THE TRANSPORT OF ENERGETIC PARTICLES THROUGH THE EARTH'S MAGNETOSPHERE AND ATMOSPHERE

International Space Weather Camp 2024

Jan Maik Wissing, Institute for Solar-Terrestrial Physics, DLR

Outline

- 1. Introduction
- 2. Particles in the Magnetosphere
 - Basic Charged Particle Movements in a B-Field
 - Gyration
 - Cyclotron Frequency
 - Relativistic Case
 - Magnetic Mirror
- 3. Particle Drifts
 - Neutral Sheet Current
 - Drift Theory
 - $E \times B$ -Drift
 - Gravitation-Drift
 - Gradient-Drift
 - Curvature-Drift
 - Drifts and Energy Change

- 4. Adiabatic Invariants
 - Longitudinal Invariant
 - Flux Invariant
- 5. Energetic particles in the magnetosphere: sources, occurence and loss
 - Reconnection
 - Acceleration
 - Radiation Belts
 - Pattern of Particle Precipitation
- 6. Particles in the Atmosphere
 - Why do we care?
 - Interaction with the Atmosphere
 - Ionization Pattern

INTRODUCTION

Particles in the environment of Earth

How solar activity affects the Earth

sun activity cycle (sunspots: footpoints of magnetic loops) loops may change structure and accelerate particles (flare, CME) solar wind as background particle population + B-field (→ talks by Borries, lochem, July 8th) particles move along parker spiral, may be accelerated at shock fronts (→ talks by Scherer, Thursday; Shprits, tomorrow; Martens, July 9th) GCRs extend the energetic spectrum (→ talk by Heber, yesterday)

Everything except us is plasma

Plasma: gas of charged particles consisting of free + and - charge carriers

quasi-neutral

charges are free: $E_{kin} \gg$ influence by direct neighbours. Thus plasma typically is hot (>some eV).

abundance

on earth: flames, lightning, ionosphere, magnetosphere

space: 99%

image: Los Alamos National Lab

SINGLE PARTICLE MOTION

Charged Particles in a B-Field

Lorentz-Force:

 $ec{F}_L = q \ ec{E} + q \ ec{v} imes ec{B}$

Charged Particles in a B-Field

Lorentz-Force:

 $ec{F}_L = q \; ec{E} + q \; ec{v} imes ec{B}$

as differential equation:

 $\stackrel{\wedge}{=} m \, \ddot{\vec{x}} = q \, \vec{E} + q \, \dot{\vec{x}} \times \vec{B}$

Charged Particles in a B-Field

Lorentz-Force:

 $ec{F}_L = q \ ec{E} + q \ ec{v} imes ec{B}$

as differential equation:

 $\stackrel{\wedge}{=} m \, \ddot{\vec{x}} = q \, \vec{E} + q \, \dot{\vec{x}} \times \vec{B}$

Assuming: energy density particles \ll energy density Field:

 \rightarrow single particle movement, no impact on field

Gyration

Simple case: homogenous B-field, no electric field \rightarrow Gyration $\vec{F}_L = g \vec{E} + q \vec{v} \times \vec{B}$

Gyration

Simple case: homogenous B-field, no electric field \rightarrow Gyration

Gyration

Simple case: homogenous B-field, no electric field \rightarrow Gyration $\vec{F}_L = q \cdot \vec{E}$

Left-Hand rule

Right-Hand rule

integral of motion dissapears:

2

$$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = q \vec{v} \times \vec{B}$$
$$\vec{v} \cdot m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{v} \cdot q (\vec{v} \times \vec{B})$$
$$\frac{1}{2}m\frac{\mathrm{d}v^{2}}{\mathrm{d}t} = \frac{\mathrm{d}W_{kin}}{\mathrm{d}t} = q (\vec{v} \times \vec{B}) \cdot \vec{v} = 0$$
The energy during gyration is constant.

Cyclotron frequency

equation of motion in pure B-field: $m \frac{d\vec{v}}{dt} = q \ \vec{v} \times \vec{B}$ component-wise (assuming $\vec{B} = B_z$):

$$m\dot{v}_{x} = q B v_{y} \qquad m\dot{v}_{y} = -q B v_{x} \qquad m\dot{v}_{z} = 0$$
$$\ddot{v}_{x} = \frac{q B}{m} \dot{v}_{y} = \left(\frac{q B}{m}\right)^{2} v_{y} \qquad \ddot{v}_{y} = -\frac{q B}{m} \dot{v}_{x} = -\left(\frac{q B}{m}\right)^{2} v_{x}$$

 \rightarrow harmonic oscillator: solved by $v_i = v_{0,i} e^{i\omega t}$

cyclotron frequency: $\omega_c = \frac{|q|B}{m}$ Larmor-radius: $r_L = \frac{m v_{\perp}}{|q|B} = \frac{v_{\perp}}{\omega_c}$

Relativistic Larmorradius

Space Weather deals with high velocities. Relativistic effects need to be considered.

Larmor radius (non-relativistic):

$$\begin{split} r_{L} &= \frac{m \, v_{\perp}}{|q| \, B} \\ \text{relativistic:} \\ r_{L,rel} &= \frac{\gamma \, m_0 \, v_{\perp}}{|q| \, B} \\ \gamma &= \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}} \\ E_{kin,rel} &= (\gamma - 1) m_0 \, c^2 \end{split}$$

Magnetic mirror - Applied to the Magnetosphere

Converging field on one side: magnetic mirror \rightarrow direction turn

Converging field on both sides: magnetic bottle \rightarrow bounce motion

image apapted from Day, Physics Today, 61 (21) 2008

Basic charged particle movements:

- ✓ Gyration
- ✓ Bounce
- ? Drift

PARTICLE DRIFTS

Opposite B-Fields: Neutral Sheet Current

opposite B-fields, no electric field

- \rightarrow drift with charge separation
- \rightarrow Neutral Sheet Current

Opposite B-Fields: Neutral Sheet Current

Applied to the Magnetosphere

Drift theory

separate velocity components of guiding center and gyration

$$\begin{split} m \, \dot{v}_{\parallel} &= F_{\parallel} & m \, \dot{v}_{\perp} = F_{\perp} + q \, v_{\perp} \times \vec{B} \\ v_{\perp} &= v_D + v_G & (1) \\ m \, \dot{v}_{\perp} &= m \, \dot{v}_D + m \, \dot{v}_G & (2) \\ &= F_{\perp} + q \, (v_D + v_G) \times \vec{B} & (3) \\ m \, \dot{v}_D + m \, \dot{v}_G &= F_{\perp} + q \, v_D \times \vec{B} + q \, v_G \, \swarrow \vec{B} & (4) \\ m \, \dot{v}_D &= F_{\perp} + q \, v_D \times \vec{B} & (5) \end{split}$$

Assuming time-invariant velocity:

$$F_{\perp} = -q v_D \times \vec{B} \tag{6}$$

$$F_{\perp} \times \vec{B} = -q \, v_D \times \vec{B} \times \vec{B} = q \, v_D \, B^2 \tag{7}$$

$$\frac{F_{\perp} \times B}{q B^2} = v_D \longrightarrow \text{generalized drift velocity} \tag{8}$$

$E\times \textit{B-Drift}$

homogenous B-field, orthogonal electric field $ec{F}_L = q \; ec{E} + q \; ec{v} imes ec{B}$

using generalized drift eq: $\vec{v}_{E \times B} = \frac{\vec{F} \times \vec{B}}{qB^2} = \frac{\not{d}\vec{E} \times \vec{B}}{\not{d}B^2} = \frac{\vec{E} \times \vec{B}}{B^2}$ (charge independent)

 \rightarrow drift to same direction, same speed \rightarrow no resulting current

Gravitation-Drift

using generalized drift eq: $\vec{v}_g = \frac{\vec{F} \times \vec{B}}{q B^2} = \frac{m}{q} \frac{\vec{g} \times \vec{B}}{B^2}$ (charge dependent, mass dependent)

- \rightarrow drift with charge separation,
- ightarrow note that in most cases the gravitation drift is neglegible compared to other drifts

Gradient-Drift

Gradient in the B-field, no electric field

∇B -Drift: e^-

 \odot

 \odot

 \odot

 ∇B –Drift: p^+

Question: The ∇B -drift is directed to?

 \odot

 \odot

A) both drifts to left

 \odot

 \odot

- B) both drifts to right
- C) e-drift left, p-drift to right

D) e-drift right, p-drift to left

•

lacksquare

 \odot

- E) e-drift up, p-drift to down
- F) both drifts up

Gradient-Drift

Gradient in the B-field, no electric field

 ∇B -Drift: e^{-}

Correct answer is:

D) e-drift right, p-drift to left

$$\vec{v}_{\nabla B} = \frac{\mu}{qB^2}\vec{B} \times \nabla B = \frac{W_{\text{kin}_{\perp}}}{qB} \frac{\vec{B} \times \nabla B}{B^2}$$
 (charge dependent, energy dependent)

Applying Drifts

adapted from T. Russel, ESA.

Curvature drift

Simplified approach:

a particle on bound field lines experiences centrifugal force: $F_{cf} = \frac{mv_{\parallel}^2}{r_c^2} \vec{r}_c$

generalized drift velocity: $\vec{v}_{cf} = \frac{\vec{F_{cf}} \times \vec{B}}{q B^2} = \frac{m v_{\parallel}^2 \vec{r_c} \times \vec{B}}{r_c^2 q B^2}$

image: Inan & Golkowski, Page 34

Curvature drift

Simplified approach:

a particle on bound field lines experiences centrifugal force: $F_{cf} = \frac{mv_{\parallel}^2}{r_c^2} \vec{r}_c$

generalized drift velocity: $\vec{v}_{cf} = \frac{\vec{F_{cf}} \times \vec{B}}{q B^2} = \frac{m v_{\parallel}^2 \vec{r_c} \times \vec{B}}{r_c^2 q B^2}$

However, assuming a pure bend magnetic field in vacuum, according to the Ampere's law $(\nabla \times \vec{B} = \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t})$, there has to be a gradient.

We skip this for today.

image: Inan & Golkowski, Page 34
Summary drifts

Drift with energy change - $E \nabla B$ -drift

 ∇B -drift moves "upward" but no energy change as there is no E-Field

 $E \times B$ -drift moves along same potential \rightarrow no energy change

combined: $E\nabla B$ -drift changes energy

ADIABATIC INVARIANTS

Main particle motions

Main particle motions - timescales

Time scales:

gyration: kHz

longitudinal motion: seconds drift: 15 min (1000 s)

Schulz and Lanzerotti (1974)

precondition: spatial and temporal B-field changes are small compared to motion: gyration time: $\frac{1}{B} \frac{\partial B}{\partial t} \ll \frac{\omega_c}{2\pi}$ field-parallel motion: $\frac{\nabla B_{\parallel}}{B} \ll \frac{\omega_c}{2\pi v_{\parallel}}$ gyration orbit: $\frac{\nabla B_{\perp}}{B} \ll \frac{\omega_c}{2\pi v_{\perp}}$ or $\frac{\nabla B_{\perp}}{B} \ll \frac{\omega_c}{2\pi v_D}$ In a cyclic motion the action integral of the momentum over a full circle is: $J_i = \oint p_i \, \mathrm{d}q_i \approx const$

magnetic moment invariant: $J_1 = \oint m v_{\perp} r_L d\psi = 2\pi m v_{\perp} r_L = 4\pi \frac{m}{|q|} \mu = const$

longitudinal invariant: $J_2 = \int_{s_1}^{s_2} m v_{\parallel} ds = \int_{s_2}^{s_2} m \sqrt{v^2 - \frac{2\mu B}{m}} ds = const$ flux invariant: $J_3 = \oint m v_D r d\psi = \frac{4\pi m}{|\alpha|} \cdot M = const$

Magnetic mirror - 1st adiabatic invariant

Acceleration - 2nd adiabatic invariant

Longitudinal invariant (2nd adiabatic invariant):

$$J_2 = \int\limits_{S_1}^{S_2} m v_{\parallel} \,\mathrm{d}s = const.$$

Fermi acceleration type 1: converging mirror points increase V_{\parallel}

3rd adiabatic invariant

Flux invariant

ENERGETIC PARTICLES IN THE MAGNETOSPHERE: SOURCES, OCCURENCE AND LOSS

How/Where do particles enter the magnetosphere?

Lyons 1992

Reconnection

Ampere's Law: $\nabla \times \vec{B} = \mu_0 \vec{j}$ $\vec{j} \text{ current density}$ $\begin{pmatrix} \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} \\ \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial y} \end{pmatrix} = \mu_0$

$$\left(\begin{array}{c} \frac{\partial \dot{B}_x}{\partial z} - \frac{\partial \ddot{B}_z}{\partial x} \\ \frac{\partial \dot{B}_y}{\partial x} - \frac{\partial B_x}{\partial y} \end{array}\right) = \mu_0 \, \vec{j}$$

Reconnection

Ampere's Law: $\nabla \times \vec{B} = \mu_0 \vec{i}$ \vec{i} current density $\begin{pmatrix} \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} \\ \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} \\ \frac{\partial B_y}{\partial z} - \frac{\partial B_x}{\partial x} \end{pmatrix} = \mu_0 \vec{j}$ $\begin{pmatrix} 0\\ \frac{\partial B_x}{\partial z}\\ 0 \end{pmatrix} = \frac{\Delta B_x}{d} = \mu_0 j_y$

Reconnection

Ampere's Law:

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

$$\vec{j} \text{ current density}$$

$$\begin{pmatrix} \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} \\ \frac{\partial B_z}{\partial z} - \frac{\partial B_z}{\partial x} \\ \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \end{pmatrix} = \mu_0 \vec{j}$$

$$\begin{pmatrix} 0 \\ \frac{\partial B_x}{\partial z} \\ 0 \end{pmatrix} = \frac{\Delta B_x}{d} = \mu_0 j_y$$

Reconnection Reconnection leading to a Substorm

Acceleration

Longitudinal invariant (2nd adiabatic invariant):

Radiation belts

Baker et al., 2004

Radiation belts

Baker et al., 2004

Air Force Research Laboratory

Inner Van Allen belt10 000km - $\sim 2 r_E$, peak at 1.5 r_E
protons 10-100 MeV, GAKs to multiple GeV
protons relatively stable, electrons fluctuatingSlot region $-2-3 r_E$
gap may be filled with electrons during geomagnetic stormsOuter Van Allen belt $3-6.5 r_E$, mostly relativistic electrons (100 keV-10 MeV)

Where do they precipitate?

Loss Cone

Loss cone pitch angle: $\alpha_{LC} = \arcsin \sqrt{\frac{B_{eq}}{B_m}}$ The loss cone angle at the equator is about:

e.g. 2° at L=6.6 (geostationary orbit), 16° at at L=2

 $\alpha > \alpha_{\it LC}$ trapped, $\alpha <= \alpha_{\it LC}$ precipitate

PA-scattering pushes trapped particles into loss cone

Particle Precipitation Pattern

30–80 keV low energy but high spatial variability

Wissing et al. 2008

Particle Precipitation Pattern

30–80 keV low energy but high spatial variability

0.8–2.5 MeV high energy but low spatial variability

Precipitation Pattern for different Energies and MLTs

Electrons, Yakovchuk und Wissing (2019)

PARTICLES IN THE ATMOSPHERE

Particles in the atmosphere: Why do we care?

Particles in the atmosphere: Why do we care?

Impacts on Chemistry:

NOx, HOx

Ozone

Direct Impacts on Life:

Ground level events

during flights (talk by Meier, tomorrow)

Impacts on GPS:

TEC

particle

•*e*

Momentum transfer between particle and a single <u>air</u>-electron at distance *b*:

$$\Delta p_{\perp}| = rac{1}{2\pi \; \epsilon_0} rac{z \; e^2}{eta \; c \; b}$$

•*e*

Momentum transfer between particle and a single air-electron at distance *b*:

$$\Delta p_{\perp}| = rac{1}{2\pi \; \epsilon_0} rac{z \; e^2}{eta \; c \; b}$$

Energy transmitted from the particle to **one** single <u>air</u>-electron at distance *b*:

$$\Delta E = \frac{\left(\Delta p_{\perp}\right)^2}{2 m_e} = \left(\frac{1}{2\pi\epsilon_0}\right)^2 \frac{z^2 e^4}{2 m_e \beta^2 c^2 b^2}$$

particle

$$dV = b db d\phi dx = 2\pi b db dx$$

Energy transmitted from the particle to **one** single <u>air</u>-electron at distance *b*:

$$\Delta E = \frac{\left(\Delta p_{\perp}\right)^2}{2 m_e} = \left(\frac{1}{2\pi\epsilon_0}\right)^2 \frac{z^2 e^4}{2 m_e \beta^2 c^2 b^2}$$

Energy loss of the energetic particle to **all** <u>air</u>-electrons of the volume:

$$-\mathrm{d} \boldsymbol{E} = \Delta \boldsymbol{E} \underbrace{\boldsymbol{n}_{\boldsymbol{e}}}_{=\frac{\boldsymbol{\rho} \cdot \boldsymbol{Z}}{\boldsymbol{u} \boldsymbol{A}}} \mathrm{d} \boldsymbol{V}$$

particle

$$dV = b db d\phi dx = 2\pi b db d\phi$$

 $\bullet e$

Energy loss of the energetic particle to all <u>air</u>-electrons of the volume:

$$-\mathrm{d}\boldsymbol{E} = \frac{e^4}{4\pi \ \epsilon_0^2 \ m_e \ c^2 \ u} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A} \ \frac{1}{b} \mathrm{d}\boldsymbol{b} \ \mathrm{d}\boldsymbol{x}$$

Energy loss of the energetic particle to all air-electrons of the volume:

$$-\mathrm{d}E = \frac{e^4}{4\pi \ \epsilon_0^2 \ m_e \ c^2 \ u} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A} \qquad \underbrace{\frac{1}{b}}_{\int_{b_{\min}}^{b_{\max}} \frac{1}{b} \mathrm{d}b}_{\int_{b_{\min}}^{b_{\max}} \frac{1}{b}} \ \mathrm{d}x$$

Energy loss of the energetic particle to all air-electrons of the volume:

$$-\mathrm{d}\boldsymbol{E} = \frac{e^4}{4\pi\;\epsilon_0^2\;m_e\;c^2\;u}\frac{z^2}{\beta^2}\;\frac{\rho\;Z}{A}\;\ln\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\;\mathrm{d}\boldsymbol{x}$$

Energy loss of the energetic particle to all <u>air</u>-electrons of the volume:

$$-\mathrm{d} \boldsymbol{E} = \frac{\boldsymbol{e}^4}{4\pi\;\epsilon_0^2\;m_{\boldsymbol{e}}\;c^2\;u}\frac{z^2}{\beta^2}\;\frac{\rho\;Z}{A}\;\ln\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\;\mathrm{d} \boldsymbol{x}$$

 b_{\max} : close enough that mean excitation energy *I* is transferred to the electron b_{\min} : maximum momentum transfer in a central elastic relativistic collision is $\Delta p = 2 \ m \ v \ \gamma$

Energy loss of the energetic particle to all <u>air</u>-electrons of the volume:

$$-\mathrm{d} \boldsymbol{E} = \frac{\boldsymbol{e}^4}{4\pi\;\epsilon_0^2\;m_{\boldsymbol{e}}\;c^2\;u}\frac{z^2}{\beta^2}\;\frac{\rho\;Z}{A}\;\ln\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\;\mathrm{d} \boldsymbol{x}$$

 $b_{\rm max}$: close enough that mean excitation energy *I* is transferred to the electron

$$\Delta E = I = \left(\frac{1}{4\pi\epsilon_0}\right)^2 \frac{2z^2 e^4}{m_e \beta^2 c^2 b_{max}^2} \qquad \qquad \rightarrow \qquad \qquad b_{max} = \frac{1}{4\pi\epsilon_0} \frac{z e^2}{\beta c} \sqrt{\frac{2}{m_e I}}$$

Energy loss of the energetic particle to all <u>air</u>-electrons of the volume:

$$-\mathrm{d} E = \frac{e^4}{4\pi \ \epsilon_0^2 \ m_e \ c^2 \ u} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A} \ \ln \frac{b_{\mathrm{max}}}{b_{\mathrm{min}}} \ \mathrm{d} x$$

 b_{\min} : maximum momentum transfer in a central elastic relativistic collision is:

$$\Delta p = 2m_e v \gamma = rac{1}{4\pi\epsilon_0} rac{2ze^2}{b_{min} v} ext{ } o ext{ } b_{min} = rac{1}{4\pi\epsilon_0} rac{ze^2}{m_e eta^2 c^2 \gamma}$$

Energy loss of the energetic particle to all <u>air</u>-electrons of the volume:

$$-\mathrm{d} E = \frac{e^4}{4\pi \ \epsilon_0^2 \ m_e \ c^2 \ u} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A} \ \ln \frac{b_{\mathrm{max}}}{b_{\mathrm{min}}} \ \mathrm{d} x$$

Energy loss of the energetic particle along path (by Niels Bohr):

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{e^4}{8\pi \ \epsilon_0^2 \ m_e \ c^2} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A \ u} \ \ln\left(\frac{2 \ m_e \ \beta^2 \ c^2 \ \gamma^2}{I}\right)$$

Energy loss of the energetic particle along path (by Niels Bohr):

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{e^4}{8\pi \ \epsilon_0^2 \ m_e \ c^2} \frac{z^2}{\beta^2} \ \frac{\rho \ Z}{A \ u} \ \ln\left(\frac{2 \ m_e \ \beta^2 \ c^2 \ \gamma^2}{I}\right)$$

Behte formula (based on quantum mechanics):

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{2\ e^4}{8\pi\ \epsilon_0^2\ m_e\ c^2} \frac{z^2}{\beta^2}\ \frac{\rho\ Z}{A\ u}\ \left[\ln\left(\frac{2\ m_e\ \beta^2\ c^2\ \gamma^2}{I}\right) - \beta^2\right]$$

Bethe formula

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{2\ e^4}{8\pi\ \epsilon_0^2\ m_e\ c^2} \frac{z^2}{\beta^2}\ \frac{\rho\ Z}{A\ u}\ \left[\ln\left(\frac{2\ m_e\ \beta^2\ c^2\ \gamma^2}{I}\right) - \beta^2\right]$$

$$e \qquad \text{elemental charge}$$

$$e \qquad \text{electron mass}$$

$$\rho \qquad \text{density (matter)}$$

$$\epsilon_0 = \frac{1}{\mu_0 c^2} \qquad \text{permittivity of free space}$$

$$u \qquad \text{atomic mass constant}$$

$$\frac{\beta = \frac{v}{c}}{\sqrt{1-\beta^2}} \qquad \text{Lorentz factor}$$

$$z \qquad \#\ \text{of charges (particle)}$$

$$Z \qquad \text{atomic number (matter)}$$

$$A \qquad relative atomic mass$$

$$I \qquad \text{mean excitation energy}$$

Bethe formula

Bethe applied to different energies

Bethe applied to different energies

What about lighter particles?

What about lighter particles?

What about lighter particles?

Gambling!

Gambling!

Monte-Carlo

Monte-Carlo

Modeling energy deposition for single particle incidents

Monte-Carlo (e.g. Geant4)

- provides energy deposition per particle
- * is transformed into ionization rates (35 eV/ion pair, proved exp+theory)

Geant4 Monte-Carlo Simulation: Electron incident

Processes: Electron incident

Overview: Precipitating particles Atmospheric Particle Coupling

SAMPEX data center

PET

AST

Results

Geomagnetic pole - quiet

proton and electron (dashed) ionization at geomagn. pole

Geomagnetic pole - event

proton and electron (dashed) ionization at geomagn. pole

Auroral latitudes - quiet

Auroral latitudes - event

Global ionization rate

Forbush decrease Oulu Neutron Monitor

Cosmic Ray Station website, Ilya Usoskin, University of Oulu
Forbush decrease

Summary

NASA

Particles in the Magnetosphere

Basic Charged Particle Movements in a B-Field

Origin, Occurence and Loss of Particles

Pattern of Particle Precipitation

Particles in the atmosphere Interaction with the Atmosphere Ionization Pattern Thank you for listening!

- [Wissing und Kallenrode 2009] WISSING, J. M.; KALLENRODE, M.-B.: Atmospheric Ionization Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. In: <u>Journal of Geophysical Research: Space Physics</u> 114 (2009), Nr. A6. http://dx.doi.org/10.1029/2008JA013884. – DOI 10.1029/2008JA013884.
- [Wissing et al. 2011] WISSING, J. M.; KALLENRODE, M.-B.; KIESER, J.; SCHMIDT, H.; RIETVELD, M. T.; STRØMME, A.; ERICKSON, P. J.: Atmospheric Ionization Module Osnabrück (AIMOS): 3. Comparison of electron density simulations by AIMOS-HAMMONIA and incoherent scatter radar measurements. In: <u>Journal</u> of Geophysical Research: Space Physics 116 (2011), Nr. A8. http://dx.doi.org/10.1029/2010JA016300. – DOI 10.1029/2010JA016300.
- [Wissing et al. 2010] WISSING, J. M.; KALLENRODE, M.-B.; WIETERS, N.; WINKLER, H.; SINNHUBER, M.: Atmospheric Ionization Module Osnabrück (AIMOS): 2. Total particle inventory in the October–November 2003 event and ozone. In: <u>Journal of Geophysical Research: Space Physics</u> 115 (2010), Nr. A2. http://dx.doi.org/https://doi.org/10.1029/2009JA014419. – DOI https://doi.org/10.1029/2009JA014419.
- [Yakovchuk und Wissing 2019] YAKOVCHUK, O. ; WISSING, J.M.: Magnetic local time asymmetries in precipitating electron and proton populations with and without substorm activity. In: <u>Annales Geophysicae</u> 37 (2019), Nr. 6, 1063–1077. http://dx.doi.org/10.5194/angeo-37-1063-2019. – DOI 10.5194/angeo-37-1063-2019.