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A B S T R A C T

Cantilevers find a wide range of applications in the design of scientific equipment and large-scale 
engineering structures such as aircraft wings. Analysis techniques based on linearization ap-
proximations are unable to capture the large amplitude oscillation behaviour of such structures 
and thus, necessitates development of dedicated nonlinear methods. In this work, the recent 
developments in the Koiter-Newton model reduction method are utilized to obtain nonlinear 
reduced order models (ROMs) from full finite element structural models in order to simulate large 
amplitude dynamics of cantilevers. The method describes a nonlinear system of governing 
equations comprising quadratic and cubic terms which are obtained as higher order derivatives of 
the in-plane strain energy. To ensure that the large rotations in cantilevers and the resultant 
foreshortening effect is also accounted for, a ROM updating algorithm is adopted where the ROM 
parameters are varied with the structural deflections. Linear eigenmodes of the structure are 
utilized to form the reduction subspace. To validate the methodology, the ROM solution is 
compared against experimental results and a convergence study is conducted to identify the 
number of modes needed to replicate the nonlinear response. Finally, a composite wingbox 
structure is considered for which time domain simulations are conducted and frequency response 
curves, obtained through a frequency sweep, are presented.

1. Introduction

The utilization of cantilever structures is widespread in several engineering disciplines and is commonly observable in civil, me-
chanical and aerospace structures. The ability of cantilevers to deflect unrestricted on one end introduces unique characteristics into its 
kinematic behaviour. Unlike double-clamped structures, which tend to predominantly undergo elastic deformation under large loads, 
cantilever motion can be described as a combination of large rotations and elastic bending. At relatively large deflections and rotations, 
a nonlinear load-deflection behaviour is observable arising from geometric stiffening, follower forces and change of moment arm [1]. 
This implies that the solutions based on the linear theory have a limited application and cannot be applied correctly beyond a certain 
range of deflections.

Analytical models for nonlinear deflection in simple cantilever beams have been previously extensively studied. It has been 
highlighted in [1] that formulations for nonlinear curvature and corrections factors for the changing moment must be accounted for in 
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order to predict the nonlinear behaviour of cantilevers. Early investigations on non-planar cantilever dynamics using inextensibility 
constraints have also shown that the nonlinear curvature effects have a significant influence on the motion of the system [2,3]. The 
inextensible beam however, has applications limited to cases where the cross-section area is much smaller than the beam length [4,5] 
and therefore, it can be assumed that shear deformation does not have any noteworthy effect. The so called geometrically exact model, 
where no approximations are made with respect to the kinematics of the system, provides a generic description of the nonlinear 
behaviour of cantilevers. Variants of this model have been commonly utilized for nonlinear static and dynamic investigations of 
cantilevers [6-10]. When modelling aircraft wings for nonlinear analyses, it has recently been common practice to develop low order 
models in the form of equivalent beams which approximate the wing deflection behaviour and subsequently, utilize the geometrically 
exact models [11-15]. In nonlinear dynamic investigations, the benefits gained through reduced order models (ROMs) are well known 
[16-19]. Development of ROMs based on analytical methods for complex models however, may require a large number of degrees of 
freedom to obtain a converged response [20].

Alternatively, ROMs based on numerical formulations have been derived directly from finite element (FE) models which obviously 
offer more flexibility in terms of the complexity of the analysed structure. These methods, in general, can be classified as intrusive and 
non-intrusive methods. The intrusive methods explicitly consider nonlinear stiffness coefficients within the FE formulation. The non- 
intrusive methods are necessary when it is not possible to obtain the nonlinear coefficients directly. This can be achieved by imposing 
specified displacement fields on a structural model and computing the restoring force from a set of nonlinear static FE analyses. A set of 
equations are then obtained in the generalized coordinates, the solution of which provides the unknown nonlinear stiffness coefficients 
[21]. Alternatively, a similar method to evaluate nonlinear coefficients using regression analysis with the application of prescribed 
static loads to a finite element model is discussed in [22]. Another family of ROMs based on utilization of mode derivatives has been 
extensively investigated. A method based on the reduction subspace enrichment using modal derivatives was first proposed in [23] 
where the finite element discretization is used as starting point. A method for selecting the most relevant second order modal de-
rivatives was proposed in [24]. Modal derivatives have been further utilized in [25] where time domain simulations were conducted 
on an aircraft wing model. However, it is also highlighted that the reduction basis can rapidly increase in size for large models. The 
extended modal approach [26] specifically focusses on the utilization of higher order mode derivatives to account for the fore-
shortening effect in modelling moderately large deflection of aircraft wings. Invariant manifold techniques have also been utilized for 
studying nonlinear dynamics of a rotating beam [27] and an aircraft wing comprising large number of degrees of freedom [28]. The 
Koiter-Newton (K-N) model reduction [29-30] is another technique where the ROM is derived from an FE model. The approach 
considers nonlinear stiffness in the intrusive form i.e. nonlinear terms in the governing equations are directly obtained from FE for-
mulations. The method was originally developed for post-buckling analyses and was subsequently utilized to investigate nonlinear 
dynamics using a momentum subspace formulation [31]. The K-N reduction was later extended to the study of nonlinear static de-
flections in a cantilevered wingbox structure [32]. It was also demonstrated that due to the large rotation effects in cantilevers, the 
ROM based on K-N reduction has a limited range of validity.

The work presented in this article aims to exploit the recent developments in the K-N reduction approach and investigate the 
nonlinear dynamics of wing-like structures. Analogous to the preliminary static results seen in [32], ROM based on the K-N reduction 
in the unloaded state of the structure is unable to capture the nonlinear dynamics at large deflections. To resolve this issue, a ROM 
updating strategy within the framework of the Newmark time integration [33] scheme has been developed which enables us to 
simulate large amplitude dynamics of cantilevers. The approach does not make use of the common enforced inextensibility condition 
but rather relies on finite element-based formulations and generation of a ROM that varies with the structural deflections. The novel 
contributions of this work include the first investigations of nonlinear dynamics of cantilevers using the K-N reduction along with a 
modelling strategy to improve the ROM performance for extremely large amplitude dynamic response. The approach is validated 
against finite element simulations and experimentally generated frequency response curves. Finally, the method is applied to generate 
nonlinear frequency response curves of a composite wing box assembly comprising 24,582 degrees of freedom.

The remainder of the article is divided into the following sections: Section 2 discusses the theoretical formulation of the momentum 
subspace-based K-N reduction, Section 3 discusses the ROM updating strategy within Newmark time integration, and finally, in Section 
4 the test cases are presented along with relevant discussions.

2. Theoretical formulation

The equations utilized for the ROM formulation based on the Koiter-Newton reduction is summarized in this section. A detailed 
description of the formulations for nonlinear statics and nonlinear dynamics can be found in [29-31]. We first present the ROM 
equations as derived in their original form for nonlinear static analyses. Thereafter, the adaptations made for the nonlinear dynamic 
formulation are discussed.

Under static loading conditions, the internal forces in a structure are a function of its displacements fint = f(u) which can be 
expanded in the Taylor series about an equilibrium position. For a full FE model, where L, Q, C are the linear, quadratic and cubic 
stiffness tensors respectively, the internal force is described as: 

fint = Lu + Quu + Cuuu + O
(
‖ u‖4) (1) 

It is assumed that a linear subspace of the force space exists and can be parameterized by coordinates ϕ. The force subspace f is then 
described as: 

f = Fϕ (2) 
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where F is a load matrix and comprises the external load and additional perturbation load vectors fα. At equilibrium then f = fint must 
be satisfied.

Analogous to Eq. (1), the internal force ϕint in the ROM subspace is described as: 

ϕint = Lξ + Qξξ + Cξξξ + O
(
‖ ξ‖4) (3) 

where L, Q, C are the linear, quadratic and cubic stiffness tensors of the ROM and ξ is the generalized displacement in the ROM 
subspace.

The equilibrium solution u is parameterized by the generalized displacement ξ and approximated using the Taylor series expansion 
as: 

u(ξ) = uαξ + uαβξξ + uαβγξξξ + O
(
‖ ξ‖3) (4) 

where uα, uαβ, uαβγ are the first, second and third order displacement fields, respectively. This parameterization is fixed by choosing ξ to 
be a work conjugate of ϕ, as given by: 

(Fϕ)́ δu = ϕʹδξ (5) 

Substituting Eq. (4) into left hand side of Eq. (5) and solving for the coefficients, a set of constraint equations are obtained. The 
constraint equations are defined as: 

fʹα uβ = δαβ, fʹα uβγ = 0, fʹα uβγδ = 0 (6) 

where δαβ is the Kronecker delta. The constraint equations imply that the component vectors fα of the force subspace are orthogonal to 
the higher order displacement fields.

Combining Eq. (1-4) and solving for the coefficients of the various powers of ξ terms, we obtain three sets of linear equations. The 
orthogonality constraints obtained in Eq. (6) are appended to these equations. Together, these equations can be written in the matrix 
form and utilized for evaluation of the ROM parameters: 

[
L − F
− Fʹ 0

] {
uα
Lα

}

=

{
0

− Eα

}

(7) 

[
L − F
− Fʹ 0

] {
uαβ
Qαβ

}

=

{
− Q
(
uα,uβ

)

0

}

(8) 

Cαβγδ = C
(
uα, uβ, uγ, uδ

)
−

2
3
[
uʹ

αβ L uδγ + uʹ
βγ L uδα + uʹ

γα L uδβ
]

(9) 

The subscripts α, β, γ, δ vary over the range 1 to m, where m is the number of vectors in the load matrix, Eα is a unit vector whose 
αth term is 1 and all other terms are zero. The coefficients uα and uαβ from the displacement parameterization in Eq. (4) are obtained as 
by-products of the ROM parameters and do not require an assumption beforehand. The displacement solution is reconstructed by 
considering only up to the second order terms in the displacement expansion.

The above set of Eq. (7-9) are obtained by considering the force subspace. It has been shown in [31] that the ROM formulation is 
extendable to dynamics through the use of D’Alembert’s principle and a set of equations fully analogous to Eq. (7-9) are obtainable 
when formulating the ROM in the momentum subspace. Furthermore, as shown in [31], the utilization of the momentum subspace 
enables us to compute reduced mass and damping matrices which are required in the nonlinear dynamic formulations.

To adapt the ROM for nonlinear dynamics, a linear assumption for the momentum p of the full FE model is made in the momentum 
subspace: 

p = Pπ (10) 

where P is the reduction basis matrix formed as a product of the mass matrix and the modal matrix comprising m selected linear 
eigenvectors, and π is a vector of momentum amplitudes in the ROM subspace. The number of eigenvectors selected here determines 
the size of the ROM. The similarity in the form of Eq. (10) and Eq. (2) implies that a set of orthogonality constraint equations similar to 
Eq. (6) are obtained. The resulting set of ROM equations are subsequently modified only to the extent of replacing the load matrix F by 
the basis matrix P in the Eq. (7-8).

The ROM parameters using the momentum subspace are therefore, computed using the following equations: 
[

L − P
− Pʹ 0

] {
uα
Lα

}

=

{
0

− Eα

}

(11) 

[
L − P

− Pʹ 0

] {
uαβ
Qαβ

}

=

{
− Q
(
uα,uβ

)

0

}

(12) 
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Cαβγδ = C
(
uα, uβ, uγ, uδ

)
−

2
3
[
uʹ

αβ L uδγ + uʹ
βγ L uδα + uʹ

γα L uδβ
]

(13) 

The inputs from the full FE model i.e. L, Q, C, that are required to compute the ROM parameters are obtained using a strain energy- 
based approach where the nonlinear strain definition is based on the Green-Lagrange strains [31]. The higher order derivatives of the 
strain energy provide the equations for internal forces and the required stiffness tensors.

Furthermore, the reduced mass matrix M is evaluated using the modal matrix φ and the mass matrix of the full FE model M: 

M = (φʹM φ)− 1 (14) 

A quadratic damping model is also assumed and the damping matrix D of the FE model is defined proportional to the mass and 
stiffness matrices according to the well-known Rayleigh damping. The reduced damping matrix D is evaluated using the following 
equation: 

D = M
(
Pʹ M− 1 D M− 1P

)
M (15) 

In a more specific case, when mass proportional damping is utilized, Eq. (15) can be simplified to D = αM where α is the mass 
coefficient in Rayleigh damping.

Finally, the reduced force vector can be computed from the external force vector fext using the work equivalence conditions and is 
described by: 

ϕ = uʹ
α fext (16) 

The equation of motion for the ROM is then defined as: 

M ξ̈ + D ξ̇˙+ L ξ + Q ξξ + C ξξξ = ϕ(t) (17) 

where the dot accent represent time derivative of the variables.
The reduced mass and damping matrices are in general dependent on the reduction subspace, as defined in Eq. (14) & (15). When 

the ROM is reformulated in a deformed state, the reduction subspace is also reconstructed. Only in the special case that the reduction 
subspace consists of mass orthonormalized eigenvectors, the reduced mass matrix is always normalized to an identity matrix. Any 
other choice of vectors in the reduction subspace would result in a varying reduced mass matrix. Besides, explicit accountability of 
nonlinear inertia terms usually arises due to certain approximations in the formulations. The commonly used beam inextensibility 
conditions, for example in [40], are known to introduce such nonlinear inertia terms in governing equations. In our formulation, such 
constraints have not been enforced.

It is to be noted that the choice of eigenmodes in the reduction subspace has a direct influence on the dynamic response analysis. For 
example, we cannot correctly analyse the second bending behaviour without including the second eigenmode shape in the reduction 
subspace. The ROM formulated for a range of frequencies then must also include all of the eigenmode shapes in the reduction subspace 
that are intended to be investigated.

All ROM parameters can be determined using Eq. (11-17). The computation procedure of full FE tensors required in order to derive 
these ROM parameters is summarized in the Appendix. In the following section, the solution methodology adapted is presented.

Fig 1. Peak displacements in steady state solutions of a steel cantilever beam of length l = 0.6931 m, b = 0.0254 m, d = 0.99 mm compared at 
different load amplitudes – (a) in-plane displacements, (b) transverse displacements.
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3. Solution methodology

3.1. ROM updating procedure

To understand the extent of applicability of the K-N reduction, initial investigations are conducted on a cantilever beam whose 
geometrical and material properties were obtained from [34]. The dimensions of the beam are: length l = 0.6931 m, cross-section 
width b = 0.0254 m, cross-section depth d = 0.99 mm. The material properties of the beam are: elastic modulus E = 200 GPa, and 
density ρ = 7,800 kg/m3. The cantilever tip is excited at the first modal frequency of 1.68 Hz and the applied force is incremented in 
steps. The ROM is formulated once at the initial undeformed configuration. A snapshot of the peak amplitude is captured at each 
loading step after the steady state response has been reached. These amplitudes are compared to corresponding full FE solutions 
obtained from MSC Nastran. It is evident from the comparisons in Fig. 1 that the ROM can closely replicate the full FE solution for a 
limited range of deflections, in this case up to 0.03 N load, while beyond that the error progressively increases.

In an earlier work, the K-N reduction was utilized for studying nonlinear static deflection of cantilever beams [32]. It was high-
lighted that the ROM computed in the initial undeformed shape of a cantilevered structure is insufficient to capture the complete 
load-deflection trajectory, especially at larger deflection amplitudes. It was demonstrated in the static case that an incremental ROM 
updating procedure coupled with a corrector step based on the Newton-Raphson iterations could improve the solution accuracy. In this 
method, the ROM parameters generated in one step are retained until the differences between the external and internal forces do not 
exceed a user-defined tolerance level. Beyond that, the geometry is deformed and updated and the relevant ROM parameters are 
regenerated.

The corrector step requires solving for full FE matrices and therefore, negates the benefits of the ROM, especially for large structural 
models. Executing the same procedure in time domain inevitably exponentially increases the simulation time. To truly gain the 
benefits of utilizing the ROM in dynamic analyses, it is imperative that a solution is obtained purely through the use of the ROM 
parameters. One of the objectives of this work is to understand if the ROM performance could be potentially improved for larger 
deflections under dynamic loading and for this purpose a ROM updating algorithm in combination with the Newmark time integration 
scheme is proposed.

Fig. 2 is a representation of the flow diagram of the ROM generation and the updating process in the nonlinear dynamics model. The 
computations begin with a preparatory offline stage where a nonlinear static analysis is conducted to assess the validity of the ROM, 
generate ROM parameters and determine displacement limits for which the ROM parameters hold validity. This implies that the region 
of ROM validity is predetermined based on the nonlinear static deflection profile. The ROM is then stored in a database and carried 
over to the dynamic analysis module where Eq. (1) is solved using the implicit form of the Newmark time integration. The original 
algorithm is modified to introduce the dependency of the ROM parameters on displacement limits. For clarity, the algorithm for the 
dynamic module is defined below in text form.

Fig 2. Algorithm for the K-N reduction and updating procedure.
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Step 1: Select ROM parameters in the initial undeformed state of the structure. Initialize reference (undeformed) solution in the 
ROM subspace ξref = 0
Step 2: Obtain a solution predictor for the j + 1th time step using the Newmark-beta method. 

ξ̈j+1 = 0; ξj+1 = ξj + ξ̇˙j Δt + ξ̈j

(
1
2
− β

)

Δt2; ξ̇˙j+1 = ξ̇˙j + (1 − γ)ξ̈j Δt 

Step 3: Evaluate the force residual ε=‖ ϕin dyn− ϕ ‖ where ϕin dyn is the internal force in the dynamic model.
Step 4: While ε ≥ tolerance: 

δ = ξj+1 − ξref 

Δξ =

[
M

β Δt2 +
γD

β Δt
+ L + Q δ + C δδ

]− 1

ε 

ξj+1 = ξj+1 + Δξ, ξ̇˙j+1 = ξ̇˙j+1 +
γ Δξ
β Δt

, ξ̈j+1 = ξ̈j+1 +
Δξ

β Δt2 

Step 5: Convert the generalized displacements to real displacements using Eq. (4).
Step 6: Update ROM parameters if displacement limits are exceeded and update the reference configuration to the corresponding 
equilibrium solution. Update reference solution in the ROM subspace: ξref = ξj+1
Step 7: Start solution for the next time step if t ≤ tmax (total simulation time).

The variables are always referred back to the previous reference equilibrium step and therefore, it is necessary to update the 
reference each time the ROM is updated. The parameters β and γ are set to 0.25 and 0.5 respectively for the unconditionally stable 
implicit Newmark algorithm [33].

3.2. Key considerations

• The procedure described in Section 3.1 relies on developing a ROM database through nonlinear static analyses. The extent of 
deflection in the nonlinear static case determines the range of validity of the ROM for dynamic analyses. For a generic test case and 
loading condition, prior information about the dynamic response is often unavailable. Therefore, it is practical to create a ROM 
database with sufficiently large loading conditions. For example, a wing of a transport aircraft is, by design, always expected to 
have tip deflections considerably lesser than 50 % of the span. Therefore, a ROM database created for up to 50 % tip deflection 
under static loading encompasses the entire operational range.

• For all loading conditions resulting in similar dynamic motion it is sufficient to utilize the ROM computed for one of the load cases 
as long as the desired range of deflection is covered. The ROM may, however, be reformulated by including appropriate eigenmodes 
in the reduction subspace if the applied loading conditions result in a drastically different dynamic response which cannot be 
captured through an existing ROM.

• Dynamic response related to a specific eigenfrequency can only be captured correctly when the corresponding eigenmode shape is 
included in the reduction subspace.

In the subsequent sections, test cases are presented to assess the utility of the ROM and the updating algorithm.

4. Discussion of results

Three test cases are considered for verification of the approach: (1) comparison to full FE solution of a cantilever beam excited 
harmonically at the free end, (2) comparison to experimentally measured frequency response curves of a thin metal sheet under base 
excitation, (3) large scale model reduction of a composite wingbox structure.

4.1. Comparison to FE solution – test case 1

The cantilever beam described in [34,35] is analysed first using the ROM and the solution is compared to the full FE solution from 
MSC Nastran. The dimensions of the beam are: length l = 0.6931 m, cross-section width b = 0.0254 m, cross-section depth d = 0.99 
mm. The material properties of the beam are: elastic modulus E = 200 GPa, and density ρ = 7,800 kg m-3. The FE model is generated 
using beam elements and the structure is excited at the free end using a concentrated point load and assuming the excitation frequency 
equal to the first modal frequency. An initial eigenvalue analysis is conducted to compute the mode shapes and modal frequencies of 
the structure.

The 1st bending mode is found to be at 1.68 Hz. The excitation force is chosen to be 0.06 N and a mass proportional damping with a 
damping ratio of 0.0189 is applied such that the transverse deflection at the free end exceeds 50 % of the cantilever length and can with 
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certainty said to be in the geometrically nonlinear domain. The structure is modelled using 10 beam elements which results in 66 × 66 
stiffness and mass matrices in the full FE model. The full FE solution reaches a steady state at approximately around 25 s. The ROM is 
also simulated for 50 s, however, to ensure clarity in the comparison only the final few seconds in the steady state of the simulation 
results is depicted in Fig. 3.

The ROM solution is obtained with two methods: first by utilizing constant ROM parameters throughout the analysis (K-N 
reduction) and second by updating the ROM parameters (henceforth denoted as UK-N reduction) according to the algorithm presented 
in Section 3.

The maximum amplitude of deflection in the transverse direction reaches approximately 52.45 % of the cantilever length, 0.364 m 
in absolute magnitudes, under the described loading conditions in a full FE solution. In comparison, the K-N reduction predicts a 
transverse deflection of 0.416 m which is a deviation of 14.4 %. The UK-N performs better and predicts the maximum transverse 
deflection to be 0.362 m which is an error of 0.56 %. Similarly, for in-plane displacements the FE solution results in 0.124 m, the K-N 
reduction predicts a deviation of 16.7 % and the UK-N predicts a difference of 0.4 %. It is notable that the linear analyses techniques are 
incapable of predicting these in-plane displacements, nor can they predict the geometric stiffening in the displacements.

The solution shows definite improvement when the UK-N is utilized with some additional computational costs in the offline stage. 
However, the UK-N is still more efficient than the full FE solution. For comparison, MSC Nastran completed the analysis in 298 s. The K- 
N analysis was completed in 4 s including all pre-processing computations. The UK-N required 28 s in total, however, the majority of 
this computation time was required for the preparatory nonlinear static analysis. The actual UK-N simulation required 7.6 s for 
completion. All computations were done on a Linux-PC with an Intel Xeon W-2145 CPU@ 3.7 GHz processor and 32 Gb RAM. It is 
notable that the ROM computations were executed using a 3 degrees of freedom (DOF) model which implies that the first three mode 
shapes were utilized to formulate the ROM. 200 load increments were utilized to construct the ROM database.

A convergence study was conducted by adding more eigenvectors in the reduction subspace to ensure that the ROM parameters did 
not significantly vary. Results of the convergence study for the UK-N are shown magnified in Fig. 4. It can be seen that the 1-DOF model 
results in a distinctly different response while utilizing two or higher number of eigenvectors in the reduction subspace results in 
responses with deviations in the order of 0.1 %.

4.2. Comparison to experimental results – test case 2

An experimental study for extremely large amplitude vibrations in cantilevers has been presented in [10] where the dynamic 
response of a thin steel sheet under base excitation was measured using a high-speed camera. The dimensions of the chosen test 
structure are described as: length l = 81.5 mm, width b = 9 mm and depth d = 0.0762 mm. The material properties are: elastic modulus 
E = 200 GPa and material density ρ = 7,800 kg m-3. The first modal frequency computed using a linear eigenvalue analysis is found to 
be 9.38 Hz. The structure is excited with a force of 0.0005 N and a mass proportional damping is applied with a damping ratio 0.0068. 
A frequency sweep around the linear modal frequency is conducted and the peak amplitudes at each excitation frequency is captured to 
generate the frequency response curve. Both K-N and UK-N based analyses are conducted for comparison with the experimental results 
and to demonstrate the effect of the updating algorithm. The ROM is constructed using the first three eigenvectors in the reduction 
subspace. In case of the UK-N, 200 load increments are applied to construct the ROM database. In Fig. 5 the frequency response curves 
are compared to the experimental data for the transverse and in-plane displacements. The UK-N evidently performs better than the K-N 
approach. When utilizing the UK-N approach, a hardening type nonlinearity is perceivable at 80 % transverse tip deflection. In 
comparison, with the same analysis parameters, the K-N reduction significantly over-predicts the peak amplitudes and furthermore, is 

Fig 3. Comparison of time domain response of a steel cantilever beam l = 0.6931 m, b = 0.0254 m, d = 0.99 mm obtained using full FEM, K-N and 
UK-N reduction – (a) in-plane tip displacement, (b) transverse tip displacement.
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ineffective in capturing the hardening nonlinearity. However, it is also evident that the experimental results show a greater degree of 
hardening effect than the UK-N predicts.

The deviation of the results is partially explainable through the discussions in Section 3 where it has been highlighted that to ensure 
efficiency in the analyses, the iterative corrector step is eliminated from the algorithm. This implies that at extremely large deflections, 
such as in this test case, the expected solution error is incrementally augmented with increasing deflections.

In Fig. 6, frequency response curves generated on the basis of the force corrected solution (corrected UK-N) are presented. This 
means that in each analysis step, it is ensured through a predictor-corrector approach that the internal forces and external forces are 
equivalent.

There is a noticeable difference in the corrected UK-N response which is closer to the experimental results, however, the corrected 
UK-N is akin to solving a full FE system and does not enable our objective of an efficient solution (in this example requiring over 8 h for 
completion). Additionally, the benefits of using a corrected solution are relatively small in comparison to the exponential increase in 
simulation time; especially within the domain of moderately large deflections up to 50 % transverse tip deflection. Therefore, for the 
subsequent analyses moderately large deflections are considered where the UK-N (with no force correction) performs sufficiently well 
in terms of accuracy and efficiency.

Fig 4. Magnified view of the time domain response of the steel cantilever beam l = 0.6931 m, b = 0.0254 m, d = 0.99 mm, obtained using various 
DOFs in the ROM for convergence analysis – (a) in-plane displacement, (b) transverse displacement.

Fig 5. Comparison of K-N and UK-N based responses to experimental frequency response curves [10] of thin metal sheet l = 81.5 mm, b = 9 mm, 
d = 0.0762 mm – (a) in-plane displacement, (b) transverse displacement.
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4.3. Wingbox structure – test case 3

The previous test cases demonstrate the potential for application of the K-N method through simple beam models. To further assess 
its applicability, we consider a slender wingbox structure designed to undergo large deflections when subjected to generic aircraft 
loads. The nonlinear static deflection behaviour of this wingbox was first presented in [26,36] and an adapted model was subsequently 
studied in [32]. The general construction of the wingbox is typical with an assembly of skin panels, spars and ribs. The entire model is 
constructed using only triangular shell elements [37] with anisotropic material description, where G11 = G22 = 79.15 GPa, G12 = 26.91 
GPa and G33 = 26.12 GPa in the material property matrix. The wing spans across 20 m and a variable thickness distribution is defined 
across the span (see Fig. 7). For a detailed geometrical description and dimensions of the wingbox, the reader is referred to [26,32]. The 
FE model comprises 8660 elements and 4097 node points resulting in 24,582 degrees of freedom. The structure is sinusoidally excited 
at 0.685 Hz which lies in the neighbourhood of the first modal frequency. A concentrated force of 1,000 N is applied at the tip of the 
wingbox at two locations – 40 % and 60 % chord positions and the wing root is fully clamped along the cross-sectional profile grid 

Fig 6. Comparison of the frequency response with a force corrected UK-N solution for a thin metal sheet l = 81.5 mm, b = 9 mm, d = 0.0762 mm – 
(a) in-plane displacement, (b) transverse displacement, magnified view of the peaks in the inset figure.

Fig 7. Wingbox construction and thickness distribution across the span.
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points. A mass proportional damping is applied with a damping ratio 0.0562. The system is simulated for a total time of 30 s using an 
adaptive time increment in Nastran and a fixed time increment of 0.001 s in the UK-N analysis. A convergence study is conducted and 
the first 8 eigenmodes are selected for creating the reduced order model which results in an 8 DOF system.

In Fig. 8, a comparison of the in-plane and transverse displacements at the wingbox tip, obtained through the full FE solution in 
Nastran and the UK-N approach is shown. For clarity in the comparison, only 5 s of the simulation time in steady state are shown. The 
results agree very well with each other with a difference of 0.02 % in the transverse and 0.94 % in the in-plane displacements. The full 
FE solution in Nastran required 4.85 h for completion whereas the UK-N analysis with the 8 DOF model is fully executed in 4.16 mins 
which is a reduction of 98.6 % in the simulation time. However, since the FE model is large, the offline stage consumes significant 
computational effort for generating the ROM parameters.

The computational cost incurred in the offline stage is dependent on the number of force increments and model updates applied in 
the nonlinear static analyses. For smaller FE models, choosing a large number of increments automatically satisfies the requirements of 
the updating process. However, for larger models such as the wingbox structure, it is essential to assess the optimal number of model 
updates and force increments needed for the dynamic analyses to have a converged response. Alternately, specifying a randomly large 
number of increments would result in excess computational cost. A comparison of the variation in dynamic response with the increase 
in the number of ROM updates in the offline stage is shown in Fig. 9a. The maximum displacements, normalized by the FE solution, in 
the steady state is plotted against the number of ROM updates. The transverse displacements, in particular, converge rather quickly 
while a greater number of increments are required to obtain a convergence in the in-plane displacements. For the analysis presented 
here 100 increments were utilized which required a computational time of approximately 2.8 h. However, depending on the design 
stage i.e. early preliminary or detailed design, the user has the choice to use lesser number of increments with some compromise with 
the accuracy. In this example, the use of 40 increments is sufficient to obtain results with a maximum of 2 % error margin, as seen in 
Fig. 9a. In Fig. 9b, the time required in the offline stage is plotted against the number of ROM updates used. The variation is almost 
linear since each cycle of ROM update essentially performs the same set of computations with a different geometrical configuration. It 
is noted that the offline stage is required only once for any specific loading condition. Therefore, the gain in computational efficiency is 
increasingly greater when the ROM is utilized for multiple analyses, which is often an engineering necessity.

Finally, the nonlinear frequency response curves for the first two bending modes (in two perpendicular planes, x-y and y-z as seen in 
Fig. 7) of the wingbox model are presented in Fig. 10. To generate the curve, time domain nonlinear analyses are conducted at different 
excitation frequencies. The indicated forces in Fig. 10 are applied at two node points at the 40 % and 60 % chord locations.

At each excitation frequency, the maximum amplitude from the steady state response is captured. This is represented as a plot of the 
peak amplitudes normalized by the span of the wingbox against the absolute excitation frequencies. It is observed that the first mode 
does not show any significant frequency shifts even at large amplitudes when the tip deflections are over 50 % of the wing span. This is 
somewhat in agreement with the experimental results presented in [10] for the first bending mode where it is also seen that the 
frequency shifts are mild at extremely large amplitude of deflections. The frequency response for the second mode, however, shows a 
relatively stronger hardening effect already at 16 % tip deflection. Even though the general bending profiles are same for both mode 
shapes, the wingbox construction is not symmetrical about all axes and therefore some differences are expected in the bending 
behaviour in two different planes.

The ROM computations were significantly faster in generating the frequency response curves. It was possible to generate the entire 
curve in Fig. 10a, with 90 data points, using the ROM in 5.87 h. While each Nastran analysis at a single excitation frequency already 
requires nearly 5 h for completion and generating a similar curve with 90 data points, thus, would require over 2 weeks of simulation 

Fig 8. Comparison between UK-N and full FE time domain response at the free end of the composite wingbox -(a) in-plane displacement, (b) 
transverse displacement.
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time. The efficiency of the ROM can be further enhanced with the use of parametric continuation techniques.

5. Conclusions

The K-N reduction technique has been utilized for the first time to investigate nonlinear dynamics of cantilevers comprising large 
number of degrees of freedom. It has been found that the ROM based on K-N approach can predict the response of mildly nonlinear 
systems well. However, at larger deflections the errors increase. The utilization of a ROM updating algorithm (UK-N) has been pro-
posed which perceptibly improves the performance of the K-N reduction. Comparison to experimental results at very large deflections 
demonstrate that although the UK-N performs significantly better, some deviations still exist from the experimental response which at 
least partially arise due to the lack of force correction in the iterative algorithms. Additionally, large scale model reduction is con-
ducted on a composite wingbox structure to demonstrate potential applications in the aeronautical industry. It is concluded, based on 
the test cases studied, that UK-N is well suited for moderately large deflections of high aspect ratio cantilevers and generally out-
performs full FE simulations in terms of efficiency with a reduction of up to 98 % in the simulation time. Up to 50 % reduction in the 
total time can be seen if the pre-processing time is considered. In cases where the analyses must be repeated several times, the benefits 

Fig 9. (a) Displacement convergence with increasing number of ROM updates in the offline stage, (b) increase in pre-processing time in the offline 
stage with number of ROM updates.

Fig 10. Nonlinear frequency response curves for the first two modes of the wingbox model – (a) Bending in the y-z plane, (b) Bending in the x- 
y plane.
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of the ROM utilization are greater.
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Appendix

The K-N reduction is independent of the element type used in the FE model. In this work, a planar beam element and a triangular 
shell element [37,38] were utilized. The quadratic (Q) and cubic (C) stiffness tensors are computed as higher order derivatives of the 
total in-plane strain energy of the system. The derivations are described in detail in [29-31].

A. Beam element

Strain and curvature of a planar beam element (Fig. A.1) in the finite element framework are defined in this section. 

Fig A.1. Element degrees of freedom in the beam element.

The strain ε and the curvature χ for this element is defined as [29]: 

ε =
(u2 − u1)

L
+

1
2

[
(u2 − u1)

L

2

+
6

5L2 (w1 − w2)
2
+

2
15

(θ1 − θ2)
2
+

1
5

θ1θ2 +
1
5L

(θ1 + θ2)(w1 − w2)

]

χ = −
1
L2

[

3w1 − 3w2 −
6w1x

L
+

6w2x
L

+(2L − 3x)θ1 +(L − 3x)θ2

]

The total strain energy of an element is then: 

Uelem =
1
2

Alelem έ E ε 

The higher order derivatives of the strain energy then provide us with the following stiffness tensors required for the ROM com-
putations: 

Lij = EAlelem

(

ε ∂2ε
∂qi ∂qj

+
∂ε
∂qi

∂ε
∂qj

)

Qijk =
EAlelem

2

(
∂ε
∂qj

∂2ε
∂qi ∂qk

+
∂ε
∂qi

∂2ε
∂qj ∂qk

+
∂ε
∂qk

∂2ε
∂qi ∂qj

)
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Cijkl =
EAlelem

6

(
∂2ε

∂qi ∂ql

∂2ε
∂qj ∂qk

+
∂2ε

∂qj ∂ql

∂2ε
∂qi ∂qk

+
∂2ε

∂qk ∂ql

∂2ε
∂qi ∂qj

)

B. Shell Element

Fig B.1. Element degrees of freedom in the shell element.

The nonlinear strain of the shell element (Fig. B.1) is defined as: 

ε = εl + εnl =

(

Bl +
1
2

Bnl(q)
)

q 

Bl =
1

2A
[B1 B2 B3],

where A is the element area.
Considering that the three nodal coordinates are (x1, y1), (x2, y2) and (x3, y3), 

xij = xi − xj 

xij = xi − xj 

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⎥
⎥
⎥
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The nonlinear strain component can be computed using the Bnl(q) term which is given by: 
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Bnl(q) =

⎡

⎣
qt Kxx
qt Kyy
qt Kxy

⎤

⎦

Kxx = Bt
wTt

xTxBw + Bt
vT

t
xTxBv 

Kyy = Bt
wTt

yTyBw + Bt
uT

t
yTyBu 

Kxx = Bt
w

(
Tt

xTy + Tt
yTx

)
Bw 

Here, 

Tx =
1

2A
[

y23 y31 y12
]

and Ty =
1

2A
[

x32 y13 x21
]

The other terms involving Bu, Bv, Bw are constant matrices consisting of 0 and 1. The explicit formulations of these matrices can be 
found in [39].

The in-plane strain energy is then described using the following equation: 

U =
1
2

AA m (εlα + εnlα)
(
εlβ + εnlβ

)
, α, β = 1 to 3 

The stiffness tensors are then obtained as derivatives of the strain energy in a similar manner as described for the beam elements.
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