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Abstract—Self-supervised pretraining on large-scale satellite
data has raised great interest in building Earth observation (EO)
foundation models. However, many important resources beyond
pure satellite imagery, such as land-cover-land-use products
that provide free global semantic information, as well as vision
foundation models that hold strong knowledge of the natural
world, are not widely studied. In this work, we show these free
additional resources not only help resolve common contrastive
learning bottlenecks, but also significantly boost the efficiency
and effectiveness of EO pretraining.

Specifically, we first propose soft contrastive learning that op-
timizes cross-scene soft similarity based on land-cover-generated
multi-label supervision, naturally solving the issue of multiple
positive samples and too strict positive matching in complex
scenes. Second, we revisit and explore cross-domain continual
pretraining for both multispectral and SAR imagery, building
efficient EO foundation models from strongest vision models such
as DINOv2. Adapting simple weight-initialization and Siamese
masking strategies into our soft contrastive learning framework,
we demonstrate impressive continual pretraining performance
even when the input modalities are not aligned.

Without prohibitive training, we produce multispectral and
SAR foundation models that achieve significantly better results in
10 out of 11 downstream tasks than most existing SOTA models.
For example, our ResNet50/ViT-S achieve 84.8/85.0 linear probing
mAP scores on BigEarthNet-10% which are better than most
existing ViT-L models; under the same setting, our ViT-B sets a
new record of 86.8 in multispectral, and 82.5 in SAR, the latter
even better than many multispectral models. Dataset and models
are available at https://github.com/zhu-xlab/softcon.

Index Terms—Remote sensing, Earth observation, foundation
model, self-supervised learning, contrastive learning, continual
pretraining, multispectral, SAR.

I. INTRODUCTION

SELF-SUPERVISED learning has driven wide attention
in pretraining Earth observation (EO) foundation models

on large-scale satellite data [1]–[3]. While more and more
efforts are spent on scaling up the data and model size with
purely unsupervised pretraining, many other resources such as
various land cover land use products tend to be overlooked.
For example, ESA WorldCover [4], [5] provides the first
global land cover maps for 2020 and 2021 at 10 m resolu-
tion, and Google Dynamic World [6] provides a continuous
dataset of near-real-time land use land cover mapping. These
dense products are highly correlated with commonly studied
medium-resolution satellite imagery, and offer free semantic
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Fig. 1: A visual comparison of transfer learning performances
on BigEarthNet-10%. SoftCon (ours) achieves SOTA results
with lighter backbones on both linear probing and fine-tuning,
and both multispectral and SAR. Our best multispectral linear
result is comparable to best models’ fine-tuning; our best SAR
result outperforms many multispectral models. See Figure 5
for separated views of each setting.

annotations with real-global coverage. Even though they are
noisy at pixel-level due to semi-automatic creation process,
they can be easily integrated into scene-level annotations with
rather good quality. A similar concept has been demonstrated
valid in supervised pretraining in GeoKR [7], where land cover
products and geographical location are regarded as geograph-
ical knowledge to provide supervision. In this work, we will
show the benefits of such auxiliary information in extending
the popular contrastive self-supervised learning framework to
build EO foundation models.

Contrastive learning with negative sampling such as Sim-
CLR [8] and MoCo [9] have been shown robust and effective
in EO pretraining [1], [10]. These methods pull together
features of augmented views from the same anchor image
(as positive sample), and push away features of other images
(as negative samples). The negative samples are usually from
a batch or a memory bank, and the model is trained to
identify the positive sample from the negative ones. While
such instance-discrimination-based methods learn good repre-
sentations and have been widely used, they inevitably bear the
risk of discriminating false negative samples. Specifically, in
a large negative pool, there are likely samples that are not the
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same as the anchor, but have very similar semantic information
(e.g., belong to the same class). This issue is more significant
in EO compared to natural images, as the Earth has a limited
surface and the landscapes are usually very redundant.

Several methods have been proposed in computer vision to
solve the false negative conflicts, of which one representative
is supervised contrastive learning (SupCon) [11]. Leveraging
image labels, SupCon defines positive samples as images
belonging to the same semantic class. During training, samples
from the same class are pulled together in the embedding
space, while those from different classes are pushed away.
Such a simple multi-positive design has been proven beneficial
in natural images, and as we mentioned earlier, bears great
potential to leverage the free land-use-land-cover annotations
in EO. However, a satellite image usually contains more
complex semantics than a single class, leading to at least multi-
label annotations. Although one can define positive samples as
perfect matching of each label component, this would result
in two similar images with slightly different label distributions
being forced apart (e.g. two neighboring urban scenes one with
a small part of river and the other not).

To solve this problem, we extend SupCon to the multi-label
scenario, proposing a novel soft contrastive learning method
(we term as SoftCon) that takes into account the similarity of
complex scenes. Specifically, we calculate cosine similarities
of the normalized multi-label one-hot vectors across different
scenes. Images with identical labels thus have the highest
similarity scores, and images with similar labels have higher
scores than images with very different labels. Then, we train
the model to directly learn such cross-scene similarities by
optimizing a soft contrastive loss on the cosine similarities of
corresponding feature projections. In this way, semantically
more similar images are pulled closer than semantically more
dissimilar images, ending up with a smoothly distributed latent
space. To prepare the training data, we match SSL4EO-S12
[10] images with Dynamic World [6] segmentation maps and
integrate scene-level multi-label annotations, building a large-
scale global multi-label classification dataset.

Meanwhile, another important resource that has huge poten-
tial in helping build EO foundation models lies in the general
computer vision community: the vision foundation models.
These models are exhaustively trained on huge amount of nat-
ural images, and have already gained strong knowledge of the
visual world. Dating back to before the era of foundation mod-
els, ImageNet pretrained weights had been widely used and
proved beneficial in many supervised Earth observation tasks.
Similarly, they can also be used in unsupervised learning, lead-
ing to cross-domain continual pretraining. In this regard, recent
works such as GFM [12] propose to build EO foundation mod-
els by distilling frozen ImageNet models. However, GFM-style
training is limited to RGB images, restricting the flexibility to
adapt to various EO sensors. Furthermore, the fast advances
in computer vision have made available much stronger vision
models than ImageNet supervised weights. To bridge this gap,
we revisit the natural idea of simple weight initialization which
has been preliminarily explored and verified effective in recent
works [13], [14]. For unaligned input modalities, we simply
leave the first layer’s weights randomly initialized. In addition,

to save hardware memory when continually training large
Vision Transformers, we adopt Siamese masking inspired by
masked Autoencoder [15]. Specifically, we randomly mask out
a certain percentage of input patches on the trainable branch of
the Siamese contrastive learning framework, and only send the
remaining visible patches to the encoder. We show such simple
but flexible continual pretraining strategies, when applied with
strong vision foundation models such as DINOv2 [16], exhibit
impressive effectiveness and efficiency even when the imaging
sensors are completely different from the source domain.

Integrating the continual pretraining strategies into the soft
contrastive learning framework, we efficiently train CNN and
ViT foundation models that reach SOTA performances in 10
out of 11 downstream tasks. For example, our ResNet50/ViT-
S (23M parameters, 100 epochs) achieve 84.8/85.0 linear
probing mAP scores on BigEarthNet-10% which are better
than most existing ViT-L models (300M parameters, 100-300
epochs) and comparable to CROMA and SkySense (≥600
epochs); under the same setting, our ViT-B (86M parameters)
sets a new SOTA of 86.8 in multispectral, and 82.5 in SAR,
the latter even better than most existing multispectral models.

In summary, our contributions are as follows:
• We explore the benefits of open resources beyond pure

satellite imagery for efficient EO pretraining, producing
multispectral and SAR foundation models that reach
SOTA performances in 10 out of 11 downstream tasks.

• We propose soft contrastive learning that guides con-
trastive pretraining with land-cover-generated multi-label
supervision.

• As a side product, we release a global multi-label scene
classification dataset by matching noisy Dynamic World
land cover maps with SSL4EO-S12 images and integrat-
ing good-quality multi-label annotations.

• We revisit cross-domain continual pretraining with sim-
ple weight initialization from strong vision foundation
models and Siamese masking. We verify that even when
the input modalities are not aligned, the strong knowledge
can still be efficiently transferred to the target EO domain.

II. RELATED WORK

A. Earth observation foundation models

Massive research has been conducted on the development
of Earth observation (EO) foundation models. While there
is also a line of supervised pretraining [17] on large-scale
labeled datasets [18], [19], a majority of works tackle the
technical adaptation of self-supervised pretraining techniques
into EO domain. Early works focus on EO-specific data
characteristics for contrastive view generation. For example,
Tile2vec [20] proposed to pull together geospatially close
tiles while pushing away far tiles. SeCo [21] proposed to use
different seasons as augmented views for contrastive learning.
CACo [22] proposed to perceive temporal changes with the
spatiotemporal structure of remote sensing time series. Further,
another group of works explores masked-image-modeling-
based pretraining [23]. SatMAE [24] proposed temporal and
spectral positional encoding for multispectral imagery and
time series. RingMo [25] proposed less aggressive masking.
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Fig. 2: The workflow of the multi-label dataset curation.

Scale-MAE [26] proposed GSD-based positional encoding
and multi-scale reconstruction. SpectralGPT [27] proposed 3D
masking to encode and reconstruct spectral data. FG-MAE
[28] proposed to reconstruct remote sensing image features
such as normalized difference indices. Going beyond a single
modality and time stamp, CROMA [29], DeCUR [30], OFA-
Net [31] and DOFA [32] investigated multi-modal multi-sensor
pre-training, RemoteCLIP [33], SkyScript [34] and BITA [35]
explored EO vision language pretraining, RingMo-sense [36],
Presto [37] and Prithvi [38] studied EO time series, and
SkySense [39] combined both modality and time sequence in
a unified architecture, reaching SOTA performance in many
downstream tasks. Meanwhile, another line of research targets
the curation of EO pretraining datasets, such as SSL4EO-
S12 [10] for Sentinel-1 and 2, SSL4EO-L [40] for Landsat
series, and SatlasPretrain [41] for medium- and high-resolution
satellite and aerial imagery with extensive annotations. While
a general trend is to scale the data and model sizes with
exhaustive training cost, important existing resources such as
open annotations and vision foundation models tend to be
overlooked. In this study, we share the conceptual insight with
GeoKR [7] to use land-cover-generated multilabel annotations
to guide EO pretraining, and with GFM [12] and DOFA to
utilize vision models for continual pretraining.

B. Multi-positive contrastive learning

Contrastive learning beyond simple instance discrimination
has been widely explored in computer vision. SupCon [11]
proposed to use image labels for positive matching, extending
contrastive learning to the fully-supervised setting. Almost at
the same time, ML-CPC [42] proposed multi-label contrastive
predictive coding, identifying multiple positive samples as
a multi-label classification problem1. Further on, WCL [43]
combined contrastive instance discrimination with SupCon
by predicting pseudo weak labels. Sel-CL [44] extended
SupCon to deal with noisy labels. All of these methods still
deal with single-label datasets. To deal with more complex
scenes, HiMulCon [45] presented a hierarchical representation

1We note that depending on the context, ”multi-label” in this paper may
refer to two things: 1) the contrastive learning objective with multi-positive
matching; 2) the input images are multi-label annotated.

learning framework that can leverage all available labels and
preserve the hierarchical relationship between classes. MLS
[46] proposed to assign multiple binary pseudo-labels for each
input image by comparing its embeddings with those in two
dictionaries, and training the model with binary cross-entropy
loss. However, these two methods are still based on hard multi-
positive matching, restricting the soft relationship between
images with overlapped multi-label distributions. To tackle
this issue, and to make the best use of real-world multi-label
annotations, we propose soft contrastive learning that allows
soft positive matching between different multi-label scenes.

C. Continual pretraining

Early works of continual pretraining were mainly developed
in natural language processing to improve domain-specific
large language models [47], [48]. In vision, existing works like
[49] and [50] proposed hierarchical pretraining approaches for
task adaptation, while not targeting task-agnostic representa-
tions. In remote sensing, CSPT [51] and TOV [52] proposed
consecutive pretraining from natural images to remote sensing
images, yet they are both limited to retraining on natural
images for the source model. SpectralGPT [27] used a similar
progressive pretraining pipeline between EO datasets to benefit
from their unique advantages, yet it still requires first-stage
pretraining from scratch. GFM [12] and DOFA [32] explored
continual pretraining for generic EO foundation models by
distilling knowledge from frozen vision backbones. However,
it heavily relies on ImageNet weights whose prior knowledge
is restricted compared to stronger vision foundation models.
Meanwhile, GFM-style continual pretraining can only process
RGB data, limiting the flexibility to adapt to various EO
modalities such as multispectral imagery. To bridge this gap,
we revisit and explore the simple cross-domain continual
pretraining with weight initialization [13], [14] from strong
vision foundation models such as DINOv2 [16]. For non-RGB
imagery, we simply leave the input embedding layer randomly
initialized. We show such a strategy, though naive, is both
flexible and impressively effective in EO pretraining regardless
of target sensors.
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Fig. 3: Different contrastive learning designs. (a) The original contrastive learning performs strict instance discrimination where
one anchor image has only one positive pair; (b) supervised contrastive learning allows multiple positive responses when images
belong to the same class; (c) our proposed soft contrastive learning can effectively exploit multi-label annotations by assigning
soft similarity scores to different pairs. SofCon is a more generic design that covers SupCon: when multi-label degrades to
single-label, the soft similarities turn into binary scores, thus becoming multi-positive supervised contrastive learning.

III. METHODOLOGY

A. Building a large-scale multi-label dataset

We first build a global multi-label land-cover-land-use
classification dataset by automatically matching multispec-
tral/SAR imagery from a large-scale satellite dataset with open
land cover products and integrating pixel-level labels to scene-
level multi-label annotations.

We choose SSL4EO-S12 [10] as the source of satellite
imagery, a multi-modal multi-temporal dataset specifically
designed for large-scale self-supervised learning. The dataset
consists of 4-seasonal Sentinel-1/2 SAR-optical images from
251,079 non-overlapping locations in the world, covering a
wide range of geographical and temporal diversities. For
accurate spatial and temporal matching of the scenes, we
choose Dynamic World [6] to get the global land cover maps,
which provide continuous land cover monitoring in 9 semantic
classes. Both datasets are derived from Sentinel data stored in
Google Earth Engine, and thus can be well aligned with the
exact metainformation such as the acquisition time.

Figure 2 shows the general workflow of the curation of the
multi-label dataset. Based on the geospatial coordinates and
acquisition time, we match each SSL4EO-S12 L1C multispec-
tral image with its corresponding Dynamic World land cover
map in Google Earth Engine. Due to the effect of clouds, a
few images do not have a corresponding segmentation map.
This results in 247,377 locations on which there’s a successful
match for at least one season. Then, we gather the pixel
labels into scene-level multi-labels for each image. As can
be seen from the example scene in Figure 2, though the
segmentation map is noisy, the scene-level semantic classes
are rather accurate.

In total, we get 780,371 annotated multi-label images, each
with size 264×264 in 10m resolution. We term this final
dataset SSL4EO-S12-ML, and will release it for further re-
search. Notably, SSL4EO-S12-ML can also be used as a large-
scale multi-label benchmark dataset that covers the whole
globe, complementing existing datasets like BigEarthNet [53].
For better reference, we provide a comprehensive dataset
sheet and supervised benchmarking results in the appendix.
In addition, we note that SSL4EO-S12-ML labels are derived
from Sentinel-2 multispectral images, which are spatially well
aligned with the corresponding Sentinel-1 SAR images, but
temporally there can be shifts. Therefore, the SAR version is
generally less accurate than the multispectral version. Never-
theless, it is enough to to guide our pretraining.

B. Multi-label guided soft contrastive learning

In this section, we introduce soft contrastive learning (Soft-
Con), which improves upon the original contrastive learning
and supervised contrastive learning (SupCon) [11] to effec-
tively utilize multi-label annotations.

Figure 3 provides a simplified illustration of the three
different contrastive learning designs. Given N raw images,
two batches of augmented views are generated and sent
through the model to get the corresponding feature vectors
{z1, z2, ..., zN} and {z′1, z′2, ..., z′N}. In the original contrastive
learning (Figure 3 a), strict instance discrimination is per-
formed such that the cosine similarity of zi and its augmented
view z′i is maximized, while the cosine similarities of zi and
all other features z′j (i ̸= j) are minimized. This formulates
an InfoNCE [54] loss which identifies one positive candidate
from all the samples:
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Fig. 4: The general framework of SoftCon. Given a batch of input images, two batches of augmented views are parallelly sent
through the two branches of a Siamese network. A similarity matrix is calculated based on the resulting two batches of feature
vectors. A weighted sum of the contrastive and soft contrastive loss is optimized. For contrastive loss, this matrix should be
close to Identity; for soft contrastive loss, this matrix should be close to the similarity matrix of the label vectors. We load
vision foundation models for both the trainable (base encoder) and the frozen (momentum encoder) branches when initializing
the model. During training, the weights of the momentum encoder are updated by exponential moving average (EMA) of the
base encoder: θmomentum ← m · θmomentum + (1−m) · θbase, where m ∈ [0, 1) is a momentum coefficient. Siamese masking
is only used with ViT backbones, where random patches of an image are masked out and only the visible patches are sent
through the trainable branch.

LContrast = −
N∑
i=1

log
exp (zi · z′i/τ)∑N

j=1 exp
(
zi · z′j/τ

) (1)

where τ is softmax temperature. In practice, contrastive
learning typically needs a large number of negative samples.
Therefore, it inevitably faces the conflict that multiple images
besides the augmented view can belong to the same class as
the anchor image while the loss strictly pushes them apart.

SupCon tackles this conflict by introducing image labels
to generalize contrastive learning to an arbitrary number of
positives. As Figure 3 b shows, images belonging to the same
class are pulled together, while images belonging to differ-
ent classes are pushed away. Formally, SupCon accumulates
multiple positive pairs while each item has a sole InfoNCE
loss:

LSupCon = −
N∑
i=1

1

Np

∑
p∈P (i)

log
exp

(
zi · z′p/τ

)∑N
j=1 exp

(
zi · z′j/τ

) (2)

where P (i) ≡ {p ∈ {1, 2, .., N} : yp = yi}, y is the class
label, and Np is the total number of positive pairs for the
anchor feature zi. SupCon successfully alleviates the single-
positive dilemma of the original contrastive learning. However,
it only works with single-label imagery and the classes are
mutually exclusive.

To effectively exploit multi-label annotations, we propose
soft contrastive learning as is shown in Figure 3 (c). Samples
with more similar label distributions are pulled closer than

samples with more dissimilar labels, resulting in a soft posi-
tive matching. Specifically, we calculate the pair-wise cosine
similarity matrix Y ∈ RN×N of the normalized multi-hot
label vectors {y1, y2, ..., yN} and {y′1, y′2, ..., y′N}. This is done
through the dot product of the label vectors: yy′T. Similarly,
we get the similarity matrix X = zz′

T ∈ RN×N of the
feature vectors {z1, z2, ..., zN} and {z′1, z′2, ..., z′N}. Then, we
optimize per-element binary cross entropy loss:

LSoftCon = −
N∑
i=1

N∑
j=1

(
Yij · log σ(Xij)

+ (1− Yij) · log (1− σ(Xij))
) (3)

where Yij is a soft score between 0 and 1, and σ(·) is the
sigmoid function.

In practice, we follow MoCo-v2 [55] and MoCo-v3 [56]
for the implementation of ResNet and ViT backbones, and
combine the SoftCon loss with the Contrast loss as:

L = LContrast + λ · LSoftCon (4)

where λ is a weighting parameter. This combination is also
similarly used by previous works in vision such as [46], [57]–
[59]. However, our reason is conceptually different: our 9-class
multi-label annotations are on a much coarser level than the
real world, thus SoftCon alone may restrict the model’s ca-
pacity to learn complex landscapes. Also, to prevent potential
conflict optimization on the same feature embeddings, we use
a separate projector for each objective.
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C. Continual pretraining with Siamese masking

Finally, we introduce cross-domain continual pretraining
into our framework to boost efficient Earth observation (EO)
pretraining. Instead of sophisticated strategies like GFM [12]
that are restricted by RGB input, we revisit the simple
weight loading, initializing the backbone with strong vision
foundation models. We use DINO [60] weights for ResNet
backbones, and DINOv2 [16] weights for ViTs. As for the
channel difference between natural RGB images and EO
multispectral and SAR imagery, we simply let the input
embedding layer remain randomly initialized. Our experiments
empirically suggest that though naive, this strategy is both
flexible and effective. In addition, to save hardware memory
when continually training large vision Transformers, we adopt
Siamese masking inspired by iBOT [61], MAE [15] and MSN
[62]. Specifically, we randomly mask out a certain percentage
of input patches on the trainable branch of the Siamese
contrastive learning framework, and only send the remaining
visible patches to the encoder. As the encoder only needs
to process a portion of the full patches, both the memory
and the training time can be reduced. Note that we do not
conduct any reconstruction like MAE or iBOT, but rather view
such masking as additional data augmentation. Different from
MSN’s non-negative online clustering, we verify it also works
well in contrastive learning with negative sampling: with a
reasonable masking ratio of about 20%, not only the efficiency,
but also the performance can be improved. The full pretraining
framework of SoftCon is illustrated in Figure 4.

IV. IMPLEMENTATION DETAILS

A. Pretraining

We pretrain SoftCon with ResNet [63] and ViT [64] back-
bones on the integrated multi-label dataset SSL4EO-S12-
ML. We normalize the 16-bit multispectral images and the
32-bit SAR images to 8-bit with the mean and standard
deviation provided in [10]. If there are multiple seasons for one
scene, we randomly choose two for the base encoder and the
momentum encoder, respectively. Data augmentations follow
[10], including random crop (to the size 224×224), color jitter,
greyscale, Gaussian blur, and random flip.

We adapt MoCo-v2 [55] for ResNet50 and MoCo-v3 [56]
for ViT-small and ViT-base, with two separate projectors
to get embeddings for the Contrast and the SoftCon loss,
respectively. The weighting parameter λ in Equation (2) is
0.1. We set a queue size of 16384 for MoCo-v2, and a batch
size of 1024 for both MoCo-v2 and MoCo-v3. The learning
rate is warmed-up to 1.5e-4 for 10 epochs followed by cosine
decay, and the optimizer is AdamW.

We load ResNet50 weights from DINO2 [60] and ViT-S/14
and ViT-B/14 weights (without register) from DINOv23 [16],
and conduct continual pretraining for 100 epochs. For ViTs,
we randomly mask out 20% patches and send the remaining
ones to the trainable encoder. Training is distributed in two
nodes each with 4 NVIDIA A100 GPUs and takes 7-30

2https://github.com/facebookresearch/dino
3https://github.com/facebookresearch/dinov2

hours for different backbones. More details can be seen in
the appendix.

B. Downstream tasks

We evaluate the pretrained backbones by linear probing
and fine-tuning in 11 downstream tasks, including 6 land
cover land use classification/segmentation datasets: BigEarth-
Net [53], BigEarthNet-SAR [65], EuroSAT [66], EuroSAT-
SAR [28], fMoW-sentinel [24] and DFC2020 [67], one change
detection dataset OSCD [68], and 4 multispectral datasets cov-
ering different applications from GEO-Bench [69]: m-so2sat,
m-brick-kiln, m-cashew-plantation and m-SA-crop-type.

• BigEarthNet: a large-scale Sentinel-2 multi-label scene
classification dataset covering 10 European countries. We
use the version of 19 classes, and remove bad patches that
are fully covered by seasonal snow or clouds. Following
previous works [10], [21], [24], [29], [70], we train on
1% or 10% of the training split (31,166 images), and
report micro mean average precision (mAP) on the full
validation split (103,944 images).

• BigEarthNet-SAR: the paired Sentinel-1 SAR version
of the BigEarthNet dataset. We train on 10% of the
training split, and report mAP scores on the full validation
split. The splits are aligned with the above multispectral
version.

• EuroSAT: a 10-class scene classification dataset with
27,000 Sentinel-2 images collected from 34 European
countries. Following [29], we use 16,200 training images
and report overall accuracy on 5400 validation images.

• EuroSAT-SAR: the paired Sentinel-1 SAR version of the
EuroSAT dataset.

• fMoW-sentinel: a large-scale scene classification dataset
with 62 classes curated by matching fMoW [71] with
Sentinel-2 images. Following [29], we use 10% of the
training split (71,287 images) and report top-1 accuracy
on the full validation split (84,939 images).

• DFC2020: a 10-class land cover semantic segmentation
dataset that was originally collected for 2020 IEEE data
fusion contest. We adjust the official test/validation data
with 10m resolution labels for 5128 training and 986
testing images and report mean intersection over union
(mIoU) scores.

• OSCD: a binary change detection dataset consisting of
24 pairs of multispectral images distributed worldwide.
We use the official split: 14 training and 10 test pairs.

• m-so2sat: a subset of the 17-class So2Sat [72] dataset
for local climate zone classification. We use the official
split from GEO-Bench with 19992/986/986 train/val/test
images and report test top-1 accuracies.

• m-brick-kiln: a subset of the brick-kiln [73] dataset
for binary classification. We use the official split from
GEO-Bench with 15063/999/999 train/val/test images and
report test accuracies.

• m-cashew-plantation: a subset of the cashew-plantation
[74] dataset for 7-class semantic segmentation. We use
the official split from GEO-Bench with 1350/400/50
train/val/test images and report test mIoU scores.
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TABLE I: Linear-probing / fine-tuning results on BigEarthNet-10% [53] and EuroSAT [66]. We report a comprehensive
comparison with SOTA EO foundation models. MS/SAR/RGB represent data modalities. †: SoftCon starts from DINO/DINOv2
which were trained on ImageNet/LVD-142M. # indicates ”the number of”. *: SkySense employs a mixed architecture (in total
2B parameters) with ViT-L and Geo-context attention to encode MS images; 875K steps with batch size 240 roughly count to
1000 epochs. Left/right: linear/finetune. Best scores in bold.

Pretrain dataset # Pixels Epochs Backbone # Param. BE-10% EuroSAT
Supervised - - - RN50 23M 83.4 98
MoCo-v2 [10], [55] SSL4EO-S12 (MS) 70B 100 RN50 23M 82.1/86.2 98.0/99.1
DINO [10], [60] SSL4EO-S12 (MS) 70B 100 RN50 23M 82.0/87.1 97.2/99.1
SeCo [21] SeCo (MS) 70B 100 RN50 23M 78.6/82.6 -/93.1
CACo [22] CACo (MS) 70B 100 RN50 23M -/81.3 95.9/-
SoftCon (ours) SSL4EO-S12 (MS)† 70B 100 RN50 23M 84.8/87.8 98.6/99.3
MoCo-v3 [10], [56] SSL4EO-S12 (MS) 70B 100 ViT-S 23M 82.3/86.1 97.7/98.6
DINO [10], [60] SSL4EO-S12 (MS) 70B 100 ViT-S 23M 81.7/86.9 97.7/99.0
MAE [10], [15] SSL4EO-S12 (MS) 70B 100 ViT-S 23M 77.5/84.8 94.1/98.7
GFM [12] GeoPile (RGB) 20B 100 Swin-B 88M -/86.3 -
SpectralGPT [27] fMoW+BigEarthNet (MS) 12B 300 ViT-B 86M -/87.5 -/99.2
SatMAE [24] fMoW (MS) 2.5B 200 ViT-L 304M 80.3/86.2 96.6/99.2
CROMA [29] SSL4EO-S12 (MS,SAR) 140B 600 ViT-L 304M 85/88.3 98.0/99.5
SkySense [39] SkySense (RGB,MS,SAR) 97T 1000∗ ViT-L∗ 517M∗ -/88.7 -
SoftCon (ours) SSL4EO-S12 (MS)† 70B 100 ViT-S 23M 85/88.1 97.1/99.3
SoftCon (ours) SSL4EO-S12 (MS)† 70B 100 ViT-B 86M 86.8/88.7 98.0/99.5
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Fig. 5: A detailed comparison of transfer learning performances on BigEarthNet-10%. S/B/L represents ViT-small/base/large.
SoftCon (ours) achieves SOTA results with lighter backbones on both linear probing and fine-tuning, and both multispectral
and SAR. Our best multispectral linear result is better or comparable to many SOTA models’ fine-tuning results; our best SAR
result outperforms many multispectral models.

• m-SA-crop-type: a subset of the SA-crop-type [75]
dataset for 10-class semantic segmentation. We use the
official split from GEO-Bench with 3000/1000/1000
train/val/test images and report test mIoU scores.

We do a simple grid search for the learning rate for each
dataset, using SGD or AdamW optimizer, and train each
dataset for 30-100 epochs. We use a common input size
224×224 for all datasets. We freeze the encoder and train
a linear layer or the decoder for all GEO-Bench datasets. See
the appendix for hyperparameter details.

V. RESULTS

A. Land cover classification

1) BigEarthNet and EuroSAT: We first report SoftCon
results on BigEarthNet-10% [53] and EuroSAT [66] which

are most commonly evaluated by SOTA EO foundation mod-
els. As can be seen from Table I, our models outperform
most of the existing works in all scenarios. Specifically on
BigEarthNet, our ResNet50 improves over other works with
the same backbone by a large margin, with 2.7%/1.6% increase
on linear/fine-tuning compared to the current best model,
and 6.2%/5.2% increase compared to SeCo [21]. Our linear
probing result for the first time outperforms fully supervised
training from scratch. Notably, our small ResNet50 also out-
performs many existing large ViT models in both linear and
fine-tuning, verifying the effectiveness of ConvNet backbones.

For ViT backbones, our ViT-small is already comparable
to the best existing models like SpectralGPT [27], CROMA
[29] and SkySense [39]. Our ViT-base further pushes forward,
achieving a new SOTA of 86.8% mAP on BE-10% with
linear probing, and the same performance as SkySense in fine-
tuning. More specifically, we achieve the same linear probing
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performance as CROMA [29] with single-modality pretraining
(MS v.s. MS+SAR), much fewer model parameters (ViT-S
v.s. ViT-L), and much shorter training epochs (100 v.s. 600).
Similarly, we reach the fine-tuning performance of SkySense
[39] with the above-mentioned advantages, plus much less
pretraining data. For better visual comparison, we provide
a scatter plot of various SOTA models’ transfer learning
performances w.r.t model size in Figure 5.

On EuroSAT [66], the best existing models can achieve
a top-1 accuracy close to 99%. This means the dataset is
becoming solvable with the fast technological development. As
a result, it’s less obvious to strictly compare the models’ capac-
ities. For example, our ResNet50 is even better than our ViT-
base with much fewer parameters. Nevertheless, by comparing
both linear and fine-tuning results, our models consistently
outperform other works, achieving the same performance as
CROMA [29] in both settings.

2) BigEarthNet-SAR and EuroSAT-SAR: Table II reports
SoftCon linear probing results in the SAR modality on
BigEarthNet-SAR [65] and EuroSAT-SAR [28] datasets. As
we can see, our ResNet50 outperforms MoCo-v2 [55] by
2.3% on BigEarthNet-SAR with 10% labels, and by 4.7%
on EuroSAT-SAR. Our ViT-S results are much better than
MAE [15] and FG-MAE [28] with up to 11.6% improvement.
This verifies again the advantage of contrastive learning over
masked image model in producing out-of-the-box representa-
tions. Our ViT-B sets a new record of 81.4% on BigEarthNet-
SAR, 3.5% better than CROMA [29]. Notably, this score
is already higher than many multispectral models as
compared to Table I, achieving a great breakthrough as it has
always been very difficult for SAR to beat optical in cloud-
free scenes. Our results confirm the great potential of SAR
foundation models.

TABLE II: Linear probing results on BigEarthNet-SAR-10%
[65] and EuroSAT-SAR [28].

Backbone BE-SAR-10% EuroSAT-SAR
MoCo-v2 [10], [55] RN50 76.6 82.4
SoftCon (ours) RN50 78.9 87.1
MAE [10], [15] ViT-S 69.8 79.3
FG-MAE [28] ViT-S 71.7 80.7
CROMA [29] ViT-B 77.9 87.5
SoftCon (ours) ViT-S 80.3 87.1
SoftCon (ours) ViT-B 82.5 89.1

3) fMoW-sentinel: We present linear probing and fine-
tuning results on another more difficult land cover classifi-
cation dataset fMoW-sentinel [24] in Table III. As the table
shows, our ViT-small already achieves better performance than
all existing models. Our ViT-base pushes further, with 4.8%
better than the current best model CROMA [29] in linear
probing, and 1.6% better in fine-tuning.

B. Land cover segmentation

We report land cover semantic segmentation results on
DFC2020 [67] as is shown in Table IV. We fine-tune
DeepLabv3+ [77] for ResNet50 and UperNet [78] for ViT
backbones. Promisingly, our ResNet50 outperforms MoCo-v2
[55] by 3%, and is also better than existing large ViTs. Our

TABLE III: Linear probing/fine-tuning top-1 accuracy on
fMoW-sentinel-10% [24].

Backbone Linear Finetune
DINO [10], [60] ViT-S/16 32.6 52.8
MAE [10], [15] ViT-S/16 27.7 51.8
SatMAE [24] ViT-S/16 35.2 57.2
I-JEPA [76] ViT-S/16 32.4 53.5
CROMA [29] ViT-L/8 39.2 59.0
SoftCon (ours) ViT-S/14 39.9 59.7
SoftCon (ours) ViT-B/14 44.0 60.6

ViT-S outperforms CROMA [29] by 0.9%, which is further
improved by our ViT-base with 0.3%. For visual comparison,
we plot some example segmentation maps in Figure 6. As it
shows, SoftCon captures more accurate and more fine-grained
semantic information compared to SSL4EO-S12 [10].

TABLE IV: Fine-tuning mIoU results on DFC2020 [67].

Backbone mIoU
Supervised RN50 42.9
MoCo-v2 [10], [55] RN50 47.3
SoftCon (ours) RN50 50.3
MAE [10], [15] ViT-S 48.0
SatMAE [24] ViT-L 44.1
CROMA [29] ViT-L 49.8
SoftCon (ours) ViT-S 50.7
SoftCon (ours) ViT-B 51.0

C. Change detection

We report binary change detection results on OSCD [68] as
is shown in Table Table V. We freeze the backbone and fine-
tune a simple U-Net [79] for segmentation. The differences in
feature maps between two timestamps are input to the network.
SoftCon outperforms SeCo and SSL4EO in both recall and F1-
score. The low precision score is due to the significant class
unbalance, i.e.: predicting all pixels as unchanged would result
in a good precision score. The combined F1-score highlights
the superior performance of SoftCon.

TABLE V: Results with frozen encoders on OSCD [68].

Backbone Precision Recall F1
Rand. Init. RN50 72.3 13.8 23.1
SeCo [21] RN50 74.9 17.5 28.3
SSL4EO [10] RN50 70.2 23.4 35.1
SoftCon (ours) RN50 66.6 29.2 40.6

D. Other domain-specific applications

Finally, we evaluate SoftCon on four other domain-specific
applications with the corresponding Sentinel-2 dataset collec-
tions from GEO-Bench [69]. These include two classification
datasets m-so2sat and m-brick-kiln, and two segmentation
datasets m-cashew-plantation and m-SA-crop-type. We con-
duct frozen-encoder training following [31], with a linear
classifier for classification tasks and UperNet decoder for
segmentation tasks. The results are shown in Table VI. We
compare SoftCon with CROMA [29] and a recent work OFA-
Net [31], and report the official fine-tuning (from timm [80])
results in [69] for reference. The table shows that SoftCon
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Fig. 6: Example segmentation maps on the DFC2020 [67] dataset.

TABLE VI: Transfer results with frozen encoders on four Sentinel-2 tasks in GEO-Bench [69]. We report top-1 accuracy/mIoU
for classification/segmentation, respectively.

m-so2sat m-brick-kiln m-cashew-plantation m-SA-crop-type
GEO-Bench (FT) RN50 52.8 98.7 44.7 29.9
CROMA [29] ViT-B 49.2 91.0 - 31.4
OFA-Net [31] ViT-B 46.0 91.3 37.4 32.0
SoftCon (ours) ViT-S 49.9 92.6 44.4 31.5
SoftCon (ours) ViT-B 52.0 95.2 49.6 31.5

significantly outperforms both CROMA and OFA-Net on three
tasks, while only slightly worse than OFA-Net on m-SA-crop-
type. Notably, our results with frozen-encoder outperform the
official results with full fine-tuning on the two segmentation
datasets, and only slightly worse on m-so2sat.

VI. ABLATION AND DISCUSSION

For all ablation studies, we conduct linear probing experi-
ments on BigEarthNet [53].

1) SoftCon loss: We ablate ResNet50 results on the soft
contrastive loss in Equation (4) which are shown in Table VII.
In line with our explanation in Section III-B, SoftCon alone
is worse than Contrast alone since the 10 Dynamic World
classes are too coarse-grained to fully represent the real-
world semantics. However, combining the two losses provides
significant benefits. When we degrade the SoftCon to SupCon

in Equation (2), the performance drops as expected, while
still better than contrastive loss alone. These results verify the
effectiveness of using existing free annotations to boost Earth
observation pretraining. Additionally, we ablate the weighting
parameter λ in Equation (4) and suggest a best value of
0.1. Note all results in this ablation are without continual
pretraining, which we will ablate next.

2) Continual pretraining: We ablate the continual pre-
training strategy in Table VIII, which verifies the benefits
of loading vision foundation models instead of pretraining
from scratch. Also, we compare the performance of different
vision models from ImageNet supervised weights to modern
self-supervised weights. Interestingly, the stronger the vision
model, the continual pretraining performance is also better.
We report ImageNet top-1 linear scores of the corresponding
models as a reference, which are well aligned with the cross-
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TABLE VII: Ablation study on the SoftCon loss and the weighting parameter.

BE-1% BE-10%
Contrast only 78.9 82.1
SoftCon only 76.0 80.4
Contrast + SupCon 79.3 83.0
Contrast + SoftCon 79.8 83.6

BE-1% BE-10%
λ = 0.01 79.3 82.9
λ = 0.1 79.8 83.6
λ = 0.5 79.6 83.4
λ = 1.0 79.5 83.3

TABLE VIII: Ablation study on the source models of continual
pretraining. cont. indicates continual pretraining.

Backbone BE-1% BE-10% ImageNet
w/o cont. RN50 79.8 83.6 -
cont. (ImageNet) RN50 80.2 83.9 -
cont. (MoCov3 [56]) RN50 80.9 84.2 74.6
cont. (DINO [60]) RN50 81.4 84.8 75.3
cont. (DINOv2 [16]) ViT-S 82.6 85.0 81.1

TABLE IX: Ablation study on the Siamese masking ratio.

GPU memory BE-1% BE-10%
w/o masking 43G 82.3 84.5
masking (20%) 36G 82.6 85.0
masking (50%) 25G 81.7 84.4

domain continual pretraining results.
In addition, we empirically find parameter-efficient fine-

tuning (PEFT) techniques such as BitFit [81], prompt tuning
[82] and LoRA [83], can be used for parameter-efficient
continual pretraining, while not yet reaching a close perfor-
mance as continually training all parameters. We report such
preliminary results in the appendix.

3) Siamese masking: Finally, we ablate the Siamese mask-
ing strategy introduced mainly to boost training efficiency.
As can be seen from Table IX, masking 50% of the patches
can save almost half of the GPU memory without much
performance drop. Interestingly, masking 20% of the patches
can lead to even better results than no masking. This suggests
that MAE-like random masking can be seen as an effective
data augmentation strategy in contrastive learning. From an-
other perspective, this design implicitly introduces the idea
of masked image modeling that the model needs to know
what information the masked patches have according to the
unmasked branch, after which it knows the encoded features
are similar. This could potentially also be one reason why the
ideal masking ratio is much smaller compared to MAE, as the
implicit masked image modeling plus the contrastive learning
is a more challenging optimization task.

In summary, Table X provides an overview of the performance
gains of each of our proposed components. It is worth noting
that when introducing the multi-label annotation, the super-
vised contrastive learning method is implicitly introduced,
which can be improved by our proposed soft contrastive learn-
ing as shown by the ablation in Table VII. Furthermore, when
using the continual pretraining method, the vision dataset (e.g.
ImageNet) is implicitly used for the vision model weights.

VII. CONCLUSION

This work revisits two important free resources beyond pure
satellite imagery for efficient Earth observation pretraining:
open land cover products and open vision foundation models.

TABLE X: Performance gains of different components under
linear probing on BigEarthNet-10%. The explicitly introduced
components are highlighted in bold.

Method Backbone Dataset Performance gain
Contrast RN50 SSL4EO-S12 -

(+ SupCon) RN50 + multi-label +0.9
+ SoftCon RN50 - +0.6

+ cont. RN50 (+ ImageNet) +1.2
+ mask ViT-S - +0.5

We build a large-scale multi-label dataset by matching an
unsupervised pretraining dataset SSL4EO-S12 with Dynamic
World land cover maps. To effectively utilize the multi-label
annotations, we propose a novel soft contrastive learning
method that allows soft matching between images with differ-
ent label distributions. Meanwhile, we introduce strong vision
models such as DINO and DINOv2 to a simple but flexible
continual pretraining framework with Siamese masking. We
efficiently train multispectral and SAR foundation models of
both CNN and Transformer backbones that achieve SOTA
performances in 10 out of 11 downstream tasks.

There are two main limitations of this work. First, our
models target mainly medium-resolution data, while high-
resolution images with more fine-grained semantic information
remain to be explored. Second, retraining vision foundation
models without any constraints inevitably makes the model
forget knowledge from the source vision domain. Future work
will explore more effective and flexible multimodal continual
pretraining methods to build strong cross-domain cross-modal
foundation models.
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APPENDIX A
SSL4EO-S12-ML DATASET

A. General information

SSL4EO-S12-ML dataset is a large-scale multi-label land
cover land use classification dataset. It consists of 780,371
multispectral Sentinel-2 images with size 264×264, divided
into 247,377 non-overlapping scenes each with 1-4 multi-
seasonal patches. Each image has a multi-label annotation
from one or more categories in 9 land cover land use classes.

1) Data source: The Sentinel-2 images are from SSL4EO-
S12 [10], a multi-modal multi-temporal dataset specifically
designed for large-scale self-supervised learning. The dataset
consists of 4-seasonal Sentinel-1/2 SAR-optical images from
251,079 non-overlapping locations in the world, covering a
wide range of geographical and temporal diversities. The
multi-label annotations are derived from Dynamic World [6], a
near-real-time dataset that provides continuous pixel-level land
cover monitoring in 9 semantic classes. The Dynamic World
segmentation maps are automatically generated by algorithms
developed on high-quality training data. We integrate the noisy
maps into rather accurate scene-level classification labels.

2) Dataset curation: Based on the geospatial coordinates
and acquisition time, we match each SSL4EO-S12 L1C mul-
tispectral image with its corresponding Dynamic World land
cover map in Google Earth Engine. Due to the effect of clouds,
a few images do not have a corresponding segmentation map,
which are then dropped in our finall dataset. In total, there
are 247,377 scenes with a successful match for at least one
season. Then, we gather the pixel labels into scene-level multi-
labels for each image, resulting in 780,371 labeled individual
images. The workflow has ben shown in Figure 2.

B. Dataset statistics

1) Label number distribution: Figure 7 shows the distribu-
tion of the number of labels within each image. About 17%
images contain a single label, while 70% images contain 4 or
more labels.
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Fig. 7: The distribution of label numbers within each image.

2) Class distribution: Figure 8 shows the distribution of the
number of images for each class. The number of images is well
balanced in 7 common classes, while flooded vegetation and
snow/ice are less represented.
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Fig. 8: The distribution of image numbers for different classes.

3) Season distribution: Figure 9 shows the distribution of
the number of seasonal patches for each location. More than
40% locations have all 4 seasons, and more than 95% locations
have at least 2 seasons.
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Fig. 9: The distribution of season numbers for each location.

C. Benchmark

We provide a preliminary benchmark on SSL4EO-S12-ML
as a supervised multi-label classification task in Table XI. We
split the dataset into 80% training data and 20% testing data
according to the non-overlapping locations, and report micro
and macro mAP on the test split. We use 10% of the training
data and the full testing data for the benchmark. The table
shows that this multi-label classification task is rather easy to
solve, with a supervised micro mAP reaching 98.2%. This is
similar to the training metric, indicating the balanced dataset
split and rather good label quality. In addition, we also test the
dataset as a downstream task to evaluate pretrained models. As
is shown in the table, consistent performances as other popular
datasets in the main paper are observed: 1) pretrained models
improve upon random initialization; 2) SoftCon outperforms
existing models such as SSL4EO. Therefore, SSL4EO-S12-
ML can be considered as a global multi-label classification
benchmark dataset that complements existing datasets such as
BigEarthNet [53] which covers only Europe.
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(a) water (b) water, trees, grass, flooded vegetation,
crops, shrub and scrub, built

(c) crops, shrub and scrub, bare

(d) water, trees, grass, crops, shrub and
scrub, built, bare

(e) grass, crops, shrub and scrub, bare (f) trees, grass, shrub and scrub, built, bare

Fig. 10: SSL4EO-S12-ML example images with multi-label annotations.

TABLE XI: Benchmark results of SSL4EO-S12-ML dataset.
We use 10% of training data.

mAP (micro) mAP (macro)
rand. init. 93.7 84.4
supervised 98.2 94.7
SSL4EO (linear) [10] 95.8 88.7
SoftCon (linear) 96.5 90.2
SoftCon (fine-tune) 98.8 96.1

D. Data examples
Figure 10 provides some example images and corresponding

multi-labels in the SSL4EO-S12-ML dataset covering different
landscapes.

APPENDIX B
PARAMETER EFFICIENT CONTINUAL PRETRAINING

Besides SoftCon weight initialization, we also explored
other continual pretraining strategies, such as the adaptation
of parameter efficient fine tuning (PEFT) techniques. PEFT
is usually used in fine-tuning foundation models to specific
downstream tasks with low cost. We studied the feasibility of
adapting it to continual pretraining, termed parameter efficient
continual pretraining (PECP), to build foundation models for
a target domain such as Earth observation.

We study PECP with three representative PEFT techniques:
bias-tuning like BiTFiT [81], visual prompt tuning [82], and
low-rank adapter (LoRA) [83]. To fully evaluate the capacity
of large foundation models, we transfer DINOv2 ViT-Large
with about 300M parameters which is on par with commonly
studied models in PEFT. To save computing costs and to rule
out other factors, we use a simple MAE [15] for pretraining.

Table XII presents linear probing results on BigEarthNet
with different pretraining strategies. Firstly, as the table shows,
straightforward PEFT from DINOv2 does provide benefits
compared to random frozen encoder. However, such benefits
are rather limited compared to in-domain pretraining. Sec-
ondly, compared to pretraining from scratch, SoftCon-style
continual pretraining offers significant improvement, espe-
cially when the in-domain data is limited in size: continual
pretraining on 10% data is comparable to pretraining full data
from scratch. Thirdly, all PECP strategies provide reasonable
benefits with only a small fraction of parameters trainable,
outperforming direct PEFT. Among them, LoRA performs
slighter better than others. Similar to full continual pretraining,
PECP also remains the performance when the size of pretrain-
ing data is restricted. Lastly, all the simple PECP strategies are
not close to full continual pretraining, restricting the practical
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TABLE XII: Linear probing mAP scores on BigEarthNet-10% with different pretraining strategies. We report pretraining with
full SSL4EO-S12 data and 10% data. PEFT indicates directly transferring the DINOv2 model on BigEarthNet with PEFT
techniques. *: SoftCon represents our SoftCon-style fully continual pretraining used in the main paper.

pretrain module # pretrain params. pretrain 100% pretrain 10%
rand. init. - - 64.4 -
supervised - - 74.7 -
PEFT (bias) - - 69.2 -
PEFT (lora) - - 69.2 -
pretrain from scratch all 305M 79.2 72.8
full CP (SoftCon*) all 305M 81.0 78.1
PECP (base) patch embed 2.6M 70.6 69.1
PECP (bias) patch embed + bias 2.9M 72.7 70.2
PECP (prompt) patch embed + prompt 3.0M 74.0 72.1
PECP (lora) patch embed + lora 5.8M 74.2 73.9

usage. This preliminary study motivates us to use full continual
pretraining for SoftCon in the main papaer. However, with
more research towards advanced designs, we believe PECP
bears potential for future work, as the flexible adapters can
pave the way towards unified cross-domain foundation models.

APPENDIX C
IMPLEMENTATION DETAILS

A. Pretraining

We pretrain SoftCon with ResNet [63] and ViT [64] back-
bones on the proposed multi-label dataset SSL4EO-S12-ML,
which consists of 247,377 scenes with 1-4 seasons. We nor-
malize the 16-bit images to 8-bit with the mean and standard
deviation provided in [10]. If there are multiple seasons for one
scene, we randomly choose two for the base encoder and the
momentum encoder, respectively. Data augmentations follow
[10], including random crop (to the size 224×224), color jitter,
greyscale, Gaussian blur, and random flip.

We adapt MoCo-v2 [55] for ResNet50 and MoCo-v3 [56]
for ViT-S/14 and ViT-B/14, with two separate projectors to
get embeddings for the Contrast and the SoftCon loss, respec-
tively. Each projector consists of two linear layers and one
ReLU activation function in between. The weighting parameter
λ trading off the two losses is 0.1. We set a queue size of
16384 with a batch size of 256 for MoCo-v2, and a batch size
of 1024 for MoCo-v3. For MoCo-v2, the learning rate starts
from 0.03, followed by cosine decay to 0; for MoCo-v3, the
learning rate is warmed-up to 1.5e-4 for 10 epochs, followed
by cosine decay to 0. The optimizer is SGD for MoCo-v2
and AdamW for MoCo-v3. The softmax temperature is 0.2
for both MoCo-v2 and MoCo-v3.

We load ResNet50 weights from DINO [60] and ViT-S/14
and ViT-B/14 weights (without register) from DINOv2 [16],
and conduct continual pretraining for 100 epochs. For ViTs,
we randomly mask out 20% patches and send the remaining
patches to the trainable encoder. All patches without masking
are sent to the momentum encoder. Training is distributed
in two nodes each with 4 NVIDIA A100 GPUs. Detailed
compute and training time for different backbones are shown
in Table XIII.

B. Downstream tasks

1) Downstream tasks: We evaluate the pretrained back-
bones by linear probing and fine-tuning in 8 downstream tasks,

TABLE XIII: Compute and pretraining time.

Modality Backbone GPUs Training time

MS
RN50 4xA100 21h
ViT-S/14 4xA100 25h
ViT-B/14 8xA100 15h

SAR
RN50 4xA100 7h
ViT-S/14 4xA100 8h
ViT-B/14 8xA100 7h

including 4 land cover land use classification/segmentation
datasets: BigEarthNet [53], EuroSAT [66], fMoW-sentinel [24]
and DFC2020 [67], and 4 multispectral datasets covering
different applications from GEO-Bench [69]: m-so2sat, m-
brick-kiln, m-cashew-plantation and m-SA-crop-type.

For classification datasets, we conduct linear probing and
fine-tuning; for DFC2020, we fine-tune DeepLabv3+ [77] for
ResNet backbone and UperNet [78] for ViT backbones; for
GEO-Bench segmentation datasets, we freeze the encoder
and train a UperNet decoder. For linear probing with ViT
backbones, we pick either the output features from the last
block, or the concatenation of features from the last 4 blocks
following DINOv2 [16]. We do a simple grid search for the
learning rate for each dataset. Specific hyperparameters for
each dataset is summarized in the following tables.

TABLE XIV: DFC2020 fine-tuning hyperparameters.

DFC2020 (ResNet) DFC2020 (ViT)
Backbone ResNet50 ViT-B/14, ViT-S/14
Input size 224x224 224x224

Augmentation
ResizedCrop (0.5,2.0),

HorizontalFlip,
VerticalFlip

ResizedCrop (0.5,2.0),
HorizontalFlip,

VerticalFlip
Batch size 16 16
Learning rate 1e-3 5e-3
LR schedule poly poly
Optimizer SGD AdamW
Weight decay 5.00E-04 5.00E-02
Warm-up 0 1000
Iter 20K 40K
Head DeepLabv3+ UperNet
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TABLE XV: Linear probing hyperparameters on BigEarthNet, EuroSAT and fMoW-S2.

BigEarthNet EuroSAT fMoW-S2
Backbone ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14
Input size 224x224 224x224 224x224

Augmentation ResizedCrop (0.8,1.0),
HorizontalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip

Batch size 256 256 1024
Learning rate 0.1 1e-3 4e-4
LR schedule cos step cos
Optimizer SGD SGD AdamW
Weight decay 0 0 0.01
Warm-up 0 0 0
Epoch 100 100 100
Feature block 4 1 4

TABLE XVI: Fine-tuning hyperparameters on BigEarthNet, EuroSAT and fMoW-S2.

BigEarthNet EuroSAT fMoW-S2
Backbone ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14
Input size 224x224 224x224 224x224

Augmentation
ResizedCrop (0.8,1.0),

HorizontalFlip,
VerticalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip,
mixup&cutmix

Batch size 256 256 1024
Learning rate 1e-4 1e-3 4e-4
LR schedule cos step cos
Optimizer AdamW SGD AdamW
Weight decay 0.01 0 0.05
Warm-up 0 0 0
Epoch 50 100 50

TABLE XVII: ResNet linear probing (left) and fine-tuning (right) hyperparameters on BigEarthNet and EuroSAT.

BigEarthNet EuroSAT
Backbone RN50 RN50
Input size 224x224 224x224

Augmentation ResizedCrop (0.8,1.0),
HorizontalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip

Batch size 256 256
Learning rate 8 8
LR schedule step step
Optimizer SGD SGD
Weight decay 0 0
Warm-up 0 0
Epoch 100 100

BigEarthNet EuroSAT
Backbone RN50 RN50
Input size 224x224 224x224

Augmentation
ResizedCrop (0.8,1.0),

HorizontalFlip,
VerticalFlip

ResizedCrop (0.2,1.0),
HorizontalFlip

Batch size 256 256
Learning rate 1e-3 0.1
LR schedule cos step
Optimizer AdamW SGD
Weight decay 0.01 0
Warm-up 0 0
Epoch 50 100

TABLE XVIII: Transfer learning hyperparameters on the four GEO-Bench datasets.

m-so2sat m-brick-kiln m-cashew-plantation m-SA-crop-type
Backbone ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14 ViT-B/14, ViT-S/14
Input size 224x224 224x224 224x224 224x224

Augmentation ResizedCrop (0.8,1.0),
HorizontalFlip

ResizedCrop (0.8,1.0),
HorizontalFlip

ResizedCrop (0.6,1.0),
HorizontalFlip,

VerticalFlip,
Rotate

ResizedCrop (0.6,1.0),
HorizontalFlip,

VerticalFlip,
Rotate

Batch size 256 256 64 64
Learning rate 1.0 10 0.01 0.01
LR schedule cos cos cos cos
Optimizer LARS LARS AdamW AdamW
Weight decay 0 0 0.01 0.01
Warm-up 0 0 3 3
Epoch 50 50 50 50
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