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Benefits of Automating Battery Measurement Processing
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This study presents a structured approach for the treatment of battery measurement data, aiming
to find the points at which we need to update our theories and methods when researching novel battery
materials, e.g., sodium, magnesium, calcium, silicon, or spinel. Linking theoretical electrochemistry with
characterization methods [1] is essential due to the high complexity of interlocking mechanisms in batter-
ies. Consequently, the measurement data required to resolve such complexity transcends the abilities or
time of any one researcher. With structural guidance from ontologies [2], methodological guidance from
automation [3], and profound guidance from experts combined, we can advance the methods developed
over the past decades for LFP and NMC batteries to novel chemistries. As a test case, we elucidate the
methodological origin of wildly varying diffusivities reported for graphite, [4] as shown in Figure 1.
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Figure 1: Comparison of diffusivities obtained with different measurement and data analysis methods.
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