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Abstract: In response to economic and environmental challenges like sea-level rise, salinity intrusion,
groundwater extraction, sand mining, and sinking delta phenomena, the demand for solutions to
adapt to changing conditions in riverine environments has increased significantly. High-quality anal-
yses of land use and land cover (LULC) dynamics play a critical role in addressing these challenges.
This study introduces a novel high-spatial resolution satellite-based approach to identify sub-seasonal
LULC dynamics in the Mekong River Delta (MRD), employing a three-year (2021–2023) Sentinel-1
and Sentinel-2 satellite data time series. The primary obstacle is discerning detailed vegetation
dynamics, particularly the seasonality of rice crops, answered through quantile mapping, harmonic
regression with Fourier transform, and phenological metrics as inputs to a random forest machine
learning classifier. Due to the substantial data volume, Google’s cloud computing platform Earth
Engine was utilized for the analysis. Furthermore, the study evaluated the relative significance of
various input features. The overall accuracy of the classification is 82.6% with a kappa statistic of 0.81,
determined using comprehensive reference data collected in Vietnam. While the purely pixel-based
approach has limitations, it proves to be a viable method for high-spatial resolution satellite image
time series classification of the MRD.

Keywords: land use dynamics; Mekong River Delta; Sentinel-2; Sentinel-1; Google Earth Engine;
time series; Fourier transform; quantile mapping; rice seasonalities

1. Introduction

Vietnam is the world’s fifth-largest rice producer, with rice being the “most important
food crop for the poor” [1]. Rice contributes a crucial part in providing food for over
900 million people worldwide living under the 1.25 USD poverty line. The MRD covers an
area of around 40,000 km², serves as a home for around 20 million people, and is commonly
known for being the “Rice Bowl” of Vietnam, and is thus key to the food supply of the whole
country and beyond. As one of the regions most vulnerable to climate change, subsidence,
and upstream impacts (e.g., pollution and decreased sedimentation due to upstream dam
building) the urge for solutions to adapt to changing climatic and anthropogenic drivers
rises significantly, so that high-quality land use and land cover (LULC) and related spatial
analyses provide important contributions to such undertakings. The Nine Dragons—as the
Vietnamese call the river because in the delta it splits into numerous branches—are very
capricious. Furthermore, unusual dry conditions associated with ENSO (El Niño Southern
Oscillation) events have strongly affected Southeast Asia in the last years, leading to severe
drought, in particular in Vietnam’s Mekong Delta.
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Land use in the MRD is highly dynamic, demonstrating a wide range of farming
techniques, varying planting densities, and different crop schedules. Due to the impor-
tance of this highly dynamic region, LULC-related research has been widely undertaken.
However, the focus to date has hardly been on comprehensive analyses of the entire delta,
the connections between the various land use classes and the interrelated dynamics.

Several studies have addressed the temporal dynamics and classifications dependent
on time series data, highlighting the dynamic nature of land use in general and agriculture
in particular in the MRD. For the whole basin, Leinenkugel et al. [2] presented a land
cover product based on an 11-year (2001–2011) EVI MODIS time series. Recently, a study
was published providing a timely comprehensive change analysis of the MRD using
MODIS data, focusing on rice, aquaculture, and flooding [3]. Others combined Landsat and
MODIS data to examine relationships between land use, climate, and water changes [4].
The analysis of Sentinel-1 backscatter variance from rice fields by Phan et al. [5] provided
insights into the varying crop calendars, revealing significant changes to the plant structure
at key phenological stages, which are challenging to monitor due to varying sowing and
harvest dates. Pham et al. [6] applied Sentinel-1 data, supported by Sentinel-2 data, to
capture land use dynamics in coastal areas through object-based image analysis (OBIA).
These studies underline the importance of temporal analysis in understanding the dynamic
and evolving nature of land use and agriculture in particular. Due to the high importance
of rice being the main staple food for over half of the world’s population, significantly
impacting the global economy, food security, water consumption, and climate change, it is
by far the most analyzed and remotely sensed land use class of the MRD. The most widely
applied satellite-based sensors for rice classification have a medium to low spatial resolution
such as MODIS [7–15] or SPOT-VEGETATION [16–18]. Radar-based rice classifications have
been based on ENVISAT/ASAR [19,20], TerraSAR-X, and Sentinel-1 data [21,22]; the latter
has also been used to monitor the rice growth status delta-wide [23]. An in-depth analysis
of Sentinel-1 backscatter variance from rice fields has been provided by Phan et al. [5],
pointing to the varying crop calendars, making it challenging to determine the timing of
crop growth stages, especially sowing and harvest dates. The analysis revealed significant
changes to the plant structure at key phenological stages, regardless of the variety.

Beyond agriculture, mangrove dynamics have been detected using both pixel-based
approaches [24–28] and object-based approaches [29]. Aquacultures in the MRD have been
characterized in detail using Sentinel-1 Synthetic Aperture Radar (SAR) time series [30].
Tree and forest cover dynamics have been investigated for the Kien Luong district in Kien
Giang province [31] and lower-basin-wide [32]. Another scope relates to flood hazards. In
a radar-based approach, Envisat ASAR WSM time series of 2007–2011 have been utilized to
examine the flood regime in the MRD [33]. A MODIS-based mapping of inundation extent
has served as an auxiliary input for an investigation of dyke–flood relations [34]. Other
studies have focused on specific points in time or did not include the dynamic aspect (e.g.,
alternating crops or several cultivation phases per year). For example, Künzer et al. [35]
compared global land cover products for the entire Mekong River Basin and remote sensing
applications for large river deltas [36]. They found that some widely used LULC products
have major differences and concluded that greater attention must be given to the origins,
benefits, and limitations of large-scale information products from remote sensing data.
Poortinga et al. [37] developed an innovative approach to predict land cover changes by
combining historical change patterns with big data and machine learning for the entire
Mekong region. The need for conserving “the last remaining extensive wetland area of
seasonally inundated grassland in the Mekong Delta” motivated Funkenberg et al. [38]
and Nguyen et al. [39] to investigate the degradation of the Ha Tien Plain wetlands in
the Northwest. Others have used Landsat data to compare changes at certain points in
time [40–42]. Gebhardt et al. [43] investigated uncertainties in mangrove mapping due to
various databases and methodologies.

Despite the large number of studies focusing on LULC in the MRD, the delta-wide
and comprehensive monitoring of land surface dynamics detached from specific topics
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or thematic classes is rare. Moreover, sub-year dynamics are typically not covered, but
are needed to clarify alternating crops with multiple harvests per year. In summary, to
our knowledge, there is no up-to-date, comprehensive, high-spatial resolution analysis
of LULC dynamics in the MRD available yet. In summary, there is still a need for more
comprehensive, high-spatial resolution analyses of LULC dynamics across the MRD that
consider sub-year dynamics, especially for regions with alternating crops and multiple
harvests per year.

Another important need for sub-year crop information is the politically driven trans-
formation from conventional towards organic farming practices, especially for rice in the
MRD. As rice paddies are not isolated from each other with respect to exchanges in water,
no single paddy field can be studied on its own with respect to imported pollutants such as
pesticides or heavy metals, and therefore, the spatial and temporal interactions between
neighboring fields need to be considered. In view of this, the aim of the present study is to
provide a novel comprehensive high-spatial resolution satellite-based LULC time series
product to serve as a basis for sustainable land management planning and for identifying
potentially beneficial areas for organic rice production.

Since LULC patterns in the MRD are highly dynamic, often seasonally periodic, and
even variable at small scales, it is rational to apply satellite data time series to cover, for
example, rice seasonality. In this study, the use of high-spatial resolution satellite data
for generating spatially explicit information on land use dynamics at a 10 m resolution
was applied. The overarching goal is to determine, use, and evaluate dynamic influential
factors in a comprehensive static image classification. Methodically, the focus was placed on
quantile mapping and harmonic models to distinguish specific vegetation growth patterns
over space and time. A well-known problem of optical data in tropical regions is the strong
cloud cover, which is why the use of active sensors is often preferred [44]. This study uses
harmonic modeling and quantile mapping, which have been seldom utilized in this context
to date, to show that passive sensors still offer great potential in the detection of tropical
and sub-tropical agriculture. Harmonic regression, i.e., discrete Fourier transformation,
was used in remote sensing applications before, for example in ship targeting [45], spec-
troscopy [46], and bathymetry [47]. Despite its potential, it has not been widely used for
specific vegetation or crop pattern detection to date. Rocchini et al. [48] proposed it for
detecting landscape fragmentation. Several studies applied it to detect general vegetation
seasonalities [49–51]. It was used for wetland mapping [52], assessing waterlogging stress
levels [53], distinguishing utilized from underutilized land in Europe [54], and drought and
dryland monitoring [55–58]. In this light, this study emphasizes the potential of harmonic
analysis for the comprehensive time-series classifications of vegetation, in particular, but
not only, rice, since the interrelation of the different crops is quite high.

2. Study Area

The Mekong River is the twelfth-longest river in the world. Originating from the
Tibetan Plateau, alongside its neighboring rivers, the Yangtze and the Salween, it flows
through China, Myanmar, Laos, Thailand, and Cambodia and unfolds into its delta in
Vietnam. Here, it splits in two major tributaries, the Mekong and the Bassac, to merge
with the South China Sea. Located between latitudes 8 and 11 north and longitudes
104 and 107 east, the MRD (see Figure 1) sprawls south-westerly from Vietnam’s largest
city Ho Chi Minh City. About one third of the MRD is covered by fertile soils, mainly
used for rice cultivation. The other two third consist of acidity soil, especially sulphate
and saline [59], used primarily for settlements, agriculture, and natural, semi-natural,
and production forests (e.g., Melaleuca). Especially along the southwestern coastline,
mangroves fringe the delta. The summer monsoon causes 5–6 months of rainfall of above
100 mm per month where October is usually the wettest month of the year. A total
of 17 million people on 40,000 km2 result in a population density of 425 people/km2.
As of 1999, the growth rate declined and has stabilized since 2012 [60]. This decline is
conceivably due to the Asian financial and economic crisis in the late 1990s. Vietnam
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is the world’s fifth-largest rice producer. The Mekong Delta is commonly known as the
’Rice Bowl’ of Vietnam, and is thus key to the food supply of the whole country and
beyond. Rice cultivation in the MRD operates on a three-year cycle, with up to three
growing seasons per year [61], whereby the third growing season during the rainy season
is mainly made possible by the construction of high dikes, which enables farmers to control
the seasonal water flow [62]. Rice cropping in the dry season in coastal provinces is
hindered by salinity intrusion, emboldening the farmers to use the brackish water for
aquaculture or hybrid rice–aquaculture cultivation. This in turn particularly comes down
to climate change-induced sea-level rise [63] and the concurrent sinking of the delta due
to reduced sediment deposition as a result of the strong increase in hydropower dams in
the last decade. Simultaneously rice cultivation is intensified by extending triple-cropped
rice, which leads to rising production despite a decreasing area [8]. Furthermore, the
Mekong Delta’s agriculture faces increasing challenges including unpredictable rainfall
patterns, land subsidence, and increasing pressure from urbanization and infrastructure
development, all of which threaten sustainable farming and food security. Besides rice and
aquaculture, the Mekong Delta also supports the cultivation of various other crops such as
fruits (e.g., mangoes, longan, and dragon fruit), vegetables, and cash crops like sugarcane,
contributing significantly to the region’s agricultural diversity and economic output.

Figure 1. The Mekong River Delta (marked green in the overview) in Vietnam (red), its provincial
division, and the location of collected reference data points.
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3. Data Basis
3.1. Satellite Data

Due to the huge data volume, Google’s cloud computing platform Earth Engine [64,65]
was used to process the satellite data. All data from January 2021 to December 2023
collected by Sentinel-2 (S2) Level 2A Bottom-of-Atmosphere (BOA) and Sentinel-1 (S1)
available in the Earth Engine’s platform were employed, providing 3047 S2 and 1013 S1
satellite images distributed over 11 and 4 image tiles, respectively, over the MRD. Data
from both the Sentinel-1A and Sentinel-1B C-band SAR were used until Sentinel-1B ceased
operations in December 2021. All available Sentinel-1 scenes acquired over the MRD in the
Interferometric Wide Swath (IW), at 10 m resampled resolution, with dual polarization, and
delivered in Ground Range Detection (GRD) format were utilized (see Table 1). To support
the definition of the target classes and the preparation of the reference data collection, three
published classification schemes of the MRD were reviewed and compiled for this study:
an update for the Mekong Delta of the Mekong Basin land cover product based on 11-year
(2001–2011) EVI MODIS time series [2], and one rice seasonality map based on multi-year
Envisat ASAR WSM data [20].

Table 1. Applied satellite data

Sentinel-2 Sentinel-1

Sensor Type Passive optical Active radar
Aqcuisition mode - IWS
Spatial resolution 10–60 m 10 m
Polarisation - Single (VV,VH), Dual (VV-VH)
Pre-processing Level-2A harmonized (BOA) Level-1 GRD
Temporal resolution 5 days 6 days

Time period 1 January 2021–31 December
2023

1 January 2021–31 December
2023

Image count 3047 1013
Product size 500 MB 1 GB
Data volume 1.5 TB 1.1 TB

3.2. LULC Class Determination

Comprehensive field trips, selected LULC classifications of the MRD [2,20], and high-
resolution Google Earth imagery, supplemented by in situ photos acquired from the Earth
Observation and Modeling Facility (EOMF) of the University of Oklahoma [66] and local
knowledge were reviewed to determine all relevant classes.

3.3. Reference Data Collection for Validation

Comprehensive reference data were collected in the MRD for validation purposes.
Within the OrganoRice project (https://organorice.org), a questionnaire app was developed
together with KIAG (Knowledge Intelligence Applications GmbH), Bonn, Germany, and
students of Can Tho University (CTU), Vietnam were trained to conduct interviews with
local farmers with respect to land use, irrigation, and pesticide management. The hereby
captured land use data were used in this study to validate the classification together with
data collected by ourselves and data kindly provided by colleagues from CTU. By this, a
total of 605 reference points were available for this study (see Figure 1). Since one land
use class (Casuarina) has not been covered, it was validated by cross-validation. The class
samples were split into 60% training and 40% validation data. The assignment of samples
to training and validation was undertaken by simple random sampling [67] and by polygon
to avoid overlapping. This means that every sample is one certain polygon and not selected
by the pixel to ensure that no pixel can be selected twice (one training, one validation),
which would distort accuracy results.

https://organorice.org
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4. Materials and Methods

The utilized L2A data of the Sentinel-2 sensors are provided with an atmospheric
correction based on Sen2cor [68]. After pre-processing, in which the surface reflectance
(SR) data from the Sentinel-2 image collection was cloud- and shadow-masked, we derived
relevant information for LULC detection by producing phenological metrics and conducting
quantile mapping and harmonic analysis. We then fed it into the machine learning (ML)
classifier and analyzed the uncertainty factors of the approach (see Figure 2).

Figure 2. Workflow of the LULC analysis with data collection, input features used for classification,
and final uncertainty analysis.

4.1. Sentinel-2 Cloud Masking

Due to its tropical climate, passive optical remote sensing of the MRD suffers from
a high cloud coverage. Each Sentinel-2 product is equipped with the QA60 quality bit
mask band with cloud mask information for opaque and cirrus clouds. However, it
turned out that due to the coarse spatial resolution of 60 m, the QA60 cloud masks in
many cases discarded useful cloud-free observations in hetrogenic cloud patterns, while
at the same time they ignored several small opaque clouds. In view of this, the decision
was made to apply Sentinel Hub’s S2cloudless [69], a single-scene pixel-based cloud and
cloud shadow detector suitable for large-scale applications to save computation time
(see Skakun et al. [70], who recently compared different state-of-the-art cloud masking
solutions). Applying a machine learning model trained on a large dataset, it produces a
cloud probability map, which can be converted into a cloud mask by thresholding. For this
work, a cloud probability greater than 70%, a cloud displacement index lower than −0.5,
and a cirrus value greater than 0.02 were applied. It does not consider the spatial context of
a certain LULCs, which makes it suitable for any resolution. Validation performed with the
publicly available dataset of Hollstein et al. [71] showed high accuracy.

4.2. Calculation of Multi-Temporal Metrics

Creating metrics can be of high importance to highlight and extract class information,
which is not clearly distinguishable from other classes. From all Sentinel-1 and cloud
shadow-free Sentinel-2 observations, spatially contiguous temporal metrics were derived,
allowing to exploit the specific temporal patterns in the data that can be attributed to
seasonal vegetation dynamics or different land use types [72–77].
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4.2.1. Quantile Mapping

Composites of time series are by their very nature temporally conditioned composites.
Examples include minimum, maximum, mean, median, and quantiles. A quantile indicates
a statistical key figure to define the division of a certain data sample. The median is the
0.5-quantile; it divides the data sample in half, thus being the exact center of the data
sample. After proposing quantile regression for application in biology and ecology [78],
it has been used in different remote sensing studies, e.g., precipitation forecast [79] and
urban development [80]. Allen et al. [81] used quantile regression to detect changes in
vegetation related to haying habits based on locally collected data. To our knowledge, there
has been no application of quantile mapping in remote sensing to detect and distinguish
vegetation seasonalities so far. To derive a wide range of temporal-spectral information,
five different quantiles of the time series were chosen. For each pixel, the 10th, 25th,
50th, 75th, and 90th quantiles were calculated for the four Sentinel-2 spectral bands in the
visible and near-infrared spectrum at 10 m resolution as well as for the two 20 m spectral
bands in the short-wavelength infrared spectrum in order to tackle vegetation seasonalities:
blue (Band 2), green (Band 3), red (Band 4), NIR (Band 8), SWIR1 (Band 11), and SWIR2
(Band 12).

4.2.2. Harmonic Analysis

The most demanding challenge of this study turned out to be the distinction between
the different rice growth cycles of the MRD. Although the different quantile bands, along
with the phenological metrics, already depict the rice seasonalities, they are too imprecise
to fully capture the changes in detail. Therefore, and to support other vegetation patterns’
detection, a harmonic regression analysis was applied to the NDVI to estimate seasonal
information, as it is particularly robust against remaining noise, like haze and thin cirrus
clouds, and is very sensitive to systematic changes in vegetation [2,82,83]. Therefore, this
approach seems promising for gap-filling in the temporal data series. To do so, a Sentinel-2
NDVI time series of the examined time period was subjected to a discrete Fourier transform.
Hereby, temporal NDVI signatures are decomposed into a series of constituent sinusoidal
functions with unique amplitude and phase information as exemplarily shown in Figure 3.
Each harmonic term indicates how many full cycles a wave undergoes within the specified
interval (for example, the second term corresponds to two complete cycles) [84,85].

Figure 3. (a) Harmonic curve representative of the first harmonic term and (b) curves for the first,
second, and third harmonic terms (after [84]).

With regard to rice seasonality, the temporal NDVI signals of one, two, and three
growing cycles per year were derived from the corresponding first, second, and third
harmonic terms. Given pt a pixel value at time t, one can formulate a single pixel at
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different times by pt; t = t0...tn. In general, the time series can be decomposed as sinusoidal
functions (sinusoids) at different frequencies. Therefore, the harmonic component can
also be extended to higher frequencies. Since in the MRD single-, double-, and even
triple-cropped rice is farmed, a harmonic regression for every cycle count is computed by

pt = β0 + β1t + β2cos(2πωt) + β3sin(2πωt) + et (1)

where β describes the independent variables of the regression analysis, β2 is Acos(ϕ), β3 is
Asin(ϕ), et is a random error, A is the amplitude, ω is the frequency, and ϕ is the phase [86].
Figure 3 shows the visualization of phase and amplitude for three exemplary cycles.

4.2.3. Phenological, Hydrological, and Built-Up Metrics

Built-up structures were defined by the use of the NDBI median. The NDBI highlights
urban and barren areas with higher reflectance in the shortwave-infrared compared to
the near-infrared. The median was preferred to the mean to exclude potential outliers in
built-up areas.

To enable the classifier to easily detect water bodies, the median composite of NDWI
was applied, exploiting the strong absorption of water between the visible and infrared
wavelenghts. To capture spatial vegetation differences, the median composite of NDVI
was used. Suitable for covering a wide range of vegetation types, the NDVI uses the
near-infrared for greenness and the red spectrum for chlorophyll absorption. The NDVI
correlates well with vegetation, where the canopy is not fully closed, but it saturates later
in the growing season due to higher leaf area. Therefore, the Visible Atmospherically
Resistant Index (VARI) developed by Gitelson et al. [87] was utilized, which uses the red,
green, blue, and/or red edge signals, depending on the chosen sub-index, because they
contain important information throughout the growing season. The approaches applied in
this study include the VARIGreen median and the VARIRed Edge median as statistical metrics
of a time series. Hereby, close spectral distances between different cropping patterns and
spectrally confusing overlaps and changes in the rice-pattern dynamics of the MRD shall be
answered. In addition, to differentiate between forest and orchard structures, the temporal
density differences were used, which occur when the latter is ‘interrupted’ by the fruit
harvest. This can be referred to as a ‘time-dependent density difference’. Taking the same
line, but widening the red-edge spectrum, was intended by applying the median composite
of NDVIRed Edge. Both red-edge indices reduce the loss of chlorophyll sensitivity of the
NDVI, and hence capture minor spectral differences in similar vegetation signatures. To
capture temporally dynamic vegetation, the Structure Insensitive Pigment Index (SIPI)
developed by Penuelas et al. [88] served as the training input. SIPI increases the sensitivity
to the ratio of bulk carotenoids to chlorophyll and reduces the sensitivity to variation
in the canopy structure. For the purpose of this work, a median composite of SIPI was
applied to reduce the sensitivity to structural changes within a single class, thus allowing to
differentiate it from other classes. By considering different levels of canopy stress, density,
greenness, and chlorophyll absorption, and including the (red) edges in a pixel-based
manner, the distinguishability of the highly variable vegetation cover in the MRD was
intended to be further improved.

The delineation of rice followed the fact that paddy rice fields are systematically
flooded and vegetated throughout the years. Inspired by Kontgis et al. [61], the standard
deviation of the Enhanced Vegetation Index (EVI) was used to capture this variability.
Another useful application of the EVI is to discriminate aquacultural ponds from other
water bodies (‘cultivated’ versus ‘natural’ water bodies) with a pure pixel-based approach.
The underlying idea refers to the fact that ponds, like paddy rice fields, are periodically
flooded, but unlike rice fields, the change from flooded to non-flooded occurs abruptly in
aquaculture rather than slowly, as in the case of rice. As a result, the standard deviation
detects the difference between non-flooded and flooded ponds, but the EVI mean addition-
ally takes the short non-flooded stage into account. Table 2 lists all applied input metrics
used in the study.
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Table 2. Applied parameters, the relevant spectral and radar features, and their purpose.

Spectral/SAR Features Statistical Parameters Purpose

Blue, green, red, NIR, SWIR1,
SWIR2

10th, 25th, 50th, 75th, and 90th
quantiles

Wide range of temporally fo-
cused spectral information for
vegetation seasonality

First, second, and third terms
from NDVI harmonic analysis Amplitude, Phase Rice seasonality

S1 backscatter dual polariza-
tion VV-VH; S1 backscatter sin-
gle polarization VV, VH

Mean

Gap-filling of areas with
low image per-pixel count
(cloud independence); differ-
ent backscatter behavior of
vegetation

Normalized Difference Vegeta-
tion Index (NDVI) [89] Median

Capturing of broad dividable
vegetation spectrum in the
MRD

NDVIRed Edge [90,91] Median
Sensitivity for time-dependent
density differences (e.g., har-
vest)

Enhanced Vegetation Index
(EVI) [61] Mean

Differentiation between aqua-
cultural ponds and other water
bodies

EVI Standard Deviation
Capture variability of rice
fields being systematically
flooded and vegetated

Visible Atmospherically Re-
sistant Index (VARIGreen and
VARIRed Edge) [87]

Median

Vegetation fraction and leaf
area later in growing season;
close distances between differ-
ent cropping patterns; spec-
trally confusing overlaps; rice-
pattern dynamics

Structure Insensitive Pigment
Index (SIPI) [88] Median

Temporally dynamic vegeta-
tion: sensitivity to the ratio
of bulk carotenoids to chloro-
phyll

Sentinel-2 Red Edge Position
(S2REP) [92] Median Sensitive to changes in chloro-

phyll concentration

Normalized Difference Built-
up Index (NDBI) [82] Median Urban structures

Normalized Difference Water
Index (NDWI) [93] Median Water bodies

4.2.4. Sentinel-1 Composite

From the available S1 observations, the mean of the VH polarized, VV polarized, and
the VV/VH ratio data was calculated at the pixel level. Different backscatter behaviors of
different vegetation types allowed for more accurate class separation. Furthermore, S1 data
were applied for gap filling in areas with a low image-per-pixel count caused by high noise
and cloud occurrence.

4.3. LULC Classification Based on Time Series Features

The multitemporal metrics formed the basis for the estimation of LULC information
using a supervised classification approach. Additionally, the aforementioned field trips,
existing LULC classifications, Google Earth Imagery, reference data from the EOMF, and
local knowledge served as support to identify 18 relevant LULC classes (Table 3). Clas-
sification was performed using a non-parametric random forest classifier [3,94]. Studies
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show that single classification trees deliver relatively low accuracies [4,40] but combining
several classification trees into tree ensembles can significantly improve the prediction
results (e.g., [6]). Compared to other methods, the random forest classifier is particularly
suitable for the study of land use dynamics in Vietnam’s Mekong Delta due to its ability to
handle large, complex datasets with multiple classes and its robustness against noise and
missing data. Unlike simpler models like logistic regression or naive Bayes, which may
struggle with complex relationships and feature dependencies, or support vector machines
and neural networks, which can be computationally intensive and less interpretable, ran-
dom forest balances accuracy, scalability, and ease of use. Its ensemble approach reduces
overfitting and provides valuable feature importance evaluation, making it a practical
choice for remote sensing applications on platforms like Google Earth Engine.

Table 3. Description of the final 18 classes supported by local knowledge and their sample distribution.
Casuarina accuracy is calculated by cross-validation due to lack of reference data.

Class Description
Training/

Validation
Samples

Water bodies All water bodies, including rivers, lakes, canals, sea water,
excluding aquaculture 50/21

Urban/Settlements Human settlements: urban areas, villages, lakeside dwellings 50/22

Mangroves Halophytes adapted to the brackish saline conditions in trop-
ical coastal regions 50/10

Evergreen Forest Evergreen broadleaf forest, wood- and shrubland 50/44

Melaleuca Forest Seasonally flooded forest with Melaleuca cajuputi as dominant
species 50/28

Casuarina Evergreen shrubs and trees on low-fertility coastal sands 24/16

Aquaculture Shrimp and fish farming, also salt cultivation 50/42

Double-cropped
Rice SA-AW

Double-season rice usually cultivated between April and Au-
gust (Summer–Autumn) and August and January (Autumn–
Winter)

60/20

Double-cropped
Rice WS-SA

Double-season rice usually cultivated between November
and May (Winter–Spring) and April and August (Summer–
Autumn)

60/47

Triple-cropped Rice Triple-season rice usually cultivated in all three seasons (WS-
SA-AW) 60/99

Aquaculture/Rice
alternating

Alternating cultivation of aquaculture (primarily shrimp)
and single season rice usually cultivated between August
and January (Autumn–Winter)

50/43

Upland Crops/Rice
alternating

Alternating cultivation of upland crops and single season
rice 30/20

Vegetables Cultivated taro, lotus, and counting 50/11

Orchards, Tree
Crops

Cultivated durian, mandarin, longan, mango, orange, pum-
melo, rambutan, banana, avocado, mangosteen, jujube,
acerola, eggplant, papaya, and counting

50/116

Pineapple, Coconut Cultivated pineapple and coconut tree crops 40/20

Sugarcane Cultivated sugarcane 50/25

Dragon Fruit Cultivated dragon fruit 50/14

Water Melon Cultivated water melon 40/15

In order to obtain the most suitable number of trees for the classifier, a hyperparameter
tuning was performed. Higher numbers of trees require a larger computation capacity but
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do not necessarily generate higher predictive accuracies. This hyperparameter analysis led
to an ideal value of 40 decision trees.

To reduce ’salt-and-pepper’ effects, a 3 × 3 pixel spatial low-pass filter was applied,
replacing segments of up to two connected pixels with the kernel mode. This method
balanced homogeneity and the risk of losing small-class objects. In order to delve deeper
into each training input’s contribution a sensitivity analysis was conducted to evaluate
their relevance by training 15 additional models, each excluding one feature iteratively.

5. Results
5.1. Classification Result

The final classification comprising 18 LULC classes is illustrated in Figure 4, with
the area distribution per LULC class shown in Figure 5. The five classes related to rice
cultivation cumulate in the largest share of LULC in the MRD. Summing up all rice classes
(Double-cropped Rice SA-AW, Double-cropped Rice WS-SA, Triple-cropped Rice, Aquaculture/Rice
alternating, Upland Crops/Rice alternating), it lives up to the delta’s second name as the ’Rice
Bowl’ of Vietnam, accounting for 45% of the total delta area (17,733 km²). Within the MRD,
Kien Giang province hosts the largest area for rice cropping, covering almost 3200 km²,
followed by An Giang (2467 km²) and Long An (2354 km²) provinces. Amongst all rice
classes, the double-cropped rice is the most dominant (1858 km² SA-AW, 5558 km² WS-SA),
followed by triple-cropped rice (6769 km²), and the alternating forms of cultivation (1976
km² aquaculture/rice and 1572 km² upland crops/rice).

Aquaculture is the secondmost common land use in the MRD. Together with Aqua-
culture/Rice alternating it accounts for 17.2% of the area. Natural and semi-natural forests
(mangroves, evergreen forest, melaleuca, casuarina) grow on 3035 km² , which is a share of
7.7% of the total area. Mangroves can be found mainly on the coastal region of Ca Mau,
where 72% of the total occurrence can be found. The major share of evergreen forest (63%)
falls in An Giang province, whereas melaleuca species are concentrated in the national
parks in Kien Giang, Long An, and Ca Mau provinces (69%). Orchards and tree crops form
a spatially dominant class and make up almost 12% of the total area, which concentrates
in the central and eastern provinces of Tien Giang, Ben Tre, and Vinh Long between large
settlements of the delta. Although the most extensive settlement areas and the largest
population density are located in other provinces, the highest proportion of built-up area is
detected in Long An province (15%), which is due to the suburban sprawl of Ho Chi Minh
City into the northeast. The sugarcane hotspot in the MRD lies on and around the island
of Cu Lao Dung in Soc Trang and Tra Vinh provinces. However, considerable plantations
can also be found in Ca Mau, Long An, and Tien Giang. The classification achieved an
overall validation accuracy of 82.6% (see Figure A1) and a kappa value of 0.81. To evaluate
the results, the F1 score was calculated for each class. The F1 score is a measure used to
evaluate the accuracy of a classification model, combining both precision and recall into a
single metric. It is particularly useful in scenarios where the balance between false positives
and false negatives is crucial, providing a more comprehensive understanding of model
performance than accuracy alone. A total of 11 of the 18 classes show an F1 score above 0.8,
i.e.,high values in both the user’s accuracy (UA) and producer’s accuracy (PA), while two
are below 0.5 (see Figure 6).

Considering the highly dynamic cropping patterns in the MRD, it is no surprise that
the majority of misclassifications of each rice class falls on the other rice classes. Both of
the two other spatially major classes Orchards/Tree crops and Aquacultures are primarily
confused with the expected partners. The first-mentioned is difficult to distinguish from
the other tree classes, the latter from Aquaculture/Rice alternating. Worth mentioning is
the relatively low confusion between the aquaculture classes and Water bodies, indicating
that the approach employed in this study worked quite well in the distinction of the two,
whereby an Aquaculture UA of 71% and PA of 72% leave room for improvement.
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Figure 4. LULC classification based on Sentinel-2 and -1 time series (2021–2023) of the Mekong River
Delta with detailed sub-figures of An Giang/Dong Thap (left) and Ben Tre/Tra Vinh (right).
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Figure 5. LULC distribution of the Mekong River Delta 2021–2023. The three small boxes belong to
the minor classes Pineapple/Coconut mixed (0.4%), Water Melon (0.1%), and Casuarina Forest (0.1%).

Figure 6. F1 score for the 18 classes of the time series analysis.

5.2. Input Metric Evaluation

In order to identify redundancies between the input images, band correlations of the
input images were calculated. This means that S1 data, phenological metrics (see Figure 7),
quantile mapping and harmonic regression (see Figure 8) were compared. To discover those
interactions between the input features, the calculation of pair-wise Pearson’s correlation
coefficients helped to identify redundant variables (see Figure 9). Especially some of
the phenological metrics correlate highly with the quantiles (e.g., the two VARI metrics
and SAVI) and among each other (e.g., SAVI vs. NDVI). For a deeper exploration of the
predictive accuracy, a sensitivity analysis was performed, whereby here the relevance of
each feature input for the ML classifier to each class was evaluated. For this purpose,
15 additional classification models were trained, each time excluding one feature iteratively
from the training image stack. Figures A2 and A3 in the appendix illustrate that the
image excluded stack’s accuracy deviation from the complete stack for each LULC. In
general, quantile mapping, harmonic regression, and the S1 data deliver most of the needed
information. Quantiles were particularly effective for separating tree crops and forest
classes. The same is true for S1, which also had a significant impact on the Dragon Fruit UA.
It is noteworthy that the harmonic models delivered a clear improvement for the distinction
of the different rice classes. The examples in Figure 8 show the systematic patterns found
in the NDVI signals by the application of the Fourier transformation. Vegetables and Water
Melon show the highest deviations during the sensitivity analysis, whereby the first class
was strongly dependent on phenological metrics and the second in terms of quantiles.
The S1 mean composite adds significant improvement to the classification of Melaleuca,
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Vegetables, Orchards/Tree crops, and Dragon Fruit. T he inclusion of NDBI median had no
noticeable effect on the classification of Urban/Settlements, likely because of the use of
quantiles of Band 8 (NIR), which are also used in the NDBI calculation. The same applies
for NDWI and the detection of Water bodies. The NDVI median’s noticeable effects relate
to the UA of Sugarcane and Upland Crops/Rice alternating (Vegetables and Water Melon are
discussed later). NDVIRed Edge and S2REP facilitated a similar improvement with a higher
impact on Sugarcane prediction. A relevant influence of the EVI mean has not been detected
in the workflow employed. The Sugarcane UA was also promoted by VARIGreen as well as
VARIRed Edge, but no other classes were supported by the use of these two metrics. Finally,
SIPI’s only impact on the quality of the classification was on Upland Crops/Rice alternating.

Figure 7. Exemplary illustrations of vegetation metrics that support the differentiation of different
land use types.

Figure 8. Cont.
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Figure 8. Time−dependent spectral progression of two exemplary rice and aquaculture classes
derived from NDVI signals including harmonic fitting.

Figure 9. Pair-wise Pearson correlation matrix of each training image. “Bx_py” refers to the calculated
quantile band (Band x; quantile y). “HMx_y” refers to the calculated harmonic regression (Harmonic
Model term x; Band y).
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6. Discussion

The principal challenge of this study was the highly dynamic environment of the MRD,
influenced by a myriad of factors including economic and political conditions, as well as
reactions to changing climatic conditions such as water availability and saltwater intrusion.
Rice cropping in the MRD, for example, does not follow the same chronological sequence
every year. As demonstrated by Scarrott [16], some triple rice cropping patterns in one year
switched to double rice in the following year. The data collected in this study confirmed
these rapid changes. Therefore, the study’s approach and objective were to adapt to those
dynamic changes, and therefore to include dynamic changes by incorporating dynamic
factors into a static classification of the MRD using a three-year time series of active and
passive remote sensing data.

Achieving an overall accuracy of 82.6% and a kappa of 0.81 on a pixel-based time
series validated by a comprehensive reference dataset, this study achieved satisfactory
results for a highly dynamic region of 40,000 km². In the assessment of aquacultural ponds
in the MRD based on Sentinel-1 data, Ottinger et al. [30] estimated a total area of 265,943 ha
of aquaculture accounting for 6.8% of the total area of the MRD. Compared to the 12.2%
(484,100 ha) estimated in our study, the aquacultural area and share almost doubled over
6 years.

6.1. Redundancy of Input Metric Information

The spectral distinction among the different target classes was conducted with the
help of various metrics, which were in turn used as inputs to the random forest classifier. In
terms of aquacultural ponds and other water bodies, the EVI mean did not have a significant
impact on the classes’ accuracy. However, it delivered a better visual distinguishability of
aquacultural ponds—except for those flooded year-round—and other water bodies. This is
probably due to a better distinction of the edge areas (mixed pixels), which is a crucial factor
to deal with in a time series analysis of a highly dynamic region, but it did not notably
change the overall area and accuracy.

Both NDVI metrics had little, if any, effect on the outcome and the intended time-
dependent density differences. Including the VARI metrics tried to address vegetation
fraction later in the growing season, dynamics in rice patterns, and time-dependent density
differences. A significant impact was only exerted on Sugarcane, which implies no additional
effect on the dynamics detection. The SIPI median, designed to enhance the spectral
detection of temporal dynamics, showed similar limitations.

Regarding Aquaculture, it is noteworthy that most of the training input images ad a
negative effect on the PA, suggesting that including all training metrics might introduce
more confusion, resulting in missing out on parts of the aquaculture classification. Albeit,
these effects are not very strong. This indicates that by including all training metrics in
the stack, more confusion is created, because more of what is called Aquaculture is missed
out. The ineffectiveness of certain training features, especially on their intended purpose
(e.g., the NDBI median for the built-up detection or the NDWI median for water body
detection) likely does not stem from insufficient information content, but most likely from
the fact that the needed information is already available through other training metrics.
In class-specific applications that do not require computationally intensive methods such
as quantile mapping, the various metrics can make a valuable contribution to detection.
Further class-specific investigations are necessary for this.

The two lowest F1-scored classes, Vegetables and Water Melon, also show the highest
deviations (in both directions), so the high impact of several phenological metrics might
not be reliably evaluated in those cases.

6.2. Key Contributions of Quantile Mapping, Harmonic Regression, and Radar Data

The most valuable contributions were provided by quantile mapping, harmonic
models, and Sentinel-1 data. In particular, the classification of natural, semi-natural, and
cultivated tree classes benefited from the quantile’s ability to differentiate vegetation
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seasonalities and from the different backscatter behaviors of vegetation types when it
comes to radar data.

The purpose and results of the Fourier transform to detect rice seasonalities can be
described as consistent and successful, since all rice-related classes benefited significantly
from the three models of one to three cycles.

7. Conclusions

The study presents a comprehensive analysis of sub-seasonal land use and land
cover (LULC) dynamics in Vietnam’s Mekong Delta using a three-year time series of high-
resolution satellite data from Sentinel-1 and Sentinel-2. By integrating quantile mapping
and harmonic regression, a high level of accuracy was achieved, validated by extensive
ground reference data, to capture the complex, dynamic patterns of land use in the region,
and especially the differentiation between different rice cropping patterns.

The experimental data analysis revealed that the inclusion of quantile mapping
and harmonic regression models significantly improved the detection of seasonal veg-
etation changes, particularly for rice cropping cycles. The radar data from Sentinel-1
further enhanced the distinction between vegetation types and filled gaps where optical
data were obstructed by cloud cover, highlighting its value for tropical and subtropical
agricultural monitoring.

The findings of this study have several practical applications for sustainable land
management and agricultural planning in the Mekong Delta. The high-resolution LULC
classification can help policymakers identify areas suitable for sustainable agricultural
practices, such as organic farming or crop rotation, by providing timely and accurate
information on crop cycles and land use dynamics. Additionally, the results can support
water management strategies by identifying the spatial and temporal distribution of rice
fields and aquaculture, which are crucial for planning irrigation and flood control measures.

While the beneficial combination of the high spatial and high temporal resolution of
Sentinel-2 A/B is outstanding, the results could benefit from an even shorter repetition
rate between two acquisitions, for instance to better capture the reflooding of paddy fields.
Future research could focus on integrating more frequent satellite observations or additional
data sources, such as higher-resolution commercial satellites or UAV imagery, to further
refine crop monitoring and for the early detection of environmental stresses. Expanding
the scope of quantile mapping and harmonic regression techniques to individual crops
and specific agricultural practices could enhance the precision of remote sensing-based
agricultural assessments. These improvements would not only benefit Vietnam’s Mekong
Delta but could also be adapted to other dynamic agricultural regions worldwide facing
similar challenges due to climate change and anthropogenic pressures.
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The following abbreviations are used in this manuscript:

CTU Can Tho University
EVI Enhanced Vegetation Index
ML Machine Learning
MRD Mekong River Delta
NDBI Normalized Difference Built-up Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
SA-AW Summer–Autumn—Autumn–Winter
SIPI Structure Insensitive Pigment Index
VARI Visible Atmospherically Resistant Index
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Appendix A

Figure A1. Validation error matrix showing the user’s, producer’s and overall accuracy of the classification.
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Figure A2. Analysis of the accuracy deviation for the user’s accuracy.

Figure A3. Analysis of the accuracy deviation for the producer’s accuracy.
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