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General purpose structural solver b2000++ pro 

▪ Solving various FE problems, with special focus on shell and composites in lightweight 

construction and buckling and post-buckling

▪ It is similar to:

▪ Linear static and dynamic solvers of Nastran

▪ Nonlinear static and dynamic solvers of ANSYS and Abaqus FEA

Application areas

▪ Linear and nonlinear structural mechanic problems

▪ Eigenvalue analysis 

▪ Buckling analysis and vibration

▪ Damage analysis on laminates 
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FEM Solver for Structural Analysis

High fidelity problems need to be solved → High demand for high performance computing (HPC) 



▪ Modern modular code design in C++ utilizing templates

▪ User manual available for new users with various examples

▪ https://www.smr.ch/newdoc/b2000pp/b2user/html/index.html

▪ Plugin infrastructure with exchangable parts for user written code

▪ User defined elements

▪ User defined materials

▪ User defined ‚solvers‘ for different problems

→ Large flexibility, enabling wide application
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FEM Solver for Structural Analysis

https://www.smr.ch/newdoc/b2000pp/b2user/html/index.html


▪ Predominantly shared-memory parallelized with the help of Intels Threading 

Building Blocks (TBB)

▪ Distributed memory parallelism is only employed via the used linear algebra

package (which itself can be hybrid parallel)

▪ Results in a Main / Worker concept with a single main process holding the

overall problem, and workers for the solution of the linear algebra problems

▪ Consecutive, non-overlapping for both parts

▪ in one only the main process works

▪ during solution of linear algebra all processes (including the main one) are involved
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Existing Parallelism



Solving linear

algebra problem

▪ Consecutive, non-overlapping time periods for both parts
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▪ Various Linear Algebra packages can be used, like

▪ PastiX

▪ Spliss

▪ SuperLU

▪ However, the main tool is MUMPS (MUltifrontal Massively Parallel sparse

direct Solver)

▪ Presented existing concept works with MUMPS as linear algebra solver

▪ https://mumps-solver.org/index.php

▪ Implemented in Fortran

▪ Hybrid parallelism with OpenMP
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Linear Algebra Packages 

https://mumps-solver.org/index.php


Parallel Performance Assessment

▪ CARO
▪ AMD EPYC 7702 with 64 cores (8 cores share a L3 cache)

▪ 2 Processors per node (total of 128 physical cores)

▪ 256 GB RAM

▪ 1276 nodes, max. aggregated network bandwidth: 557 TB/s

▪ b2000++ pro in version 4.5.2
▪ MUMPS in version 5.5.1

▪ OpenBLAS in version 0.3.21

▪ Intel TBB in version 2020.3

▪ Processes pinned to as many cores as threads used
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▪ Scordelis-Lo Roof:

▪ https://www.smr.ch/doc/b2000pp/b2examples/html/static.html#scordelis-lo-roof-linear-

analysis

▪ Shell elements

▪ Standard test case

▪ 920 Elements in each direction
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Setup for Assessment

https://www.smr.ch/doc/b2000pp/b2examples/html/static.html#scordelis-lo-roof-linear-analysis


Single MPI Process: with / without OpenMP
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Single MPI Process: Resulting Configuration

▪ Fastest time to solution achieved with 8 threads and utilization of OpenMP

▪ Note: in serial execution on a single core the MUMPS part of the

computation makes up around 60% of the overall running time

▪ In the (optimal) configuration with 8 threads the MUMPS part makes up 75% 

of the overall running time

▪ Nearly no difference between 4 and 8 threads
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Using MPI to Accelerate MUMPS part
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Using MPI to Accelerate MUMPS Part
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Optimal Full-Node Configuration
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Summary Current Parallelism

▪ Shared memory scaling limited around size of logical NUMA domain

▪ Optimal configuration using all cores has:

▪ 32 MPI tasks

▪ with 4 OpenMP threads each

▪ but the main (first) MPI process is pinned to 8 cores, overlapping the pinning of the

second process, to allow it to

▪ utilize 8 cores for TBB

▪ In this optimal configuration the MUMPS part makes up 34% of the overall

running time
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Need for Revising Parallelization

▪ Current implementation severly limits scalability of the TBB-only part

▪ Complete problem has to fit into main process and thus, a single node
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Partitioned, Distributed Computation

▪ Transforming the code from two ends:

▪ Backwards from the linear algebra towards exchanging data with memcom

▪ Borwards from the memcom data source towards the linear algebra

▪ First backward step, non breaking drop-in replacement:

▪ Perform distribution of Matrix for the linear algebra in b2000++pro itself, rather than let

the linear algebra package take care of that
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Scattering and Gathering by the Structural
Solver Instead of MUMPS
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Forward-Step: Partitioning the Mesh After 
Reading

▪ Breaking the b2000++pro application:

▪ Complete execution needs to deal with distributed mesh
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Partitioning

▪ Main process obtains mesh from database and scatters it to all processes

▪ For now all processes get all nodes, but only a subset of elements to work

on

▪ Partitioning is complicated by:

▪ Different kinds of elements

▪ Different kinds of nodes

▪ Requires communication to identify respective kinds
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Distributing the Structural Solver Itself

▪ Both ends of structural solver part are distributed

▪ Distributed handling of the structural solver itself:

▪ Need to deal with distributed global matrix

▪ Need to allow for reduced matrices

▪ Adapt internal dof representation to allow for distribution

▪ Changed interfaces

▪ Introducing tpetra from Trilinos to handle distributed matrix operations in the

solver

▪ https://docs.trilinos.org/dev/packages/tpetra/doc/html/index.html

▪ Ongoing work with multiple redesigns of the class interfaces
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https://docs.trilinos.org/dev/packages/tpetra/doc/html/index.html


Future Plans

▪ Further down the road it would also be desirable to distribute the reading of

mesh data from the data base

▪ Use a container like HDF-5 for parallel IO in combination with the memcom

database

▪ Probably more work in memcom than in b2000++
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Summary

▪ Assessment of b2000++pro on CARO revealed optimal parallel configuration

for single node computations

▪ Limited scalability with current split approach

▪ Main process can only exploit limited number of cores (8 of 128) in thread parallelism

▪ All data has to fit on main process

▪ Distribution of more parts is ongoing effort

▪ Current stage requires large change of everything at once before it works again

▪ „Easy“ parts have been transformed

▪ Possibly, utilizing tpetra for distributed matrix handling
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