
DIGITALIZATION OF DLR UNMANNED AERIAL SYSTEM PLATFORM "PROTEUS" FOR SIMULATION OF MORPHING AND FLIGHT MECHANICS

<u>Martin Radestock</u>, Jan Tikalsky, Lennart Kracke, Yogesh Sajikumar Pai, Heiko von Geyr

Motivation for wing shape adaption

- Adaption of wing "shape" in different flight states
- Nearly everything what is imageable at aircraft wing was morphed:
 - Camber
 - Span
 - Sweep
 - Twist
 - Oblique
 - ...

3

- Unique benefit, but is a comparison within one category is challenging
- Since 2000s more unmanned systems are tested

M. Radestock, German Aerospace Center (DLR), 09. Sep. 2024

				1.0.00		
1903	1931	1931	1932	1937	1947	1951
	1	all and a state	¥			Ý
Wright Flyer	Pterodactyl IV	MAK-10	IS-1	LIG-7	MAK-123	X 5
Twist	Sweep	Span	Bi-to monoplane	Chord	Span	Sweep
1952	1964	1964	1966	1967	1967	1969
Sept-	* *		+	×	×	Y-
XF10F	F 111	XB 70	Su 17 IG	MIG 23	SU 24	Tu 22 M
Sweep	Sweep	Span bending	Sweep	Sweep	Sweep	Sweep
1070	1070	1071	1071	1070	1001	1005
1970	1972	1974	1974	1979	1981	1985
	A	×	-Fe	~	\prec	-
F 14	FS 29	B 1	Tornado	AD 1	Tu 160	AFTI/F 111
Sweep	Span	Sweep	Sweep	Obliquing	Sweep	M.A.W.
1993	1994	2001	2002	2003	2004	2005
1000			-		-	
FLYRT	MOTHRA	AAL	F/A 18	Virginia Tech	Univ. of Florida	Univ. of Florida
Span	Camber	Pitch	A.A.W.	Span	Twist	Gull
2006	2006	2007	2007	2007	2008	2010
K		X	7	*	*	*
MFX 1	Univ. of Florida	Virginia Tech	Univ. of Florida	MFX 2	Delft Univ.	Virignia tech
Sweep & Span	Sweep	Camber	Folding	Sweep & span	Sweep	Camber

Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ. A Review of Morphing Aircraft. *Journal of Intelligent Material Systems and Structures*. 2011;22(9):823-877. doi:<u>10.1177/1045389X11414084</u>

 Within last decade scaled flight test become interesting with unmanned aerial systems (UAS)

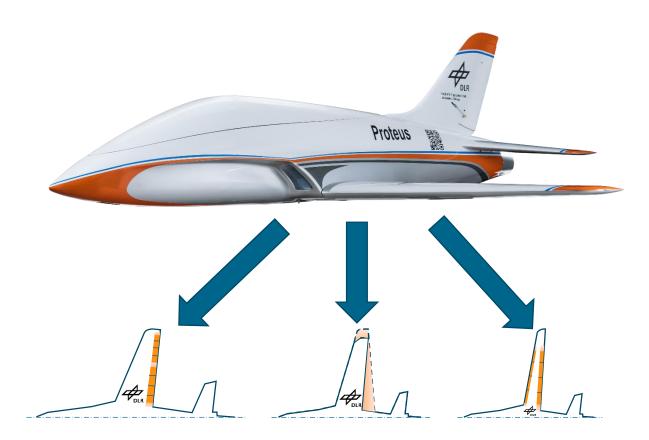
- Within last decade scaled flight test become interesting with unmanned aerial systems (UAS)
- Different platforms already under testing
 - AREA-I (NASA)
 - Albatross-I (Airbus)
 - A320 Model (Clean Sky 2 by ONERA, NLR, CIRA)

- Within last decade scaled flight test become interesting with unmanned aerial systems (UAS)
- Different platforms already under testing
 - AREA-I (NASA)
 - Albatross-I (Airbus)

A320 Model (Clean Sky 2 by ONERA, NLR, CIRA)

- Within last decade scaled flight test become interesting with unmanned aerial systems (UAS)
- Different platforms already under testing
 - AREA-I (NASA)
 - Albatross-I (Airbus)
 - A320 Model (Clean Sky 2 by ONERA, NLR, CIRA)

- Within last decade scaled flight test become interesting with unmanned aerial systems (UAS)
- Different platforms already under testing
 - AREA-I (NASA)
 - Albatross-I (Airbus)
 - A320 Model (Clean Sky 2 by ONERA, NLR, CIRA)
- Still expensive models due to scaled model



Proteus as scaled flight testing platform

- Commercially available model aircraft
 - MTOW 25 kg (later up to 70kg)
 - Span of 2.5 m
 - V_{max} 300 km/h
 - Material: GFRP
- Experimental investigation also for high risk technology possible due to low cost model
- Knowledge of model is vital for scaled flight tests

What make sense to scale with Proteus?

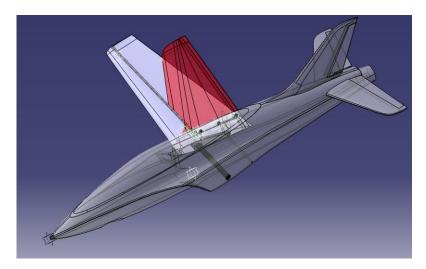
Class	Name	MTOW	Example
А	Airplane	> 20 000 kg	Boeing 737, Airbus A320, Embraer E190, Fokker 70, Dash 8Q-400
В	Airplane	14 000 kg – 20 000 kg	Bombardier DHC-8-300, ATR 42
С	Airplane	5 700 kg – 14 000 kg	Learjet 45, Beech King Air 350
E	Single-engine airplane	≤ 2 000 kg	Cessna C172, Piper PA-28
F	Single-engine airplane	2 000 kg – 5 700 kg	Pilatus PC12, Antonov AN-2, Cessna C208
G	Multi-engine airplane	≤ 2 000 kg	Piper PA-34, Diamond DA-42
Н	Rotorcraft		EC 135, EC 145
I	Multi-engine airplane	2 000 kg – 5 700 kg	Beechcraft King Air 200, Piper PA-42, Beech Baron 58
K	Motor glider		Grob G 109, Scheibe Falke
L	Airships		Zeppelin NT
М	Ultra-light airplane	< 600kg	FK 9, Ikarus C42, Shark Aero UL
Ν	Ultra-light glider		ProFe Banjo, Windward Performance SparrowHawk
0	Hot air balloon		GEFA-Flug AS 105 GD
Р	Unmanned Aircrafts		DJI Mavic Air, Yuneec Typhoon H3
D-1234	Gliders		LS4, K 8, ASK 13, ASK 21, Discus

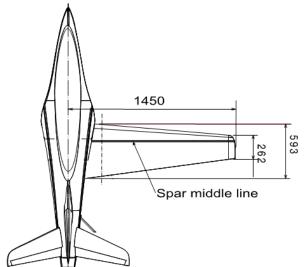
10

What make sense to scale with Proteus?

	Class	Name	MTOW	Example
	A	Airplane	> 20 000 kg	Boeing 737, Airbus A320, Embraer E190, Fokker 70, Dash 8Q-400
aimilar	В	Airplane	14 000 kg – 20 000 kg	Bombardier DHC-8-300, ATR 42
similar	С	Airplane	5 700 kg – 14 000 kg	Learjet 45, Beech King Air 350
planform	E	Single-engine airplane	≤ 2 000 kg	Cessna C172, Piper PA-28
	F	Single-engine airplane	2 000 kg – 5 700 kg	Pilatus PC12, Antonov AN-2, Cessna C208
similar 🎽	G	Multi-engine airplane	<u>≤ 2 000 kg</u>	Piper PA-34, Diamond DA-42
planform	H	Rotorcraft		EC 135, EC 145
	ł	Multi-engine airplane	2 000 kg – 5 700 kg	Beechcraft King Air 200, Piper PA-42, Beech Baron 58
	K	Motor glider		Grob G 109, Scheibe Falke
	F	Airships		Zeppelin NT
	М	Ultra-light airplane	< 600kg	FK 9, Ikarus C42, Shark Aero UL
Equal	N	Ultra-light glider		ProFe Banjo, Windward Performance SparrowHawk
certification	θ	Hot air balloon		GEFA-Flug AS 105 GD
specification	P	Unmanned Aircrafts		DJI Mavic Air, Yuneec Typhoon H3
	D-1234	Gliders		LS4, K 8, ASK 13, ASK 21, Discus

Possible aircraft classes for scalability




Class	Example	MTOW [kg]	~	Span [m]	Rectangular wing	Trapezoid wing	Sweep	Velocity [km/h]
A	Boeing 737, Airbus A320, Embraer E190, Fokker 70	> 20 000 78 000 (A320)	> 28 121 (A320)	> 29 36 (A320)	-	Х		Transonic
В	ATR 42	14 000 –20 000	54.5	24.57	-	Х	-	560
С	Learjet 45	5 700 –14 000	29	14.57	-	Х	Х	860
E	Cessna C172, Beechcraft G58	≤ 2 000	13.1 – 16.2	10.92 – 16.8	x	Х	-	~300 – 400
F	BNG Defender 2T-4s	2 000 – 5 700	32.61	16.15	X	-	-	
	AL3C-100 EuropaXS	< 600		10.82 8 – 14.4	X	-	-	~300
D-1234	Antares E 23	290-680	9 – 12	15 – 23	Х	Х	-	320

- Aerodynamic effects for aircrafts with MTOW <5.7 t are properly scalable
- Focus with Proteus in first step on classes E, F, M und D-1234 with same wing loading
- Scalability to categories to A, B, C is more complex (e.g. transonic effects) and cannot properly investigated with UAS

Wing planform of Proteus

- Model aircraft is designed for aerobatics (red shape)
- Initial span of 2.5 m does not fit for loading by ~60 kg / m² per wing
- Reduce sweep and extend span for general aviation aircrafts
- Heavier fuselage required (70kg)
- Digitalization only of fuselage and empennage required for simulation

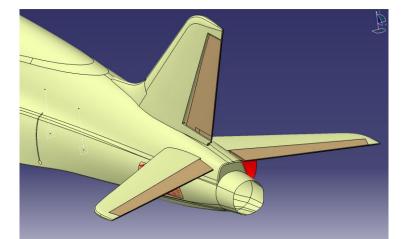
Geometrical digitalization of fuselage

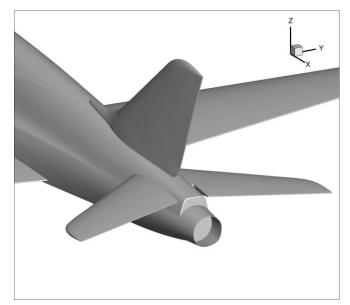
- Manufacture provide CAD model fuselage
- High divergence of shape between model and reality (e.g. compare nose)
- Manufacture update only the molds
- Decision for new surface scanning in order to get proper data

Surface measurement with

- stereolithographic camera system
- Complete scan of fuselage incl. tail
- Measurement points needs to be reworked to surfaces for proper mesh generation

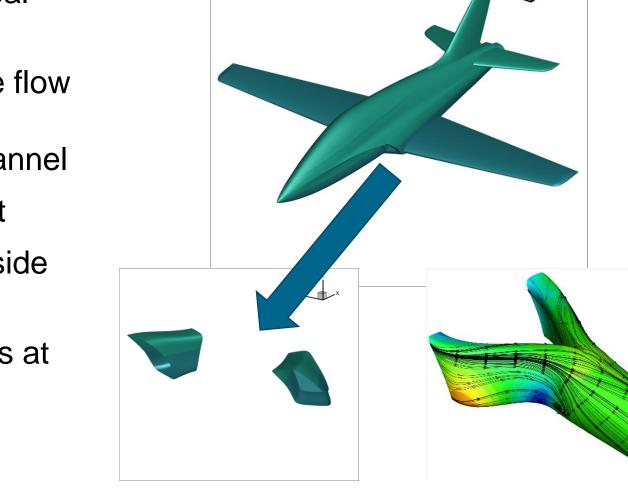
15

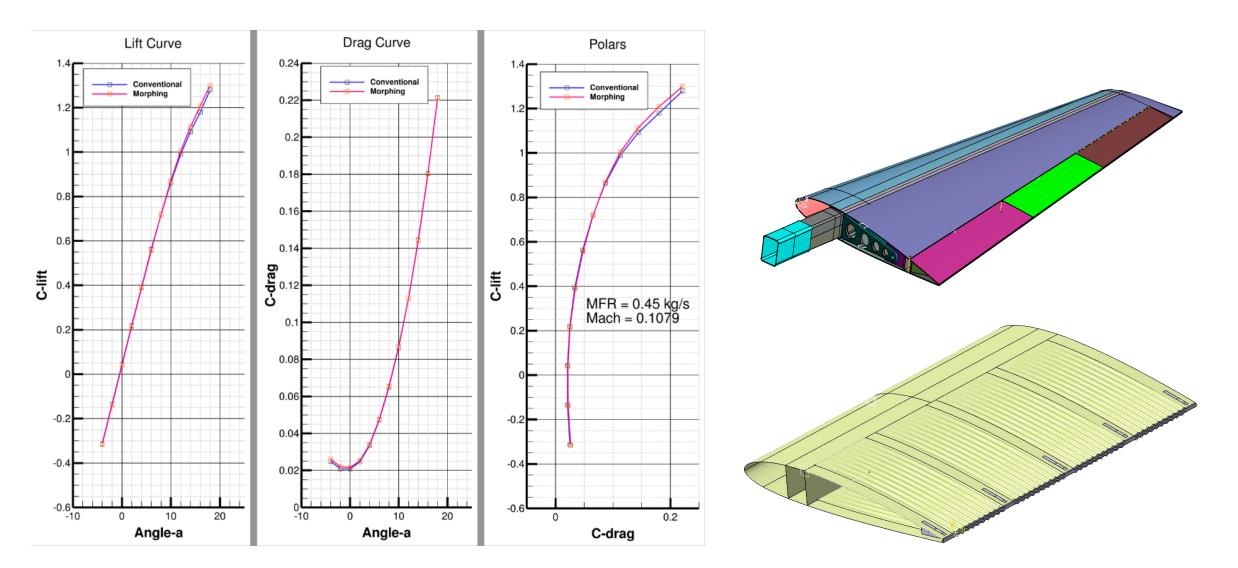

Surface scan



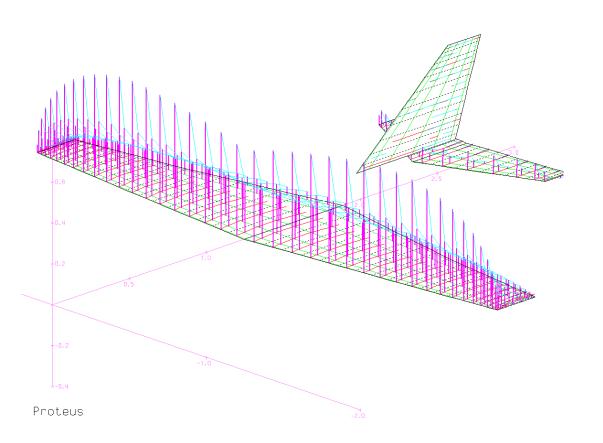
Re-modelling of tail

- Discrete surfaces on horizontal and vertical stabilizer
- Simplification to reduce mesh elements for aerodynamic simulation
- Introduce sharp edges at trailing edges to have fast converging results (flow separation at edges)
- Divergence to real model expected, but tail is not changed




Issues with air intake

- Smaller intakes compared to real aircraft
- Numerical difficulties due to the flow separation occurring too downstream within the inlet channel
- Channel is originally quite short
- Channel extension for inlets inside the UAS
- Validation of flow characteristics at intakes need to be done


Comparison of Proteus in cruise condition with morphing and conventional wing

Digitalization of fuselage for live aerodynamic calculation

- Wing will be equipped with trailing edge morphing concept with 10 actuators per wing
- Concept will be used in combination with reinforced learning controller
- "Live" (low-fidelity) calculation of aerodynamic forces & moments in combination of UAS moments of inertia

Moments of inertia for fuselage

- Determination of moments of inertia around pitch, yaw and roll axis
- Simple approach to calculate moments out of oscillating behavior
- Round table is equipped with springs
- Tracking of equipment mass and position for overall moments of inertia

Conclusion and outlook

- Proteus UAS could be a proper scaling platform for general aviation aircrafts as well as estimation of novel systems on fuel efficency
- Geometrical digitalization of UAS depends on details (e.g. intakes, tail)
- Live (low-fidelity) calculation for flight control system required and determined
- Flight test in 2025 with morphing system and reinforced learning algorithm

21

Thank you for your attention.

PRUTEUS

DLR

DLR

EN TAPRO

M. Radestock, German Aerospace Center (DLR), 09. Sep. 2024