well as the desired thrust
chamber pressure 𝑃 _𝑆𝑂𝐿𝐿 is changed randomly in the given limits
with a equal distribution (compare Table 3). The change in feeding
line input temperature simulates conditions in different seasons. Input
values are rounded to integers or one decimal respectively. Every 5
episodes the target pressure is following a constantly changing tra-
jectory with different feeding line pressure respectively. This should
enable the controller to set different set points as well as to follow a
given trajectory. Sensor noise is added to all variables in the observa-
tion space with a Gaussian distribution with standard variation of 𝜎 = 1.
The noise is multiplied with 0.5% of the sensor value and added to the
latter.

4. Simulative analysis

To analyze the control behavior of the neural network after the
training is completed, simulations are conducted. The NN has to control
the thrust chamber pressure via interaction with the EcosimPro/ESPSS
simulation model. 4800 simulations were conducted to systematically
analyze the performance in the training area. Feeding line pressure
was increased in 0.5 bar steps from 60 bar to 90 bar. Target pressure
was simulated in an interval from 5 bar to 9 bar with steps of 0.05 bar
each. Thereby the entire operating envelope of the set up is covered
132
Fig. 3. Reward achieved in simulation for different set points. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

with a fine resolution. The set-up is regularly used for hot gas tests. In
order to reach comparable chamber pressures with cold gas, high mass
flow rates are needed, resulting in high pressure losses. The chosen
range of feeding- and chamber pressures is a compromise of slightly
to low chamber pressures and relatively high feeding line pressures in
comparison to hot gas operation.

The evaluation simulations were carried out for a run time of 10 s
starting always from 10% valve opening. According to the defini-
tion of the reward function, the maximum possible reward value for
100 timesteps would be 10 000. As the valve needs up to 2.3 s to open
completely, a realistic value for a perfect run is in the order of 8000.
The result can be seen in Figs. 3 and 4.

The areas marked with yellow color in Fig. 3 represent set points
with a high reward achieved. This means the controller was able to set
the chamber pressure to the correct target value. While in the black
areas the reward is low and as a consequence the controller failed
to set the desired pressure. Both areas on the top left and the lower
right where the controller failed are tied to physical limitations of the
test set up. For a given feeding line pressure due to pressure losses in
the system, only a limited thrust chamber pressure can be achieved at
completely opened control valve. This is the case for the dark area in
the top left side of Fig. 3. For example at 60 bar feeding line pressure,
only 6 bar chamber pressure are possible. Therefor the higher operating
points are out of scope. The limit in the lower right in Fig. 3 can be lead
back to a limitation of a minimum opening of the control valve to 10%.
High feeding line pressures would require control valve positions below
10% to reach low target chamber pressures. The reason for introducing
a limit at the lower boundary of the control valve was due to high
inaccuracies if the control valve is operated at lower opening levels.

It can be seen that within the physical boundary the controller
is able reach a constantly high reward and therefor small deviations
at all tested set points in the chosen resolution between 60 bar and
90 bar feeding line pressure and 5 bar and 9 bar chamber pressure are
accomplished.

Fig. 4 allows a more detailed analysis of the controller behavior.
Fig. 4(a) shows the settling time in dependence of the desired

chamber pressure at four different feeding line pressures. It can be seen
that the settling time rises for higher target pressures, which is a result
of the required higher opening of the control valve. Curves representing
lower feeding line pressures resulting in higher settling times for the
same desired pressure. This is because for the same chamber pressure at
a lower feeding line pressure the control valve has to be opened further.
At the upper right end of each line, the set point can no longer be

Acta Astronautica 219 (2024) 128–137T. Hörger et al.
Fig. 4. Simulation analysis.
reached du to limited feeding line pressure and the valve being already
fully open. Therefore the settling time grows to infinity. The maximum
settling time in the controllable area of about 2.4 s corresponds to the
opening time of the valve, which is also 2.3 s. So the controller is able
to set the target pressure in the minimum possible settling time. The
linear progression of the curves in the controllable area is a result of
the linear transfer function of the control valve.

Fig. 4(b) represents the mean thrust chamber pressure in depen-
dence of the desire chamber pressure. For the controllable area this
is a straight line, which indicates that the target pressure equals the
simulated pressure set by the controller. For higher target pressures
at a specific point each curve instantly drops to a lower value. The
controller closes the control valve to the lower limitation (10%) when
it is no longer possible to reach the desired pressure. For higher
feeding line pressures, the drop occurs at higher target pressures and
results also in a higher remaining pressure in the thrust chamber.
This behavior can be problematic. If the desired pressure is too high
for the physical limits of the system, the highest possible pressure
should be set and the valve should be completely opened. This behavior
is probably attributed to the choice of the reward function. Since
the achievable pressure is always far away from the desired pressure
only negative reward with almost no gradient information is given,
independent on the actual pressure. Therefore, for the controller it is
beneficial to not move the control valve at all to avoid punishment for
valve movement. This should be addressed via changing the reward
function in future applications. For higher feeding line pressures (80 and
90 bar), as already described in Fig. 3, the low target pressures cannot
be reached, as the minimum opening of 10% results in higher thrust
chamber pressures.

Fig. 4(c) represents the overshoot in pressure during the settling
time. It can be seen, that for the controllable area nearly no overshoot
133

can be observed. The lines representing 80 bar and 90 bar feeding line
pressure have a peak for low desired chamber pressure, which is a result
of the inability to reach this pressures given the physical limits of the
system.

Fig. 4(d) shows the root mean squared error (RMSE) for the different
set points in bar. The RMSE in the controllable area is in the order of
0.01 bar and therefor well within the target accuracy of 0.1 bar defined
by the reward function. For areas outside the controllable region the
root mean squared error rises.

All simulations shown in Figs. 4 and 3 were run with the same
baseline simulation set up. Domain randomization was used in training,
but not for evaluation. In order to test the robustness of the controller
for changing environmental behavior a Monte Carlo simulation with
5000 sample simulations is implemented. The result is shown in Fig. 5.

The following parameters are changed randomly with equal distri-
bution during the MC simulation in the given ranges in Table 3: Feeding
line pipe length, valve speed, feeding line temperature, feeding line
pressure 𝑃 _𝐹𝐷𝐿, desired pressure 𝑃 _𝑆𝑂𝐿𝐿, sensor noise. This anal-
ysis reveals how the controller behaves under changing environment-
conditions, e.g. when being transferred to the real test facility. Sensor
noise was added between 0,1% and 1% intensity, unlike given in
Table 3. For the Mote Carlo simulation only operating points inside the
controllable area (where the controller reached a high reward in the
baseline simulation, compare Fig. 3) were chosen. The Monte Carlo
analysis shows that the vast majority of 4388 simulations lead to a
reward of more than 6000. In 1749 of the simulations the reward was
higher than 8200. However in some of the simulations the controller
failed to achieve the desired chamber pressure, as can be seen by a
negative or very low positive reward. In total 331 simulations lead to a
negative reward. It was found, that simulations resulting in a negative
reward are on the boundary of the controllable area. It is assumed,
that with changing for example the pressure loss or temperature a set

point which was under baseline conditions inside the controllable area,

Acta Astronautica 219 (2024) 128–137T. Hörger et al.

m
t

j
T
l
c

Fig. 5. Result of Monte Carlo simulation.

oved outside and can no longer be controlled by the controller due
o physical limits of the system.

As last step, the controller was tested following a predefined tra-
ectory of the chamber pressure at constant feeding line pressure.
he trajectory contains different step changes as well as sinus and

inear change in the desired chamber pressure. The simulation was
onducted with a constant feeding line pressure of 80 bar. The result

can be seen in Fig. 6. The target trajectory is marked with dashed
line, while the simulated controlled chamber pressure is shown as solid
line. The controller was able to follow the trajectory with a root mean
squared error of 0.36 bar. The slow settling time for the larger set point
changes is a result of the slow valve speed. Nearly no overshoot can be
observed.

5. Experimental analysis

In total 142 steady state experiments are used for the experimental
investigation of the controller performance. Additionally one test fol-
lowing a trajectory is presented. Experiments are conducted at M11.5
test facility in Lampoldshausen [46,48].
134
A characteristic pressure plot of one steady state experiment is given
in Fig. 7. Data acquisition starts at 𝑡 = 0 with the experiment time
𝑡. 4.3 s after begin, the automatic valve is opened, and nitrogen starts
flushing the thrust chamber. At the beginning of each experiment the
control valve is set to 10% open. After opening of the automatic valve
there is a 5 s wait to establish steady flow conditions. In this way equal
starting conditions for every experiment are guaranteed. When the flow
is established 10 s after the beginning, the neural network takes control
and changes the chamber pressure to the desired value, in this case
8 bar. Due to limited valve speed in this experiment it takes 2.2 s to reach
the set point. No overshoot can be observed. After 21 s the experiment
is over and the control valve is opened completely, to release remaining
nitrogen in the feeding lines. This is the reason for the pressure peak
at the end of the experiment before the automatic valve is closed after
22 s.

Fig. 7. Thrust chamber pressure plot for a experiment with 80 bar feeding line pressure
and a target pressure of 8 bar.
Fig. 6. Simulated chamber pressure following a predefined trajectory.

Acta Astronautica 219 (2024) 128–137T. Hörger et al.
Fig. 8. Experimental results.
142 of this test similar to the one described above have been
conducted with different feeding line pressures and different target
chamber pressures. The results are presented in Fig. 8.

In this plots every hexagon represents one experiment. On the hori-
zontal axis the feeding line pressure and on the vertical axis the desired
chamber pressure is shown. Therefore, a hexagon at the same spot
always represents the same experiment. The color of the hexagon labels
the magnitude of the evaluated variable for the respective experiment.
All variables are calculated for the time interval the neural network
takes over control (𝑡 = 10 s) until the end of the experiment (𝑡 = 22 s).
Fig. 8(a) indicates the calculated reward achieved in the experiments.
The result is similar to the simulative evaluation (see Fig. 3). Inside the
controllable area high reward values are obtained. Control limitation
is given for low and high target pressures for minimum and maximum
vale opening respectively. The limits can be seen by the black hexagons
marking experiments resulting in a low reward. The physical limits of
the system in the experiment are the same as in the simulation. In this
135
cases the target pressure could not be set. Once a set point could not
be reached the feeding line pressure was changed. As the experimental
results were promising, the controller was also tested outside the
training area. The controller was trained in simulation for feeding line
pressures between 60 bar and 90 bar and target pressures from 5 bar to
9 bar. However also for feeding line pressures as low as 20 bar and up to
100 bar successful control results were observed. For lower feeding line
pressures the possible target pressure is also reduced. Obviously, the
neural network extrapolated the successful control policy also for other
operating envelopes. There is no forecast about the control-quality
outside the operating points used in training. Therefor this result has
to be evaluated carefully before use in operation.

Fig. 8(b) shows the root mean squared error of the chamber pressure
for each experiment in bar. Interestingly a slight decrease of RMSE for
higher target pressures can be seen. Which leads to the assumption that
the stationary control deviation for higher set points is lower. However,

Acta Astronautica 219 (2024) 128–137T. Hörger et al.

a
h

d
t
o
t
c
t
e
t

t
i
o
a

s
o
p

b
h
i
d

w
g
p

H
s
o
s
u
t
v
s
i
r
p
n
p
s
r
i
t
t

Fig. 9. Chamber pressure following a predefined trajectory.
6

S
g
W
b
d
a
t
t
c
p
t
d

i
d
e
c
i
t
m
u
p
c
s
t
t
c
m
r

D

c
i

R

ll experiments within the controllable area resulted in a RMSE not
igher than 0.2 bar.

Fig. 8(c) shows the settling time. It is defined as time until only
eviations of less than 10% of the desired pressure arise. For higher
arget pressures the settling time grows, as the valve needs to be
pened further. Similar to the simulative results the settling time in
he controllable areas is as low as possible with the given speed of the
ontrol valves. For set points outside the controllable area no settling
ime can be calculated. They are marked with settling time zero. Some
xperiments at the border of the controllable area show larger settling
imes.

In Fig. 8(d) the standard deviation of the chamber pressure during
he stationary time in the experiments is shown. Standard deviation
s a measure for deviations and oscillations during the steady state
peration. With less than 0.1 bar in the controllable area fluctuations
round the target pressure are low.

In Fig. 8(e) the color-map represents the overshoot that was ob-
erved during the settling phase of the chamber pressure. The observed
vershoot for lower target pressures is higher while for high desired
ressures no overshoot can be observed.

Concluding Fig. 8 it can be seen that for the relevant target area
etween 60 bar and 90 bar the controller is successful in changing and
olding the chamber pressure to the required set point. While act-
ng with fast settling times, low overshoot, low fluctuations and low
erivations from the set point can be seen.

In order to test not only steady state performance of the neural net-
ork based controller, the control performance is tested following the
iven reference trajectory. Fig. 9 shows the measured thrust chamber
ressure, corresponding to the simulation shown in Fig. 6.

It can be seen that the controller was able to follow the trajectory.
owever, in comparison to the steady state experiments and to the

imulative evaluation of the trajectory, more fluctuations and higher
vershoot during the change of operating points can be seen. The long
ettling time for larger set point changes is a result of the slow valves
sed for the experiments. The root mean squared error is calculated
o 1.15 bar. This comparably high value is partly a result of the slow
alves resulting in high absolute errors for long time during the long
ettling time. However the root mean squared error of the full trajectory
n the experiment is higher than in the simulation. Observing the step
esponse at 40 s in Fig. 9 it can be seen, that the time needed for
ressure reduction is longer than for pressure increase. This effect is
ot present in the associated simulation in Fig. 6. This indicates rather a
roblem with closing the valve or an other issue with the experimental
et up than with the controller itself, because it is not visible in the
espective simulation. However, the exact reason for this behavior is
ndeterminable. The controller performance in experiment following
he trajectory is, despite using domain randomization, worse than in
he simulation.
136
. Conclusion and outlook

A neural network trained with the reinforcement learning algorithm
AC [30] is used as chamber pressure controller for a nitrogen cold
as thruster. The controller was analyzed in simulation and experiment.
ithin the physical limits of the system the controller showed satisfying

ehavior, meeting the requirements of less than 0.1 bar steady state
eviation from the set point, nearly no overshoot and a settling time,
s fast as the system allows. The controller can be transferred from
he simulation to the experiment and also in the real test set up
he controller showed good performance. It was also shown that the
ontroller is also able to control the thruster far outside the operating
oints that were used for training. The controller is able to follow a
rajectory that was unknown during training. The trajectory contains
ifferent set point changes, linear and sinus pressure changes.

In future this control method will be applied to a nitrous ox-
de/ethane bipropellant system and hotfire experiments will be con-
ucted. Several challenges come up in comparison to the cold gas
xperiments described in this paper. The controller has to regulate
hamber pressure and mixture ratio independently. The combustion
ntroduces higher roughness, sensor noise and the behavior of the
hruster changes depending on the chamber temperature. Faster and
ore accurate, in house developed electronic control valves will be
sed in the future experiments to reduce the settling time. In a bipro-
ellant set-up this method has to prove its suitability as rocket engine
ontroller. It will also be possible to test the introduction of different
econdary boundaries in the control-law as for example a limit in
he wall temperature at a given thrust. Further research is needed
o investigate the use of machine learning and neural networks as
ontrol method. A direct comparison with other established control
echanisms is desirable to find advantages and disadvantages of the

espective method.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] I. Waugh, A. Davies, E. Moore, J. Macfarlane, VTVL technology demonstrator
for planetary landers, in: Space Propulsion Conference, 2016.

[2] E. Dumont, S. Ishimoto, P. Tatiossian, J. Klevanski, B. Reimann, T. Ecker, L.
Witte, J. Riehmer, M. Sagliano, S. Giagkozoglou, I. Petkov, W. Rotärmel, R.
Schwarz, D. Seelbinder, M. Markgraf, J. Sommer, D. Pfau, H. Martens, CALLISTO:
a demonstrator for reusable launcher key technologies, in: 32nd ISTS, 2019, URL
https://elib.dlr.de/128795/.

http://refhub.elsevier.com/S0094-5765(24)00111-5/sb1
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb1
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb1
https://elib.dlr.de/128795/

Acta Astronautica 219 (2024) 128–137T. Hörger et al.
[3] J. Vila, J. Hassin, Technology acceleration process for the themis low cost
and reusable prototype, in: 8th European Conference for Aeronautics and Space
Sciences, 2019, pp. 1–4.

[4] A.P. de Mirand, J.-M. Bahu, O. Gogdet, Ariane next, a vision for the next
generation of ariane launchers, Acta Astronaut. 170 (2020) 735–749.

[5] S. Pérez-Roca, J. Marzat, H. Piet-Lahanier, N. Langlois, F. Farago, M. Galeotta, S.
Le Gonidec, A survey of automatic control methods for liquid-propellant rocket
engines, Prog. Aerosp. Sci. 107 (2019) 63–84.

[6] C.F. Lorenzo, J.L. Musgrave, Overview of rocket engine control, in: AIP
Conference Proceedings, Vol. 246, 1992, pp. 446–455.

[7] H. Sunakawa, A. Kurosu, K. Okita, W. Sakai, S. Maeda, A. Ogawara, Automatic
thrust and mixture ratio control of le-x, in: 44th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, 2008, p. 4666.

[8] T. Kai, K. Niu, K. Obase, W. Sakai, Y. Fukuda, T. Hashimoto, M. Sato, S. Takada,
T. Kimura, Y. Naruo, et al., Engine control system for the main engine of
the reusable sounding rocket, in: Proceedings of the International Astronautical
Congress, IAC, Vol. 10, 2015, pp. 7389–7394.

[9] S. Pérez-Roca, J. Marzat, H. Piet-Lahanier, N. Langlois, M. Galeotta, F. Farago,
S. Le Gonidec, Model-based robust transient control of reusable liquid-propellant
rocket engines, IEEE Trans. Aerosp. Electron. Syst. 57 (1) (2020) 129–144.

[10] G. Waxenegger-Wilfing, U. Sengupta, J. Martin, W. Armbruster, J. Hardi, M.
Juniper, M. Oschwald, Early detection of thermoacoustic instabilities in a
cryogenic rocket thrust chamber using combustion noise features and machine
learning, Chaos 31 (6) (2021) 063128.

[11] C.F. Lorenzo, A. Ray, M.S. Holmes, Nonlinear control of a reusable rocket engine
for life extension, J. Propuls. Power 17 (5) (2001) 998–1004.

[12] W. Merrill, C. Lorenzo, A reusable rocket engine intelligent control, in: 24th
Joint Propulsion Conference, 1988, p. 3114.

[13] G. Waxenegger-Wilfing, K. Dresia, J. Deeken, M. Oschwald, Machine learning
methods for the design and operation of liquid rocket engines–research activities
at the DLR institute of space propulsion, 2021, arXiv preprint arXiv:2102.07109.

[14] Günther Waxenegger-Wilfing, Kai Dresia, Jan C. Deeken, Michael Oschwald, A
reinforcement learning approach for transient control of liquid rocket engines,
IEEE Trans. Aerosp. Electron. Syst. 57 (5) (2021) 2938–2952, URL https://elib.
dlr.de/146167/.

[15] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, second ed.,
in: Adaptive Computation and Machine Learning, vol. 2018: 1, The MIT Press,
Cambridge, Mass., 2018.

[16] O.M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al., Learning dexterous in-hand
manipulation, Int. J. Robot. Res. 39 (1) (2020) 3–20.

[17] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A.
Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P.
Welinder, L. Weng, Q. Yuan, W. Zaremba, L. Zhang, Solving Rubik’s cube with
a robot hand, 2019.

[18] F. Sadeghi, S. Levine, Cad2rl: Real single-image flight without a single real image,
2016, arXiv preprint arXiv:1611.04201.

[19] A. Folkers, Steuerung Eines Autonomen Fahrzeugs Durch Deep Reinforcement
Learning, Springer-Verlag GmbH, 2019, URL https://www.ebook.de/de/
product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_
deep_reinforcement_learning.html.

[20] T. Hörger, K. Dresia, G. Waxenegger-Wilfing, L. Werling, S. Schlechtriem,
Development of a test infrastructure for a neural network controlled green
propellant thruster, in: 8th Space Propulsion Conference, 2022, URL https:
//elib.dlr.de/186952/.

[21] G. Dulac-Arnold, N. Levine, D.J. Mankowitz, J. Li, C. Paduraru, S. Gowal, T.
Hester, An empirical investigation of the challenges of real-world reinforcement
learning, 2020, arXiv preprint arXiv:2003.11881.

[22] W. Zhao, J.P. Queralta, T. Westerlund, Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey, in: 2020 IEEE Symposium Series on
Computational Intelligence, SSCI, 2020, pp. 737–744.

[23] G. Rebala, A. Ravi, S. Churiwala, An Introduction to Machine Learning, Springer,
2019.

[24] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, second ed.,
in: Adaptive Computation and Machine Learning, vol. 2018: 1, The MIT Press,
Cambridge, Mass., 2018.

[25] M. Sewak, Deep Reinforcement Learning, Springer Verlag, Singapore, 2019, URL
https://www.ebook.de/de/product/36524834/mohit_sewak_deep_reinforcement_
learning.html.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, 2013, arXiv preprint
arXiv:1312.5602.

[27] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation, Adv. Neural Inf. Process.
Syst. 12 (1999).
137
[28] S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in
actor-critic methods, in: International Conference on Machine Learning, 2018,
pp. 1587–1596.

[29] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv
preprint arXiv:1509.02971.

[30] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, in: International
Conference on Machine Learning, 2018, pp. 1861–1870.

[31] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.
Yang, W. Paul, M.I. Jordan, et al., Ray: A distributed framework for emerging
5AI6 applications, in: 13th 5USENIX6 Symposium on Operating Systems Design
and Implementation, 5OSDI6 18, 2018, pp. 561–577.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, http://dx.doi.org/10.48550/ARXIV.1707.06347.

[33] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver,
K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, 2016,
http://dx.doi.org/10.48550/ARXIV.1602.01783.

[34] W. Zhao, J.P. Queralta, T. Westerlund, Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey, in: 2020 IEEE Symposium Series on
Computational Intelligence, SSCI, 2020, pp. 737–744.

[35] B. Mehta, M. Diaz, F. Golemo, C.J. Pal, L. Paull, Active domain randomization,
in: Conference on Robot Learning, 2020, pp. 1162–1176.

[36] L. Weng, Domain randomization for Sim2Real transfer, 2019,
lilianweng.github.io/lil-log. URL http://lilianweng.github.io/lil-log/2019/
05/04/domain-randomization.html.

[37] D.-O. Won, K.-R. Müller, S.-W. Lee, An adaptive deep reinforcement learning
framework enables curling robots with human-like performance in real-world
conditions, Science Robotics 5 (46) (2020) http://dx.doi.org/10.1126/scirobotics.
abb9764, URL https://robotics.sciencemag.org/content/5/46/eabb9764.

[38] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain
randomization for transferring deep neural networks from simulation to the real
world, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, 2017, pp. 23–30, http://dx.doi.org/10.1109/IROS.2017.8202133.

[39] T. Dai, K. Arulkumaran, T. Gerbert, S. Tukra, F. Behbahani, A.A.
Bharath, Analysing deep reinforcement learning agents trained with domain
randomisation, Neurocomputing 493 (2022) 143–165.

[40] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, D. Fox,
Closing the sim-to-real loop: Adapting simulation randomization with real world
experience, in: 2019 International Conference on Robotics and Automation, ICRA,
2019, pp. 8973–8979.

[41] L. Werling, Entwicklung und Erprobung von Flammensperren für Einen
Vorgemischten, Grünen Raketentreibstoff aus Lachgas und Ethen (Ph.D. thesis),
Fakultät für Luft- und Raumfahrttechnik und Geodäsie der Universität Stuttgart.

[42] L.K. Werling, T. Hörger, K. Manassis, D. Grimmeisen, M. Wilhelm, C. Erdmann,
H.K. Ciezki, S. Schlechtriem, S. Richter, M. Torsten, et al., Nitrous oxide fuels
blends: research on premixed monopropellants at the german aerospace center
(DLR) since 2014, in: AIAA Propulsion and Energy 2020, p. 3807.

[43] L. Werling, T. Hörger, Experimental analysis of the heat fluxes during combustion
of a N2O/C2H4 premixed green propellant in a research rocket combustor, Acta
Astronaut. 189 (2021) 437–451.

[44] M. Kurilov, L. Werling, M. Negri, C. Kirchberger, S. Schlechtriem, Impact
sensitiveness of nitromethane-based green-propellant precursor mixtures, Int. J.
Energetic Mater. Chem. Propuls. (2022).

[45] F. Lauck, J. Balkenhohl, M. Negri, D. Freudenmann, S. Schlechtriem, Green
bipropellant development–a study on the hypergolicity of imidazole thiocyanate
ionic liquids with hydrogen peroxide in an automated drop test setup, Combust.
Flame 226 (2021) 87–97.

[46] M. Wilhelm, L. Werling, F. Strauss, F. Lauck, C. Kirchberger, H. Ciezki, S.
Schlechtriem, Test complex M11: Research on future orbital propulsion systems
and scramjet engines, in: International Astronautical Congress, 2019, URL https:
//elib.dlr.de/133885/.

[47] R.L. Thompson, L. Lassaletta, P.K. Patra, C. Wilson, K.C. Wells, A. Gressent, E.N.
Koffi, M.P. Chipperfield, W. Winiwarter, E.A. Davidson, et al., Acceleration of
global N2O emissions seen from two decades of atmospheric inversion, Nature
Clim. Change 9 (12) (2019) 993–998.

[48] H. Ciezki, L. Werling, M. Negri, F. Strauss, M. Kobald, C. Kirchberger, D.
Freudenmann, C. Hendrich, M. Wilhelm, A. Petrarolo, S. Schlechtriem, 50 Years
of test complex M11 in lampoldshausen – research on space propulsion systems
for tomorrow, in: 7th European Conference for Aeronautics and Space Sciences,
EUCASS.

[49] Empresarios Agrupados Internacional, EcosimPro 6.2.0.

http://refhub.elsevier.com/S0094-5765(24)00111-5/sb3
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb3
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb3
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb3
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb3
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb4
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb4
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb4
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb5
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb5
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb5
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb5
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb5
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb6
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb6
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb6
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb7
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb7
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb7
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb7
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb7
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb8
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb9
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb9
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb9
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb9
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb9
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb10
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb11
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb11
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb11
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb12
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb12
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb12
http://arxiv.org/abs/2102.07109
https://elib.dlr.de/146167/
https://elib.dlr.de/146167/
https://elib.dlr.de/146167/
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb15
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb15
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb15
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb15
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb15
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb16
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb16
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb16
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb16
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb16
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb17
http://arxiv.org/abs/1611.04201
https://www.ebook.de/de/product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_deep_reinforcement_learning.html
https://www.ebook.de/de/product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_deep_reinforcement_learning.html
https://www.ebook.de/de/product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_deep_reinforcement_learning.html
https://www.ebook.de/de/product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_deep_reinforcement_learning.html
https://www.ebook.de/de/product/38406162/andreas_folkers_steuerung_eines_autonomen_fahrzeugs_durch_deep_reinforcement_learning.html
https://elib.dlr.de/186952/
https://elib.dlr.de/186952/
https://elib.dlr.de/186952/
http://arxiv.org/abs/2003.11881
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb22
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb22
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb22
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb22
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb22
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb23
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb23
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb23
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb24
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb24
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb24
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb24
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb24
https://www.ebook.de/de/product/36524834/mohit_sewak_deep_reinforcement_learning.html
https://www.ebook.de/de/product/36524834/mohit_sewak_deep_reinforcement_learning.html
https://www.ebook.de/de/product/36524834/mohit_sewak_deep_reinforcement_learning.html
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb27
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb27
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb27
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb27
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb27
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb28
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb28
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb28
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb28
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb28
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb30
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb30
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb30
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb30
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb30
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb31
http://dx.doi.org/10.48550/ARXIV.1707.06347
http://dx.doi.org/10.48550/ARXIV.1602.01783
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb34
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb34
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb34
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb34
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb34
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb35
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb35
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb35
http://lilianweng.github.io/lil-log/2019/05/04/domain-randomization.html
http://lilianweng.github.io/lil-log/2019/05/04/domain-randomization.html
http://lilianweng.github.io/lil-log/2019/05/04/domain-randomization.html
http://dx.doi.org/10.1126/scirobotics.abb9764
http://dx.doi.org/10.1126/scirobotics.abb9764
http://dx.doi.org/10.1126/scirobotics.abb9764
https://robotics.sciencemag.org/content/5/46/eabb9764
http://dx.doi.org/10.1109/IROS.2017.8202133
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb39
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb39
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb39
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb39
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb39
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb40
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb41
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb41
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb41
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb41
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb41
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb42
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb43
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb43
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb43
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb43
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb43
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb44
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb44
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb44
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb44
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb44
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb45
https://elib.dlr.de/133885/
https://elib.dlr.de/133885/
https://elib.dlr.de/133885/
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb47
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48
http://refhub.elsevier.com/S0094-5765(24)00111-5/sb48

	Experimental and Simulative Evaluation of a Reinforcement Learning Based Cold Gas Thrust Chamber Pressure Controller
	Introduction and Motivation
	Method and Theoretical Background
	Reinforcement Learning
	Domain Randomization

	Experimental Set-Up
	Cold Gas Test Set-Up
	Training of the Controller

	Simulative Analysis
	Experimental Analysis
	Conclusion and Outlook
	Declaration of competing interest
	References

