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Abstract: The measurement of deep water gravity wave elevations using in situ devices, such as
wave gauges, typically yields spatially sparse data due to the deployment of a limited number
of costly devices. This sparsity complicates the reconstruction of the spatio-temporal extent of
surface elevation and presents an ill-posed data assimilation problem, which is challenging to solve
with conventional numerical techniques. To address this issue, we propose the application of a
physics-informed neural network (PINN) to reconstruct physically consistent wave fields between
two elevation time series measured at distinct locations within a numerical wave tank. Our method
ensures this physical consistency by integrating residuals of the hydrodynamic nonlinear Schrödinger
equation (NLSE) into the PINN’s loss function. We first showcase a data assimilation task by
employing constant NLSE coefficients predetermined from spectral wave properties. However,
due to the relatively short duration of these measurements and their possible deviation from the
narrow-band assumptions inherent in the NLSE, using constant coefficients occasionally leads to
poor reconstructions. To enhance this reconstruction quality, we introduce the base variables of
frequency and wavenumber, from which the NLSE coefficients are determined, as additional neural
network parameters that are fine tuned during PINN training. Overall, the results demonstrate the
potential for real-world applications of the PINN method and represent a step toward improving the
initialization of deterministic wave prediction methods.

Keywords: physics-informed neural network; hydrodynamic nonlinear Schrödinger equation; data
assimilation; parameter identification; inverse problem; wave surface reconstruction

1. Introduction

The field of ocean engineering and experimental water wave research highly desires
a deterministic description of wave quantities [1], which are usually described by partial
differential equations (PDEs). Unlike statistical methods, deterministic prediction involves
a phase-resolved tracing of wave fields, i.e., the wave elevation η as a function of space
and time with high resolution. Unfortunately, acquiring such spatio-temporal data from
experiments is often impractical: On the one hand, the reconstruction of wave surface
elevations from real-world radar data is still an unresolved issue [2]. On the other hand,
in situ measurement devices, such as wave gauges, measure the elevation time series at
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only a few selected locations due to the high operational costs. This sparsity of information
leads to ill-posed inverse problems [3] when attempting to reconstruct the complete wave
elevation η(x, t) from gauge measurements ηm(t), which might be solved by numerical or
machine learning methods.

Despite substantial advancements in common numerical PDE solvers, such as finite
element, finite difference, and spectral methods, their applications to highly dynamic sys-
tems still incurs remarkable computational costs. These costs primarily stem from the need
for fine-grained discretizations to ensure accurate solution approximations. Furthermore,
conventional grid-based numerical solvers still face unresolved challenges, especially for
addressing ill-posed inverse problems [4], such as wave reconstructions. In particular,
inverse problems become computationally expensive due to the high number of forward
evaluations required to estimate the inverse. Additionally, issues related to numerical
stability and convergence necessitate the implementation of regularization techniques [5].

In the meantime, machine learning methods have revolutionized many scientific disci-
plines, including their applications in the fields of fast deterministic ocean wave prediction
cf. [6–9] and reconstruction cf. [2,10]. However, in contrast to classical numerical solvers,
these data-based approaches lack the incorporation of inherent knowledge about the physi-
cal laws that approximate the underlying system in the form of PDEs. Physical information
is solely provided by observational training data for supervised learning, which are sourced
from PDE simulations using classical numerical methods or from field measurements of
real physical wave systems. Thus, the solutions generated by data-based approaches may
not inherently ensure physical consistency, as the quality and quantity of training data limit
their accuracy. This can be regarded as a neglect of established knowledge, especially when
addressing the reconstruction problem outlined earlier, considering the centuries-long
development of various model equations for describing surface gravity waves.

To overcome the limitations of both explicit numerical PDE solvers and neural network
approaches, Raissi et al. [11] proposed physics-informed neural networks (PINNs). PINNs
integrate observational data with physical laws by parameterizing the PDE solution as a
neural network to solve forward, inverse parameter identification or inverse data assim-
ilation problems. More precisely, the network’s training process is constrained by a loss
function that incorporates a PDE residual. To effectively calculate this residual, the PINN
algorithm leverages the method of automatic differentiation [12]. In recent years, PINNs
have gained attention across diverse scientific domains [4,13], including computational
fluid dynamics [14–16], acoustic wave propagation [17], heat transfer [18,19], climate mod-
eling [20], nano-optics [21], and the study of hyperelastic materials [22]. Notably, PINNs
also employed in a few investigations related to water waves: For instance, Wang et al. [23]
used a loss function based on the wave energy balance equation and the linear disper-
sion relation to reconstruct near-shore phase-averaged wave heights. The same equations
also allow for solving sea bed depth inversion problems from statistical wave parameters
in shallow-water regimes [24]. Furthermore, the Saint-Venant equations within the loss
residuals of PINNs enable the downscaling of large-scale river models by assimilating
remote sensing data in conjunction with in situ measurement data of the water surface [25].
Additionally, the research of Jagtap et al. [3] showcased the potential of PINNs in resolving
ill-posed assimilation problems by leveraging analytical solitary surface measurements and
the Serre–Green–Naghdi equations in shallow water.

However, in typical ocean engineering research, i.e., down-scaled testing in wave tanks,
scenarios arise where the water depth significantly exceeds the wavelength. In such cases, it
becomes essential to characterize the nonlinear behavior of water waves in the intermediate-
to-deep water regime [26] rather than in shallow water. Zakharov [27] demonstrated that the
amplitude envelope of slowly modulated wave groups approximately satisfies the nonlinear
Schrödinger equation (NLSE). Consequently, various variants of the hydrodynamic nonlinear
Schrödinger equation were investigated experimentally and numerically for deterministic
wave prediction cf. [28–30] and rogue wave modeling cf. [31,32].
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To the best of the authors’ knowledge, there is no prior documentation of PINNs to
solve the hydrodynamic form of the NLSE, despite the successful integration of other forms
of the NLSE for different physical phenomena into the PINN framework cf. [11,33–38].
However, unifying most of this related work demonstrates the application of the NLSE-
PINN methodology concerning the initial or boundary conditions derived from analytical
soliton or breather solutions that correspond to their specific NLSE used in the loss function.
While these approaches provide a theoretical proof of concept, they cannot inherently assess
the practical viability of PINNs in real-world scenarios, as analytical solutions seldom align
with the complexity and imperfections encountered in measurements.

Therefore, the objective of this study was to demonstrate the application of an NLSE-
PINN framework in the more realistic scenario of irregular deep water gravity waves.
Specifically, we aimed to leverage the capability of PINNs in solving data assimilation
problems, which is crucial in ocean engineering to infer the dynamic system’s state from
partial or noisy surface elevation measurements ηm(t) cf. [17,25,39,40], thereby reducing
the need for costly gauges while still being able to reconstruct the fully resolved wave
fields η(x, t) in between. For this purpose, we utilized irregular and nonlinear wave group
data from gauge locations several meters apart within a numerical wave tank that was
simulated using the high-order spectral method (HOSM) [41].

However, as our PINN loss function was constrained by the hydrodynamic NLSE
associated with limitations in accommodating arbitrary irregular sea states due to the con-
straints in the bandwidth, steepness, and nonlinearity [1], we investigated the utilization of
a slightly misspecified PINN for assimilating wave data derived from the more realistic
HOSM; the HOSM also accounts for highly nonlinear, broad-banded, or directional sea
states in non-breaking scenarios [42,43]. This misspecification acknowledges the common
discrepancy between mathematical models (e.g., PDEs) and measurement data in complex,
real-world physical systems [44], where perfect alignment between measurements and
analytical solutions is uncommon, and exact knowledge of the physical equations that
describe all phenomena encountered in measurements is rare. Moreover, an ongoing chal-
lenge in applying the NLSE to irregular waves with specific bandwidths lies in accurately
determining its coefficients, which are derived from ratios of the base parameters of the
carrier wave frequency ωp and wavenumber kp. In particular, relatively short measurement
intervals and slight deviations in the measurement data from the narrow-band assumptions
of the NLSE can introduce uncertainties in the determination of ωp and kp, which affect,
for example, the propagation velocities, and thus, cause errors and offsets in the surface
elevation reconstructions. Therefore, our hypothesis for this study was as follows:

• Alongside the assimilation of measurement data, the NLSE-PINN will facilitate fine
tuning the base parameters (ωp and kp) of the NLSE coefficients. We expect this
approach to enhance the reconstruction performance compared with using constant
coefficients predetermined from spectral wave properties.

To address this, we first present the wave tank utilized for data generation in Section 2.1.
Afterward, the hydrodynamic NLSE is introduced in Section 2.2 to subsequently develop the
NLSE-PINN framework and training methodology in Section 2.3. Then, we first performed
a pure data assimilation task with predetermined, constant NLSE coefficients to reconstruct
wave surface envelopes from only two gauge measurements in Section 3.1. These results
served as a benchmark to demonstrate the enhancement of reconstruction by incorporating
the NLSE coefficient base parameters as additional tuneable PINN variables in Section 3.2.
Finally, Section 4 summarizes the key findings, outlines the method limitations, and suggests
potential directions for future research.

2. Method

The following subsection initiates a concise overview of the wave tank specifications
and the numerical method to generate the synthetic wave elevation data. Next, the nonlin-
ear Schrödinger equation for deep water gravity waves is introduced. Subsequently, this
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equation is integrated to develop a physics-informed neural network, with details on its
architecture and training strategy provided in the last subsection.

2.1. Numerical Wave Tank and Measurement Data Generation

The numerical wave tank experiments were based on the dimensions of a real wave
tank facility at Hamburg University of Technology. This wave tank possessed a cross-
sectional area of 1.5 m × 1.5 m and extended over a length of 15 m (https://www.tuhh.
de/mum/en/research/facilities (accessed on 11 September 2024)) and is visualized in
Figure 1a. To generate waves, a flap-type board was installed on one side of the tank, while
the opposite side had a beach element to minimize wave reflections. To simulate nonlinear
wave propagation inside this numerical wave tank, we employed the high-order spectral
method (HOSM) of order M = 4, as formulated by West et al. [41]. This method models
highly realistic, irregular nonlinear water wave surfaces on a Cartesian coordinate system
(x, z), with the mean free surface located at z = 0 m with z pointing upward. Assuming
a Newtonian fluid that is incompressible, inviscid, and rotational, the HOSM solves the
general initial boundary-value potential flow problem that is given by the Laplace equation:

∇2Φ = Φxx + Φzz = 0 (1)

and the kinematic surface, dynamic surface, and bed boundary condition:

ηt + ηxΦx − Φz = 0 on z = η(x, t) (2)

Φt + gη +
1
2

(
Φ2

x + Φ2
z

)
= 0 on z = η(x, t) (3)

Φz = 0 on z = −d. (4)

Therein, Φ(x, z, t) is the velocity potential, η(x, t) is the free surface elevation, and g
is the gravity acceleration. The simulations were initialized using wave surfaces from the
JONSWAP spectra [45] in the finite depth form [46].

For the data generation, we maintained a fixed water depth of d = 1 m and employed
four virtual wave gauges to provide time-series measurements along the water surface
at xg ∈ {3, 4, 5, 6}m, which constituted a typical depth and measurement point spacing
in educational wave tanks [47,48]. The outer gauges of the numerical wave tank were
designated as locations of sparse measurements (xg,meas ∈ {3, 6}m) for the PINN training,
while measurements at the inner gauges (xg,test ∈ {4, 5}m) were solely used to assess
the PINNs’ performance against a ground truth after the training process. We gener-
ated a temporal wave surface elevation series η(x = xg, t) over an interval that spanned
t = 0–60 s to ensure that the wave packets fully passed all four gauges, while no significant
wave reflections had yet occurred at the channel’s end. A graphical representation of the
resulting three-dimensional data structure is exemplified in Figure 1b.
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Figure 1. In the numerical wave tank setup, wave gauges measured the elevations at four points
xg = {3, 4, 5, 6}m (a), which resulted in a sparse spatio-temporal data structure for each sample (b).
During the PINN training, the violet elevation time series were utilized, while the grey series were
reserved for the subsequent performance evaluation.
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As we desired wave data that covered different wave conditions and significant wave
heights Hs, the sea state parameters of the peak wave frequency ωp = 2π/Tp (with Tp being
the peak period), wave steepness ϵ = kpHs/2 (with kp = 2π/Lp being the peak wavenumber
and Lp being the peak wavelength), and peak enhancement factor γ were varied as follows:

ωp ∈ {3, 4, 5, 6, 7, 8, 9} rad
s

ϵ ∈ {0.0125, 0.0250, 0.0375, 0.0500, 0.0750, 0.1000}
γ ∈ {1, 3, 6},

where a higher γ indicates a narrow-banded spectra, as shown in Figure 2. By randomly
selecting initial phase shifts of the component waves, five different elevations were gener-
ated for each ϵ–ωp–γ combination, which resulted in 630 different wave samples in total,
where each individual sample had the data structure shown in Figure 1b. For details on
the nonlinear wave data generation in a numerical wave tank facility using the HOSM, the
reader is referred to Klein et al. [7] and Lünser et al. [43].
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Figure 2. JONSWAP spectra for the different peak enhancement factors γ used to initialize the
HOSM wave simulations. A higher value of γ resulted in a narrower spectra for the generated
irregular waves.

2.2. Hydrodynamic Nonlinear Schrödinger Equation

In addition to employing numerical methods, such as HOSM, to approximate the
potential flow Equations (1)–(4), an alternative approach is the derivation of simplified
solutions. By utilizing perturbation theory around the parameters of wave steepness
ϵ = kpa and relative bandwidth µ = ∆k/kp << 1, small-amplitude waves and a narrow
bandwidth are assumed. Here, ∆k denotes the width of the wavenumber spectrum around
the peak wavenumber kp. Moreover, the boundary value problem at the unknown free
surface z = η(x, t) can be approximated using a Taylor series expansion. By truncating the
perturbation expansion at order O(ϵ3), the envelope equation of the nonlinear Schrödinger
equation (NLSE) is derived [27,49,50] in terms of a complex wave envelope amplitude
A(x, t) = U(x, t) + iV(x, t) that varies slowly compared with the phase ϑ = kpx − ωpt + φ
of its underlying carrier wave η(x, t), where φ is a phase shift. The hydrodynamic NLSE in
the time-like form is as follows:

i
(

Ax +
1
cg

At

)
+ δAtt + ν|A|2 A = 0 (5)

which finds common application in boundary value wave tank problems [51], where

cg =
ωp

2kp
, δ = −

kp

ω2
p

, ν = −k3
p (6)

are the NLSE coefficients. The peak frequency ωp of the carrier wave is related to the
corresponding peak wavenumber kp through the linear dispersion relation for deep water:
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ωp =
√

gkp. (7)

The first term in Equation (5) characterizes the spatial variation of the amplitude, while
the second term represents the wave propagation by the group velocity cg. The third term
introduces the dispersive effect, while the last term introduces the nonlinearity. In contrast
to the potential flow equations, which require an approximation in the depth direction, the
NLSE is regarded as the simplest nonlinear equation for deep-water wave dynamics, as it
is uniquely formulated on the water surface [52]. However, while it captures the essential
aspects of nonlinear water waves, the NLSE’s limitations in nonlinearity magnitude and
spectral bandwidth limit its general applicability in deterministic wave prediction [1].

In practical cases, where real-valued measurement series ηm(x = xg, t) are available,
the values of ωp and kp are commonly derived from a spectral representation via a discrete
Fourier transform F(ω) of the time domain surface elevation ηm(t). We employed the
advanced method of Sobey [53] and Mansard and Funke [54] by defining

ωp =

∫
ω · F(ω)5dω∫

F(ω)5dω
, (8)

which enhances the robustness compared with determining ωp as the frequency where
F(ω) attains its maximum. The corresponding kp can be derived by the dispersion relation.
The complex amplitudes for initializing the NLSE are computed as

A(xg, t) =
[
η(xg, t) + iH

(
η(xg, t)

)]
· exp(−iϑ), (9)

where H denotes the Hilbert transform of the measured signal [55,56] and ϑ = kpx−ωp + φ
is the carrier wave’s phase. For the other way around, the equation

η(xg, t) = Re
[
A(xg, t) · exp(iϑ)

]
(10)

instead allows for the reverse transformation from a complex envelope back to a carrier
wave elevation after the reconstruction procedure, although this transformation is not
presented in this work. The relationship between the carrier wave η(xg, t) and complex
envelope A(xg, t) = U(xg, t) + iV(xg, t) is illustrated in Figure 3.
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Figure 3. Example of an irregular carrier wave η(x, t) measured at one location inside the wave tank.
The real and imaginary parts of its corresponding complex envelope A(x, t) = U(x, t) + iV(x, t) are
visualized, along with its absolute value |A(x, t)|.

2.3. Physics-Informed Neural Network for the NLSE

In light of the simplifications inherent in the hydrodynamic NLSE concerning the
generalized water wave problem discussed previously, we investigated the suitability of
this equation within a PINN framework for analyzing surface waves that arose from sightly
different wave physics by using a phenomenon that is termed model misspecification and
commonly encountered in real-world physical systems. Our selection of this equation was
motivated by the NLSE’s simple definition (Equation (5)), which is limited to the (x, t)
domain only. In contrast, for example, employing a PINN to solve the fully nonlinear po-
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tential flow equations (Equations (1)–(4)) would demand substantially greater human and
computational effort. Hence, subsequent sections introduce the architecture, loss function,
training methodology, and evaluation metrics adopted for our NLSE-PINN framework.

2.3.1. PINN Architecture

The neural network architecture of the PINN developed in our study is depicted on
the lower-left side of Figure 4. It includes two input nodes for collocation points in space
x and time t. Given the complex-valued solution A(x, t) = U(x, t) + iV(x, t) of the NLSE,
two output nodes are required [11], where U represents the real part and V represents the
imaginary part. Moreover, the network consists of four intermediate hidden layers, with
each comprising 200 nodes, which results in a total network depth of D = 6. The variables
of each layer l, which are denoted as θ(l) = {W(l), b(l)}1≤l≤D, receive their initial values
using the Xavier initialization technique for weights W(l) [57], while the biases b(l) are
initialized to zero. The total amount of the network’s weights and biases is denoted as
θ =

[
θ(1), . . . , θ(D)

]
.

To enhance the convergence and accuracy during the training, we incorporated a strategy
using layer-wise locally adaptive activation functions [58,59], which has shown promising
applications, e.g., in Pu et al. [35], Jagtap et al. [3,60], Shukla et al. [61], and Guo et al. [62].
The input of a hidden layer h(l+1) is derived from the output of the preceding layer o(l) by
following the rule

o(l) = W(l)T · h(l) + b(l) (11)

h(l+1) = tanh (s · a(l) · o(l)) (12)

for l = 1, . . . , D − 1. The last layer D has a linear activation function. In this context,
W(l) and b(l) are the weight and bias matrices of the (l)-th layer, and s = 10 is a fixed
scaling factor. Furthermore, a =

[
a(1), . . . , a(D−1)

]
represent additional variables of the

network, which are fine tuned during the training process to modulate the slopes of the
activations. In our case, we initialized the system with a(l) = 0.2, which resulted in the
initial slope of s · a(l) = 2 being slightly steeper than the usual tanh activation. Empirical
evidence suggested that this initialization could be considered valid according to [58], as
it accelerated the convergence rate in our setup without causing divergence or increasing
oscillations in the loss function.

Moreover, over the course of our study (Section 3.2), we examined how the data-driven
fine tuning of the NLSE coefficients (Equation (6)) while assimilating sparse measurement
data affected the reconstruction quality. Given that all the coefficients in the NLSE were
related to the peak wavenumber and frequency, we selected treating the coefficients’ base
parameters ωp and kp as additional PINN variables while sharing an optimizer with the
neural network parameters θ and a. This is visualized in the lower-left box of Figure 4.

2.3.2. PINN Loss Function and Training

To enable the PINN’s capability to approximate an NLSE surrogate model Ã(x, t) =
Ũ(x, t) + iṼ, we used wave elevation measurement data ηm ∈ RNd from the two outer
gauge positions, xg,meas ∈ {3, 6}m, within the numerical wave tank shown in Figure 1.
The elevation data at the remaining locations, xg,test ∈ {4, 5}m, were reserved for later
evaluation and not incorporated in the PINN’s training process. Each elevation measure-
ment was transferred to a complex envelope Am ∈ CNd using Equation (9), as depicted in
the top boxes of Figure 4. In this work, Nd = 1200 was the total number of measurement
data points at the domain boundaries, which is denoted as {xd = xg,meas, t(j)

d }Nd
j=1. These

points were obtained by sampling the temporal sequence t = 0–60 s with an increment of
∆t = 0.05 s. In addition, we incorporated a set of Nr = 20, 000 randomly located collocation
points {x(j)

r , t(j)
r }Nr

j=1 to enforce the NLSE solution across the entire computational (x, t)
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domain. Using these measurements and sets of points, the multi-objective PINN loss
function was defined by

L = LU,data + LV,data + LU,res + LV,res, (13)

where the loss components were composed of the mean-squared errors (MSEs):

LU,data =
1

Nd

Nd

∑
j=0

∣∣∣Ũ(xd, t(j)
d )− U(j)

m

∣∣∣2︸ ︷︷ ︸
MSEU,data

·
(

λ
(j)
d

)2
(14)

LV,data =
1

Nd

Nd

∑
j=0

∣∣∣Ṽ(xd, t(j)
d )− V(j)

m

∣∣∣2︸ ︷︷ ︸
MSEV,data

·
(

µ
(j)
d

)2
(15)

LU,res =
1

Nr

Nr

∑
j=0

∣∣∣R̃U(x(j)
r , t(j)

r )
∣∣∣2︸ ︷︷ ︸

MSEU,res

·
(

λ
(j)
r

)2
(16)

LV,res =
1

Nr

Nr

∑
j=0

∣∣∣R̃V(x(j)
r , t(j)

r )
∣∣∣2︸ ︷︷ ︸

MSEV,res

·
(

µ
(j)
r

)2
. (17)

The terms MSEU,data and MSEV,data served to quantify the error between PINN
predictions (Ũ, Ṽ) and measured envelope data (Um, Vm) at the domain boundaries
xg,meas ∈ {3, 6}m. In contrast, MSEU,res and MSEV,res quantified the degree to which
the PINN solution conformed to the residuals of the NLSE, which are given by

R̃U(x, t) :=− Ṽx(x, t)− 1
cg

Ṽt(x, t) + δŨtt(x, t) + ν
(

Ũ(x, t)2 + Ṽ(x, t)2
)

Ũ(x, t) (18)

R̃V(x, t) := Ũx(x, t) +
1
cg

Ũt(x, t) + δṼtt(x, t) + ν
(

Ũ(x, t)2 + Ṽ(x, t)2
)

Ṽ(x, t) (19)

within the remaining computational domain. Thus, as the optimizer minimizes these resid-
uals during training, the PINN solution increasingly aligns with the physical constraints
imposed by the NLSE. The derivative terms in these residuals are calculated using auto-
matic differentiation (AD) [12] of the neural network’s outputs Ũ and Ṽ with respect to the
input variables x or t, as illustrated on the right of Figure 4. Unlike numerical differentiation
methods, AD provides exact derivatives without any approximation error [13]. Further-
more, AD enhances the computational efficiency by decomposing complex functions into
elementary operations and reusing intermediate results through the application of the
chain rule, thus avoiding redundant calculations.

Furthermore, following the approach proposed by McClenny and Braga-Neto [63],
trainable self-adaptation weights λ

(j)
d , µ

(j)
d , λ

(j)
r , and µ

(j)
r were introduced in the loss com-

ponents (Equations (14)–(17)). These variables, which are initially set to one, are associated
with each measurement point {xd, t(j)

d }Nd
j=1 or collocation point {x(j)

r , t(j)
r }Nr

j=1. The PINN
autonomously identifies challenging regions inside the solution domain characterized by
high point-specific errors and increases the respective self-adaptation weights to emphasize
the penalty, and thus, improve the approximation. This behavior is achieved through the
concurrent minimization of the loss function L = L(θ, a, λd, µd, λr, µr) by updating the
network weights and biases θ, activation slopes a, and coefficient parameters ωp and kp
alongside the maximization of the loss for the self-adaption weights λd, µd, λr, and µr in
each epoch of training.
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In many instances, PINNs are trained using a two-step strategy that involves the Adam
optimizer [64] for a defined number of epochs, followed by the L-BFGS optimizer [65].
This strategy is recognized as pivotal [66], with Adam initially preventing convergence to
local minima, while L-BFGS refines small-scale solution components [13]. However, this
approach, which is beneficial for smooth analytical solutions, proved less suitable for our
studies: The L-BFGS optimizer tends to over-refine noisy elements within measurements.
We found that the AMSGrad modification of the Adam optimizer [67] from the PyTorch
library (Version 1.8.1, sourced from Hamburg, Germany) [68] yielded satisfactory results
with a learning rate of α = 0.0001 over 15, 000 epochs of training.

x

t

Ũ

Ṽ

I

∂
∂x

∂
∂t

∂2

∂t2

PDE loss: Lres = LU,res + LV,res

Data loss: Ldata = LU,data + LV,data

Neural network

Measurement data

ηm(x = 6m, t)

ηm(x = 3m, t) Am(x = 3m, t)

Am(x = 6m, t)

Envelopes Am = Um + iVm

Physical information

Total loss Lepochs ≥ maxit

argmin
θ,a

L

argmax
λd,µd,λr,µr

L

Update λd,µd,λr,µr

Update θ,a

No

Yes

PINN training done

W(2)

b(2)a(2)
W(3)

b(3)a(3)

W(4)

b(4)a(4)
W(1)

b(1)a(1)
W(5)

b(5)

Param. fine-tuning

Update ωp, kp
ωp kp

Figure 4. Schematic framework of the physics-informed neural network developed to solve the
hydrodynamic nonlinear Schrödinger equation. The neural network architecture comprises two input
nodes to insert points of the computational domain (x, t) and two output nodes to approximate the
real and imaginary parts of the complex-valued NLSE solution Ã(x, t) = Ũ(x, t)+ iṼ(x, t). Real wave
measurement data ηm, which are obtained at the domain boundaries, are transformed into envelope
representations Am to guide the PINN’s solution toward approximating these boundary values. This
is achieved by the data loss component MSEdata (Equations (14) and (15)). To additionally guide the
PINN solution toward ensuring physical consistency inside the entire computational domain, the
PDE loss MSEres incorporates NLSE residuals (Equations (16)–(19)). The PINN’s variables θ (weights
W and biases b); activation function slopes a; and self-adaption weights λd, µd, λr, and µr (and,
for the case of additional coefficient fine tuning during assimilation, the parameters ωp and kp) are
updated iteratively in the training process to minimize the total loss L, which is composed of data
and PDE loss components.

2.3.3. Evaluation

After assimilating the measurements at the domain boundaries to reconstruct the envelopes
in the entire computational domain, the evaluation of the PINNs’ performance necessitated a
metric that compared the measurement time series Am = Am(x = xg, t) with the reconstruction
Ã = Ã(x = xg, t) at all gauge positions xg ∈ {3, 4, 5, 6}m. While metrics based on Euclidean
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distances, such as the mean-squared error (MSE), are scale dependent and treat deviations in
frequency and phase as amplitude errors [69], the surface similarity parameter (SSP)

SSP(Am, Ã) =

√∫
|FAm(ω)− FÃ(ω)|2dω√∫

|FAm(ω)|2dω +
√∫

|FÃ(ω)|2dω
∈ [0, 1] (20)

proposed by Perlin and Bustamante [70] combines phase , amplitude , and frequency errors
into a scalar unified measure. In this metric, ω denotes the wave frequency vector and
FAm and FÃ denote the discrete Fourier transforms of the time series Am(x = xg, t) or
Ã(x = xg, t). The SSP is a normalized error metric, with SSP = 0 indicating perfect
agreement and SSP = 1 implying a comparison against zero or phase-inverted surfaces.
To visually illustrate the impact of the SSP metric, we systematically compared an exem-
plary wave envelope against various signals across a range of SSP and MSE values in the
Appendix (Figure A1). Due to its straightforward error assessment and the applicabil-
ity for comparing signals with differing sampling rates and lengths, the SSP has found
application in recent research related to ocean wave prediction and reconstruction by
Klein et al. [1,7], Wedler et al. [9,69], Desmars et al. [71,72], Lünser et al. [43], Kim et al. [73],
and Ehlers et al. [2].

3. Results and Discussion

After a successful validation of the NLSE-PINN against an analytic solution to the
NLSE (see Appendix A.2), we assessed its applicability to more realistic scenarios that
involved data that do not entirely conform to the equation in the loss function, such
as elevation measurements from the wave tank shown in Figure 1. The NLSE-PINN
framework underwent training for all 630 generated wave measurement samples, where
each was characterized by a distinct wave parameter combination and random phases.
Our aim was to reconstruct wave envelopes throughout the spatio-temporal domain
3 m ≤ x ≤ 6 m and 0 s ≤ t ≤ 60 s solely based on two time series measured at the
gauge locations xg,meas ∈ {3, 6}m spaced 3 m apart. Additional measurements at locations
xg,test ∈ {4, 5}m were reserved exclusively for evaluating the PINN solutions post-training.
Therefore, the first subsection (Section 3.1) focuses on the pure data assimilation task, where
the NLSE coefficients in the PINN’s loss function remained constant during training and
determined a priori based on spectral wave properties and linear dispersion. In contrast,
the second subsection (Section 3.2) explores treating the peak frequency and wavenumber,
which form the NLSE coefficients, as identifiable variables that are adapted by the optimizer
to fit the measurements best.

3.1. Data Assimilation with Constant NLSE Coefficients

In the following benchmark data assimilation task, the NLSE coefficients (Equation (6))
were kept constant during the PINN training and determined a priori based on the mean of
the spectral peak frequencies ωp,3 and ωp,6 at the domain boundaries using Equation (8). This
peak frequency ωp = 1

2
(
ωp,3 + ωp,6

)
was calculated for each of the 630 samples, where each

individual sample was generated following the procedure outlined in Section 2.1 and followed
the data structure shown in Figure 1b. The linear dispersion relation Equation (7) yielded the
corresponding peak wavenumber kp. Note that the calculated ωp could slightly deviate from
the peak frequency ωp used to generate the JONSWAP spectrum for the HOSM. Each sample
underwent individual PINN training for 15,000 epochs, which required approximately 1200 s
of computational time on a NVIDIA GeForce RTX 3090 GPU.

Figure 5 depicts a representative training loss curve for the NLSE-PINN framework.
During the initial epochs, a remarkable decrease in the PDE residual error components
MSEU,res and MSEV,res was observed, while the data errors MSEU,data and MSEV,data re-
mained high. As the data errors started to decrease and the PINN solution aligned more
closely with the prescribed boundary data, the PDE errors experienced a transient increase
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before reaching a plateau. These observations could have arose from a zero envelope that
caused high data errors in the early training, despite satisfying PDE residues that caused
low PDE errors. However, as the envelope progressively matched the actual measurement
data at the boundaries, fulfilling PDE residues in the remaining domain became more
challenging, which led to a slight increase in the corresponding error.

0 2500 5000 7500 10000 12500 15000

Epochs

10−5

10−4

10−3

10−2

10−1

100

M
S
E

MSEU,data

MSEV,data

MSEU,res

MSEV,res

Figure 5. Exemplary NLSE-PINN training loss curve. The PDE residual error components MSEU,res

and MSEV,res initially exhibited a strong decrease, but slightly increased as the data error components
MSEU,data and MSEV,data were reduced. After around 10,000 epochs, the PDE residual errors reached
a plateau, while the data errors continued to gradually improve.

Figure 6 presents a reconstruction of the real part Ũ(x, t) and imaginary part Ṽ(x, t)
of an envelope above the carrier wave sample no. 1, with ϵ = 0.075, ωp = 4.45 rad

s , and
γ = 6. The PINN reconstructed a wave envelope structure across the entire computational
domain, despite relying solely on measurement data from the boundaries marked in violet.

While some wave samples were successfully assimilated, challenges were evident
for other samples. For instance, Figure 7 presents a PINN solution for sample no. 2,
which was characterized by ϵ = 0.025 and ωp = 8.34 rad

s , with a broad-banded nature
indicated by γ = 1. The average errors for the real and imaginary parts of the envelope
were SSP = 0.194 and SSP = 0.242, respectively. Notably, increased errors were observed
within the computational domain at xg,test ∈ {4, 5}m, despite the satisfactory alignment of
the boundary values with the ground truth at xg,meas ∈ {3, 6}m. These errors seemed to
originate from nonphysical envelope peaks that emerged from both boundaries toward
the middle of the domain but met with an offset, which indicated a small error in the
NLSE coefficient of the group velocity cg =

ωp

2kp
for the underlying data. However, as the

advanced method of Equation (8) was already utilized for ωp determination, it became
apparent that establishing a robust approach to determine this parameter consistently
across all samples presented a challenge.

The trends observed in the aforementioned examples were repetitive across all
630 instances in the assimilation task, which is summarized in Figure 8, where the SSP value
represents the average error across the real and imaginary parts of each sample. Each cell
in the figure corresponds to the mean SSP achieved for all five samples of a specific ϵ–ωp–γ
combination, where the determined ωp value was rounded to the nearest integer for this
illustration. Notably, the errors tended to decrease as the ωp value increased. The frequency
dependence aligned with the inherent preference of PINNs for successive solving from
lower to higher frequency components cf. [13] when considering that higher frequencies ωp
of the carrier wave η(x, t) resulted in smoother, lower-frequency envelopes A(x, t), while
lower frequencies ωp of the carrier wave η(x, t) resulted in higher-frequency envelopes
A(x, t). Moreover, Figure 8 illustrates a general error increase as the peak enhancement
factors γ decrease or the steepness values ϵ slightly increased. As proven by Appendix A.2,
these observations were not attributable to the PINN method itself but rather aligned
with the model misspecification. Specifically, the NLSE was limited for narrow-band and
small-amplitude waves, while the ground truth HOSM data seem to exceed its validity
range for increasing ϵ and a broader spectra.
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Figure 6. Real part and imaginary part of the envelope solution Ã(x, t) = Ũ(x, t) + iṼ(x, t) generated
by the PINN using predetermined, constant NLSE coefficients for sample no. 1 (carrier wave with
ϵ = 0.075, ωp = 9.45 rad

s , and γ = 6). The measurement envelope points Um and Vm were provided
on the domain boundaries only and are highlighted in violet. While the PINN solution at the
boundaries aligned well with the measured data, it exhibited slight inaccuracies within the remaining
computational domain.
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Figure 7. Real part and imaginary part of the envelope solution Ã(x, t) = Ũ(x, t) + iṼ(x, t) generated
by the PINN using predetermined, constant NLSE coefficients for sample no. 2 (carrier wave with
ϵ = 0.025, ωp = 8.34 rad

s , and γ = 1). Compared with sample no. 1 in Figure 6, the envelope maxima
that developed from the boundaries was met with an offset inside the domain.
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Figure 8. Reconstruction errors for all 630 samples from training the PINNs with predetermined,
constant NLSE coefficients. In general, the envelopes above lower-frequency waves (lower ωp)
were harder to reconstruct than for higher-frequency waves. Moreover, the errors increased for
broader-banded samples (lower γ) and higher steepness samples (higher ϵ).

3.2. Coefficient Fine Tuning Alongside Data Assimilation

Despite employing an advanced formula (Equation (8)) to determine the peak fre-
quency ωp required for calculating the NLSE coefficients (Equation (6)), uncertainties in the
ωp determination persisted due to the short measurement durations and broader-banded
signals, as discussed in the context of the envelope offset observed in Figure 7. Given
the impracticality of exploring alternative possibilities for ωp determination or iteratively
adjusting it to recalculate the solution, we examined a data-driven opportunity to fine tune
this parameter in the following subsection. Therefore, we treated the PDE coefficients not
as constants but as additional trainable variables to address the inverse problems during
the assimilation of the measurement data. Our objective was to enhance the reconstruction
quality and eliminate the envelope offsets attributed to non-optimal constant coefficients
by utilizing the results from the previous Section 3.1 as a benchmark. Since all the NLSE
coefficients depended on ωp and kp, we refrained from directly setting cg, δ, and ν as
variables. Instead, we initially determined ωp and kp using Equations (7) and (8), as
demonstrated before, but subsequently treated them as additional PINN variables. Hence,
the coefficients cg, δ, and ν emerged from the current ωp and kp in each epoch of training.
Moreover, as water waves with increasing nonlinearity are known to deviate from the linear
dispersion relation (Equation (7)), we decoupled the current kp and ωp during training. As
discussed in the previous subsection, each of the 630 samples, with a data structure shown
in Figure 1b, underwent individual training for 15,000 epochs. However, now the training
incorporated two additional trainable variables ωp and kp, as illustrated in the lower-left
box of Figure 4.

The visual comparison of the new reconstruction for sample no. 2 that employed
trainable variables ωp and kp in Figure 9 with the previous solution that used constant
coefficients in Figure 7 revealed a strong reduction in the envelope offset. Table 1 compares
the initial peak frequency ωp and wavenumber kp with their fine tuned values, along with
the resulting NLSE coefficients. For this sample, the ωp increased during the training,

while the kp decreased, which resulted in a faster group velocity cg=
ωp

2kp
. Simultaneously,

the nonlinear term received slightly less attention due to a decreased coefficient ν=−k
3
p.

These adjustments not only resulted in a visual reduction of the nonphysical envelope
offsets but also improved the SSP error values. For the real part, the error decreased from
SSP = 0.194 to SSP = 0.150, and for the imaginary part, from SSP = 0.242 to SSP = 0.188,
both of which were an around 20% improvement for sample no. 2. This improvement is
noteworthy considering that while adjustable coefficients can mitigate uncertainties in ωp
determination, they cannot fully overcome the NLSE’s assumption of a single ideal carrier
frequency, particularly for HOSM data with γ = 1.
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Figure 9. Real part and imaginary part of the envelope solution Ã(x, t) = Ũ(x, t) + iṼ(x, t) generated
by the PINN using adaptable NLSE coefficients due to the learnable ωp and kp for sample no. 2
(carrier wave with ϵ = 0.025, ωp = 8.34 rad

s , and γ = 1). Compared with the reconstruction using
constant NLSE coefficients in Figure 7, a reduction in the envelope offset was evident.

Examining the 630 samples collectively revealed that the solutions that used the
trainable ωp and kp values exhibited fewer envelope offsets. Figure 10 demonstrates an
enhancement in the SSP values when comparing these results for fine tuned coefficients
with results obtained with the constant and predetermined coefficients shown in Figure 8.
While the trend persisted, where lower-frequency, higher-steepness, or broad-banded
samples yielded comparatively high individual errors, the average SSP values experienced
a reduction from SSP = 0.223 to SSP = 0.209 (γ = 1), from SSP = 0.199 to SSP = 0.185
(γ = 3), and from SSP = 0.181 to SSP = 0.165 (γ = 6). On average the reduction
from SSP = 0.204 with constant coefficients to SSP = 0.186 with trainable coefficients
represented an improvement of approximately 8.8%, while complicated instances, such
as sample no. 2, also experienced considerably higher individual improvements (around
20%). Consequently, allowing the fine tuning of ωp and kp values during PINN training
confirmed the initial hypothsis, as it enhanced the measurable and visible reconstruction
quality compared with using constant coefficients in pure data assimilation tasks.

Table 1. NLSE coefficients of sample no. 2 calculated from ωp and kp for the pure data assimilation
task (initial) compared with the optimized values learned during the parameter fine tuning. In
addition, the corresponding SSP and MSE errors are given.

NLSE Coefficients Mean Error

ωp kp cg =
ωp
2kp

δ = − kp
ω2

p
ν = −k

3
p SSP Re. SSP Im. MSE Re. MSE Im.

Initial 8.344 7.097 0.588 −0.102 −357.4 0.194 0.242 2.72 ×10−7 2.88 × 10−7

Learned 9.355 6.202 0.754 −0.071 −256.7 0.150 0.188 1.72 × 10−7 1.73 × 10−7
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Figure 10. Reconstruction errors for all 630 samples from training the PINNs with tunable ωp and
kp values that caused adaptable NLSE coefficients. In general, the SSP errors were slightly reduced
compared with the results obtained with constant coefficients in Figure 8. However, the general trend
where lower ωp values, higher ϵ values, and lower γ values le d to increased errors remained.

During the coefficient fine tuning, the peak frequency increased and the wavenumber
decreased while training of sample no. 2 shown in Figure 9 and Table 1. In contrast, other
samples displayed varied trends, such as concurrent increasing or decreasing ωp and kp, or
decreasing ωp with increasing kp. Figure 11 illustrates this variability across all 630 samples
according to their respective ϵ–γ combination. The initial ωp and kp values aligned with
the blue graph of the linear dispersion relation, while the fine tuned values mostly deviated
from this relation, as indicated by red crosses. The left and middle columns of this Figure
reveal that medium- and broad-banded sea states (γ = 3 and γ = 1) tended to benefit
from ωp–kp combinations above the linear dispersion relation. This suggests that increased

group velocities cg=
ωp

2kp
enhanced the reconstruction quality. In contrast, narrow-banded

samples (γ = 6) showed learned combinations both above and below the linear dispersion
curve, which reflected that the neural network effectively reduced the uncertainties in the
initial determination of ωp.

Figure 11 further illustrates a consistent trend: irrespective of the γ value, increasing
steepness ϵ resulted in smaller changes in the kp values during training. This was evi-
dent from the vertically oriented lines between the initial and final ωp–kp combinations
in the upper subplots. This observation implies that as the steepness increases, the PINN
prioritizes maintaining the nonlinear term of the NLSE, as represented by the coefficient
ν=−k

3
p. This aligns with physical reasoning, as a higher ϵ corresponds to increased nonlin-

earities. Preserving this coefficient indicates that the PINN identifies nonlinearity as crucial.
Consequently, alterations in the group velocity cg=

ωp

2kp
primarily arise from alterations in

ωp only.
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Figure 11. Initial and final ωp–kp combinations for all 630 samples from training the PINNs with
tuneable ωp and kp values that caused adaptable NLSE coefficients. While the initial values were
determined following the linear dispersion relation, this constraint was removed during training. We
observed that broader-banded samples (lower γ) tended to benefit from ωp–kp combinations above
linear dispersion. Furthermore, with increasing steepness ϵ, the PINNs attempted to maintain the
nonlinear term of the NLSE associated with ν=−k

3
p as far as possible by allowing minor changes to the

kp value.
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4. Conclusions

This study demonstrated realistic application scenarios of physics-informed neural
networks (PINNs) in ocean engineering contexts. Specifically, the hydrodynamic nonlinear
Schrödinger equation (NLSE) constrains the developed PINN framework to ensure the
physical consistency of its solutions. First, the NLSE-PINN is employed for reconstructing
synthetic wave elevation measurements between two gauges, a process known as data
assimilation and a fundamental function of PINNs. However, the utilized wave data
occasionally deviates from the small-steepness and narrow-band assumptions inherent
to the NLSE, which poses a challenge known as model misspecification. This challenge
must be anticipated whenever employing PINNs for real-world scenarios, where analytical
solutions to the PDE utilized for a PINN’s loss functions are typically not observable,
and comprehensive knowledge of physical equations that cover all observed phenomena
is rare. Moreover, this model misspecification and the short time intervals of elevation
measurements complicate the determination of the required NLSE coefficients based on
spectral properties. These uncertainties in the a priori determination of constant NLSE
coefficients occasionally lead to non-physical envelope offsets in the reconstruction of
certain instances.

To enhance the reconstruction quality of such cases, conventional numerical meth-
ods would typically require a systematic coefficient adjustment and numerical forward
propagation to optimize the data fit between two measurement points. In contrast, our
second research phase demonstrated that the NLSE-PINN method allowed for fine tuning
the NLSE coefficients’ base parameters ωp and kp concurrently with the data assimilation
in the same optimization process. This integrated parameter fine tuning effectively miti-
gated the previously observed non-physical offsets and reduced the mean error across all
630 wave samples from SSP = 0.204 with predetermined, constant coefficients during pure
data assimilation to SSP = 0.186 with trainable coefficients. This represented an average
improvement of 8.82%, while some samples experienced even greater improvements of up
to 20%.

However, it is important to note that the reconstruction remains generally more
challenging for broader wave spectra and samples with higher steepness. This challenge is
not inherent to the PINN methodology itself, but rather associated with the characteristics
of the utilized NLSE to constrain the loss function for data stemming from the more realistic
HOSM. Therefore, future research can explore the integration of the modified nonlinear
Schrödinger equation (MNLSE), which is also referred to as the Dysthe equation [74], into
the PINN loss function. Due to its higher order of nonlinearity, the MNLSE may mitigate
the steepness limitations inherent in the standard NLSE and provide new insights. Also,
the broader-bandwidth variant of the MNLSE [75] might be particularly advantageous, as it
additionally alleviates the limitations associated with narrow-band assumptions. Moreover,
the development of a PINN capable of directly solving the fully nonlinear potential flow
equations represents a promising direction, as it could offer improvements over relying on
simplified models, such as the variants of the NLSE.

Moreover, concerning the successful fine tuning of ωp and kp values in this study,
further research can explore the feasibility of deriving a nonlinear dispersion relation
as a function of wave parameters, such as the bandwidth, amplitude, or steepness. This
research direction holds the potential to deepen our understanding of the interplay of NLSE
coefficients and wave parameters and may contribute to the development of more flexible
and accurate models for describing nonlinear water wave phenomena. Furthermore, this
study employed synthetic wave data generated at two locations within a numerical wave
tank with a fixed measurement distance. Hence, future research should investigate the
impact of varying the distances between these two buoys. Moreover, applying the potential
flow PINN or NLSE-PINN methods to real wave measurement data from wave tanks or
open ocean scenarios, particularly for directional two-dimensional wave surfaces, would
be valuable.
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Appendix A

Appendix A.1. Graphical Representation of SSP Error Metric

Although the surface similarity parameter (SSP, Equation (20)) was used in several
studies to compare surface waves, it remains a relatively new metric. Therefore, Figure A1
presents the SSP for one-dimensional surfaces Ṽ with increasing alignment with the refer-
ence surface Vm. To further illustrate the increasing surface alignment, the more established
mean-squared error metric

MSE =
n

∑
i=1

(
Vm,i − Ṽi

)2, (A1)

with n being the number of grid points, is also provided for each signal. It is important to
note that the MSE values are scale dependent, which poses a disadvantage for our compar-
ative investigation, as the amplitudes of the 630 examined wave samples varied by several
orders of magnitude due to the chosen wave parameter ranges for the data generation.
Although the MSE could be normalized by the norm or the maximum of the reference
signal Vm to mitigate the issue of differing magnitudes between wave samples, this would
still treat phase shifts or frequency differences as amplitude errors. In contrast, the SSP
distinguishes between amplitude, phase, and frequency errors cf. [69] by comparison in
the frequency domain and combines the total error into a single value that always ranges
between 0 and 1, regardless of the specific sample’s amplitude.

https://chat.openai.com/
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Figure A1. Graphical representation for assessing the meaning of different SSP values. The baseline
signal Vm represents the imaginary part of sample no. 2 (also shown in Figures 7 and 9) at position
x = 6 m. It was compared with incrementally improving PINN solutions Ṽ, which resulted in
decreasing SSP values. Additionally, the MSE values were calculated to provide further insights.

Appendix A.2. NLSE-PINN Validation Using Analytic Solution

To evaluate the assimilation and coefficient identification capabilities of the NLSE-
PINN, distinguishing between errors originating from the neural network and those in-
herent to the NLSE is imperative. Given the NLSE’s simplifying assumptions, it may not
capture all the characteristics of the numerical wave tank data generated by the HOSM.
Hence, we initially validated our method using the analytical NLSE solution of a Peregrine
breather [76] in time-like form [51], which is defined as

Aper = a

−1 +
4
(

1 − iωpϵ2x
cg

)
1 + 8k2

pϵ2(x − cgt)2 +
ω2

pϵ4x2

c2
g

 exp

(
−

iωpϵ2x
2cg

)
. (A2)

As the NLSE entirely encompasses this analytic solution, the following analysis al-
lowed for estimating the magnitude of errors attributable to the approximation by the
neural network: Given the spatial range of 3 m covered by the numerical wave tank
(Figure 1), we derived the analytical solution accordingly. The carrier wave frequency was
set to ωp = 9 rad

s , with amplitude a = 0.02 m. The NLSE coefficients were calculated using
Equation (6) and held constant during 15,000 epochs of PINN training. The reconstruction
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results in the spatio-temporal domain, which were solely based on the boundary data, are
shown in Figure A2.

−10 −5 0 5 10

t [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
[m

]

PINN real part Ũ(x, t) :
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Figure A2. Real part and imaginary part of the envelope solution Ã(x, t) = Ũ(x, t) + iṼ(x, t)
generated by the PINN using predetermined, constant NLSE coefficients for a Peregrine breather.
The analytic envelope points Uper and Vper are provided only at the domain boundaries and are
highlighted in violet. This analysis not only validated the efficiency of the developed NLSE-PINN
framework but also allowed for accessing the small magnitude of approximation error attributable to
the neural network.

Despite providing only two time series of the analytical solution at the outer bound-
aries x = −1.5 m and x = 1.5 m for computing the data loss (Equations (14) and(15)),
the PINN effectively reconstructed physically consistent Peregrine envelopes within the
remaining computational domain solely with the aid of the PDE residual loss components
(Equations (16) and (17)). This is demonstrated in the lower subplots, where the time
series of the PINN solution’s real and imaginary parts, Ũ(x, t) and Ṽ(x, t), are compared
with the analytical solution, Uper(x, t) and Vper(x, t), at the cross-section of five points in
space. Notably, despite the lower envelope amplitudes at the domain boundaries, the
PINN accurately reconstructed the higher peak in the real part in the middle of the domain.
This underscores the NLSE-PINN’s efficacy to capture and calculate the underlying NLSE
dynamics. Furthermore, this analysis revealed that the approximation errors attributable to
the neural network were very small, where they averaged around MSE = 5.8 × 10−9 and
SSP = 0.004 in this instance. Hence, any encountered errors were more likely attributable to
model misspecification between the NLSE-PINN and the HOSM wave tank measurement
data than to approximation errors.
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