INTERCOMPARISION OF SSUSI (-BASED MODEL) AND AISSTORM

Jan Maik Wissing¹, Stefan Bender², Miriam Sinnhuber³, Hilde Nesse⁴

¹Institute for Solar-Terrestrial Physics, DLR Neustrelitz, Germany ²CSIC/IAA, Granada, Spain ³Karlsruhe Institute of Technology KIT, Germany ⁴Birkeland Centre for Space Science, University of Bergen, Norway The 9th International HEPPA-SOLARIS Meeting

Outline

1. Introduction

- Motivation
- AlSstorm
- SSUSI
- 2. Comparison of spatial auroral pattern
- 3. Comparison of vertical auroral pattern
- 4. Quantitative comparison of peak ionization rates
- 5. Summary

INTRODUCTION

Motivation

- Ionization rates are typically based on space-born particle measurements
 - always mixes spatial and temporal variations
- Auroral particles in AISstorm are measured by TED on POES/Metop:
 - rarely used detector, may have inherent unknown issues
- Verification of ionization rates itself problematic:
 - always affords model chain: ionization model + climate model (+ retrieval method for measurements)
 - EISCAT available for single locations only, no global coverage

- SUSSI
 - Special Sensor Ultraviolet Spectrographic Imager
 - measures 2D UV emissions from aurora
 - only valid for a limited altitude range
 - does not mix spatial and temporal variations
 - → allows construction of ionization models which be compared to "conventional" ionization models

Introduction: AISstorm

Has been introduced in a talk yesterday.

Introduction: AISstorm

Introduction: AISstorm

Introduction: SSUSI model

- SSUSI
 - Auroral energy input based on *Special Sensor Ultraviolet Spectrographic Imager*
 - Defense Meteorological Satellite Program (DMSP) satellites (850 km)
 - nadir auroral images, 5 UV channels, 10×10 km ground pixels
 - auroral electron energy (2-20 keV) and energy flux [mW m-2]

SSUSI model (Bender et al., 2021)

- 3.6° geomagnetic latitude × 2-h magnetic local time (MLT) grid, 5 km altitude grid
- transformed into ionization rates using (Fang et al., 2010) → IR profiles from 90 to 150 km
- model: log q ~ Kp + PC + Ap + log F10.7 + const.

COMPARISON OF SPATIAL AURORAL PATTERN

Comparison of spatial auroral pattern

- altitude selection 115 km (auroral ionization rate maximum in AISstorm)
- Iatitudinal and MLT distribution very similar
- quantification: central aurora varies between perfect match and factor 10 difference
- SSUSI shows significantly more ionization rate in polar and subauroral latitudes

Comparison of spatial auroral pattern - long term

- dynamical range in AISstorm seems to be higher (vertical pattern needed)
- at high activity rather similar, growing differences for low activity
- latitudes of main aurora agree very well
- cap in AlSstorm just partly filled

Comparison of spatial auroral pattern - long term

similar picture for other MLTs

COMPARISON OF VERTICAL AURORAL PATTERN

Comparison of vertical auroral pattern

- SSUSI (data/model) ionization rate peaks are mostly at 100 km (between 15-19 MLT mostly at 105 km)
- AISstorm ionization rate peaks are mostly at 110 km (between 9-13 MLT at about 100 km, typically MLT minimum precipitation)
- steeper slope of AISstorm ionization rate above peak
- factor 5 between SSUSI data and SSUSI model

Other studies

- There seem to be a systematic difference between Fang et al. 2010 and Geant4 based models.
- But all models use different atmospheric parameters.

Peak ionization altitudes of 10 keV e⁻ using Geant

4 seasons

 \rightarrow altitude: 102-108 km (except for northern summer: 104-108 km)

• note: altitude defined by half level height of bin, bin size \approx 2.5-3.5km

Peak ionization altitudes of 10 keV e⁻ using Geant & Fang

- same atmospheric parameters
- Y Fang et al. 2010
- ionization peak clearly (one bin) below

Peak ionization altitudes of 100 keV e⁻ using Geant & Fang

- same for 100 keV
- ionization peak clearly (one bin) above

Geant vs. Fang for typical auroral energies

- Ionization rate peak for Fang is:
 - at lower altitudes for energies below 15 keV
 - at similar altitudes for energies 15-30keV
 - at higher altitude for energies above 30 keV
- note: Geant has different options, but Planetocosmics seems to be similar to our settings.

Geant vs. Fang for typical auroral energies

- explains steeper slope of AISstorm rates
- (just) partly explains different peak altitude of combined spectrum

Other reasons for the different peak heights?

- no particle channel at 20 keV
- TED band 14 (6.503-9.457 keV)
 mep0e1-e2 (30-100 keV)

- translates into altitude gap 96–108 km
- MLT difference: TED band 14 elevated at night. mep0e1-e2 peaks at 6 MLT.

Comparison to EISCAT (ionization, not rates)

Bösinger et al. (Fig. 7 in 2004)

 SSUSI (data/model) ionization rate peaks are:

× mostly at 100 km

- (√) between 15-19 MLT mostly at 105 km (higher altitude, probably p⁺)
- AISstorm ionization rate peaks are
 - ✓ mostly at 110 km

 (√) between 9-13 MLT at about 100 km (lower altitude)

QUANTITATIVE COMPARISON OF PEAK IONIZATION RATES

Quantitative comparison of peak ionization rates

 As ionization altitudes differ, we compare the peak ionization independent from altitude.

Quantitative comparison of peak ionization rates - long term

- at individual peak altitude
- note: different color scale

Comparison of spatial auroral pattern - long term

at 115 km, repetition

Summary

- Iatitudinal and MLT distribution similar
- SSUSI shows more ionization in polar and subauroral latitudes
- dynamical range of AISstorm seems to be larger
- vertical:
 - peak altitudes and slopes differ
 - slope and part of the altitude differences can be attributed to energy deposition algorithm but not all
 - energy gap between TED and MEPED may be an issue
 - AISstorm ionization altitude agrees better to EISCAT
 - both data sets qualitatively show altitude variations with MLT that are covered by EISCAT
- peak auroral ionization rates independent of altitude agree mostly between AISstorm and SSUSI

Thank you for listening!

[Agostinelli et al. 2003] Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; Behner, F.; Bellagamba, L.; Boudrau, J.; Broglia, L.; Brunengo, A.; Burkhardt, H.; Chauvie, S.; Chuma, J.; Chytracek, R.; Cooperman, G.; Cosmo, G.; Degtyarenko, P.; Dell'Acqua, A.; Depaola, G.; Dietrich, D.; Enami, R.; Feliciello, A.; Ferguson, C.; Fesefeldt, H.; Folger, G.; Foppiano, F.; Forti, A.; Garelli, S.; Giani, S.; Gianni, Trapani, R.; Gibin, D.; Gómez Cadenas, J.; González, I.; Gracia Abril, G.; Greener, W.; Grichine, V.; Grossheim, A.; Guatelli, S.; Giumelinger, P.; Hamatsu, R.; Hashimoto, K.; Hasui, H.; Heikkinen, A.; Howard, A.; Ivanchenko, V.; Johnson, A.; Jones, F.W.; Kallenbach, J.; Kanaya, N.; Kawabata, M.; Kawabata, Y.; Kawaguti, M.; Kelner, S.; Kent, P.; Kimura, A.; Kodoama, T.; Kokoulin, R.; Kossov, M.; Kurashide, H.; Lamanna, E.; Lampén, T.; Lara, V.; Lefebure, V.; Lei, F.; Liendl, M.; Lockman, W.; Longo, F.; Magni, S.; Maire, M.; Medernach, E.; Minamimoto, K.; Morata, Y.; Murakami, K.; Preiffer, A.; Pia, M.G.; Ranjard, F.; Rybin, A.; Sadilov, S.; Di Salvo, E.; Santin, G.; Sasaki, T.; Savvas, N.; Sawada, Y.; Scherrer, S.; Sei, S.; Sirotenko, V.; Smith, D.; Starkov, N.; Stoecker, H.; Sulkimo, J.; Takahata, M.; Tanaka, S.; Tcherniaev, E.; Safai Tehrani, E.; Tropeano, M.; Truscott, P.; Uno, H.; Urban, H.; Zurber, M.; Welkoen, A.; Wander, M.; Wellach, J.; Kanaya, A.; Wanda, T.; Meulas, T.; Milama, S.; Alikober, M.; Wieber, H.; Wellisch, J.P.; Wenaus, T.; Williams, D.C.; Wright, D.; Starkov, N.; Stoecker, H.; Sulkimo, J.; Takahata, M.; Tanaka, S.; Tcherniaev, E.; Safai Tehrani, E.; Tropeano, M.; Truscott, P.; Uno, H.; Urban, H.; Zurber, M.; Welkoen, A.; Wander, M.; Wander, T.; Meulas, D.C.; Wright, D.; Starkov, N.; Stoecker, H.; Sulkimo, J.; Takahata, M.; Tanaka, S.; Tcherniaev, E.; Safai Tehrani, E.; Tropeano, M.; Truscott, P.; Uno, H.; Urban, H.; Zurber, Ch.; Geant4—a simulation toolkil. In: <u>Nuclear Instruments and Methods in Physics Resear</u>

http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8. - DOI https://doi.org/10.1016/S0168-9002(03)01368-8. - ISSN 0168-9002.

- [Bender et al. 2021] BENDER, S.; ESPY, P. J.; PAXTON, L. J.: Validation of SSUSI-derived auroral electron densities: comparisons to EISCAT data. In: <u>Annales</u> Geophysicae 39 (2021), Nr. 5, 899–910. http://dx.doi.org/10.5194/angeo-39-899-2021. – DOI 10.5194/angeo-39-899-2021.
- [Bösinger et al. 2004] BÖSINGER, Tilmann ; HUSSEY, Glenn C. ; HALDOUPIS, Christos ; SCHLEGEL, Kristian: Auroral E-region electron density height profile modification by electric field driven vertical plasma transport: some evidence in EISCAT CP-1 data statistics. In: <u>Annales Geophysicae</u> 22 (2004), 901-910. https://api.semanticscholar.org/CorpusID:54578939.
- [Fang et al. 2008] FANG, Xiaohua ; RANDALL, Cora E. ; LUMMERZHEIM, Dirk ; SOLOMON, Stanley C. ; MILLS, Michael J. ; MARSH, Daniel R. ; JACKMAN, Charles H. ; WANG, Wenbin ; LU, Gang: Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. In: <u>Journal of Geophysical Research:</u> <u>Space Physics</u> 113 (2008), Nr. A9. http://dx.doi.org/https://doi.org/10.1029/2008JA013384. DOI https://doi.org/10.1029/2008JA013384.

[Fang et al. 2010] FANG, Xiaohua ; RANDALL, Cora E. ; LUMMERZHEIM, Dirk ; WANG, Wenbin ; LU, Gang ; SOLOMON, Stanley C. ; FRAHM, Rudy A.: Parameterization of monoenergetic electron impact ionization. In: <u>Geophysical Research Letters</u> 37 (2010), Nr. 22. http://dx.doi.org/https://doi.org/10.1029/2010GL045406. - DOI https://doi.org/10.1029/2010GL045406.

[Kaeppler et al. 2022] KAEPPLER, Stephen R. ; MARSHALL, Robert ; SANCHEZ, ENNIO R. ; JUAREZ MADERA, Diana H. ; TROYER, Riley ; JAYNES, Allison N.:

pyGPI5: A python D- and E-region chemistry and ionization model. In: <u>Frontiers in Astronomy and Space Sciences</u> 9 (2022). http://dx.doi.org/10.3389/fspas.2022.1028042. - DOI 10.3389/fspas.2022.1028042. - ISSN 2296-987X.

- [Mironova et al. 2021] MIRONOVA, Irina; KOVALTSOV, Gennadiy; MISHEV, Alexander; ARTAMONOV, Anton: Ionization in the Earth's Atmosphere Due to Isotropic Energetic Electron Precipitation: Ion Production and Primary Electron Spectra. In: <u>Remote Sensing</u> 13 (2021), Nr. 20. http://dx.doi.org/10.3390/rs13204161. – DOI 10.3390/rs13204161. – ISSN 2072–4292.
- [Paxton et al. 1993] PAXTON, Larry J.; MENG, Ching-I.; FOUNTAIN, Glen H.; OGORZALEK, Bernard S.; DARLINGTON, Edward H.; GARY, Stephen A.; GOLDSTEN, John O.; KUSNIERKIEWICZ, David Y.; LEE, SUSan C.; LINSTROM, Lloyd A.; MAYNARD, Jeffrey J.; PEACOCK, Keith ; PERSONS, David F.; SMITH, Brian E.; STRICKLAND, Douglas J.; JR., R. E. D.: SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters. In: HUFFMAN, Robert E. (Hrsg.); International Society for Optics and Photonics (Veranst.): <u>Ultraviolet Technology IV</u> Bd. 1764 International Society for Optics and Photonics, SPIE, 1993, 161 – 176.
- [Vasilyev et al. 2008] VASILYEV, G.I.; OSTRYAKOV, V.M.; PAVLOV, A.K.: Influence of energetic particles on atmospheric ionization. In: Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008), Nr. 16, 2000-2004. http://dx.doi.org/https://doi.org/10.1016/j.jastp.2008.07.016. – DOI https://doi.org/10.1016/j.jastp.2008.07.016. – ISSN 1364–6826.
- [Wissing und Kallenrode 2009] WISSING, J. M.; KALLENRODE, M.-B.: Atmospheric Ionization Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. In: <u>Journal of Geophysical Research: Space Physics</u> 114 (2009), Nr. A6. http://dx.doi.org/10.1029/2008JA013884. – DOI 10.1029/2008JA013884.
- [Xu et al. 2020] XU, Wei ; MARSHALL, Robert A. ; TYSSØY, Hilde N. ; FANG, Xiaohua: A Generalized Method for Calculating Atmospheric Ionization by Energetic Electron Precipitation. In: Journal of Geophysical Research: Space Physics 125 (2020), Nr. 11, e2020JA028482. http://dx.doi.org/https://doi.org/10.1029/2020JA028482. – DOI https://doi.org/10.1029/2020JA028482. – e2020JA028482 10.1029/2020JA028482.
- [Yakovchuk und Wissing 2019] YAKOVCHUK, O.S.; WISSING, J.M.: Magnetic local time asymmetries in precipitating electron and proton populations with and without substorm activity. In: <u>Annales Geophysicae</u> 37 (2019), Nr. 6, S. 1063–1077. http://dx.doi.org/10.5194/angeo-37-1063-2019. – DOI 10.5194/angeo-37-1063-2019.