## Attitude estimation of GLONASS-M+ and -K2 satellites

Peter Steigenberger, André Hauschild, Oliver Montenbruck



## **Attitude of GNSS Satellites**





## **Nominal Yaw-Steering**

3





eta elevation of Sun above orbital plane  $\mu$  orbit angle w.r.t. midnight

## **Rate-limited Yaw Steering**





- Maximum yaw rate  $~\dot{\psi}_{
  m max} \lesssim 0.25\,^{\circ}/{
  m s}$
- Nominal yaw rates exceed hardware limits for small elevations of the Sun above the orbital plane  $|\beta_{\rm GLO}|\approx 2.0^\circ$
- Different concepts for rate-limited yaw steering

## **GLONASS** Attitude

Reverse kinematic precise point positioning

Dilssner, F., Springer, T., Gienger, G., & Dow, J. (2011). The GLONASS-M satellite yaw-attitude model. *Advances in Space Research*, *47*(1), 160–171. <u>https://doi.org/10.1016/j.asr.2010.09.007</u>

#### GLONASS CDMA Interface Control Document

Russian Space Systems (2016). GLONASS Interface Control Document: General Description of Code Division Multiple Access Signal System, Edition 1.0





## **GLONASS-K** Rate-Limited Attitude





## **GNSS Satellites with Multiple L-Band Antennas**

# GNSS satellites with two or three antennas:

- QZSS
  - L-Ant: L1/L2/L5
  - L1S-ANT
  - L5S-ANT
- GLONASS-M+
  - L1/L2 FDMA
  - L3 CDMA
- GLONASS-K2
  - L1/L2 FDMA
  - L1/L2/L3 CDMA



QZS-3; Image: Mitsubishi

Hauschild, A. (2019). GNSS yaw attitude estimation: Results for the Japanese Quasi-Zenith Satellite System Block-II satellites using single- or triple-frequency signals from two antennas. *Navigation*, *66*(4), 719–728. <u>https://doi.org/10.1002/navi.333</u>





GLONASS-K2; Image: ISS Reshetnev

## **Triple Carrier Combination**

#### Difference between two ionosphere-free linear combination (geometry-free)

$$IF(\varphi_{a},\varphi_{b}) - IF(\varphi_{a},\varphi_{c}) = (\gamma_{ab} - \gamma_{ac})\varphi_{a} - \gamma_{ab}\varphi_{b} + \gamma_{ac}\varphi_{c}$$
$$\gamma_{ab} = \frac{f_{b}^{2}}{f_{a}^{2} - f_{b}^{2}}, \quad \gamma_{ac} = \frac{f_{c}^{2}}{f_{a}^{2} - f_{c}^{2}}$$



### **Attitude Estimation**



## $\varphi_{\mathrm{tri}} = \mathbf{e}^T \mathbf{R}_z(\mathbf{\psi})^T \mathbf{d}_{\mathrm{tri}} + A_{\mathrm{tri}} + \frac{\lambda_{\mathrm{tri}}}{2\pi} \Psi + b_{\mathrm{tri}} + \varepsilon_{\mathrm{tri}}$

- e receiver-to-satellite line-of-sight unit vector
- $\mathbf{R}_z$  rotation around the spacecraft z-axis
- $\psi$  yaw angle
- $\mathbf{d}_{\mathrm{tri}} \quad \mathrm{baseline}$
- $A_{\rm tri}$  carrier phase ambiguities
- $\Psi$  relative antenna rotation angle
- $b_{\rm tri}$  satellite bias
- $\varepsilon_{\rm tri}$  noise and unmodeled errors

$$\mathbf{d}_{\mathrm{tri}} = (\gamma_{ab} - \gamma_{ac}) \cdot \mathrm{PCO}_a - \gamma_{ab} \cdot \mathrm{PCO}_b + \gamma_{ac} \cdot \mathrm{PCO}_c$$

### **Satellite Bias Estimates**







## **Impact of Satellite Bias Estimation (1)**





## **Impact of Satellite Bias Estimation (2)**





# RMS of estimated attitude w.r.t. nominal attitude

| Туре | PRN | SVN  | With<br>Bias | Without<br>Bias |
|------|-----|------|--------------|-----------------|
| M+   | R04 | R859 | 0.7°         | 1.3°            |
| M+   | R05 | R856 | 0.7°         | 1.2°            |
| M+   | R12 | R858 | 0.9°         | 1.0°            |
| M+   | R16 | R861 | 0.6°         | 0.9°            |
| M+   | R21 | R855 | 0.7°         | 1.9°            |
| M+   | R24 | R860 | 0.8°         | 1.9°            |
| K2   | R26 | R803 | 0.6°         | 1.8°            |

### **Attitude Estimation Results**





**Attitude Precision** 





## **GLONASS M+ Attitude Anomalies during Noon Turns**





15

## **Summary and Conclusions**



- Attitude estimation from triple-frequency observations of two antennas
- In general good agreement of estimated attitude with models
- GLONASS-K2: consistency at the 1° level if orbit-periodic biases are considered
- GLONASS-M+: anomalous yaw accelerations during rate-limited noon turns
  - Yaw offsets up to 20°
- Attitude information included in L1 and L3 CDMA navigation message
  - Currently transmitted by K1B and K2 satellites
  - Included in RINEX 4.02

Steigenberger, P., Montenbruck, O., & Hauschild, A. (2024). Antenna and attitude modeling of modernized GLONASS satellites. *Advances in Space Research*, *74*(7), 3045–3059. <u>https://doi.org/10.1016/j.asr.2024.07.001</u>