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The ozone radiative forcing of nitrogen
oxide emissions from aviation can be
estimated using a probabilistic approach
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Reliable prediction of aviation’s environmental impact, including the effect of nitrogen oxides on
ozone, is vital for effectivemitigation against its contribution to global warming. Estimating this climate
impact however, in terms of the short-term ozone instantaneous radiative forcing, requires
computationally-expensive chemistry-climatemodel simulations that limit practical applications such
as climate-optimised planning. Existing surrogates neglect the large uncertainties in their predictions
due to unknown environmental conditions and missing features. Relative to these surrogates, we
propose a high-accuracy probabilistic surrogate that not only provides mean predictions but also
quantifies heteroscedastic uncertainties in climate impact estimates. Our model is trained on one of
the most comprehensive chemistry-climate model datasets for aviation-induced nitrogen oxide
impacts on ozone. Leveraging feature selection techniques, we identify essential predictors that are
readily available from weather forecasts to facilitate the implementation therein. We show that our
surrogate model is more accurate than homoscedastic models and easily outperforms existing linear
surrogates. We then predict the climate impact of a frequently-flown flight in the European Union, and
discuss limitations of our approach.

The air transport sector has been growing rapidly in most regions of the
world, transporting around 4.5 billion passengers in 20191. Airbus2 and
Boeing3 predict annual growth of about 5% a year in terms of revenue
passenger kilometres (RPK, ameasure of revenue collected frompassengers
for the distance travelled) for the next two decades, with the COVID-19
pandemic inducing only temporary disruption to this growth4. Aviation
contributed to 3.5% of anthropogenic climate change in terms of effective
radiative forcing in 2018 from aviation emissions since 19405, which is
expected to grow continually unless effective political, technical and
operational measures are undertaken6.

The growth rate of fuel usage and consequently CO2 emissions, has
been lower than that ofRPKdue to various engineering novelties andhigher
passenger load factors5. Aviation transport efficiency has experienced an
approximately eight-fold improvement since 1960, reaching 125 g(CO2)
RPK−15. From 1960 to 2014, a 1.3% average reduction in fuel consumption
per passenger-km at the global fleet level has been reported7, which

addresses CO2. On the other hand, non-CO2 effects from jet fuel combus-
tion from 1940 to 2018, contribute to about 2/3 of aviation’s net warming in
terms of effective radiative forcingwithmoderate to large uncertainties5 and
are currently not included in the international climate agreements such as
theParisAgreement8. TheKyotoProtocol designated the InternationalCivil
Aviation Organization (ICAO) as responsible for addressing international
aviation emissions. While these emissions are estimated and reported, they
are not included in countries’ total emissions or targets, which poses an
additional challenge9. The most important non-CO2 effects include per-
sistent line-shaped contrails, contrail-induced cirrus clouds10,11, and nitro-
gen oxide (NOx =NO+NO2) emissions that alter the ozone (O3),methane
(CH4) and stratospheric water vapour (H2O) concentrations12–17, all of
which are greenhouse gases, and the emission of water vapour (H2O)

18,19.
Studies20,21 have found that rapid increases in aircraft emissions significantly
contribute to global tropospheric ozone trends, radiative impacts and
degradation of air quality.
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Unlike CO2, the climate impact of non-CO2 effects from aviation is
strongly dependent on location, such that climate impact can potentially be
reduced by strategic routing of flights. This operational measure has been
addressed with two different approaches: weather-dependent and weather-
independent operation changes. Various studies22–24 discuss weather-
dependent options for mitigating aviation’s climate impact whereby
climate-sensitive areas are detected and avoided by aircraft. On the other
hand, the weather-independent approach25,26 involves quantifying the cli-
mate impactmitigationpotential and related costs resulting fromchanges in
aircraft operations using a multi-disciplinary model workflow. After ana-
lysing different flight altitudes andMach numbers formore than 1000flight
routes, it was concluded26,27 that a generally lower flight altitude and lower
flight speed reduces the climate impact. This operational mitigation option
canbe combinedwith a redesignof the aircraft, as the original aircraftwould
be operated in off-design conditions. While the redesign further allows a
climate impact reduction at no additional cash-operating cost and con-
tributes thereby to increased eco-efficiency, the requirement of new aircraft
is a downside.

Recent advancements in numerical weather prediction28,29 and its
compatibility with existing aircraft technology have prompted our focus on
the weather-dependent feasibility of climate-optimised planning. Studies in
this area are closely related to the development and use of climate change
functions (CCFs24) for pre-defined locations on the globe. These functions
quantify the climate effect of a locally confined aviation emission in terms of
appropriate climate metrics and associated emission scenarios. These
include the absolute global warming potential with pulse emissions (P-
AGWP) and the global average temperature responsewith future increasing
emissions (F-ATR) computed for contrails and the total NOx effect. A time
horizon of 20 years and 100 years are taken into account for short-term and
long-term climate effects, respectively. These metrics are derived from the
computation of global annual mean instantaneous radiative forcing (iRF),
which measures the change in the atmosphere’s energy balance due to
greenhouse gas emissions. If F-ATR is chosen, then the CCFs are measured
in terms of temperature change per unit emission (K kg−1) or per unit
distance of contrail coverage (K km−1). To test the concept of climate-
optimisedflight planning,CCFswereused as an objective function in an air-
traffic optimisation routine. This approach aimed to avoid regions that were
particularly sensitive to climate impact, and results indicated a large
reduction potential. For example, a 25% reduction in P-AGWP over a time
horizon of 100 years was shown to be possible for Westbound North-
Atlantic flights for a slight increase in cash operating costs (0.5%) compared
to conventional flights optimised for maximising airline profits. Larger
reductions in climate impact were found to be the case for a time horizon of
100 years because of the reduced warming by CH4, causing the total NOx

effect to be negative in terms of P-AGWP.While the promising mitigation
potential is evident in this study, the large computational expense of
simulating CCFs in real-time hinders their operational application. As a
solution, simple linear regression surrogate models called algorithmic cli-
mate change functions (aCCFs30) were obtained by regressing CCF data
against local atmospheric variables at the time of emission.However, aCCFs
exhibit limitations, such as low coefficient of determination (R2) values and
large variance in training data, making the potential improvements in cli-
mate impact unclear. A recent study31 explored the effectiveness of usingO3

aCCFs to optimise aircraft trajectories for reducing aviation-induced cli-
mate impact resulting from NOx emissions. The study found that while O3

aCCFs provide reasonable mean estimates, they are limited to certain
geographical areas (parts of the Northern Hemisphere), are deterministic,
and lack uncertainty estimates in their predictions. Thus, past studies have
developed CCFs based on chemistry-climate model (CCM) simulations in
the North Atlantic, built a simple surrogate model (aCCFs), and analysed
them in the context of short-term O3 iRF. Deterministic surrogates such as
the aCCFsonly provide point estimates (mean)withno confidence intervals
(uncertainty estimates). If, for instance, the climate impact mitigation
potential of a flight is high, but the level of confidence is very low, it is
beneficial to avoid this trajectory altogether. A flight optimisation tool can

take these into account to suggest robust and effective flight paths. Both
homoscedastic and heteroscedastic surrogate models yield uncertainty
estimates, but the latter is more suitable because variability in predictions is
not expected to be uniform subject to changing environmental conditions.
Thus, we build and present an accurate surrogate model that is both global
and heteroscedastic. This provides reliable uncertainty estimates for short-
termO3 iRF, to enable global climate-optimisedflightplanning in the future.

Here, we develop probabilistic algorithmic climate change functions
(paCCFs) as a replacement for aCCFs via a two-step approach: (i) firstly, by
using the first comprehensive global dataset based on the CCF
approach24,32–34, to recalculate iRF of O3 induced by NOx (i.e., O3 iRF) in
more regions (North America (N. America), South America (S. America),
Eurasia, Africa andAustralasia) and days for a range of cruise level altitudes
(Fig. 1) thereby encouraging the possibility of globalflight planning, and (ii)
secondly, by formulating a corresponding high-accuracy probabilistic sur-
rogate model using a chained Gaussian process (GP) regression model that
is heteroscedastic to predict O3 iRFwith reliable uncertainty estimates using
the most influential spatial and meteorological features locally (Fig. 2). GP
regression is a Bayesian nonparametric technique that exhibits great
flexibility and captures more information about the data by using more
parameters as the dataset grows. Moreover, predictions are made with
varying confidence levels, using the most influential features obtained
using feature selection techniques, which is especially desirable for the
non-CO2 effects of aviation. We show that both, the chained (hetero-
scedastic) and the standard GP model (homoscedastic) perform well and
significantly better than the deterministic aCCFs. The chained GP model
reproduces the data distribution more accurately than the standard GP
model and has the added advantage of providing varying confidence
levels for their predictions on test data. Some statistical outliers are
underestimated by the mean predictions from both GP models but
exhibit a large enough variance to capture many of them. We demon-
strate the improvements by applying the method exemplarily to actual
flight routes in the European airspace, enabling climate impact predic-
tions, including confidence levels. The predominant source of uncer-
tainty in our GP models arises from relying on feature information solely
at the release location, thus neglecting the broader weather patterns’
influence on emissions transport and the corresponding climate impact;
we explore potential improvements in our “Discussion" section.

Results
Data on the relation of local NOx emissions to O3 iRF
The development of our paCCFs is based on the work of the studies33,34,
which investigated the short-termO3 iRF from local aviationNOx emissions
at pre-defined points across the globe on 2 chosen days using a CCM. The
emission regions are representative of aircraft flying at typical subsonic
cruise levels (≈10–12 km) and consist of 28 release locations per region (N.
America, S. America, Eurasia, Africa and Australasia) at atmospheric
pressures of 200, 250, and 300 hPa (Fig. 1a). The CCM data corresponding
to the iRF is visualised for each pressure level and all emission scenarios in
Fig. 1b. Since there is no clear pattern and there is large variation in the data,
it is informative to detect statistical outliers. The outliers are those data
points that are larger than the Interquartile Range (IQR) (>Q3+ 1.5 × IQR)
or smaller than the IQR (<Q1−1.5 × IQR), where Q1 and Q3 represent the
first and third quartiles, respectively. Figure 1b also depicts a boxplot with
the 15 outliers, all of which deviate from the first and third quartile bymore
than 1.5 times the IQR. These outliers (highly climate sensitive regions) are
associated with the pressure levels of 200 and 300 hPa, and are mostly
associated with Australasia. These elevated iRF values, especially in Aus-
tralasia, are explained by the increased efficiency of O3 production for a
given quantity of NOx. This is due to the heightened sensitivity of a NOx-
deficient atmosphere13,14,33,35. On the other hand, the lowest mean climate
impact from NOx corresponds to 250 hPa, and is consistent with another
study32. Figure 1c depicts the evolution of NOx and O3 over the simulation
period starting from1st January2014 for two release locations.The solid line
represents the outlier associatedwith grid index ‘2’ of Australasia at 200 hPa
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and the dashed line represents grid index ‘4’ of N.America at 250 hPa.
Although the NOx is consumed faster for the point associated with the
outlier, the peak O3 mass and the area under the curve are significantly
larger, indicating a greater O3 production, and a larger iRF as a result. Apart
from the magnitude of the peak O3 mass, its position shows that it also
occurs much sooner. The NOx and O3 lifetimes at the outlier location (high
climate sensitivity) are approximately 10 and 41 days, respectively. In
contrast, at the other emission point (relatively low climate sensitivity), the
lifetimes are around 26 and 82 days, respectively. Lifetime is defined here as
the time it takes for the peak mass of the species to decrease by a factor of e
(thus, the e-folding time) due to chemical reactions, deposition, or other
removal processes. In the high climate sensitivity region, NOx is more
reactive, leading to a higher O3 production efficiency. Consequently, the
peak O3 concentration occurs much earlier and declines steeply afterwards.
The temporal evolution of NOx and O3 is characterised by high variability.
For example, lifetimes of 20 ± 11 days for NOx and 72 ± 26 days for O3 have

been reported in the North-Atlantic region24, which aligns roughly with
another findings36. Here, the O3 lifetime associated with the outlier location
in Australasia falls outside this range. Thus, we see from the data that the
relation between NOx emissions and O3 forcings is not straightforward,
making a reliable surrogatemodel for predictingNOx–O3 impact evenmore
essential.

Towards probabilistic algorithmic climate change functions
The fundamental issue lies in the computational burden borne by
chemistry-climatemodels (CCMs),which canonly be executed for a limited
set of emission scenarios and cannot be run effectively in real-time.We start
with the premise that these CCM outputs serve as our potentially noisy
ground-truth data, and consequently, we do not account for epistemic
uncertaintieswithin theCCM.Our aim is to reproduce these climate impact
forecasts by using information from influential variables (features) at the
emission source, i.e., locally.However, the variability in climate impact is not

(a)

(b) (c)

Fig. 1 | The emission locations and corresponding iRF [Wm−2] dataset from the
CCM simulations for the three cruise pressure levels. a The time region grid (trg)
comprising 28 emission locations for each of N. America (green), S. America
(purple), Eurasia (blue), Africa (mustard) and Australasia (crimson red), for which
the iRF is calculated. This figure is adapted from ref. 33 and falls under the Creative
Commons Attribution 4.0 license. The salmon pink and sky blue circles represent
regions associated with statistical outliers in the iRF dataset corresponding to 200
and 300 hPa, respectively. No outliers are present for 250 hPa. b The iRF values,
where the horizontal axis represents the corresponding geographical regions per
pressure level (200 hPa in salmon pink, 250 hPa in bright green, 300 hPa in sky blue)
where emissions were released. The boxplot of the same data is shown, where the red

horizontal line represents the median and the 15 outliers are marked with red
crosses. The minimum, maximum, first and third quantiles (Q1, Q3), and Inter
Quantile Range (IQR) are labelled in the plot. For an alternative visualisation of this
data in terms of a scatter plot, see Supplementary Fig. S1). c The evolution of global
mean tracermass ofNOx (red pink) andO3 (teal green) associated with two trgs over
the 3-month simulation period since 1st January 2014. The solid lines represent the
outlier associated with trg index `2' of Australasia at 200 hPa and the dashed lines
represent trg index `4' of N.America at 250 hPa. The peak O3 mass and the area
under the curve are significantly larger for the outlier, ultimately resulting in a
larger iRF.
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constant; itfluctuates across different geographic areas, over time, andunder
varying input conditions (Fig. 1b). In statistical terms, this phenomenon is
heteroscedastic. Conventional deterministic and most probabilistic surro-
gates disregard this phenomenon, providing an incomplete view of the
climate response. In this section, we introduce a probabilistic framework
designed to train a surrogate that takes heteroscedasticity into account,
utilising available data to make accurate climate impact predictions along
with uncertainty estimates. Furthermore, we explore the potential of
employing thismodel for climate-optimisedflight planningona global scale
in the context of climate-conscious decision-making. Our framework
consists of five main steps, of which the final one is a future suggestion, as
shown in Fig. 2:

Step 1: Run the CCM to emit NOx at specific points across the globe and
trace the O3 impact on a supercomputer which outputs a wide range of
data, including weather-related variables, chemical concentrations, and
O3 iRF. The latter is our quantity of interest, and therefore other aviation
NOx effects are not taken into consideration.
Step 2: Select a large number of weather and spatial parameters at the
emission location from the global set. That is, the data is local. Next,
perform objective feature selection firstly by calculating the mutual
information (MI) between the iRF and these local parameters and con-
sider the 10 highest scoring features (shown in bold text in Supple-
mentary Table S1). Secondly, we narrow the selection down to five
features with the help of Automatic Relevance Determination (ARD37),
due to the curse of dimensionality. We find that the five most important
features are dry air temperature (T), geopotential (ϕ), solar irradiance
(Sr), zonal wind velocity (uw) and release location (latitude) of emissions
(Rlat). We know that solar irradiance provides the energy needed for
photochemical reactions for NOx in the atmosphere, leading to the
formation ofO3. The corresponding increase inT due to increase in solar
irradiance also influences these reactions38, while Rlat, ϕ, and uw, govern
the location and subsequent pathways for NOx emissions. While back-
ground NOx is known to have an influence on O3 production, a low
correlation was found between its value at the emission location and the
O3 iRF. In this form, background NOx is not a good predictor for pho-
tochemistry about ten days since the release of emissions39 and is thus
excluded as a feature. The set described above is used as a proxy of the
most influential features for step 3.

Step 3: Split the iRF data (d), into a training set (80%), y and a test set
(20%), y*. The former dataset is used to train probabilistic surrogate
models based on a chained GP model40 that is heteroscedastic, and a
standardGPmodel41 that is homoscedastic, using the features selected in
step 2. The choice of an 80–20 data split is standard practice in statistical
learning.
Step 4: Estimate the probability density function (pdf) of the test set from
theCCMand the predictionsmade on it by the chained and standardGP
model. Visually, the estimated pdfs of the two GP models, which are
always Gaussian, have a close resemblance and exhibit a considerable
overlap with the data distribution. However, the position andmagnitude
of the peak of the chained GP pdf aligns more closely with that of the
CCM pdf compared to the standard GP model (panel above “Radiative
forcing dataset" in Fig. 2). A number of metrics are used to assess the
performance of the prediction (see “Methods" for more details).
Step 5:This is a future suggestion, which entails the use of the chainedGP
model in predicting an improved estimate of iRF on an arbitrary day, and
converting them to probabilistic algorithmic climate change functions
(step 5a) for O3 (paCCFO3

), which represent the Average Temperature
Response (ATR) of O3 over a selected time horizon (e.g. 20 years) caused
by a local aviation NOx emission. This can then be used as an objective
function in an air traffic optimisation tool (e.g., AirTraf 42) to generate
climate-optimised trajectories, that avoid the most climate-sensitive
regions (step 5b), or converted into an equivalent CO2 effect

43 to enable
its potential use in e.g., the forthcomingEU-wideMonitoring, Reporting,
and Verifying (MRV) scheme (step 5c).

Estimating climate impact
After randomly selecting 80% of the dataset in training (y) the GP
models, we visualised their climate impact estimates on the remaining
20% test data (y*) in the form of pdfs (Fig. 2). The splitting of the data is
done to prevent overfitting, and thus provide models that can be gen-
eralised. The two characteristic aspects of GP models are the mean and
variance estimates. Figure 3a shows the mean predictions from the
chained GPmodel against the test data. It can be seen that the six largest
values of iRF test data are underestimated (enclosed by themagenta box)
by the mean of the GP model, and are part of the set of outliers shown
in Fig. 1b.

Fig. 2 | A schematic representation to predict climate impact and its potential
application in climate-optimised flight planning and use in an MRV scheme. A
high-cost CCM requires a wide range of input parameters (such as boundary con-
ditions, emission inventories, weather data, initial conditions, chemical reaction
rates of various atmospheric species, etc.) to accurately simulate complex phe-
nomena in the atmosphere, and is used to generate the radiative forcing dataset (iRF)
from aviation NOx emissions released at pre-defined locations for three pressure
altitudes (200, 250, and 300 hPa). We use 80% of this data (y) to train probabilistic
surrogatemodels based on chained and standardGaussian processes (GP). Five local
features are determined using objective feature selection techniques to use as

predictors for theGP regressionmodels. Predictions aremade using the probabilistic
surrogate models on the remaining (20%) test data (y�<=Subscript>) and their
corresponding probability density functions (pdf) are visualised in the panel. For an
arbitrary day, the feature information is readily available from local forecasts, and the
corresponding predictive distribution of iRF from the chained GP can be converted
to paCCFO3

, and used as an objective function in an air traffic optimisation tool to
generate climate-optimised trajectories that avoid the most climate-sensitive
regions. Additionally, the prediction can be converted into equivalent CO2 to enable
its potential use in the MRV scheme.
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Since our feature space is high-dimensional (R5) and thus difficult to
visualise, we plot test data and predictions against one of the features (i.e.,
temperature) inFig. 3b.Here, only 20predictions are shown fromthe test set
so as to avoid clutter. The left and right panels of each figure represent the
mean and variance predictions from the standard GP and chained GP

models, respectively. The standardGPmodel has a nearly constant variance
(uncertainty estimate) and capturesmost data points butmisses someof the
outliers. On the other hand, the chained GP provides varying uncertainty
estimates and captures almost every single test data point. A smaller (larger)
variance corresponds to a higher (lower) confidence in predicting the target.

Fig. 3 | Comparing predictions from the GP models and the test data. a Mean
predictions from the chainedGPmodel (in teal) plotted against theCCMtest data on
the horizontal axis. The box (in magenta) shows the outliers from the test set.
b Violin plot of the predictions from the two GP models, plotted against one of the
features (temperature), for 20 chosen test indices. The variance predicted for each
test index by the standard GP model (left) and chained GP model (right) is colour-
coded with respect to its magnitude shown in the colour bars. For the standard GP
(left), the variances are almost the same for changes in temperature and do not

capture most outliers, but for the chained GP (right), the variance changes, as it is a
function of the feature space. For example, the prediction at 210 K is associated with
low uncertainty, while 220 K is associated with a relatively large uncertainty. The
mean predictions of the standard and chained GP models are depicted as blue and
black points, respectively and the test data points are shown in orange. Themagenta
boxes indicate the outliers, and it is seen that the chained GP captures most of them.
cBar chart (in slate blue) containing normalisedMI scores between each feature and
iRF of the test dataset.
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It is seen though, that while the mean prediction is similar to the standard
GPmodel, the variance in some cases is smaller (larger) and it captures these
test data points with relatively higher (lower) probability. The predictions
corresponding to outliers are characterised by large variances. Thus, the
climate impact is estimated with varying confidence levels, making the
chainedGPmodelmore realistic.We also see that there is a nonlinear trend
between iRF and temperature, which cannot be captured by simple para-
metric surrogates that have been used so far30. Violin plots against the other
features are available in the Supplementary Figs. S2–S5). Going further, we
score each of the five features based on the test dataset, by computing their
corresponding MI with iRF. We then normalise these scores by dividing
them by the highest score and deduce that solar irradiance (Sr) and zonal
wind velocity (uw) are the most and least important predictors of aviation
NOx–O3 effects, respectively (Fig. 3c).

Performance of the model and comparisons
We evaluate the performance of the GP models and compare them to an
existing linear regression model by following the R2 test for the mean pre-
dictions on the test data. Additionally, we measure the statistical distance
between the predictive distribution of the GP models and the test data
distribution using the Kullbak–Leibler (KL) divergence44.

Keeping the test datafixed,wevary the amountofdataused for training
the models: 100%, 80%, 60%, and 40% of y, which serves as a simple con-
vergence study (Fig. 4). The R2 increases as the amount of training data is
increased, as shown in Fig. 4a. The R2 is only marginally higher for the
standardGPmodel (=0.53) than the chainedGPmodel (=0.51)when all the
training data is used (scenario in Fig. 3) and this can be attributed to the
latter requiring more data to learn both, the mean and variance functions
(see the “Methods" section). Hence, both models show basically the same
quality in this respect. Since KL divergence measures the statistical distance

between the distributions, the value should fall as more training data is used
by theGPmodels. For bothGPmodels, there is a reduction inKLdivergence
as the amount of training data increases beyond 60% (Fig. 4b). For the
chainedmodel, there are sharper changes whilemoving from 60% to 80% y,
which can be attributed to the requirement of learning two latent functions
(and hence more hyperparameters) at the same time, which requires more
data. The global minimum in KL-divergence is lower for the chained GP
model, which indicates a higher accuracy compared to the standard
GP model.

So how do these surrogate models perform compared to a linear
regression model? We use the best available model derived before30, which
involves using T, ϕ, and T ⋅ ϕ as features. The third feature, which is the
product of T and ϕwas used to model the non-linearity of NOx–O3 effects.
After training a linear regression model with these features for our data, we
visualise the mean predictions and also overlay the predictions from the
standard GPmodel as a reference in Fig. 4c. The R2 value of 0.05 is too low,
andFig. 4c depicts that the linear regressionmodeldoes notfit thedata at all.
The R2 value of ≥0.51 for the GP models is a reflection of relatively high
accuracy, considering the relative score of linearmodels (=0.05), the limited
test dataset which contains outliers, and the complexity of the phenomenon
that is beingmodelled. The higherR2 of 0.41 that was obtained in the earlier
study30 for O3 aCCFs can be attributed to two reasons. Firstly, the data was
based only on the North Atlantic region and secondly, all the data was used
for regression, unlike in this work.

Climate impact estimation for a frequently flown flight
We showcase the application of the chainedGPmodel to forecast the short-
term NOx–O3 climate effects of a commonly operated flight within the
European Union, considering various departure times on a selected day.
Our analysis is based on actual flight path data retrieved from the

Fig. 4 | Convergence study of GP models and
comparison with linear regression models. The
complete dataset (d) is split into training data (y),
which never exceeds 80% d, and test data
(y�<=Subscript>) is fixed at 20% d. We analyse if the
standard GP (in crimson red) and chained GP (in
teal) models perform better by gradually increasing
the amount of training data for four scenarios: 40%,
60%, 80%, and 100% of y and testing them on
y�<=Subscript>. a Convergence of R

2 of the mean
predictions on the test data increases as more
training data is used. b The statistical distance
between the predictive distribution and the test data
distribution shrinks in terms of KL divergence as
more training data is used. cWe compare the mean
predictions of the linear regression model (in bright
blue) against test data with (T, ϕ, T ⋅ ϕ) as the feature
basis. The mean predictions from the standard GP
model (in crimson red) are overlaid as a reference,
and the R2 values are included in the legend.
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Eurocontrol database45, and the details of these flights are provided in
Table 1. In addition to this, we include a great circle flight path, which is the
shortest path, for the same origin-destination pair at a typical cruise altitude
of 10.7 km to highlight differences in predictions. The weather-related
feature data (T, ϕ, Sr, uw) are obtained from the CCM corresponding to the
departure time of the flights to enable the evaluation of the chained GP
model. Figure 5b shows the three actual flight paths and the great circle path
from take-off from the departure airport in the Netherlands (Amsterdam
Schiphol (EHAM)) to the landing at the arrival airport in Spain
(Madrid–Barajas airport (LEMD)), while Fig. 5a shows the climate impact
prediction from the chainedGPmodel during the cruise phase of the flights.
The predictions are offered in terms of Wm−2 kg(NO2)

−1. This is because
the CCM-generated O3 iRF data is associated with a release of 5 × 105 kg of
NO per emission point, as shown in Fig. 1b. However, actual flights do not
emit this amountper location and emissionmodels reportNOx emissions in
kg(NO2). We thus convert the emission from kg(NO) to kg(NO2) and
normalise the climate impact prediction from the GPmodel with respect to
thismass. To obtain theO3 iRF estimate of theseflight paths (inWm−2), the
NO2 emitted at each time step can bemultiplied with the scaled predictions
(in Wm−2 kg(NO2)

−1). Since this data is not publicly available from Euro-
control, we do not perform this step here.

In Fig. 5a, it can be seen that the three actual flight paths have their
maximum mean impact at 45°N. Flight 3 predicts a high O3 iRF in this
region, with lower uncertainty, which translates to a high probability of
reducing O3 iRF impact if this region is avoided. Figure 5b also shows a
colour map of the wind velocity field embedded with geopotential height
contour lines at a cruise level of 216 hPa at an arbitrary time of the day on
which the flights take place. These fields show the weather patterns,
including the jet stream and transport pathway affecting the region of
interest. The orange diamond in Fig. 5b represents the region where the
maximummean climate impact was predicted for the three flights. Emitted

species from theseflights are expected to be transported to lower latitudes by
the jet stream and this region has been identified earlier39 with a large and
early O3 maximum compared to higher latitudes characterised by a small
and late O3 maximum. When we look at the variation of uncertainty esti-
mates throughout the cruise flight, it is lowest for flight 1, and highest for
flight 3. The total mean climate impact associated with the short-term
NOx–O3effect for the cruise level, however, is largest forflight 1 and smallest
forflight 2. The difference inpredictionbetween the great circle path and the
three actual flight paths is clear, indicating that the GP model is influenced
by the chosen features, and partly by the noise. The release location and
flight timing affect the mean predicted O3 iRF, however this prediction is
associated with a large uncertainty range. The varying confidence intervals,
subject to varying input conditions, indicate that optimisingflights based on
climate impact using a heteroscedastic model (Fig. 2) allows us to estimate
the probability of achieving a reduction in short-term O3 iRF. This means
that the differences in uncertainty estimates translate to a probability of a
certain level of climate impact and, therefore, if used in a predictivemanner,
a probability of climate impact avoidance. It is important to note that this
probability reflects the uncertainty inherent in the surrogate model only
since we have assumed the source data to be ground truth.

Discussion
The application of climate-optimised routing requires us to be able to predict
the climate impact of various forcing agents (here, NOx emissions) as a
function of readily available forecasts of relevant features. We show that
probabilistic surrogatemodelling is useful in providing uncertainty estimates
to themodelled climate impact from aviation NOx in terms of iRF. Both, the
chained (heteroscedastic) and the standard GP model (homoscedastic)
perform well and significantly better than the deterministic aCCFs30. The
chainedGPmodel reproduces the data distributionmore accurately than the
standard GP model and has the added advantage of providing varying
confidence levels for their predictions on test data. Additionally, we found
that temperature, geopotential, solar irradiance, wind velocity and the release
location are all important predictors of O3 iRF as a result of aviation NOx.
Thus, with this independent approach applied to a global dataset, features in
addition to the earlier study30 were found to be influential. Furthermore, it
was observed that the uncertainty estimates due to varying input conditions
are considerable (Fig. 3b and Supplementary Figs. S2–S5).While the chained
GP model has a large enough variance to capture most outliers, the mean
underestimates them, which poses a challenge in identifying high-risk areas

Table 1 | Characteristics of three flights from EHAM to LEMD
on 1st June 2016 at different departure times

Flight Departure time (UTC) Arrival time (UTC) Flight duration (h)

1 09:25 11:49 2.4

2 10:20 12:49 2.5

3 18:49 20:56 2.1

Fig. 5 | Characteristics of the three flights described in Table 1 and the great
circle path. aThe climate impact prediction from the chainedGPmodel for the three
actual flights (solid lines) and the great circle path (dashed line) at cruise level in
terms of scaled O3 iRF [Wm−2 kg(NO2)

−1]. The horizontal axis represents the
latitude. The lines and the shaded areas represent the mean prediction and 95%
confidence interval, respectively, for all four paths. The markers for the three actual
flights denote specific points along the trajectory at cruise level, at which themodel is

evaluated. At 45°N, these three flights show a peakmean climate impact.bThe actual
reported flight paths (solid lines) shown in 2D for the three flights, including take-off
and landing retrieved from the EUROCONTROL database45 and the 2D great circle
path (dashed lines). The colour map and contour lines represent the wind velocity
[m s−1] and geopotential height [m], respectively, at a cruise atmospheric pressure of
216 hPa, while the orange diamond represents the region where maximum mean
climate impact is predicted for the three flights.
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for climate-optimised planning. This limitation must be overcome with
additional investigations to better understand these outliers and the driving
forces. Since the Gaussian processes represent a nonparametric approach,
incorporating more iRF data into the model’s training process could
potentially reveal a reduction in uncertainties, ultimately leading to a
decreased risk in climate-optimised flight planning. The large improvements
relative to previous surrogates are demonstrated by applying the method
exemplarily to actual flight routes in the European airspace, enabling climate
impact predictions, including confidence levels. While ERA re-analysis data
has been used as input in our GP models as a first step, using real-time
ECMWF forecasts for future predictions and planning is not a problem. This
is because, for NOx–O3 effects, the transport pathways seem to be most
important, and these are well captured by both forecasts. We additionally
note that if flights are optimised only with respect to short-term NOx–O3

effects, they need not effectively mitigate the effect of other non-CO2 effects
such aswater vapour andcontrails. Thus, oncepaCCFs are available for other
forcing agents, the net climate impact must be minimised for an acceptable
increase in operating costs.

Weacknowledge that using a singleCCM(here, EMAC), is a limitation
of this study. While it is challenging to replicate this study using other
CCMs, we acknowledge that different models will yield different responses
due to variations in their underlyingprocesses andparameterisations.While
the approach and results used in this study are certainly influenced by the
specific characteristics of the EMAC model, we also note that EMAC has
undergone extensive validation46,47 to assess its performance and accuracy in
simulating various aspects of the atmosphere. For example, a study48 eval-
uated the background chemistry setup against the observations of tropo-
sphericO3 and its precursorsmade by another study49 for the years between
1983 and 2001 and found compelling agreement. Additionally, another
study50 performed a comprehensive evaluation across multiple models,
including EMAC, to assess the impact of aircraft NOx emissions on the
atmosphere by varying cruise altitudes. Apart from EMAC, these included
four othermodels that were employed to include detailed representations of
tropospheric and stratospheric chemistry to cover the upper troposphere-
lower stratosphere region. The models were found to be in good agreement
with other studies (e.g., refs. 12,25,51) with respect to chemical perturba-
tions in O3 and the sensitivity of aircraft NOx emissions to altitudinal
changes. If we consider the submodel AIRTRAC, used by EMAC to com-
pute the short-term O3 iRF, a direct validation is not possible since most of
the simulated effects cannot be measured directly. However, the recent
study34 performs a direct inter-comparison of threemethods which include
Lagrangian tagging (using AIRTRAC), Eulerian tagging, and the pertur-
bation approach using the same regions and days considered in our
manuscript. The study found differences between the tagging and pertur-
bation approaches that align well with the literature (e.g., refs. 52–54).
Additionally, various sensitivity studies were performed24 on the basis of
temporal and horizontal resolutions, and the number of air parcel trajec-
tories used. As far as the chemistry is concerned, comparisons of the tem-
poral evolution and lifetimes of NOx and O3 were found to be roughly in
agreement with another study36. The resulting RF of O3 and CH4 (from
NOx) and H2O were also found to be well within the range of other studies
(e.g. refs. 55,56). Finally, even results for contrail properties and radiative
impacts were found to agree reasonably well57. However, as noted earlier,
different CCMs might produce varying results, which can be attributed to
their unique configurations, parameterisations, tagging schemes for
chemistry, and radiative transfer codes. This variability underscores the
importance of multi-model evaluations to capture the range of possible
outcomes and enhance our understanding of model-specific influences on
climate impact prediction and mitigation strategies.

A surrogate model can be only as good as the quantity and quality of
the data used to train it. To start with, data are available for aviation NOx

emissions released on 2 days (and for three pressure levels), which con-
stitutes n = 840 data points. Standard GP models, without a sparse
approximation of the covariance matrix, has Oðn3Þ complexity limited by
n < 10,000, or ≈24 days. Thus, while there are computational limitations to

calculate the data, running the full order model for a few more days and
regions (e.g., remaining parts of Asia), characterised by other seasons and
cyclical events such as El Ni~n o and LaNi~n a could help further advance our
understanding of local aviation NOx emissions on global warming. In
addition, there are certain physical limitations in the NOx–O3 chemistry
calculated by the EMAC submodel AIRTRAC24, which is part of the CCM
data generationprocess (see the “Methods" section).While these limitations
include the use of linearised reaction rates and fewer tagged processes,
simple and accurate correction factors were derived34 considering various
emission scenarios. These values can be used to appropriately scale the iRF
data used by theGPmodels, but we also note that plume-scale processes are
neglected, potentially leading to an overestimation of the short-termO3 iRF
by about 20–30% (e.g., refs. 58,59). In order to convert iRF to CCFs for the
regions considered in this paper, the parameterisation has to be revisedwith
the aid of additional simulations, which will further improve this work.
Moreover, this is both, an atmospheric transport and chemistry problem at
the same time32,39 that requires to be addressed while relying on a limited
amount of CCM data. Since atmospheric transport is dominated by
advection and convection (rather than diffusion) due to the dynamic
movement of air masses driven by various factors such as temperature
gradients, pressure differences, and wind patterns, using local weather data
as features may not capture all the relevant physics of the problem. This is
the largest source of uncertainty in the aCCFs and GP models as the iRF is
predicted solely based on weather data at the release site, overlooking the
broader weather pattern’s influence, as also indicated39. This could partly
explain why some statistical outliers are underestimated with respect to the
mean of the surrogate models. The use of nonlocal data, in terms of tra-
jectory forecasts, for a better understanding of NOx–O3 chemistry has also
been suggested39, which can be leveraged in the future. Since the paCCFs do
not take uncertainties in standard weather forecasts into account, they can
be used alongwith, e.g., ref. 60 for robust climate-optimised flight planning
to overcome this limitation.

While nonlocal data is readily available from the underlying
chemistry-climatemodel, there are two challenges: choosinghowtodefine a
nonlocal region in space and the computational issue of dealing with its
high-dimensional nature. To make this tractable, we would need to
represent the nonlocal data in a lower-dimensional space. A linear
dimensional reduction method such as principal component analysis
(PCA) or multidimensional scaling could be attempted, or nonlinear
reduction if it proves necessary, e.g. kernel-PCA, Isomap61, or auto-encoder
approaches62. Assuming the model can be successfully calibrated, it will
provide specific information about the importance of local versus nonlocal
effects, as well as the underlying noise level. It may be able to incorporate
nonlocal effects to improve prediction, but given the convective nature of
the underlying process, this is perhaps unlikely. If these dimension-
reduction methods do not show a low-effective dimension, then we would
require a method capable of native high dimensions, such as neural net-
works. They can be used in regression as replacements for any other sur-
rogate. In the context of physical predictionshowever, experience shows it is
necessary to incorporate physical constraints63. The use of nonlocal data as
features can also help reduce the variance of our predictions (Fig. 3b and
Supplementary Figs. S2–S5), which could be beneficial in increasing the
climate-impact mitigation potential for flight planning. Nevertheless,
uncertainties will remain. We believe that while our model is a big step
forward in advancing our predictive ability of the short-term NOx–O3

effect, which is the main warming component, the long-term decrease of
CH4 and a CH4-induced decrease of O3 (primary mode ozone64) and
stratospheric water vapour can also be estimated to get the total effect of
aviationNOx, which can even negate theO3 iRF. The prediction of the total
NOx effect can then be compared to other studies that used high-fidelity
simulations that are local (e.g., see Fig. 2 of ref. 24). Going further, the
methods mentioned in this section can be extended to other aviation
climate-forcing agents such as H2O, contrails, and aerosols.

Our chainedGPmodel provides ameans of assessing individualflights
with respect to the NOx- induced short-termO3 iRF, which is an important
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step for global climate-optimisedflight planning.Note thatmodel-to-model
variation in the O3 RF estimates shows some variation. For example, the
contribution of global anthropogenic NOx emissions to the 1850–2000 O3

RF has a variation of 221 ± 33mWm−2 (mean ± standard deviation) based
on the evaluation of six different climate models65. However, the sensitivity
of O3 RF due to aircraft NOx emissions with respect to altitude is fairly
similar50 and also, earlier studies on the responses of chemical systems are
well agreeing (see ref. 55, their section 5.3.2.1 and Fig. 10 and discussions in
refs. 36,51,66). In the future, this model could be used, along with other
methods, to predict the total climate impact of local NOx released from a
given flight. This a key step in making climate optimised flight planning
more viable and thereby enable its potential use in e.g. a non-CO2 scheme.

Methods
Data generation
The simulations performed to obtain the complete dataset are described
before34. The approach used is briefly summarised here. The ECHAM/
MESSyAtmosphericChemistry (EMAC)model is a global numerical CCM
that contains submodels describing tropospheric, stratospheric and meso-
spheric processes and interactions with oceans, land, and human influences
(e.g. anthropogenic emissions) are also implemented46,47. The core atmo-
spheric model is based on the 5th generation European Centre Hamburg
general circulationmodel (ECHAM5)67. The atmosphericmodel ECHAM5
and the Modular Earth Submodel System Model (MESSy), are the funda-
mental blocks of EMAC which are used along with various submodels that
govern, for instance, atmospheric and chemical processes.

Formore realistic atmospheric conditions, theCCMsimulationswere
run using nudging (Newtonian relaxation) of the vorticity, the wind
divergence, the logarithm of the pressure field at the surface, and the
temperature towards the 2014 ERA-interim reanalysis data. Four sub-
models played a vital role in the investigation of short-term O3 iRF from
global aviation NOx: TREXP (Tracer Release EXperiments from Point
Sources46), ATTILA (Atmospheric Tracer Transport In a LAgrangian
model68), AIRTRAC24, and RAD69. TREXP was employed to define the
positions and duration of release of NOx pulse emissions in terms of
latitude, longitude, and pressure altitude for each of the five regions, as
shown in Fig. 1a. An emission amount of 5 × 105 kg of nitric oxide (NO)
was injected into the atmosphere at 06:00 UTC within a 15-min time step
and equally split into 50 randomly generated Lagrangian air parcel tra-
jectories within the grid cell of each emission point using ATTILA. The
procedure followed is the same as another study24 on the dates 1 January
2014 and 1 July 2014, eachwith a 3-month simulation period.Within each
air parcel trajectory, the AIRTRAC submodel calculated the net con-
tribution ofNOx emissions to the atmospheric compositionofO3 by taking
into account various chemical reactions, and phenomena such as
scavenging and dry deposition. The RAD submodel computes the iRF
every 2 h, as opposed to 15min, due to computational burdens, and the
averaged value is extracted with a 6 h output frequency over the 3-month
simulation period. It is important to note that in this study, iRF refers to the
mean global radiative impact resulting from a pulse emission rather than
the cumulative RF contributions since pre-industrial times and is mea-
sured relative to the climatological tropopause since the stratospheric-
adjusted RF and the effective radiative forcing are not feasible in this
case31,70. A total of 30 simulations were conducted for five regions, two
seasons and three pressure levels, totalling ~105,000 CPU hours using
parallel computing on theDutch supercomputer Snellius. Thus, CCMdata
generation is a computationally expensive process, and the goal is to
adequately reproduce these predictions using the methodology described
in the following sections.

Supervised learning
Supervised learning aims to find a relation between a target variable, y 2 R
(climate impact in terms of iRF from aviation NOx emissions) and selected
input variables that are influential, x 2 Rm (e.g., meteorological and spatial
parameters), based on data generated from a high-cost CCM subject to

several input climate model parameters. More concretely, we have the
dataset, D ¼ fðxi; yiÞji ¼ 1; . . . ; ng � ðX; yÞ where X 2 Rn×m is called
the designmatrix and y 2 Rn is the target vector, createdby aggregating the
n cases. Given this dataset, we would like to build a low-cost probabilistic
surrogate model that can make predictions for new, unobserved cases
y�<=Subscript> usingGaussianprocess regression (GPR). This is aBayesian
nonparametric approach that does not yield a single best-fit point estimate,
but provides a probability distribution for each estimate; they essentially
provide a useful way of quantifying uncertainties in themodel estimates for
new test inputs. This runs contrary to deterministic surrogates such as the
existing aCCFs30, which provide a point estimate for a given input, that does
not capture the uncertainty associated with it.

Feature selection
There are several potentially important features V 2 Rp that inform the
climate impact of aviationNOx onO3, but statisticalmodels are constrained
by the curse of dimensionality for large p. However, we could still pick a
subset of important features S � V by: (i) calculating the mutual infor-
mation (MI) between the target and each featureI ðy; viÞwith vi 2 V; 8i ¼
1; . . . ; p and selecting variables which are characterised by relatively large
scores, and, (ii) using automatic relevance determination (ARD37), which
automatically determines the relevance of different features for GPR. Thus,
we obtain, S 2 Rm, with m < p. Additionally it is informative to look at
I ðvi; vjÞ 8i≠ j to detect multi-collinearity, which negatively impacts
regression models. MI measures relationships between any two random
variables, for which amoderate number of samples are available. Intuitively,
it tells us how much we learn about one random variable by knowing the
value of the other randomvariable. TheMI between two univariate random
variables X and Y is given by

I ðX;YÞ ¼ KLðρðx; yÞjjρðxÞρðyÞÞ ¼
Z
X

Z
Y
ρðx; yÞ log ρðx; yÞ

ρðxÞρðyÞ dx dy;

where KL(ρ(a)∣∣ρ(b)) represents the KL divergence between two probability
density functions (pdfs), is ≥0 and it is a unit of statistical distance; ρ(x, y)
represents the joint pdf of X and Y over the space X ; Y; and ρ(x), ρ(y)
represent the marginal pdf of X and Y, respectively.

Using GPR to fit the data
A regressionmodel with independently and identically distributednoise is a
common assumption used in regression modelling, which treats observa-
tions as independent and providing the same kind of information, thereby
simplifying parameter estimation and statistical inference. The regression
model with Gaussian noise ε can then be defined as

y ¼ f ðxÞ þ ε; ε � N ð0; σ2nÞ; ð1Þ

where σ2n represents data noise variance. Here, data is assumed to be
homoscedastic, that is, thenoise variance is constant. In linear regression,we
find an optimal linear model f(x) = x⊤w, where w represents the vector of
unknown parameters to be determined. This is a parametric approach30,
whereby the complexity of the model is bounded by a fixed number of
parameters. On the other hand, no assumptions are made about the char-
acteristics of the underlying function in the case of GPR, allowing it to freely
adapt to the complexity of the data and capture patterns that might be
missed by parametricmodels. Thisway, the amount of information that can
be captured aboutD grows as the amount of data available grows, making
suchmodels veryflexible. InGPR, the key assumption is that the underlying
function f that generates the data is a Gaussian process (GP). A GP is a
collection of random variables, any finite number of which have a joint
Gaussian distribution and is used to model the relationship between the
chosen features and the target variable. The standard GPR model is well
documented41.

While homoscedasticity is a common assumption used in regression
modelling for computational and technical convenience, many real-world
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phenomena are characterised by heteroscedasticity; that is, the variance of
the data is some (simple or complex) function of certain variables. Thus we
choose a heteroscedastic or chained GPR model with Gaussian noise
ε � N ð0; σ2nðxÞÞ,

y ¼ f ðxÞ þ εðxÞ: ð2Þ

To solve this, the noise variance is modelled using a log-GP prior to
ensure that only positive values are possible. That is

ρðyjf ðxÞ; gðxÞÞ ¼ N f ðxÞ; egðxÞ� �
; where;

ρðfÞ ¼ N μf ; kf x; x
0ð Þ

� �
; and

ρðgÞ ¼ N μg ; kg x; x0ð Þ
� �

:

Thus two GPs, f and g, are used to learn both the mean and the variance of
the Gaussian likelihood, respectively. These GPs have their individual
means (μf, μg) and covariances (kf, kg), and are assumed to be independent.
The covariances, which dictate the smoothness of the functions, are com-
puted using the square exponential kernel41. The posterior distribution,
however, is not analytically tractable, and we use chained GPs40, which uses
sparse variational inference to approximate the posterior with the aid of so-
called inducing point methods. These methods introduce q < n pseudo-
points at locations Z ¼ fzigqi¼1 to approximate the full covariance matrix.
The locations are inferred by applyingK-means clustering71 to input data, x
and using the cluster centres. The corresponding function values are
uf = f(Z) and ug = g(Z). The posterior distribution obtained using Bayes’
theorem is approximated as

ρðf ; g; uf ; ug jyÞ �ρðf juf Þρðgjug Þρðuf jyÞρðug jyÞ
�ρðf juf Þρðgjug Þπðuf Þπðug Þ;

ð3Þ

where it has been assumed that the latent functions factorise for the tract-
ability of the problem. In variational inference, we obtain a proxy for ρ(uf∣y)
and ρ(ug∣y) by seeking an appropriate distribution π(uf) and π(ug),
respectively, from a family of distributions F , such that

KL πðf ; g; uf ; ug Þjjρðf ; g; uf ; ug jyÞ
� �

is minimised. This requires the cal-

culation of the likelihood ρ(y), which is generally not tractable, leading us to
find a lower bound for log ρðyÞ.

log ρðyÞ ¼ log
Z

ρðyjf ; gÞρðfjuf Þρðgjug Þρðuf ÞρðugÞdf dg duf dug

≥

Z
πðfÞπðgÞ log ρðyjf ; gÞ df dg� KLðπðuf Þjjρðuf ÞÞ

� KLðπðug Þjjρðug ÞÞ:

ð4Þ

Following the study40 and modelling πðuf Þ ¼ N ðuf jmf ;Σf Þ and πðugÞ ¼
N ðug jmg ;Σg Þ allows us to compute π(f) = ∫ρ(f∣uf)π(uf)duf and
π(g) = ∫ρ(g∣ug)π(ug)dug. The likelihood also factorises, i.e.,
ρðyjf ; gÞ ¼ Qn

i¼1ρðyijf i; giÞ, allowing us to apply stochastic variational
inference to the integral in Eq. (4),

log ρðyÞ≥
Xn
i¼1

Z
πðf iÞπðgiÞ log ρðyijf i; giÞ df i dgi � KLðπðuf Þjjρðuf ÞÞ

� KLðπðug ÞjjρðugÞÞ:

Theabove integral canbe solvedanalytically since the likelihood isGaussian.
Note that the variational parameters mf, Σf, mg, Σg are learnt through
maximising the bound. After optimisation, the posterior predictive

distribution is calculated as

ρðyi�jyi; xi; xi�Þ ¼
Z

ρðyi�jf i�; gi�Þπðf i�Þπðgi�Þ df i�dgi�; ð5Þ

where each prediction point is treated independently for the data pair
fðxi�; yi�Þgn�i¼1. This is the equation used by the chainedGPmodel to predict
climate impact for test data and arbitrary setups, as we demonstrated in our
flight calculations. While inferring GPs (without a sparse approximation)
have a computational cost of O n3

� �
, chained GPs with a sparse approx-

imation have a computational cost ofO nq2
� �

for q inducing points that are
used to parameterise the covariancematrix. The inducing points are picked
as a subset of the training data X, thus q < n, which makes it more com-
putationally efficient than standard GPs, especially while dealing with large
datasets. Additionally, chained GPs permit a nonlinear combination of any
number of GPs, even with models with a non-Gaussian likelihood. The
chained GPmethodology is implemented using a machine-learning library
called GPFlow (version 2.6.372).

Implementation
The methodology discussed herein has been implemented in Matlab and
Python 3 using NumPy (version 1.22.373), Pandas (version 1.4.274), Mat-
plotlib (version 3.5.275), Scikit learn (version 1.2.176), and GPFlow (version
2.6.372) libraries. An academic licensewas used forMatlab, but Python 3 and
the associated libraries are freely available.

Data availability
The base data used to train the Gaussian process models is published and
available in netcdf format77. The data plotted in Figs. 1a, b, and 5b are
available on Zenodo78.

Code availability
The codes used to train the Gaussian process models, and visualise their
results are available from the corresponding author upon request. The
associated versions of the code related to the methodology are mentioned
under “Implementation".
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