
Harald Klimach <harald.klimach@dlr.de>, Neda Ebrahimi Pour, Sabine Roller

DLR – SP

36th Workshop on Sustained Simulation Performance 2023, Sendai

Parallelization of the Structural Mechanics 
Solver b2000++pro:
Assessment, Status and Future Strategy



General purpose structural solver b2000++ pro 

▪ Solving various FE problems, with special focus on shell and composites in lightweight 

construction and buckling and post-buckling

▪ It is similar to:

▪ Linear static and dynamic solvers of Nastran

▪ Nonlinear static and dynamic solvers of ANSYS and Abaqus FEA

Application areas

▪ Linear and nonlinear structural mechanic problems

▪ Eigenvalue analysis 

▪ Buckling analysis and vibration

▪ Damage analysis on laminates 

2

FEM Solver for Structural Analysis

High fidelity problems need to be solved → High demand for high performance computing (HPC) 



▪ Modern modular code design in C++ utilizing templates

▪ User manual available for new users with various examples

▪ https://www.smr.ch/newdoc/b2000pp/b2user/html/index.html

▪ Plugin infrastructure with exchangable parts for user written code

▪ User defined elements

▪ User defined materials

▪ User defined ‚solvers‘ for different problems

→ Large flexibility, enabling wide application

3

FEM Solver for Structural Analysis

https://www.smr.ch/newdoc/b2000pp/b2user/html/index.html


▪ Predominantly shared-memory parallelized with the help of Intels Threading 

Building Blocks (TBB)

▪ Distributed memory parallelism is only employed via the used linear algebra

package (which itself can be hybrid parallel)

▪ Results in a Main / Worker concept with a single main process holding the

overall problem, and workers for the solution of the linear algebra problems

▪ Consecutive, non-overlapping for both parts

▪ in one only the main process works

▪ during solution of linear algebra all processes (including the main one) are involved

4

Existing Parallelism



Solving linear

algebra problem

▪ Consecutive, non-overlapping time periods for both parts

5

TBB 

parallelized

processing

Main, acting as

worker

Worker

Worker

Worker

TBB 

parallelized

processing

Main, acting as

worker

Worker

Worker

Worker

Might

repeat…

Solving linear

algebra problem

Other parts in

b2000++ pro

Other parts in

b2000++ pro

Existing Parallelism



▪ Various Linear Algebra packages can be used, like

▪ PastiX

▪ Spliss

▪ SuperLU

▪ However, the main tool is MUMPS (MUltifrontal Massively Parallel sparse

direct Solver)

▪ Presented existing concept works with MUMPS as linear algebra solver

▪ https://mumps-solver.org/index.php

▪ Implemented in Fortran

▪ Hybrid parallelism with OpenMP

6

Linear Algebra Packages 

https://mumps-solver.org/index.php


Parallel Performance Assessment

▪ CARO
▪ AMD EPYC 7702 with 64 cores (8 cores share a L3 cache)

▪ 2 Processors per node (total of 128 physical cores)

▪ 256 GB RAM

▪ 1276 nodes, max. aggregated network bandwidth: 557 TB/s

▪ b2000++ pro in version 4.5.2
▪ MUMPS in version 5.5.1

▪ OpenBLAS in version 0.3.21

▪ Intel TBB in version 2020.3

▪ Processes pinned to as many cores as threads used

7



▪ Scordelis-Lo Roof:

▪ https://www.smr.ch/doc/b2000pp/b2examples/html/static.html#scordelis-lo-roof-linear-

analysis

▪ Shell elements

▪ Standard test case

▪ 920 Elements in each direction

8

Setup for Assessment

https://www.smr.ch/doc/b2000pp/b2examples/html/static.html#scordelis-lo-roof-linear-analysis


Single MPI Process: with / without OpenMP

9

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64

R
u

n
n

in
g

 T
im

e

Threads

Total Runtime over threads (omp=tbb)

noomp ompblas

• noomp: MUMPS compiled without

OpenMP

• ompblas: MUMPS and OpenBLAS with

OpenMP support



Single MPI Process: Resulting Configuration

▪ Fastest time to solution achieved with 8 threads and utilization of OpenMP

▪ Note: in serial execution on a single core the MUMPS part of the

computation makes up around 60% of the overall running time

▪ In the (optimal) configuration with 8 threads the MUMPS part makes up 75% 

of the overall running time

▪ Nearly no difference between 4 and 8 threads

10



Using MPI to Accelerate MUMPS part

11

0

50

100

150

200

250

1 2 4 8 16

R
u
n
n
in

g
 t

im
e
 [
s
]

Number of MPI tasks

8 TBB and Open MP Threads

mumps other (tbb parallel)



Using MPI to Accelerate MUMPS Part

12

0

50

100

150

200

250

1 2 4 8 16

R
u
n
n
in

g
 t

im
e
 [
s
]

Number of MPI tasks

8 TBB and Open MP Threads

mumps other (tbb parallel)

Using all cores of the node



Optimal Full-Node Configuration

13

0

50

100

150

200

250

300

1t8 2t8 4t8 8t8 16t16 32t32 64t64

R
u
n
n
in

g
 t

im
e
 [
s
]

OMP Threads per MPI task / used tbb threads

Full Node Configurations

mumps other (tbb parallel)

Overlapping first process pinning

128 MPI processes 2 MPI processes



Summary Current Parallelism

▪ Shared memory scaling limited around size of logical NUMA domain

▪ Optimal configuration using all cores has:

▪ 32 MPI tasks

▪ with 4 OpenMP threads each

▪ but the main (first) MPI process is pinned to 8 cores, overlapping the pinning of the

second process, to allow it to

▪ utilize 8 cores for TBB

▪ In this optimal configuration the MUMPS part makes up 34% of the overall

running time

14



Need for Revising Parallelization

▪ Current implementation severly limits scalability of the TBB-only part

▪ Complete problem has to fit into main process and thus, a single node

15

MemCom

Data management 

system

Pre-

Processing

Solve

all processes

Solve

Solve

Solve

Solve

main process

Intel TBB parallel

MPI & OpenMP 

parallel

D
is

tr
ib

u
te G

a
th

e
r

Post-

Processing

Intel TBB parallel

MemCom

Data management 

system

main process



Partitioned, Distributed Computation

▪ Transforming the code from two ends:

▪ Backwards from the linear algebra towards exchanging data with memcom

▪ Borwards from the memcom data source towards the linear algebra

▪ First backward step, non breaking drop-in replacement:

▪ Perform distribution of Matrix for the linear algebra in b2000++pro itself, rather than let

the linear algebra package take care of that

16



Scattering and Gathering by the Structural
Solver Instead of MUMPS

17

MemCom

Data management 

system

Pre-

Processing

Solve

all processes

Solve

Solve

Solve

Solve

main process

Intel TBB parallel

OpenMP
S

c
a
tt

e
r G

a
th

e
r

Post-

Processing

Intel TBB parallel

MemCom

Data management 

system

main process

MPI parallel



Forward-Step: Partitioning the Mesh After 
Reading

▪ Breaking the b2000++pro application:

▪ Complete execution needs to deal with distributed mesh

18

MemCom

Data management 

system

Structural 

Solver

Reading

P
a

rt
it

io
n

in
g

Solve

LE-Solver

Structural 

Solver

Structural 

Solver

Structural 

Solver

Structural 

Solver

Solve

Solve

Solve

Solve

Structural 

Solver

Structural 

Solver

Structural 

Solver

Structural 

Solver

Structural 

Solver

MemCom

Data management 

system
Writing

G
a
th

e
rin

g

Intel TBB parallel

OpenMP

Intel TBB parallel

MPI parallel



Partitioning

▪ Main process obtains mesh from database and scatters it to all processes

▪ For now all processes get all nodes, but only a subset of elements to work

on

▪ Partitioning is complicated by:

▪ Different kinds of elements

▪ Different kinds of nodes

▪ Requires communication to identify respective kinds

19



Distributing the Structural Solver Itself

▪ Both ends of structural solver part are distributed

▪ Distributed handling of the structural solver itself:

▪ Need to deal with distributed global matrix

▪ Need to allow for reduced matrices

▪ Adapt internal dof representation to allow for distribution

▪ Changed interfaces

▪ Introducing tpetra from Trilinos to handle distributed matrix operations in the

solver

▪ https://docs.trilinos.org/dev/packages/tpetra/doc/html/index.html

▪ Ongoing work with multiple redesigns of the class interfaces
20

https://docs.trilinos.org/dev/packages/tpetra/doc/html/index.html


Future Plans

▪ Further down the road it would also be desirable to distribute the reading of

mesh data from the data base

▪ Use a container like HDF-5 for parallel IO in combination with the memcom

database

▪ Probably more work in memcom than in b2000++

21



Summary

▪ Assessment of b2000++pro on CARO revealed optimal parallel configuration

for single node computations

▪ Limited scalability with current split approach

▪ Main process can only exploit limited number of cores (8 of 128) in thread parallelism

▪ All data has to fit on main process

▪ Distribution of more parts is ongoing effort

▪ Current stage requires large change of everything at once before it works again

▪ „Easy“ parts have been transformed

▪ Possibly, utilizing tpetra for distributed matrix handling

22



23

THANK YOU!


