

Untersuchung einer Regionalflugzeugkonfiguration mit verteilten Antrieben und flügel-integrierten Batterien

Deutscher Luft- und Raumfahrtkongress 2024 – Hamburg Hecken Tobias, Thomas Klimmek, Matthias Schulze – Institut für Aeroelastik

Session: Aeroelastik 8:30-10:10 – 01.10.2024 Session chair: Herr Prof. Dr.-Ing Tichy

Motivation

Ziel: Reduktion der CO2- und Nicht-CO2-Effekte (ACARE)

- Neuartige Flugzeugkonfigurationen
- Neue Antriebsarchitekturen
- Einfluss auf die Flugzeugzelle (strukturmechanisch)

Aura Aero ERA – hybrid electric

Airbus Aerostack GmbH – Fuel cell

MTU Flying Fuel Cell

Heart Aerospace CS30 – hybrid electric

Elysian E9X – electric

www.airbus.com/en/innovation/energy-transition/hydrogen/zeroe/airbus-aerostack-gmbh www.airbus.com/en/innovation/energy-transition/hydrogen/zeroe engine/flying-fuel-cell/ -air-//www.mtu.de/technologies/clean nttps://heartaerospace.com/es-30, https://www.elysianaircraft.com/ https://aura-aero.com/en/era/

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Überblick

- SynerglE-Konfiguration
- Energieträgerwechsel
- Aeroelastische Modelle
- Ergebnisse
- Zusammenfassung & Ausblick

SynerglE-Konfiguration

Bestehende Konfiguration, die bereits analysiert wurde

Spezifikationen

Parameter	Wert
Maximales Abfluggewicht (MTOM)	22993 kg
Betriebsleermasse (OEM)	13977 kg
Design Reichweite	1000 NM
Design Nutzlast 70 PAX á 95 kg	6650 kg
Maximale Nutzlast	7500 kg
Maximum Betriebs-Machzahl Ma _{MO}	0.59
Maximum Betriebsgeschwindigkeit v_{MO}	130 m/s
Maximale Flughöhe	27000 ft
Flügelspanweite	27.0 m

- Geometrisch gleiches Flugzeug
- Gleiche Maximale Abflugmasse

Kein Redesign

Energiebedarf

Atanasov, Georgi (2022) Concept Introduction: 70 PAX Plug-In Hybrid-Electric Aircraft (D70-PHEA), DLRK Dresden

Energiebedarf

Energiebedarf elektrisch

Atanasov, Georgi (2022) Concept Introduction: 70 PAX Plug-In Hybrid-Electric Aircraft (D70-PHEA), DLRK Dresden

Energiebedarf

Reduzierte Reichweite von 1000 auf 300 NM

Missionsenergiebedarf: 24.4	* GJ
Missionsenergiebedarf: 9.1 *	« GJ
Antriebswirkungsgrad	$\eta_E = 0.90$
Vortriebswirkungsgrad	$\eta_P = 0.90$
Batteriebetrieb (5-95%)	$\eta_B = 0.90$
Gesamtwirkungsgrad	$\eta_G = 0.729$
^r Blockenergiebedarf	12.4 * <i>GJ</i>

Annahmen EIS2035:

7

500 Wh/kg & 800 Wh/l

Erforderliche Batteriemasse 6913 kg

Energieträgerwechsel Massenkonfigurationen

Massenaufteilung
Komponente [kg]
Turbogeneratoren 1290
Blocktreibstoff 1800
PAX 34 á 95 kg 3230
Ausstattung 612
Betriebsgegenstände 510
Range-Extender -460
Tank -59
Fahrwerk -10
Batteriebedarf 6913 🗸

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Geometrisch gleiches Flugzeug

Kein Redesign für elektrisches fliegen

8

 \geq

Energieträgerwechsel Massenkonfigurationen

Annahmen EIS2035: 400 - 500 Wh/kg 800 - 1000 Wh/L = 4.32-3.46 m³

723.5

Inkl. Motor & Propeller

Aeroelastische Modelle Simulationsparameter

Simulationsparam	neter		Pro zu untersuchenden Konfiguration
Parameter	Anzahl	Bemerkung	
Massenkonfigurationen	2-4	OEM MTOM MZFM MFON	l (nur für Referenz) I (nur für Referenz)
Flughöhen		Zwisch	nen 0 m und 8229.6 m
Fluggeschwindigkeiten	3	v_B, v_C	, v _D
Böengradienten	CS25: 7	Zwisch	nen 9 m und 107 m
Böenrichtung	2	Vertika	al von unten und von oben
Manöverarten	4	2.5g P -1g Pu Gieren Rollen	ull-Up sh-down (stetig, beschleunigt, +/-) (stetig, beschleunigt, +/-)
Boden- und Landelasten	6-8	CS25	quasi-statisch

Keine Reaktionslasten

Aeroelastische Modelle Aerodynamik Model & FE Model & Massen Modelle

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Ergebnisse Lasten

Biegemoment Mx

Torsionsmoment My

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Ergebnisse Lasten

Biegemoment Mx

Torsionsmoment My

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Ergebnisse Lasten

Biegemoment Mx

Torsionsmoment My

Ergebnisse Lasten

Biegemoment Mx

Torsionsmoment My

15.0

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Tobias Hecken, Institut für Aeroelastik, 01.10.2024 – 8:30

Ergebnisse Lasten

Lastkartoffeln My | Mx

- Batteriemassen hinter LRA Massenträgheiten
- Gondelmassen vor LRA und Luftangriffspunkt
- Biegemoment einzelner großer Massen entlastender
- Torsion einzelner großer Massen je nach Lage positiv/negativ
- Landelasten sind nur Punktlasten an Fahrwerkanbindung: Effekt der Reaktionslasten durch große Massen werden derzeit nicht berücksichtigt.

Ergebnisse Flattergeschwindigkeit und Eigenformen

Flattercheck: Flatter für alle Konfigurationen unkritisch in den Flugbereichsgrenzen

Masse: OEM

Konfiguration	1st Biegung	1st Torsion
Referenz	1.47290	12.3593
Rumpf	1.42071	12.5303
Flügelkasten	1.29907	10.8308
Gondel	0.78092	13.9646
Gondel-5+FK	1.04066	12.1749
Flügelkasten+Rumpf	1.35033	11.3098

Zusammenfassung

- Energieträgerwechsel (Massen & Volumen)
- Aeroelastische Modelle
- Ergebnisse Massenpositionierung von großen Massen einflussreich auf Lasten

Ausblick

32

- Landelasten (Reaktionslasten) & Dynamische Landestoßberechnung
- Größere Konfiguration aus EXACT untersuchen: Plug-In Hybrid D250-PHEA-2035
- Erkenntnisse bei Brennstoffzellen Flugzeuge (ZEBRA-Projekt) anwenden & erweitern
- Optimierte Massenpositionierung f
 ür Lastreduktion ausnutzen und in Flugzeuggesamtentwurf einbringen

Zusammenfassung & Ausblick

Vielen Dank für Ihre Aufmerksamkeit

[1] Europäische Kommission: Pressemitteilung 11.12.2019 - Der europäische Grüne Deal, URL: https://ec.europa.eu/commission/presscorner/detail/de/ip_19_6691 (Stand: 27.03.2024)

[2] Klimmek, Thomas und Schulze, Matthias und Atanasov, Georgi (2021) Investigation on Regional Aircraft Configuration Variants with Distributed Propulsion using DLR's Parametric Aeroelastic Design Process cpacs-MONA. DLRK 2021, 31. Aug. - 02. Sep. 2021, Bremen, Deutschland.

[3] Fraunhofer Institute for Systems and Innovation Research ISI (2023) "Alternative Battery Technologies Roadmap 2030+" doi:10.24406/publica-1342

[4] Fraunhofer Institute for Systems and Innovation Research ISI (2022) "Solid-State Battery Roadmap 2035+"

[5] https://www.chemie.de/lexikon/Kerosin.html

[6] Atanasov, Georgi (2022) Concept Introduction: 70 PAX Plug-In Hybrid-Electric Aircraft (D70-PHEA), DLRK Dresden

[7] European Aviation Safety Agency (2011), "Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25, Amendment 11,"[] Klimmek, Thomas (2009), "Parametrization of Topology and Geometry for the Multidisciplinary Optimization of Wing Structures" in European Air and Space Conference.

[8] Klimmek, Thomas (2009), "Parametrization of Topology and Geometry for the Multidisciplinary Optimization of Wing Structures" in European Air and Space Conference.

[9] MSC Software Corporation (2020), "MSC Nastran 2021 Quick Reference Guide", United States of America: HEXAGON.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

DLR-Institut für Aeroelastik

Impressum

Thema: Untersuchung einer Regionalflugzeugkonfiguration mit verteilten Antrieben und flügel-integrierten Batterien

Datum: 2024-10-01

Autor: Tobias Hecken, Thomas Klimmek, Matthias Schulze

Institut: Institut für Aeroelastik

Bildquellen: Alle Bilder "DLR (CC BY-NC-ND 3.0)", sofern nicht anders angegeben

Energieträgerwechsel Batterietechnologie – aktuell

44.7%

Einordnung: Aktuelle Technologien Power Electronics Positive Pole Negative Pole Batterie von Compartment Tesla Model 3 1617 1767 280 0 (\mathbf{a}) \bigcirc 1932 196 2105 (a) Battery cell (b) Battery module (25s1p) (c) Battery pack Volumen Gewicht Energie **Gravimetrische Energiedichte** Volumetrische Energiedichte **TESLA LFP** [Wh] [Wh/kq] [Wh/L] [L] [ka] Zelle 1.4465 3.0950 0.5447 376.6 176.0 8% 5.7% Modul (25-Zellen) 38.400 13.624 162.0 355.0 84.100 39% 20.5% Pack (4-Module) 208.0 277.40 458.00 57.250 126.0

Rosenberger, Nico et al. (2024), "Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Tesla Model 3 on the Vehicle Level" in World Electric. Vehicle Journal 15, no.6: 268.

https://doi.org/10.3390/wevj15060268

Ziel in der Luftfahrt EIS2040 10-20%

28.5%

Energieträgerwechsel Batterietechnologie

Einordnung: EIS2030-2040

Roadmaps vom Frauenhofer Institut

Annahmen EIS2035 (Packebene):

400 - **500** Wh/kg **800** - 1000 Wh/L

Beispiel: Magnesium-Ion Batterie

Table 6: Estimated KPIs of MIBs today and in the long-term future

Figure 19: Calculated energy densities and specific energy for different SSB concepts in a base and an advanced configuration.

SSB: Solid State Battery Feststoffbatterien

Fraunhofer Institute for Systems and Innovation Research ISI (2023) "Alternative Battery Technologies Roadmap 2030+" doi:10.24406/publica-1342 Fraunhofer Institute for Systems and Innovation Research ISI (2022) "Solid-State Battery Roadmap 2035+"

Ergebnisse Strukturoptimierung - Backup

Flutter curves for mass case 'MOOee' Flutter curves for mass case 'MOOee' Flutter curves for mass case 'MOOee' Flutter curves for mass case 'MOOee Flutter curves for mass case 'MOOee' 0.050 0.050 0.050 0.050 Ma = 0.60 h = 8000m d = 0.02 Ma = 0.60h = 8000md = 0.02Ma = 0.60h = 8000md = 0.02Ma = 0.60h = 8000md = 0.02Ma = 0.60 h = 8000m d = 0.02 0.025 -0.025 0.025 -0.025 0.025 Mode_2 Mode_10 Mode_10 Mode_11 Mode_11 Mode_11 Mode_11 Mode_12 Mode_13 Mode_14 Mode_14 Mode_15 Mode_14 Mode_24 Mode_24 Mode_34 Mode_34 Mode_34 Mode_34 Mode_44 Mode_44 Mode_44 Mode_45 Mode_45 Mode_45 Mode_45 Mode_45 Holds, 7 Holds, 8 Model, 8 Holds, 9 Holds, 12 Holds, 13 Holds, 13 Holds, 14 Holds, 15 Holds, 14 Holds, 14 Holds, 15 Holds, 14 Holds, 14 Holds, 14 Holds, 14 Holds, 14 Mode, 7 Mode, 7 Mode, 8 Mode, 9 Mode, 9 Mode, 9 Mode, 10 Mode, 11 Mode, 11 Mode, 11 Mode, 11 Mode, 11 Mode, 11 Mode, 12 Mode, 13 Mode, 14 Mode, 15 Mode, 16 Mode, 17 Mode, 17 Mode, 18 Mode, 19 Mode, 19 Mode, 19 Mode, 19 Mode, 10 Mode, 10 Mode, 10 Mode, 10 Mode, 20 Mode, 21 Mode, 22 Mode, 24 Mode, 25 Mode, 26 Mode, 26 Mode, 26 Mode, 26 Mode, 27 Mode, 28 Mode, 29 Mode, 29 Mode, 39 Mode, 39 Mode, 39 Mode, 39 Mode, 41 Mode, 41 Mode, 41 Mode, 41 Mode, 41 Mode, 43 Mode, 44 Mode, 44 Mode, 45 Mode, 46 Mode, 46 Mode, 40 0.000 0.000 0.000 HURBER Linenenenenenenenenenenenenenenen -0.02 -0.025 -0.02 [-] buid -0.050 -0.050 -0.05 Dar -0.075 -0.075 -0.075 -0.075 -0.07 -0.100 -0.100 -0.100 -0.100 --0.100 -0.125 -0.125 -0.125 -0.125 -0.125 -0.150 --0.15 0.15 -0.15 VD 1.15*VD VD 1.15*VD VD 1.15*VD /D 1.15*VD VD 1.15*VD ____ Ξ. ΞH ____ S. ____ 6 300 350 VTAS [m/s] 200 400 450 150 200 400 450 150 200 150 200 450 250 250

Ergebnisse Flatterkurven

