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Abstract
State-of-the-art macroeconomic agent-based models (ABMs) include an increas-
ing level of detail in the energy sector. However, the possible financing mechanisms 
of renewable energy are rarely considered. In this study, an investment model for 
power plants is conceptualized, in which energy investors interact in an imperfect 
and decentralized market network for credits, deposits and project equity. Agents 
engage in new power plant investments either through a special purpose vehicle in 
a project finance (PF) structure or via standard corporate finance (CF). The model 
portrays the growth of new power generation capacity, taking into account techno-
logical differences and investment risks associated with the power market. Different 
scenarios are contrasted to investigate the influence of PF investments on the transi-
tion. Further, the effectiveness of a simple green credit easing (GCE) mechanism is 
discussed. The results show that varying the composition of the PF and CF strate-
gies significantly influences the transition speed. GCE can recover the pace of the 
transition, even under drastic reductions in PF. The model serves as a foundational 
framework for more in-depth policy analysis within larger agent-based integrated 
assessment models.

Keywords Agent-based modeling · Energy finance · Financial network interactions · 
Heterogeneity

1 Introduction

Numerous countries are grappling with the challenge of expanding their renewable 
power generation capacities to meet climate objectives and sustainability ambi-
tions, requiring huge investments in generation infrastructure (McCollum et  al. 
2013; Peake and Ekins 2017; Thacker et al. 2019). Financing costs constitute a large 
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fraction of the total costs of renewable power projects, and are often a key figure in 
the risk assessment of sustainable technologies (Egli et al. 2018; Hirth and Steckel 
2016). The coordination of energy finance is a key factor for a successful transi-
tion (Polzin and Sanders 2020). In 2023, the total investment for financing energy 
world-wide amounted to 1.7 trillion US dollar, and it is imperative to sustain high 
investment volumes in the upcoming years in order to achieve a global warming 
target below 2 °C (IEA 2023; McCollum et al. 2018). A significant share of these 
investment efforts will be directed toward transforming the power market, enhancing 
renewable electricity generation. Most power markets, even if widely liberalized, are 
subject to regulatory measures supporting renewable power plants (Hu et al. 2018; 
Nicolli and Vona 2019). The policy design of these measures plays a vital role in 
achieving an optimal balancing between public subsidies and private investments. In 
this regard, agent-based integrated assessment models (IAMs) are a useful analysis 
tool. Effectively integrating the factors driving renewable energy finance into agent-
based IAM frameworks is an essential prerequisite. A main challenge in modeling 
is to incorporate the bottom-up market aspects of energy investments in sufficient 
detail, while maintaining the simplicity and generality of a modeling framework.

When modeling energy investments, the related barriers and risks have to be con-
sidered for a set of heterogeneous investors (Mustaffa et al. 2021; Semieniuk et al. 
2021). Empirically grounded research has developed an understanding about the 
composition of investors’ balance sheets and cost of capital for renewable energy 
finance (Steffen 2020; Kempa et  al. 2021), and has widely demystified real-world 
investors’ risk perception and attitudes toward power market support schemes as 
well as the underlying financing conditions (May and Neuhoff 2017; Polzin et  al. 
2019; Taghizadeh-Hesary and Yoshino 2020).1

Here, agent-based models (ABMs) are particularly suitable, as they naturally 
incorporate bottom-up transition dynamics and actors’ behavior under heterogeneity 
(Vasileiadou and Safarzynska 2010; Farmer et al. 2015; Dosi and Roventini 2019; 
Nieddu et  al. 2022). Conversely, some of these empirically grounded insights on 
energy finance have not yet entered the domain of macro-ABMs of the energy tran-
sition. For a reliable identification of policy settings which incentivize the expan-
sion of renewable energy investments, macro-ABMs and agent-based IAMs need 
to be charged with more real-world evidence about the energy investment behavior. 
Recent literature has elaborated several open research gaps in the ABM modeling 
context. Castro et  al. (2020) point out a lack in agent-based modeling of climate-
energy policy. Sanders et al. (2022) and Savin et al. (2023) identify missing parts 
from other disciplines such as electricity market modeling. However, only few con-
tributions have been made in the direction of concrete model designs for (macro) 
ABMs linking financial markets and electricity markets.2

The model of this paper is an attempt for improvement in this direction. Two 
aspects of renewable energy finance are highlighted: heterogeneity in investors and 
technologies, and the investment risk related to power market premium schemes.

1 The risk aspect is especially important for energy projects which have difficulties to hedge against risk 
otherwise, for example through bilateral power purchase agreements (Hollmén et al. 2022).
2 See appendix A for a more detailed literature review.
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First, power generation technologies are heterogeneous and therefore need to be 
considered as different asset classes. Typically, macroeconomic models only sepa-
rate between “clean and dirty” (or “green and brown”) technologies, blurring out 
the heterogeneous technological specifications of different types of power plants. 
For example, solar photovoltaic investments may offer relatively lower upfront costs 
and shorter project times compared to onshore wind power projects, whereas wind 
power plants may run over a higher number of hours per year (Hirth et al. 2016). 
The physical and technological boundaries of electricity generation naturally result 
in a certain degree of heterogeneity among energy investors. In addition, there can 
be an information asymmetry on the credit market between the investors, who are 
familiar with their technological parameters, and the credit lenders, who apply best-
practice rules to assess project risks in a more generalized fashion. Without further 
financial intermediaries being engaged, this can lead to a significant mismatch (In 
et  al. 2020). Thus, heterogeneity in energy investors and their financing strategies 
might induce institutional and market-related barriers for mobilizing private finance 
for low-carbon technologies (Barazza and Strachan 2020; Azhgaliyeva et al. 2023; 
Mazzucato and Semieniuk 2018).3 As a result of variations in operational and non-
operational (financing) expenditures among different investors and technologies, the 
cash flow of power plant projects differs from one project to another.

Second, investment risk is linked to power market support schemes and the occur-
rence of insecure revenue streams. Whereas most models assume an exogenous 
power price or a fixed feed-in premium, a typical feature employed in real-world 
power markets is the sliding market premium.4 One-sided power market premium 
designs allow for windfall profits of renewable energy plants whenever expensive 
fossil power is price-setting, while securing a lower bound of revenue streams if 
electricity prices fall below a certain strike price. Under one-sided premium 
schemes, renewable energy investors must therefore account for the insecurity of 
acquiring excess profits or not. According to the pecking order theory of investment 
(Myers and Majluf 1984), when confronted with insecure future revenue streams 
investors will be restricted to equity-based financing and do not make use of (typ-
ically cheaper) debt-based financing or retained past earnings. This aspect is also 
connected to the use of project finance (PF) (Pollio 1998; Steffen 2018; Gatti 2023). 
The latter offers an opportunity to de-risk an investor’s balance sheet by splitting off 
parts of its funds to a subsidiary, a so-called special purpose vehicle (SPV). SPVs 
are economic entities which exist as an isolated financial frame for the underlying 
energy project, therefore being evaluated for their individual performance rather 
than the investor’s financial leverage or past performance. There are also some more 
intrinsic reasons for using PF, related to the organizational structure of an invest-
ment. Citizen energy projects for wind and solar are typical example for SPV archi-
tectures and high equity to debt shares, whereas most utility-scale coal- and gas-fired 

3 Because different power plant types can attract different types of investors, they also play a role in the 
decentralization of power and a shift toward local and regional authorities, see (Iskandarova et al. 2021; 
Schlindwein and Montalvo 2023; Romero-Castro et al. 2023).
4 For example, see (Gawel and Purkus 2013; Purkus et al. 2015; Klobasa et al. 2013) for a more detailed 
analysis of the market premium on the German electricity market.
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power plants classically make use of corporate finance (CF) (Steffen 2018). In sum-
mary, the de-risking of energy investments often results in different combinations of 
financing strategies (CF/PF) and debt-to-equity compositions among the heteroge-
neous investors, depending on the power market layout.

In order to address these two under-researched aspects, this paper considers six 
different power generation technologies and a stylized power market with a one-
sided sliding premium mechanism. Investors and banks are matched bottom-up on 
imperfect financial markets in order to account for stickiness and information asym-
metry. Both the PF and the CF strategy are considered.

The remainder of this paper is structured as follows: In Sect. 2, we address our 
model structure and equations, and the timeline of events is constructed. Further, 
model results for a baseline setting and two alternative scenarios with less project 
finance and with an additional credit easing scheme are discussed (Sect. 3). We sum-
marize our results and discuss the potential for further research in Sect. 4.

2  Model

The model of this paper adopts two distinct levels of detail, employing stylized, rep-
resentative agents for the government, central bank and rest of economy on the mac-
roeconomic level, while utilizing microeconomically interacting agents for energy 
investors, SPVs and banks. Figure  1 provides a comprehensive overview of the 
model architecture, illustrating the relations and financial transactions between the 
agents, as well as the market interactions. This model uses a stock-flow consistent 
framework, meaning that the financial balances of agents are coherent, and liabilities 
of one agent are consistently treated as assets for another.5 Investors either follow the 
Project Finance (PF) or the Corporate Finance (CF) strategy, conditional on the gen-
eration technology they aim to invest in. CF investors can directly invest into new 
power plants. PF Investors follow a more indirect strategy, as they search for project 
opportunities (which are represented by newly forming SPVs) via the market for 
equity, and invest in new power plants using SPVs as intermediaries. SPV projects 
and CF investors interact with banks via the credit market in order to obtain credits 
for new projects. The interaction dynamics influence the cost of equity and cost of 
debt for each individual power plant. Banks pay and receive interest and principle 
payments. The evaluation of new bank loans is subject to the macro-prudential regu-
lation of the bank reserves, as well as to the risk perception of the banks about the 
projects to be financed. Once power plants have been built up, they are added to 
the supply side of the power market. When the power market is cleared, power is 
consumed and revenues from sales are distributed to the investors. It is important 
to note two dynamic properties of our model regarding the agent types and number 
of agents. First, investors can switch between PF and CF strategies over time, such 
that there is no strict separation between CF investors and PF investors. Second, 

5 Our model does not include a fully fledged macroeconomy with all economy-wide agents being explic-
itly modeled. Therefore, some transactions are open-ended (they never enter the system again), but these 
are tracked and we never violate stock-flow consistency.
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the number of SPVs is growing over time, i.e., whenever an SPV is successfully 
launched, the old SPV exits the active market, and a new SPV enters the market.6 
The old SPV, however, remains in the simulation until the end of the project life-
time. The number of the banks is kept fixed over the entire simulation period, and 
defaulted banks are replaced by new entrants if necessary.

Our model is set up using Python and the (xxx) open-source package for agent-
based modeling (citation blinded). Each agent represents an isolated financial entity, 
possessing its own balance sheet and cash flow accounting. The balance sheet 
matrix (Table 7 in appendix B.1) defines the asset and liability entries for each agent 
class. Stock-flow consistency is tracked by only making use of pre-defined, con-
sistent transactions throughout the simulation (see Table 8 in appendix B.2 for an 
overview).

The following subsections address the behavioral rules for each agent class in 
detail.

2.1  Investors

The energy investors, indexed with j, are the core agents of the model, taking part 
in most of the transactions. In the beginning of the simulation, the initial deposits 
and credits are registered at randomly selected banks. To account for a heterogene-
ous starting distribution in size of the investors, the initial size of investor agents is 
sampled from a Pareto distribution (see appendix F for a more detailed description). 
The financial structure of investors changes as a result of different activities. Besides 
looking for new investment opportunities, investors have to provide interest and tax 
payments, and conduct operational efforts on existing power plant projects. Inves-
tors act on the deposit market, the credit market and the project equity market. In the 
beginning, each agent is assigned a favorite bank for deposits and a favorite bank for 
credits. It deposits all its available liquidity Dj,k(j) on the favorite bank for deposits, 
k(j), and will start asking for credits (accounted as financial liabilities Lj,k′ ) from the 
favorite bank k�(j) for credits. However, as time evolves, the investors can select new 
favorite banks, and therefore the credits of investor j will be stored at a finite set of 
banks Bj . This is because power plant project-related loans are not allowed to be 
relocated from their original bank: Re-financing does not occur and interest rates are 
fixed per project. Investors which are equity holders of an SPV receive a return on 
their investment in form of dividend payments. SPVs are registered as equity on the 
asset side of the investors’ balance sheets. When operating power plants, a physical 
quantity Yp,t equivalent to the plant p’s nominal power yield, is generated. The plant 
owner pays the operational costs of the plants. Finally, a fraction �p,t of the plant’s 
physical yield is sold at the price p̃el

t
 at the power market. The operational costs sum 

up to Cp,t(�p,t, Yp,t).7 The investors pay a fixed part � of their positive after-tax profits 
Πj,t to the rest of economy agent as dividends. The remainder of profits is held on 
the deposit account as retained earnings.

6 For simplicity, there is only one power plant project per SPV.
7 The costs of a power plant are split into fixed and variable costs, see also section 2.4.
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In summary, the net income of an investor is composed of financing, power plant 
operation and taxes:

Here, CFj,k denotes the set of corporate-financed power plants of investor j, with 
loans held at bank k, and PFj its set of SPVs (project-financed power plant projects). 
The rates r�

k(j)
 and r�

k,p
 are the bank-specific rates on deposits and credits, respectively. 

It can be seen from Eq. (1) that the project-financed cashflows are encapsulated in 
the SPV structure. Corporate taxes Tj,t are charged on positive net profits (financing 
and operation cash flows) at a fixed rate �0 . Investor dividends Divj = �max{0,Πj,t} 
are paid to the rest of economy. SPV dividends are paid out to investor j from the 
profits Πi,t of an SPV i, depending on the quantity invested Ei,j weighted by the total 
equity Ei contained in i.

Using a nested random choice experiment, investors take the decision to invest in 
certain technologies, choose a financing strategy and compute a suitable balancing 

Πj,t = r𝛿
k(j),t

Dj,k(j),t−1 −
∑
k∈Bj

∑
p∈CFj,k

r�
k,p,t

Lj,p,k,t−1

�������������������������������������������������������
financing

+
∑
p∈CFj

(𝜑p,tYp,tp̃
el
t
− Cp,t(𝜑p,t, Yp,t)) +

∑
i∈PFj

(Ei,j∕Ei)Πi,t

�������������������������������������������������������������������������������
power plant operation

− Tj,t
���

taxes

Fig. 1  Overview of the model structure. Boxes represent agent classes, blue ovals represent market inter-
actions
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of debt and equity. Figure 2a shows an overview of the nested decision process for 
investors. In this paper, it is assumed that decisions of investors are not fully rational 
and therefore follow immutable habits in their choice of the technology and financ-
ing structure,8 determined using a fixed exogenous choice probability. However, the 
portion of debt vs. equity (D/E ratio) is endogenously linked to the power market 
risk. The decisions of technology and financing strategy are discrete, and the D/E 
ratio varies continuously. Investors plan new power plants according to the follow-
ing three-step sequence. First, there is an initial decision about the technology to 
invest in, drawn randomly from the set of available technologies using technology-
specific weighting factors. For simplicity, the relative frequency of each technol-
ogy is set equal to the exogenous technology mix T  , such that the political capac-
ity expansion target is practically internalized to the investors’ technology choice 
� : P(�) = p� for � ∈ T = {solar, wind onshore, wind offshore, lignite, hard coal, 
natural gas},

∑
�∈T p� = 1 where P(�) is the probability of choosing technology � . 

The technology decision is only revised after an investor has succeeded in build-
ing a new power plant, or if it has not succeeded for a fixed number of N† peri-
ods. Second, the investors’ financing strategy (CF or PF) is determined. The strategy 
choice is conditional on the technology choice, and the probability to favor PF over 
CF is specified according to a simple lookup table for each of the technologies (see 
Table 1), reflecting the relative frequencies of project finance for a given technol-
ogy9: P(PF|�) = p0,PF|� , P(CF|�) = 1 − p0,PF|� . Third, the share of equity vs. debt is 
endogenously determined, depending on the expected revenues of the technologies 
at the power market. This step also takes the market premium mechanism for elec-
tricity prices into consideration, re-evaluated in each simulation period. A detailed 
treatment of this decision step is given in section 2.5.1.

After this multi-step procedure, investors with the CF strategy will directly ask 
for loans at their current favorite bank for credits (the credit mechanism is described 
in Sect.  2.5.3). Once a bank accepts to issue the required credits to the investor, 
the power plant project is started and the required financial deposits are converted 
into fixed assets via a transaction with the rest of economy (where the machinery 
and construction service sector can be thought of). Investors with PF strategy must 
search for a newly opening SPV fitting their technology, transfer the required equity 
share and wait for the SPV to obtain a bank loan (or possibly additional equity 
funds), and to start the project independently (for more details see Sect. 2.5.2).

Investors operate in their normal business until their deposits turn zero: At any 
financial transaction demanding more deposits than available, an illiquidity bank-
ruptcy event is triggered, in which the investor tries to restore its balance sheet. If 

8 This assumption is backed by empirical evidence about energy investors, concluding that investment 
decisions can be more intrinsic and irrational, see e.g., (Gamel et  al. 2016; Holstenkamp and Kahla 
2016) on community energy and (Frei et al. 2018) on large-scale utilities. Further decision factors could 
be regional differences, social responsibility and desire for local energy supply. The exogenous choice of 
technology and financing structure allows for an architectural design of the transition conditions by the 
modeler (Andersen et al. 2023).
9 Mind that the values provided just serve as an illustrative setting and only roughly reflect the real-
world situation. We therefore refrain from providing any particular policy advice and focus on the theo-
retical features of the model.
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financing expenditures cannot be covered, the corresponding amount is registered as 
a bad debt loss at the bank.10 Any negative liquidity is assumed to be cushioned by 
the rest of the economy. Insolvency bankruptcy occurs at negative net worth. After 
a bankruptcy event (either illiquidity or insolvency), the investor reconsiders its run-
ning power plant projects. From the set of running projects, investors dump existing 
power plants which are currently producing negative cashflows, starting at the fossil 
CF plants, then moving on to the renewable CF plants, and finally to the PF plants. 
Projects with negative cashflow are prematurely terminated. Such unconventionally 
terminated projects are stranded capacities and no longer contribute to the power 
supply. Related loans turn into non-performing loans.

2.2  Banks

Banks (indexed with k) serve as lenders for credits and are demanders for depos-
its. They hold both deposits of the rest of economy (subscript R, involving all non-
energy finance) and the energy-specific deposits and loans. Initially, each investor is 
assigned a random bank for deposits and a random bank for loans, shaping the initial 
pools of depositors and debtors and determining the initial leverage factor of the 
banks (more details about the initialization sequence are given in appendix F).

Banks compete for liquidity at the deposit market, as they are obliged to hold 
sufficient liquidity reserves. Besides deposits, banks can obtain additional liquidity 
reserves in form of central bank loans Ck , such that reserves can be expressed as 
Rk,t = Dk,R,t +

∑
j∈Dk

Dj,k,t + Ck,t , where Dk denotes the set of depositors (microeco-
nomic clients) of bank k. The required central bank credits are subject to the reserve 
requirement, such that ideally Rk,t ≥ �minLk,t:

A global and exogenous interest r⋆ is charged on central bank credits. In order to 
make profits, banks take the central bank rate as the lower bound for the interest 

(1)Ck,t = max{0, �minLk,t − Dk,t}.

Fig. 2  Illustration of the three-step decision process of investors (a) and the credit granting mechanism 
of banks (b)

10 For simplicity, loans, even if non-performing, remain at the bank they originate from and are not 
resold.
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rate on loans. The set of debtors (investors and SPVs) of bank k is called Lk . In the 
standard business of a (healthy) bank, its cash flow consists of interest payments on 
deposits and interest payments on performing loans (i.e., excluding non-perform-
ing loans L† ), as well as interest payments on central bank credits and government 
bonds. Bank k’s change in cash flow can be written out as

where Pjk describes the set of power plants owned by investor or SPV j, financed at 
bank k. Lk,R,t and Dk,R,t are the credits and deposits held in the rest-of-economy sec-
tor. For simplicity, profits are retained within each bank and not further distributed. 
Banks can influence their market shares by adjusting the deposit and credit rates 
offered at the financial markets. Each bank has an idiosyncratic perception about 
its strategic position in the markets and therefore offers individual interest rates 
on loans ( r�

k
 ) and deposits ( r�

k
 ). Interest rates are periodically adjusted at the finan-

cial markets, and only count for the current period t. However, if a power plant is 
financed at time t′ , its owner receives a fixed interest rate r�

k,t�
∀ t ∈ [t�, t� + (T − 1)] 

on credits throughout the lifetime T of the project for this project-related loan. In 
contrast, at later points in time, an investor or SPV will not be guaranteed the same 
interest rate from its favorite bank for further projects, and will instead be offered 
a new interest rate for each follow-up period, depending on the banks’ dynamic 
changes. Therefore, agents are constantly in search of banks offering a better interest 
rate than the current favorite bank, inducing competition among banks. An analo-
gous rule holds for deposits—if agents find a bank offering higher interest on depos-
its, agents decide to shift all their deposits to this new bank. More details about the 
financial markets are given in Sect. 2.5.3.

Figure  2b shows the two-step decision procedure of banks when evaluating 
requests for new credits. It involves the following steps: 

1. In the first step, the bank determines its own ability to issue further credits. It 
computes its capital adequacy ratio ( �k,t = Rk,t∕Lk,t ) and continues to the second 
step if reserves are sufficient ( �k,t ≥ �min).

(2)

Πk,t = r�
k,p,j,t

⎛⎜⎜⎝
Lk,R,t +

�
j∈Lk

�
p∈Pjk

�
L
p

j,k,t
− L

†,p

j,k,t

�⎞⎟⎟⎠
− r𝛿

k,t

�
Dk,R,t +

�
j∈Dk

Dj,k,t

�
− r⋆Ck,t + rbBk,t.

Table 1  Parametrization of the 
exogenous investment choices–
technology mix and project 
finance choice probability. 
Source: own assumptions

Technology Mix P(�) PF Choice 
Probability 
P(PF|�)

1. Solar 0.29 0.28
2. Wind Onshore 0.56 0.24
3. Wind Offshore 0.05 0.15
4. Lignite 0.0 0.0
5. Hard Coal 0.0 (0.07)
6. Natural Gas 0.10 0.02
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2. In the second step, the bank distinguishes between corporate-financed and project-
financed credit requests. It does so by investigating the financial leverage of the 
applicant. Figure 3 shows a typical balance sheet of an energy investor. Whereas 
the PF-financed part on an investor’s balance sheet is not further regarded in 
more detail (it is hidden in the SPV), the corporate loans related to preexisting 
CF projects are classified as risky. Requests of SPVs for project-financed plants 
are therefore simply accepted at a probability p0 as a rule of thumb followed by 
the banks, however, for corporate loans, the evaluation is more complex and a 
calculation of the investor’s default probability pd takes place. pd(j) is calculated 
as a function of investor j’s financial leverage11: 

 In the latter equation, 

 represents both the current loans and an additional weighted term based on the 
amount of the new loans and the current bank-specific rate r�

k
 . In summary, a 

credit is accepted at probability p0 for PF projects and at probability 1 − pd for 
CF projects.

3. If the credit is accepted, the interest rate is computed as the bank-specific interest 
rate, plus an investor-specific risk mark-up (which is equal among all banks). In 
the PF case, this mark-up is zero, whereas CF investors’ mark-ups are equal to 
r𝓁
k,j

= r𝓁
j
= �3 ⋅

(
Lj∕(Lj + Dj)

)� , such that finally the project-specific interest rate 
offered amounts to 

where r∗ denotes the central bank base rate. The general pattern behind the func-
tional form of Eqs. (3–5) parametrized by ( �1, �2, �3, � ) is that increasingly lev-
eraged investors exhibit high default probabilities, and even if they are granted a 
credit, they are charged a risk mark-up on the interest rate to hedge against bankrupt-
cies. Whereas the higher default probability directly affects an investor’s ability to 
access new credit, the mark-up on interest rate worsens the financing conditions for 
debt.12

As a consequence of the shifts in the financial market (changes in deposits and 
loans), banks need to adjust their reserves. If a bank has more reserves than required 
by the macro-prudential regulation, it first sells a fraction of its central bank cred-
its, then buys new government bonds Bk (yielding interest payments rb ), and finally 

(3)pd(j) = 1 − �
L�
j
∕(Dj+L

�
j
)

1
.

(4)L�
j
= Lj + (1 + �2(r

∗ + r�
k
))ΔL

(5)r�
k,p,j

= r∗ + r�
k
+ r�

j

11 We omit the time period index t for better clarity of the equations.
12 The nonlinear functional form influences discriminative power of the banks’ mechanism to determine 
whether a firm is well-performing or prone to default. We leave the exploration of different credit ratings 
or functional forms of pd and r�

k,j
 to future research.
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issues new loans to the rest of economy.13 In turn, if the bank has less reserves than 
required, it first sells parts of its bonds and secondly purchases an amount of new 
central bank credits equal to a certain fraction of missing reserves. As banks use 
adaptive rules, they cannot instantly fix their reserve requirements but manage the 
amount of reserves gradually over time.14

For simplicity, throughout the simulation, the number of banks is held constant, 
and bank losses are not forwarded to the non-financial system. At some point, cer-
tain poor-performing banks will reach negative net worth (this case has no further 
consequences). If a bank reaches negative liquidity reserves (due to non-profitable 
business activity and/or large-scale bank runs of depositors), it goes bankrupt and 
exits the market. It is then replaced by a new entrant to keep the number of banks 
in the simulation fixed. The new bank inherits the client network of the old one, and 
receives a starting capital equal to the net worth of the smallest bank at the begin-
ning of the simulation. The negative reserves are cushioned by the banking system, 
where the contribution of each bank is weighted by the size (net worth) of the bank. 
If the excess reserves of the banking system are not sufficient to cover the starting 
capital, the government takes up new debt to cover the expenses.

Fig. 3  Left: Overview of a typical balance sheet of a power plant investor, containing both project-
financed (PF) and corporate-financed (CF) assets. Right: balance sheet of a special purpose vehicle 
(SPV) isolating a part of the project assets

13 Bonds not held by the bank are bought by the central bank. For simplicity, we set rb = 0 for our simu-
lations, and do not include yield curves or any other temporal dimension.
14 The exact parameters are given in appendix C.
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2.3  SPVs

In the initial phase of their existence, Special Purpose Vehicle (SPV) agents can be 
thought of as empty frames for future power plant project opportunities.15 Within each 
SPV, a technology is determined from a random choice experiment, in complete anal-
ogy to the investors’ technology choice, and computations are conducted about how 
much debt and equity is needed to secure the investment.16 SPVs start by collecting 
funds from investors on the equity market until they reach the required level of equity 
from which the project can start (see  2.5.2 for a detailed description of the market 
protocol). Subsequently, they apply for a loan at their favorite bank for credits. In each 
period in time, all new SPVs attempt to invest in a power plant. If enough funding is 
available and if the SPV has successfully acquired a bank loan, the project is launched 
and the SPV is moved to the list of actively running SPV agents, blocking its availabil-
ity for further investments. Otherwise, the SPV keeps searching for further investors. 
If this process remains unsuccessful for N† periods, the agent decides to re-consider 
its investment choice (technology and equity ratio).17 To match the relative frequency 
of target technologies in investors, SPVs use the same probability weights as corpo-
rate investors for the choice of technologies.18 Random combinations in technology 
choice between SPVs and investors introduce a certain difficulty for the SPV agents 
to find appropriate investors matching their technology, but might allow for a quick 
debt financing once the investors are set up because PF projects are not evaluated by 
financial leverage. In contrast, corporate investors might encounter difficulties in find-
ing appropriate banks or in receiving a loan at their favorite bank, but do not face the 
matching barrier with SPVs. The cash flow of SPVs is similar to the investors; how-
ever, SPVs only contain at most one power plant as a fixed asset for simplicity. Net 
profits are paid out to the project shareholders Si (after taxes), weighted by the relative 
share of equity provided by each shareholder.19 The net income of an SPV reads

(6)

Πi,t = r�k(i)Di,k(i),t−1 − r�k′Li,k′(i),t−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

financing

+ �p,tYi,tp̃elt − Ci,t(�p,tYi,t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

power plant operation

− Ti,t
⏟⏟⏟

taxes

.

15 In the real world, these entities can be imagined as a newly opened generation site, a new citizen ini-
tiative or just a regular business opportunity. Project developers have specialized in setting up SPV-like 
financing structures for a large class of power plant projects (Mohamadi 2021).
16 Sect. 2.5.1 provides a more in-depth treatment of the equity ratio calculations.
17 For simplicity, the SPV does not return the previously collected equity, and is allowed to switch the 
target technology.
18 The mechanism for SPVs is the same as for investors, but technology weights of SPVs are multiplied 
with the PF choice probability because SPVs only engage in PF investments.
19 Mind that this creates a gap between expected and actually realized shareholder dividends. The per-
ception of PF investors about expected revenues is therefore technically only relevant in the market 
matching success on the market for project equity.
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Here, Di,k(i) are the deposits at the favorite bank k(i) of the SPV for deposits, Li,k�(i) 
are the project-specific loans at the favorite bank k�(i) for loans, and �i,t is the share 
of generated power sold at the power market. The operational costs Ci,t(Yi,t) are 
evaluated identical to the corporate investors. As SPVs are only financial vehicles, 
net profits of each SPV are forwarded to the equity shareholders, weighted by their 
relative investment volume: Divi,t =

∑
j∈Si

(Ei,j∕Ep)Πi,t . Taxes Ti,t are charged on any 
positive profits at the same rate �0 as for CF investors.20

2.4  Power plants

Power plants (index p) represent physical electricity generation sites. Running power 
plants are registered as fixed (non-financial) assets of the agent owning the plant (an inves-
tor or SPV, power plants are owned by exactly one agent each). Further, each power plant 
is specified by the generation technology (solar, wind offshore, wind onshore, lignite, 
hard coal or natural gas), the amortization time (lifetime) of the project,21 the full-load 
hours, the exogenous capacity (identical for all units of the same technology) and opera-
tional expenditures (fixed and variable). The starting time of a power plant p is denoted 
t0(p) . Each plant has a fixed capacity factor ( ̃Y ), and its size is set to a standard capac-
ity K̂ which is identical for all units of the same technology, such that its physical power 
yield Yp,t amounts Yp,t = Ỹp ⋅ K̂p𝜑t,p . The generation costs associated with this yield are 
C(�t,pYp,t) = Cvar

p,t �t,pYp,t + Cfix
p,t . After each discrete time period, one power generation process 

takes place in the power plants, revenues of each plant are computed. The net cash flow of 
a power plant project is given by revenues minus operational and financing expenditures

where Lp denotes the total outstanding debt of the project.22 Congestion of power might 
occur, albeit unsold power is not assigned any additional cost beyond fixed operational 
costs and financing costs in this model.23 Mind that renewable plants, once built, are 
close-to-zero marginal cost producers, whereas fossil plants have to deal with high vari-
able operational costs for each additional marginal unit of power produced. Technology 
specifications are detailed out in the appendix (Table  11).24 The factors �t,p ∈ [0, 1] 
depend on the merit order in the power market and are explained in Section 2.5.1.

(7)Vp,t = Yp,tp
el
t
− C(�t,pYp,t) − r�

k,p,t
Lp,t

20 Note that the dividends paid to the investors can be both positive and negative, depending on the 
power price level and the various financing factors. Therefore, there is no bankruptcy condition for the 
SPVs as there is for energy investors or banks.
21 In this model, power plant lifetimes exceed the temporal scope of the simulation. Project lifetimes can 
therefore be thought of as close to infinity.
22 Debt is re-paid in every period according to a standard annuity scheme, i.e., the annuity due in period 
t is Lp,0(1 − (1 + r)−T )∕((1 + r)t−1r) with Lp,0 being the initial credit volume, r being the credit rate and T 
representing the number of periods the power plant runs (the project lifetime).
23 Renewable energy is highly variable throughout a weather year (Tong et al. 2021). However, this is of 
minor importance for investments going over maturities of many years or decades, potentially averaging 
fluctuations. We leave the investigation of resilience to extreme weather events to future research.
24 This paper highlights the theoretical modeling aspects of the energy sector. The exact choice of 
parameters tailored to a specific real-world situation is left to future research.
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2.5  Markets

In the model of this paper, agents are matched bottom-up on decentralized financial 
markets. The financial market matching protocols for deposits, credits and equity 
organize a one-on-one random matching of supply and demand agents, where each 
agent has only access to a limited pool of matching partners. This results in bipartite 
networks (Namatame and Chen 2016) for credits and deposits, which do not rely on 
an equilibrium assumption and allow for information asymmetry and heterogeneous 
interest rates. Table 2 shows the supply and demand side of each market employed 
in the model. The power market works different from the financial markets and 
determines the power price level in each period (see Sect. 2.5.1). The project equity 
market for matching PF investors with SPVs is addressed in Sect. 2.5.2. The finan-
cial markets for credits and deposits are explained in Sect. 2.5.3.

2.5.1  Power market

The power market operates as a clearing house for physical units of electricity. Fig-
ure  4a shows a demand-supply diagram for this market. Just as in any economic 
market, the power market aims at matching supply and demand, the latter being 
exogenously fixed, as represented by a vertical line.25 The power market mechanism 
serves two purposes: It determines the price of electricity pel and it determines the 
functions �t,p for each power plant, indicating the ratio between the maximum out-
put and actual amount of electricity sold.

Clearing Protocol To determine a base price, the long-term price level is com-
puted as a linear function of the renewable generation share. This effect is known 
as the long-term merit order effect (Sensfuß et  al. 2008). Whenever the residual 
load (the amount of fossil supply) is low (cf. Figure 4b), the supply curve is shifted 
toward the right, resulting in lower clearing price levels compared to situations with 
little renewable feed-in (cf. Figure 4a).26 The concept of merit order refers to the 
sorting of power plants on the supply side in a discrete pecking order—power plants 
are first sorted, and power supply is additively accumulated, beginning with the first 
plant, until the physical demand is fulfilled.

The detailed sequence of events is as follows: 

1. All power producing plants are sorted by the merit order rank, depending on their 
technology, in the following order: solar, wind onshore, wind offshore, lignite, 

25 There is improvement potential for future modeling at this point. Changes in production level, produc-
tion efficiency of energy intensive firms and changes in energy import rates might provide a moderate 
elasticity in demand, slightly deviating from a vertical line.
26 Mind that in real-world power markets, this is typically a short-term effect. The long-term merit order 
hypothesizes that this effect is transferable to wider time horizons. One simulation period in this model 
can be considered mid- to long-term in this respect.
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hard coal, natural gas.27 This yields the actual, discrete supply curve (gray areas 
in Fig. 4a, b).

2. Iterate over all plants. The potential electricity supply of a plant p is given by 
Y⋆
p
= Ỹp ⋅ K̂p . The maximum needed generation capacity Yp = max(L − Ŷp, 0) is 

computed for each plant, where L denotes the exogenous power demand (load) 
and Ŷp the cumulative electricity production of all plants with higher rank than p. 
The load factor results in 𝜑t,p = Yp∕Y

⋆
p
∈ [0, 1].

3. Repeat the process until the demand is met or no plants are left.28 The resulting 
clearing price in each period t is approximated as a linear function 

where 𝜓t = (
∑

RE 𝜑t,pY
⋆
p
)∕L = YRE

t
∕L is the overall share of renewable energy 

provided. Here, �0 corresponds to the marginal cost of the most expensive fossil 
power plant in the system, and �1 determines the strength of the long-run merit 
order effect.

To refine the power price dynamics, short-term price fluctuations are added by a 
mean-reverting stochastic process (see Sect. E.1 for more details). All plants with 
𝜑t,p > 0 are assigned the market value pel

t
 for this period (the remaining plants have 

zero market value because they are not required).
Market Premium and Ratio of Equity We expect from the long-term merit order 

effect that the investments in renewable generation technology will lower the power 
price level. This, however, can be a possible burden for investors as the expected 
profits from power sales gradually decrease over time. In order to support the renew-
able energy investors, a sliding premium is employed. This sliding premium can be 
thought of as a financial option contract, granting at least a minimum strike price 
S�,t , such that the effective selling price for renewable plants is never below this 
bound. Fossil generation is not included in this premium scheme. The effective price 
results in

where S�,t is a value which depends on the respective technology � and pel
t

 denotes 
the (wholesale) clearing price without market premium. Figure  4c schematically 
depicts the relation between the project value of renewable power plants and the 
composition of debt and equity. In contrast to the fossil counterparts, renewable 
electricity is generated at very low marginal costs, such that their market value (their 
selling price at the power market) tends to be low in times of high shares of renew-
able energy and high whenever expensive fossil plants are in the market alongside. If 
there is no premium, renewable power plants make high revenues if power prices are 

(8)pel
t
= �0 − �1�t

(9)p̃el =

{
pel
t

if 𝜏 ∈ {lignite, hard coal, natural gas}

max(S𝜏,t, p
el
t
) if 𝜏 ∈ {solar, wind offshore, wind onshore}

27 The order in this model is fixed. We sort plants by technologies in analogy to marginal generation 
costs. Within groups of power plants possessing the same rank, plants are randomly shuffled.
28 In case there are no plants left (which does not happen in the scenarios analyzed in this paper), it can 
be assumed that energy imports are used to cover the remaining load.
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high and close to zero revenues if power prices are low. With the premium active, 
plants can theoretically receive revenues with no upper bound, but the minimum 
revenues are secured. Any positive difference between strike price and market value 
is paid by the consumer (here: rest of economy). This ensures the profitability of 
renewable power plants, even under permanently high shares of renewable energy 
and thus low power price levels. If the expected revenue of a power plant is higher 
than the level of the strike price S, excess revenues occur. Under the assumption that 
banks are fully risk-averse with respect to the financing of renewable energy pro-
jects, such additional fluctuations in revenues have to be backed using equity instead 
of conventional bank debt (due to the pecking order theory of capital, see Myers and 
Majluf (1984)). The equity required for a project under a sliding market premium 
is therefore equal to the uncertain additional revenues beyond S, which can be also 
interpreted as a minimal risk level. The required equity is mathematically given by 
the expectation value of revenues higher than the strike price.29 Here, it is assumed 
for simplicity that all power plants receive the market premium, and the strike price 
is set equal to an equilibrium value, which is obtained by requiring that the premium 
can just cover the technology costs.30 Therefore, S is chosen optimally by the gov-
ernment such that the investment I can be on average covered from the sum of debt 
and equity:

Table 2  Overview of the 
markets in the model and 
mapping of supply and demand

Market Supply Demand

Deposits Investors, SPVs Banks
Loans Banks Investors, SPVs
Project Equity Investors SPVs
Power Power Plants Rest of Economy (fixed)

Fig. 4  Left: Power prices when the renewable energy supply is low (a) and high (b). The gray areas 
indicate the supply curve. Right: Composition of debt and equity as a function of the market value of a 
project relative to the strike price (c)

29 For a more rigorous mathematical treatment see appendix E.2.
30 The real-world strike price is auctioned between a state institution and the investors. The implementa-
tion of the actual coordination mechanism to determine S if left to future research.
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where the expected level of debt D and equity E depends on the distribution of 
expected market values for a technology � . For solving this optimization problem, 
the method developed by Neuhoff et al. (2022) is used.31 The intuition is that the 
strike price is chosen such that renewable power plants can raise sufficient debt 
to cover their operational costs, where a technology-specific optimal output Ỹ𝜏 
is assumed, derived from the annual load hours of the technologies included (see 
Table 11 in the appendix).32 The constraints f and g incorporate the average financ-
ing conditions in the economy, i.e., the average equity rate ⟨re⟩t and credit rate ⟨r�⟩t 
of all investor, SPV and bank agents (see appendix E.2). Further, the distribution of 
expected market values �� beyond the strike price S is included in the calculation for 
the fraction of equity (constraint g). Note that Et rises as market values grow and Dt 
increases with increasing strike price. Therefore, at higher market values relative to 
the strike price, the expected share of equity for investments rises, as schematically 
depicted in Fig. 4c.

Once the strike price is set by the government, investors compute their individual 
levels of debt and equity using their idiosyncratic financing conditions re,j , as well as 
r�
j
 and S� such that Dj,t(S�,t, re,j,t, r

�

j,t
) and Ej,t(S�,t, re,j,t) fluctuate around the equilib-

rium assumption in Eqs. (11) and (12) for each investor j as a consequence of the 
financial market imperfections. SPVs follow the same systematic, using the average 
equity rate of their envisaged shareholders.33 The equity rate is obtained from the 
expectation value formed by the investors, i.e., re,j,t = �t[re(j, �)] , as will be further 
elaborated in Sect. 2.5.2. For their perception of r�

j
 , investors take only their current 

favorite bank into account.

2.5.2  Project equity market

In order to collect equity, SPVs have to find suitable investors on the market for 
project equity. PF investors compete for SPVs by stating their desired shareholder 
return (return on equity), based on their expectations. The expected return rate on 

(10)S�,t = argminS�
�

||I� − (Dt(S
�
�
) + Et(S

�
�
))||

(11)s.t. Dt = f (Ỹ𝜏(S
�
𝜏
− Cvar,𝜏) − Cfix,𝜏 , ⟨r�⟩t, ⟨re⟩t)

(12)s.t. Et = g(Ỹ𝜏 , S
�
𝜏
,𝜙𝜏 , ⟨re⟩t)

31 A more in-depth treatment of this algorithm is given in appendix E.2.
32 The parameter Ỹ  has a constant value, related to the optimal operation modes of each technology, 
rather than the actually obtained market shares at the power market. It therefore differs from �Y  men-
tioned earlier in this section. It is obtained by dividing the average annual full-load hours of a technology 
by 8760 (number of hours per year), see Table 11.
33 It is ensured at all times that the optimization objective is always close to zero, such that 
D(S� ) + E(S� ) = I� holds within very small numerical errors. The fluctuations in debt and equity used for 
financing can therefore be solely attributed to the imperfections on the financial market.
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equity �[re(j, �)] of investor j for a technology � is computed using a capital asset 
pricing model (CAPM, cf. Gatti (2023), Kitzing and Weber (2014)), such that inves-
tors can gauge the relationship between risk and return:

where rf = rb denotes a risk-free rate.34 The expected market return rate �t[r
m
j,�
] at the 

equity market for technology � is approximated by the net cumulative cash flow 
Ṽp�,t =

∑t

t�=t0(p
�)
Vp�,t� divided by the invested capital E′

p
 , averaged over all existing 

power plants p� ∈ P� of this technology,

weighting the power plants according to their age ap′ . Hence, �t[r
m
j,�
] varies over time 

as the values for V ′
p
 change over time. Investors are conservative in their expectation 

formation, weighting the currently perceived return rates on equity (Eq.  13) with 
their intrinsic beliefs �[re(�)]0 , as included in Eq. (14). The (levered) equity beta �e

j
 

is linked to the asset beta �a
j
 via the following equation:

where �a
j
 is the asset beta factor assigned to investor j.35 This parameter reflects het-

erogeneity in asset classes (technical designs, regional effects etc.). Equation (16) 
considers that interest payments can be deducted from tax, and therefore the targeted 
debt-to-equity ratio (Dj∕Ej)

∗ and the corporate tax rate �0 must be taken into 
account.36 The market matching protocol brings together supply and demand in the 
following sequence of events: 

(13)�t[re(j, �)]
� = rf + �e

j
⋅max{0,�t[r

m
j,�
] − rf }

(14)�t[re(j, �)] = �e�[re(�)]0 + (1 − �e)�t[re(j, �)]
�

(15)�t[r
m
j,𝜏
] =

1

|P𝜏 |
∑
p�∈P𝜏

Ṽp�,te
−𝛿map� ∕Ep� ,

(16)�e
j
= �a

j

(
1 + (1 − �0)

(
Dj

Ej

)∗)

34 The 10-year government bond yield is typically used in practice. In our model, we assume a constant 
value.
35 �a

j
 is re-assigned from a uniform distribution u ∼ (�a

min
, �a

max
) each time an investor redecides the target 

technology.
36 For simplicity, investors are conservative in their expectations and assign (D∕E)∗ = (1 − �)∕� as a 
fixed proxy factor, � being the minimum required equity share of a project. This also avoids a circular 
dependence between the level of equity used and the expected return on equity. Although in our model, 
the assumptions underlying the capital asset pricing model are not entirely fulfilled—for example there 
is no fully efficient market and no full rationality—investors have this formula at hand when it comes 
to estimating the return on equity they expect from their power plant investments. Therefore, our model 
reflects a certain limited rationality of the market actors who do not fully take advantage of their indi-
vidual market situation, but rather tend to apply common-practice decision making.
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1. Iterate over a subset of SPVs with relative size 0 ≤ �E ≤ 1 , randomly selected 
from the demand pool. For each SPV, a new random subset of relative size �E of 
investors (equity suppliers) is matched.

2. Out of the random subset of investors seen by an SPV, the best investor candidates 
are chosen using the following systematic:

• Investors with matching technology choice are selected as suitable candidates.
• Second, those investors are filtered who provide sufficient financial means to 

fully meet the entire demand, given by the SPV’s target equity, considering 
preexisting funds of the SPV already collected earlier. If there are suitable 
candidates, the best match is chosen according to the lowest expected return 
on equity of the investor.

• If no single investor meets the criteria to support funds on its own, the market 
algorithm attempts to fill up the SPV’s demand by attempting to create a joint 
venture from smaller investors, accumulating their potential equity supply 
until the demand is met, or until the pool of supply agents is exhausted. These 
smaller investors are selected at random from the available pool.

It is worth noting that the SPVs cannot directly choose among investors, but can 
only send applications to their favored matches. Investors will then go through their 
offers in chronological order and put their funds into the joint venture (or possi-
bly single venture).37 In order to avoid overly lumpy investments, investors are only 
allowed to put at maximum a share of �E of their available deposits into one SPV at a 
time. Further, an SPV can only request up to N̂ investors per market clearing round. 
After obtaining sufficient funding in terms of shareholder equity, the SPV will apply 
for a bank credit in order to obtain the required remaining funding from debt. As 
soon as the SPV receives a credit via the credit market, the SPV purchases a power 
plant at the rest-of-economy agent and starts operating the power plant (which is 
assumed to be available immediately after, i.e., at zero construction time).38 If the 
searching of the SPV is not successful for a period of N† periods, the SPV redecides 
its investment choice and target technology. This decision is in full analogy to the 
random choice experiment of the corporate investors.

2.5.3  Deposit and credit market

The main idea of the deposit and credit market is that banks alter their offered inter-
est rates in order to expand their business and regulate their attraction toward poten-
tial clients.39

37 This mechanism is similar to the “brochure mechanism” of the Schumpeter Meeting Keynes model, 
see Dosi et al. (2010).
38 The rest of economy agent can be thought of as providing machine parts to construct the power plant. 
Also, planning and construction times can significantly delay the renewable capacity expansion. This 
aspect will be included in future versions of the model.
39 The deposit and credit market are similar, but not fully identical to the matching protocols of Riccetti 
et al. (2015).
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Deposit Market On the deposit market, banks are demanders, and investors and 
SPVs are matched from the supply side. As a result of the matching, depositors 
find new favorite banks for deposits. Banks are initially assigned a random value 
r�
k,0

∈ u(r�
min,0

, r�
max,0

) as their current offer for the interest rate on deposits. When re-
matching the deposit market, the sequence of events is as follows: 

1. A random subset of size 0 ≤ �D ≤ 1 relative to the total number of demand agents 
(banks) is drawn. The selected banks update their offered deposit rates. Banks 
prefer attracting deposits over central bank loans, as the interest rate on deposits 
is by design lower than the interest rate on central bank loans. As a consequence 
of competition to other banks, each bank tries to set the interest rate on deposits 
as low as possible and as high as necessary to attract depositors. Thus, if liquidity 
requirements are not met, i.e., Rk,t < 𝜅minLk,t−1 , or if there is not more than one 
client, the bank aims at attracting more depositors. This mechanism works also in 
reverse: lowering the interest rate will dis-incentivize depositors from choosing 
this bank. Also, if the deposits just match the reserve requirements, the banks 
increases the interest rate to be able to expand its liquidity available for new loans 
in the next period: 

The interest rates on deposits move between the legs ( ̄r𝛿 , r⋆ ) with 
r𝛿
k,t

= min(r⋆,max(r̄𝛿 , r∗𝛿
k,t
)) . �↑

d
, �

↓

d
 are learning speed parameters for the upward 

and downward adjustment of deposit rates, and u(0,  x) is a uniform random 
value between 0 and x.

2. We loop over suppliers in a randomly drawn subset of relative size 0 ≤ � ′
D
≤ 1 . 

Each depositor in this subset is randomly assigned a pool of banks with relative 
size �D . Banks in this subset are sorted according to their interest rate on deposits. 
The bank with the highest rate wins. The supplier will transfer all its deposits to 
the bank with the highest offered rate if the rate is at least as high as the current 
rate. Otherwise, the old bank is kept.

The protocol just outlined is processed separately in a market for investors and 
a market for SPVs. Despite this separation, the deposit market does not further 
distinguish between SPVs and investors. After the market clearing for the micro-
economically modeled agents, the deposits in the rest of economy are shifted. 
Each bank is compared with a number Nm other banks at random. A share �R

D
 of 

the economy’s deposits is transferred from the current bank to the bank offering 
the best conditions in the subset (if different from the current bank). The number 
of clients of each bank is equal to the number of depositors in the current period.

Credit Market The credit market mechanism is similar to the deposit market. 
Banks are initially assigned a random value r�

k,0
∈ u(r�

min,0
, r�

max,0
) as their current 

offer for the interest rate on credits. The sequence of events of the market proto-
col is as follows: 

(17)r∗𝛿
k,t

=

{
r𝛿
k,t−1

(1 + u(0, 𝛼
↑

d
)) if Rk,t−1 ≤ 𝜅minLk,t−1 or Nclients <= 1

r𝛿
k,t−1

(1 − u(0, 𝛼
↓

d
)) if Rk,t−1 > 𝜅minLk,t−1 and Nclients > 1
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1. A random subset of relative size 0 ≤ �C ≤ 1 is selected from the banks, who are 
allowed to adapt their interest rates, based on the past experience. The interest 
rate on loans is adjusted as follows: 

 using the up- and downward adjustment speed �↑

�
, �

↓

�
 for the credit rate. The 

interest rate of a bank k is raised if the matching success rate rs,k of this bank is 
larger than the average matching success rate ⟨rs⟩ . If the success rate is relatively 
low, or if there is enough liquidity present in the bank, the interest rate is low-
ered in order to attract new credit takers.

2. A subset of relative size 0 ≤ � ′
C
≤ 1 is randomly drawn from the demand set. We 

loop over each investor/SPV in the demand set. Demanders which have nonzero 
demand for credits are filtered out. For all remaining demanders, a random subset, 
of relative size �C each, is drawn from the supply set. The bank offering the lowest 
interest rate in this subset is chosen as a potential candidate. The investor/SPV 
changes to the candidate bank as a new favorite bank for credits if its credit rate 
is below the investor’s current credit rate, i.e., the rate it would obtain for a new 
credit a the current favorite bank.

   If this is the case, it is a success for the new bank and a failure for all remaining 
banks in the visible subset. Otherwise, a matching failure for the entire subset is 
registered.

The credit market matching success rate is determined by dividing the number of 
successes of banks by the sum of successes and failures in the past five simulation 
periods. In equivalence to the deposit market, there is a separate credit market for 
investor and SPVs. After the market clearing for the microeconomically modeled 
agents is done, the credits of the rest of economy are updated in full analogy to 
the rest-of-economy deposit market. Here, a share �R

L
 of credits is relocated if one 

in the randomly selected Nm other banks considered offers a lower or equal credit 
rate.

The market activities for deposits and credits lead to a heterogeneous distribution 
of deposit and credit rates, and agents are not able to observe the whole market in a 
simulation period.

2.6  Sequence of events

Before the actual simulation, an initialization sequence takes place. This involves 
the following steps40: 

(18)r�
k,t

=

�
r�
k,t−1

(1 − u(0, 𝛼
↓

�
)) if rs,k < ⟨rs⟩ or Rk,t−1 ≥ 𝜅minLk,t−1

r�
k,t−1

(1 + u(0, 𝛼
↑

�
)) if rs,k > ⟨rs⟩ and Rk,t−1 < 𝜅minLk,t−1

40 Macroeconomic agent-based models typically require a ’burn-in’ phase, in which the quasi-steady 
state is reached beginning from a roughly posed parameter set. We try to keep this phase short by experi-
menting with different theoretical ranges of parameters.



 T. Baldauf, P. Jochem 

1. Agents and their corresponding balance sheets are set up in a consistent manner.
2. An initial power generation mix is set up.41

3. Market links for credits and deposits are initialized: In the beginning, favorite 
banks for investors and SPVs are completely random.

After the initialization has taken place, the main model loop is iterated: 

1. Each investor (SPV) receives revenues from last period’s business and pays divi-
dends to the shareholders (rest of economy or the parent investor)

2. The power market clears and strike prices are updated. Each power plant updates 
its production yield for this period.

3. Power plants update their cash flows from power generation (revenues net genera-
tion costs). New expectations about the market return are formed.

4. The markets for deposits, credits and project equity clear.
5. PF and CF Investors try to invest in new power plants, SPVs apply for loans at 

the banks.
6. Cash flows from taxes and interest payments are updated.
7. Banks attempt to repair their reserves by buying or selling central bank loans, 

bonds or loans from the rest of economy.
8. Bankrupt investors and banks are restored.

Each model run consists of a total of 1000 simulation periods.

3  Results

The purpose of this section is to study the simulation output and to check some qual-
itative stylized facts. Subsection 3.1 starts by showcasing two representative base-
line model runs. Additionally, to illustrate the statistical properties of our results, 
we present the outcomes of 100 Monte Carlo simulations. Subsection 3.2 contin-
ues with the analysis of two alternative scenarios, in which the impact of a lowered 
probability of project finance, as well as an enhanced green credit granting probabil-
ity (green credit easing) are investigated.

3.1  Baseline model

In the baseline setting, the economic system is set up such that most of the model 
dynamics, like e.g., the credit rate or the investor failure rate, are in a quasi-steady 
state.42 Two independent runs of the model are observed in order to give an intuition 

41 These initial power plants are not owned by the investors but are exogenous. Their revenues and losses 
are forwarded to the rest-of-economy agent.
42 Albeit there are empirically reasonable parameters included, the model is not calibrated to fit any par-
ticular empirical statistics or historical data. We leave this task to future research. See (Fagiolo et  al. 
2006, 2019; Lamperti 2018; Vandin et al. 2021) for a treatment of calibration methods for agent-based 
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about the model output and to sketch the possible variation among model runs. The 
analysis of the results follows a two-step procedure. First, the functioning and stabil-
ity of the financial markets, as well as the resulting financing conditions for power 
plant investors is investigated. Second, we inspect the number of capacity additions 
for electricity generation, the transition of power mix toward renewable power plants 
and the evolution of power prices.

Figure 5 shows some key financial market indicators of the model. To ensure a 
proper functioning of the deposit market, banks need to have enough competitive-
ness such that the market concentration does not favor one bank at all times, with 
all the others having zero clients.43 Figure 5a shows the financial market concentra-
tion measured by the Herfindahl-Hirschman index (HHI) of the distribution of bank 
clients. The market concentration exhibits endogenous cycles for both of the simula-
tions, ranging between 0.05 (all banks have approximately equal market size) and 
0.5 (two banks share the market power). The model output suggests that the cho-
sen baseline parametrization is able to sustain relatively stable cycles of higher and 
lower concentration throughout the simulated period.44 The matching success rate 
(Fig. 5c), measured as the ratio between successful interactions on the credit market 
and the total number of interactions taken place, requires a burn-in up to approxi-
mately t = 250 , from whereon it remains relatively stable slightly above 20%. Bank 
failures are infrequent events, suggesting that there are small-scale endogenous bank 
crises, but the model does not yield collateral damage to the banking system, with 
more than six of the 20 banks failing within a time window of ten modeling periods. 
These results of the financial markets are in line with other decentralized match-
ing models in literature, obtaining endogenous business cycles as well as occasional 
firm and bank failures, see e.g., (Riccetti et  al. 2015, 2022). The mean leverage 
of investors is shown in Fig.  5b, remaining relatively stable between 46 and 49% 
along the entire time span of the simulation. This indicates that the investment risk 
of the power plant projects is relatively constant, reflected in the debt share of the 
investments.

Further, the financing conditions for power plants are analyzed (Fig. 6). There is 
a slight increase in credit rates, as well as a stable development in expected return on 
equity almost no long-term trend component. Interest rates on credits are influenced 
by the tightening reserves of banks in the second half of the simulation ( t > 500 ). 
The falling electricity price (Fig. 6c), the main dynamic parameter of power plant 
revenue streams, exhibits clearly visible short-term fluctuations and a long-term 
downward trend, as expected from Eq. (8). The strike prices for solar and wind 
energy (Fig. 6d) rise until approximately t = 500 , exceeding the wholesale market 
price at around t = 300 . In the more mature phase of the transition, strike prices 

43 Clients are defined as agents storing this bank as their favorite bank for deposits.
44 For more detailed studies on the emergence of market concentration in agent-based models, we for-
ward the interested reader to (Santos and Nakane 2021; Terranova and Turco 2022).

models. We characterize the quasi-steady state by a visually stable development of the stochastic model 
output for the first 200 time steps in two representative runs.

Footnote 42 (continued)
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almost saturate toward the technology costs. Whereas the strike price for solar and 
wind onshore energy are in the same order of magnitude, wind offshore prices reach 
significantly higher levels, due to the high technology costs, thus lower profitability, 
of the offshore wind technology.

In Fig. 7a-b, the number of power plants and the resulting renewable energy share 
of total generation is plotted for two representative runs. In the first run (blue curve), 
there is an investment plateau at around t = 400 and another at t = 600 . This plateau 
is not existent in the second simulation (orange curve); however, a slight kink after 
t = 400 is visible. The second run reaches full renewable power generation before 
the end of the simulation ( t < 1000 ). Apart from the temporary disruptions, the 
power plant expansion is rather linear, and the growth rate of PF projects (solid lines 
in Fig. 7 exceeds the one of the CF projects (dashed lines). In Fig. 7c, the number of 
bankrupt investors per simulation period is plotted. For the blue curve, it is clearly 
visible that the bankruptcies are highly correlated with the phases of low power 
plant capacity expansion. This bankruptcy wave is anticipated in the rejected credit 
requests, which endogenously emerge between t = 200 and t = 400 (Fig.  7d, blue 
curve). As can be seen in the blue curve in Fig. 5b, the investor leverage also expe-
riences a boom between t = 200 and t = 500 and a subsequent bust until t = 600 , 
the point where the investment plateau ends. This is not observable for the other 
simulation run, indicating that this type of crisis is an emergent phenomenon of the 
model. In fact, this contagion dynamic is a typical feature of bank-investor network, 

Fig. 5  Financial market indicators of two distinct runs of the baseline model (blue and orange curve). a 
Deposit market concentration (Herfindahl-Hirschman index of number of clients per bank), b investor 
leverage, c average credit market matching success rate, d average number of bank failures. The values 
shown for the bank failures are ten-period averages to provide sufficient statistics and to improve visual 
clarity
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Fig. 6  Financial composition and financing conditions for two distinct runs of the baseline model (blue 
and orange curve). a Ratio of debt to total assets for SPVs and investors, b average credit rates, c electric-
ity price development, d strike prices for the power market premium of the renewable technologies

Fig. 7  a Number of power plants, b share of renewable energy generated, c number of bankrupt investors 
per simulation period, d rejection rate of credit requests (absolute count). The blue and orange curve rep-
resent two distinct runs of the baseline model
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as corroborated by earlier research (Acemoglu et al. 2015; Lux 2016; Bottazzi et al. 
2020).45 In order to find a possible point where the model stabilizes and continues 
a steady, almost linear expansion in power generation capacity, we perform a Zivot 
Andrews test for the identification of structural breaks. This test yields the existence 
of a structural break in almost all of the model runs, located between the periods 440 
and 590, depending on the variable used for the test (variables tested were: credit 
and deposit rate, project growth, renewable project growth, deposit market concen-
tration). Comparing this result with the evolution of the power mix (Fig. 8d, panel 
A), it can be seen that this is where the second last fossil technology is phased out. 
This suggests that, in reality, there are actually two structural breaks, each placed 
where a fossil generation technology drops out of the merit order. Therefore, there 
is a feedback effect from the fossil drop-out on the financial well-being of investors, 
thus affecting also renewable installments.46

Table 3 shows an overview of the model statistics. For a better intuition of the 
simulation phases, we separate the simulation window into four equal ranges (I–IV), 
representing 250 iterations each. Within the modeling period of 1000 iterations, the 
renewable energy share rises from 37 to 80% in the baseline scenario. The average 
capital adequacy ratio of banks stays mostly within the target range of 8%. The rows 
labeled Premium indicate the percentage of sliding premium paid by the consumer 
as a fraction of the total consumer power price (composed of wholesale electricity 
price and premium).This is also the part of the electricity which could be securely 
financed using debt-based financing methods. For most indicators, standard devia-
tions tend to be larger in the range I than in range II–IV, indicating a higher initial 
instability of the model in this phase. To investigate the model properties further, 
we run a series of statistical tests.47 A Dickey fuller test is run on selected variables, 
suggesting non-stationarity of most of the output time series, pointing toward the 
existence of structural changes and persistent crises. We also look at auto- and cross-
correlation of the model variables (filtered for the cyclical component), and run a 
Johansen test, revealing a cyclical correlation of investor leverage and credit rates, 
as well as a negative relation between investor defaults and credit rates.48 Investor 
defaults tend to be negatively correlated with the growth of energy projects because 
the defaulting investors are not the ones able to invest in new projects in the same 
period of bankruptcy.

45 It has been shown that the density of interconnections affects the way in which financial distress prop-
agates the network. There is also an effect of the inter-bank connections, which we do not structurally 
investigate in this paper, but has been explored in (Grilli et al. 2015; Pallante et al. 2024).
46 A possible expansion of the model could be the introduction of green-minded investors who do not 
experience such structural breaks due to intentionally sustainable investment portfolios. In our simula-
tion, portfolios are random and heterogeneous.
47 Due to length restrictions, not all statistical results can be shown. We invite the interested reader to 
request more information directly from the authors.
48 This could be interpreted as follows: Defaulting investors are replaced by smaller agents in the course 
of the exit-entry process, banks experience a credit gap and have to lower the interest rates in order to 
attract new investors from the credit network.
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An overview of the stylized facts generated in the model can be obtained from 
Table 4.49 First, energy investments are lumpy, i.e., investors cannot build a partial 
power plant but must afford the entire upfront budget in order to expand the genera-
tion capacity (SF1). There is also a certain “lumpiness” in the composition of equity 
and debt, as investors have to provide both to end up with a successful projects. 
Further, investment is affected by the financial structure of the investors (SF2), as 
described in Section 2.2. Running a Jarque-Bera test on the average level of deposits 
for investors clearly reveals a non-normal distribution of investor sizes. This is both 
due to the Pareto-distributed initial setting and due to the model dynamics, yield-
ing fat-tailed distributions.50 Investors are allowed to change their initial choice on 
target technologies, resulting in a variety of power plants of different technologies 
being built by a single investor. This results in a strong heterogeneity among inves-
tors (SF4). Their bankruptcies, as an indirect measure of risk-taking, are closely 
connected to the growth in capacity (SF5). The latter stylized fact is a result of the 
bad credit rating highly leveraged investors receive. Investors who are in or close to 
bankruptcy are typically declined further credits, which reduces systemic risk but 
hinders the renewable transition.

In conclusion, the baseline model operates as expected and is able to replicate 
stylized facts about energy investments.

3.2  Scenario analysis

In this section, we explore the outcomes of the agent-based model under two 
alternative scenarios to understand the impact of various financial structures on 
renewable energy investments. This analysis includes two small additional sce-
narios deviating from the baseline: The “Less Project Finance” scenario and the 
“Less Project Finance with Green Credit Easing” (GCE) scenario. The objective 
is to examine how reducing the availability of project finance and introducing 
supportive financial policies for corporate finance affect the dynamics of renew-
able energy investment, power generation mix, and overall system stability. A 
summary of the changes made with respect to the baseline parameter setting can 
be found in Table  5. The structural changes made to the model in the context 
of the scenario analysis refer to the choice probability for project finance of the 
investors, as well as the banking parameters for applicants aiming at renewable 
technology investments which determine risk markup-ups on interest rates and 
the assessment of default probabilities. Figures   8 and   9, along with Table  6, 

49 Because the macroeconomic dynamics are not fully covered, we cannot give information about 
potential additional stylized facts that would emerge in a complete model, such as the volatility of gross 
domestic product or other cross-correlations with macro-variables such as employment. However, some 
microeconomic stylized facts are already included and can be seen from the model results.
50 Skewed and fat-tailed distributions are a typical emergent result in agent-based models, see for exam-
ple Fagiolo et  al. (2008) and Lamperti and Mattei (2018) for fat-tailed growth distributions in macro-
ABMs.
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present a detailed comparison of the model outputs from these scenarios across 
several key metrics from a total of 100 Monte Carlo runs.

Less Project Finance In the “Less Project Finance” scenario, the number of PF 
projects is significantly reduced, compelling a greater dependence on CF. This 
scenario aims to evaluate the resilience and effectiveness of the financial market 
and investment behavior when PF is less prevalent. In detail, the PF choice prob-
ability of each technology is reduced to 1/30 of the original value (see Table 11 
of the appendix), which however effectively results in reducing the PF share from 
roughly 80% in the baseline model to approximately 40% (see Table 6). Figure 8a 
(panel A) and b (panel B) shows the number of CF projects and PF projects result-
ing in both the baseline and alternative model run. The results indicate that while 
the total number of projects financed through CF increases, the overall growth in 
renewable energy capacity is slower compared to the baseline. We attribute this 
to coordination issues in the CF channel. As can be seen from Table 6, the credit 
market success rate drops from 23% (baseline) to around 19–21%, indicating 
that slightly less agents are able to acquire credits at the financial markets. The 
long-term merit order is not as predominant. Instead, the power price exhibits a 

Table 3  Statistics (mean with standard deviation in brackets) of the Monte Carlo simulation in the base-
line scenario

Range I (t = 0 − 249) II (t = 250 − 499) III ( t = 500 − 749) IV (t = 750 − 999)

Share PF 0.80 (0.08) 0.82 (0.00) 0.81 (0.00) 0.80 (0.01)
RE Share 0.37 (0.09) 0.61 (0.06) 0.78 (0.04) 0.91 (0.03)
Investor Leverage 0.48 (0.00) 0.47 (0.00) 0.46 (0.01) 0.45 (0.00)
Credit Market Success 

Rate
0.23 (0.04) 0.23 (0.00) 0.23 (0.00) 0.23 (0.00)

Capital Adequacy Ratio 
(%)

8.11 (1.58) 8.16 (0.59) 7.97 (0.46) 7.98 (1.26)

Credit Rate (%) 2.29 (0.08) 2.21 (0.01) 2.32 (0.05) 2.45 (0.03)
Equity Rate (%) 7.86 (0.92) 8.97 (0.13) 8.91 (0.14) 9.26 (0.10)
Bank Defaults per Period 0.83 (0.63) 0.13 (0.14) 0.07 (0.10) 0.14 (0.14)
Investor Defaults per 

Period
1.41 (0.56) 2.03 (0.20) 1.32 (0.26) 0.91 (0.20)

Electricity Price (1/phys. 
units)

46.41 (3.63) 36.72 (2.23) 29.82 (1.76) 24.79 (1.25)

Strike Price (Solar) 1.22 (3.74) 37.28 (7.09) 47.15 (1.21) 50.90 (0.94)
Strike Price (Wind 

Onshore)
0.55 (1.69) 28.66 (7.99) 40.62 (1.43) 44.92 (1.07)

Strike Price (Wind Off-
shore)

5.43 (11.43) 62.80 (8.17) 75.53 (1.97) 81.83 (1.62)

Premium (Solar) % 0.00 (0.00) 1.04 (1.53) 12.81 (4.55) 27.66 (4.16)
Premium (Wind Onshore) 

%
0.00 (0.00) 0.03 (0.09) 6.13 (3.65) 20.47 (4.56)

Premium (Wind Offshore) 
%

0.00 (0.00) 1.50 (1.33) 11.32 (4.59) 27.70 (4.83)
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slow but linear decline as a consequence of the moderate renewable energy (RE) 
expansion. Further, there is almost no usage of the power market support mecha-
nism, solely making up 7–13% of the RE power price at the end of the simulation.

Whereas the bank default rate is not significantly affected (the banking sys-
tem seems to be on average effective in controlling its reserves in order to not 
run into a financial crisis), the investor default rate is actually lower than in the 
baseline scenario in the beginning of the simulation, and slowly adjusts to higher 
values toward the end. As can be seen from the box plots (Fig. 9i), in some of the 
simulations, bankruptcy crises appear, in which there is a much larger bankruptcy 
rate, not fitting into a normal distribution. These extreme events are less present 
in the less PF scenario with respect to the baseline scenario, indicating that the 
possibility of risk hedging via SPV structures might be throttled in the alternative 
scenario with less PF. The risk of renewable plants is also less as power prices 
remain at higher levels compared to the baseline setting. A similar occurrence of 
crises can be observed from the bank defaults (Fig. 9h) and the capital adequacy 
ratio of banks (Fig. 9d), where toward the end of the simulation (phases III–IV), 

Table 5  Overview of the 
alternative scenario settings

Scenario Change in PF Δ�RE
3

Δ�RE
1

Δ�RE
min

Less PF ∼ 1∕2 of baseline – – –
Less PF + GCE ∼ 1∕2 of baseline  − 0.01 + 0.025 − 0.005

Fig. 8  Overview of the number of projects (a–c), mix in power generation (d–f) and power prices (g–i) 
for the baseline and alternative scenarios. Panel A: Baseline, Panel B: Less PF, Panel C: Less PF + GCE 
at t = 500 . Solid lines indicate the means across 100 Monte Carlo runs, shaded areas behind the line 
plots represent one standard deviation
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there is a large spread of default rates among the Monte Carlo runs. The latter is 
similar to the baseline case.

Green Credit Easing Support Instrument Due to the immaturity of technologies 
and high individualism of renewable energy projects, green CF investors often face 
difficulties when searching for financial capital. As an alternative to PF, green credit 
easing (GCE) might guide green CF investors toward a successful launch of a debt-
intensive project (Lamperti et  al. 2021; Alharbi et  al. 2023) but is also linked to 
increased fragility and risk in the financial system (Del  Gaudio et  al. 2022). The 
introduction of Green Credit Easing (GCE) in the “Less Project Finance with GCE” 
scenario aims to mitigate the adverse effects of reduced PF by improving access 
to credit for green projects. This policy intervention is designed to guide green 
CF investors toward successful debt-intensive project launches, thereby sustaining 
investment momentum. We technically do so by changing the parameters �1 and �3 
in the credit mechanism (Eqs.  3 and  5), and alleviating the reserve requirements 
�min , see Table 5. We introduce the modifications �RE

1
, �RE

3
, �RE

min
 for renewable energy 

such that the new bank parameters depend on the technology choice �:

Fig. 9  Boxplots of 100 Monte Carlo samples of the baseline scenario (blue), the alternative scenario with 
less project finance (orange) and the alternative scenario with less project finance and green credit eas-
ing (GCE) at t = 500 (gray) for different model variables. Results are shown for four different simula-
tion horizons: I ( t =0–249), II (250–499), III (500–749) and IV (750–999). a Share of renewable energy 
(RE), b credit market success rate (ratio of successful to total number of requests), c mean investor lever-
age, d mean capital adequacy ratio of banks, e mean expected equity rate of investors, f mean credit rate 
of banks, g mean deposit rate of banks, h average number of bank defaults, i average number of investor 
defaults
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This structural modification starts at t = 500 , when the government likely notices 
that the phase-out is not happening as fast as expected from the baseline scenario, 
and therefore introduces short-handed measures to recover the transition pathway. 
The GCE results in a more optimistic evaluation of default probabilities, as well 
as a lower risk mark-up for levered investors. However, these improved conditions 
are only granted to renewable investors. Further, we allow banks to slightly “over-
strain” their capital adequacy ratios when lending for green investments ( Δ�RE

min
 ). 

The remaining mechanisms of banks and investors stay unchanged. As depicted in 
Fig. 8c and f, the number of renewable energy projects and the power mix show a 
much more inclined growth trajectory as soon as the GCE is introduced, approach-
ing the levels of renewable share and power price observed in the baseline sce-
nario by the end of the simulation period. Therefore, GCE effectively bridges the 
financing gap created by reduced PF, enabling continued investment in renewable 
energy projects. Interestingly, the credit market success rate stay approximately the 
same with GCE, indicating improved availability and accessibility of financing for 
green projects, but an approximately equal overall success rate in credits. The rate 
of investor defaults is slightly higher but more stabilized with respect to the other 
scenarios, suggesting a balanced risk environment for investors facilitated by GCE. 
Even though the average value of bank defaults slightly reduces in periods I and II, 
the occurrence of bank default crises persists (see Fig.  9). However, the banking 
system seems to effectively steer its credit granting toward green investors, shielding 
the fossil investments, while maintaining a low-risk level of reserves.51 In summary, 
the GCE policy effectively mitigates the negative impact of reduced PF, promoting 
a steady growth in renewable energy investments. This scenario suggests that com-
bining PF with supportive financial policies like GCE might enhance the resilience 
and effectiveness of the financial system in driving the sustainable energy transition. 
GCE helps maintain a high investment rate while managing risk, underscoring the 
importance of policy interventions in sustainable finance.

(19)

��
1
=

{
�1,� + Δ�RE

1
if � is RE

�1 else
,

��
2,�

=

{
�2 + Δ�RE

2
if � is RE

�2 else
,

��
min,�

=

{
�min + Δ�RE

min
if � is RE

�min else.

51 The reason behind this shielding effect could potentially lie in the design of the capital reserve buffer. 
We leave the exploration of the influence of the behavioral parameters of the banks, like �RE

min
 for future 

research.
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4  Conclusions and outlook

In summary, this paper has developed and employed an agent-based model to 
study the effects of different financial structures on renewable energy investments. 
The model’s detailed representation of investor behavior, financial market inter-
actions, and power market risk allows for an analysis of the roles of PF and CF in 
the renewable energy transition. By integrating elements such as project-specific 
risks, investor heterogeneity, and a market premium design, the model provides a 
comprehensive framework to understand the financial mechanisms driving sus-
tainable energy investments, and is able to reproduce basic stylized facts about 
energy investments. The findings suggest that project finance is essential for rapid 
renewable energy deployment, as it enables a second financing channel for power 
plants. Without PF, the investment pace slows down significantly, and achiev-
ing sustainability targets becomes more challenging. However, also GCE can 
effectively support renewable energy investments by improving access to green 
credit and reducing financial risks, creating a robust financing environment that 
can accelerate the transition to renewable energy. These results suggest that PF 
is suitable for fostering renewable energy growth due to its ability to manage and 
distribute financial risks through special purpose vehicles (SPVs).

Future research should further explore the model’s parameter space in order to 
find an optimal mix of financial mechanisms and policy interventions to enhance the 
resilience and effectiveness of the financial system in supporting renewable energy 
investments. This includes investigating the interplay between various forms of 
financing, regulatory frameworks, and market conditions. Additionally, expanding 
the model to include other forms of renewable energy technologies such as stor-
age and grid technology, and different power market policies will provide deeper 
insights into more complicated energy systems. Moreover, addressing the observed 
endogenous crises situations in financial indicators will be crucial for developing 
robust strategies to mitigate financial risks. By identifying the conditions that lead to 
extreme values and financial instability, policymakers and financial institutions can 
better design interventions to ensure a smooth and continuous transition to a sustain-
able energy future. Further expansions could include the combination of this model 
with an integrated assessment model, or a further dis-aggregation of the rest-of-
economy agent. Finally, the role of energy trade has remained unexplored, for which 
the analysis of financial stability in the context of geopolitical risks is left to future 
research. A further expansion of the model could be the introduction of alternative 
banking mechanisms, such as the evaluation of investors according to the expected 
operating cashflow instead of the financial leverage.

In conclusion, this study unveils the role of PF in driving the renewable energy 
transition and the role of policy interventions like GCE in supporting this pro-
cess. This model suggests a balanced approach that leverages the strengths of PF, 
supplemented by targeted financial policies, to effectively address the challenges 
of financing renewable energy projects and contribute to achieving an economy’s 
sustainability goals. The model represents a good basis for further analyses or 
usage as an energy module in a larger integrated assessment model.
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Appendix

Appendix A: Expanded literature review

The linkage between power market aspects and agent-based integrated assess-
ment modeling is elaborated in this paragraph, extending the literature review of 
the main article.

In models focusing on finance, bank lending plays a superior role over techno-
economic aspects. Investment mechanisms are closely linked to changes in the 
balance sheet of investors and banks. This research stream addresses the question 
for possible external finance of carbon-friendly firms from a perspective of com-
mercial banks, through the channels of conventional bank lending, market debt 
(i.e., green bonds) and market equity investments (Campiglio 2016; Campiglio 
et al. 2018). Further, D’Orazio and Popoyan (2019) propose the decarbonization 
of banks’ balance sheets in a macro-prudential policy context. The authors draw 
conclusions for central banking and related reserve requirements.

In agent-based electricity market models, the expansion planning of power 
generation capacities is typically determined via the net present value of power 
plant projects, based on the electricity price. Developments in market price levels 
can be modeled subject to temporal supply scarcity or as a response to specific 
market mechanisms (Kraan et al. 2018; Chappin et al. 2017; Jimenez et al. 2024). 
Thus, the reaction of heterogeneous power suppliers to market incentives can be 
analyzed (Purkus et al. 2015; Jonson et al. 2020; Barazza and Strachan 2020), but 
minor modeling focus is attributed to the actual financing form and balance sheet 
composition resulting from these market incentives.

Representing yet another stream of literature, full-sized macro-ABMs aim at a 
more holistic understanding of the economy in the context of sustainable transi-
tions. For example, in (Nieddu et al. 2022; Ponta et al. 2018; Raberto et al. 2019) 
and (Lamperti et al. 2020, 2021), green financial policies in ABMs with heteroge-
neous firms and banks are investigated. However, these types of ABM are able to 
address the energy-economy-climate nexus in a highly integrated fashion, minor 
attention is attributed to the electricity market clearing mechanisms and associ-
ated investment risks, neither are different generation technologies addressed. 
Similarly, Ciola et  al. (2023) consider the introduction of windfall profits and 
changes in fossil fuel prices, but do not mirror long-term merit order effects.

Generally, in ABMs, the bridge between power market premia and alternative 
financing structures for renewable energy (in particular project finance) is sel-
dom built. Solely Ari and Koc (2019) have presented a first agent-based model 
for sustainable financing for Qatar solar farms. The model includes a representa-
tive bank and a finite number of uniformly distributed agents, who can make use 
of equity-based financial intermediaries or conventional bank loans. In a follow-
up work, the authors also consider a model with a philanthropic crowdfunding 
organization (Ari and Koc 2021). Whereas the authors aim at describing wealth 
developments, they exogenize assumptions about government incentives and risk 
accommodation.
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In summary, models considering sustainable finance in agent-based macroeco-
nomic modeling have been identified in literature, as well as models incorporating 
capacity investments in the context of power markets. Nevertheless, a research gap 
lies in the combination of energy finance, power market incentives and technologi-
cal heterogeneity. This paper aims at providing a contribution toward filling this gap.

Appendix B: Model details

Appendix B.1: Balance sheet matrix

Table 7 shows the balance sheet matrix of the model.

Appendix B.2: Transactions‑flow matrix

Table 8 shows the transactions-flow matrix of the model.

Table 7  Balance sheet matrix showing the balance sheet entries for banks, investors, special purpose 
vehicles (SPVs), the central bank (CBank), the government and the rest of economy (RoE)

Bank Investor SPV CBank Govern-
ment

RoE

A L A L A L A L A L A L

Deposits D DI DS DR

Loans L LI LS LR

Central Bank Loans C C
Currency in circulation M
Bonds B B
Project Equity Ep Ep

(Power Plant Assets) KI KS

Net Worth NWB NWI NWS NWC NWG NWR
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Appendix C: Structural model parameters

Table 9 summarizes the values and descriptions for the structural parameters of the 
model. Table 10 shows the fractions of reserves sold or bought by banks to optimize 
their composition of reserves with respect to the macro-prudential requirements.

Table 9  Parametrization of the power market model. Source: own values

Variable Description Value

� Fraction of investor profits paid out as dividends 0.6
�0 Tax rate 0.3
r⋆ Central bank rate 0.0
rb Government bond yield 0.0
�min Reserve requirement 0.08
�E Subset sampling size on the equity market 0.10
�C ,�

′
C

Subset sampling size on the credit market 0.20, 0.05
�D,�

′
D

Subset sampling size on the deposit market 0.15, 0.05
N† Number of attempts before rethinking an investment decision 4

N̂ Maximum number of equity market requests per SPV 2

�E Maximum share of equity funds put into one SPV 0.2
�R
D
, �R

L
Share of rest of economy credits/deposits shifted 0.005

�e Weighting factor for expected return on equity 0.9
Nm Random number of banks in rest of economy financial markets 2
�a
min

, �a
max

Asset beta distribution 0.8, 1.0

�
↑

d
, �

↓

d
Learning speeds (deposit market) 0.057, 0.050

�
↑

�
, �

↓

�
Learning speeds (credit market) 0.002, 0.14

�0, �1 Power price starting level and merit order slope 60.0, 40.0
r�
min,0

, r�
max,0

Initial interest rate parameters (deposits) (0.004, 0.006)

r�
min,0

, r�
max,0

Initial interest rate parameters (credits) (0.015, 0.025)
�1 Bank parameter (credit evaluation) 0.5
�2 Bank parameter (credit evaluation) 0.001
�3 Bank parameter (credit evaluation) 0.03
� Bank parameter (credit evaluation) 4
p0 SPV credit acceptance probability 0.85
�d , �c Fraction of credits and deposits of the RoE agent shifted on the finan-

cial markets
0.005

L Power load 150

Table 10  Overview of the fractions of reserves sold and bought by banks to reach their reserve require-
ment goals. Source: own assumptions

Parameter �L �
buy

B
�sell
B �

buy

CB
�sell
CB

Value 0.9 0.6 0.6 0.8 0.98
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Appendix D: Technology parameters

Appendix E: Power market details

Appendix E.1: Short‑term power market dynamics

The clearing price of the market is approximated as a linear function of the renew-
able share in the power plant pool, such that P0 = �1 − �2YRE∕(YRE + Yfossil) , where 
parameters �1, �2 determine the strength of the merit order effect. A second price 
term is added to account for fluctuations in weather and regional heterogeneity not 
explicitly modeled. This short-term power market model is adapted from literature 
(Kitzing and Weber 2014), employing a two-factor stochastic model, where the log-
arithm of the power price is divided into a long-term and a short-term component, 
i.e.,

where dP̄ is a long-term Brownian motion and d�t is a mean-reverting short-term 
process, in particular an Ornstein–Uhlenbeck process.52 In our model, we use the 

(20)lnPt = �t + �t

(21)dP̄t = P̄t

(
𝜇𝜉 +

1

2
𝜎2
𝜉

)
dt + P̄t𝜎𝜉dz𝜉

(22)d�t = −��tdt + ��dz�

Table 11  Technology data used in this paper: Typical system size (MW), annual full-load hours (h), 
probability of project finance (p(PF)) in the baseline scenario (BL) and the alternative scenarios with 
less project finance (PF), probability of technology choice p(T), fixed operational costs (kEUR/kW), vari-
able operational costs (kEUR/kWh) and capital expenditures (kEUR/kW). Sources: own assumptions

Technology Size K̂ (MW) Load 
Hours (h/
year)

p(PF) BL /
less PF %

p(T) % Cfix (Eur/kW) Cvar (Eur/
kWh)

Capex

Solar PV 50 1130 28.8/0.96 29 20 0.0 700
Wind 

Onshore
40 2570 24.0/0.8 56 19 0.002 1800

Wind Off-
shore

100 2820 15.0/0.5 5 70 0.004 3000

Lignite 75 6970 0.0/0.0 0 40 0.0009 2300
Hard Coal 100 6550 6.6/0.22 0 42 0.018 1900
Natural Gas 50 2600 1.8/0.06 10 25 0.050 800

52 As the Phelix future market is barely used in recent years (2021–2022), a smoothed spot price as a 
proxy for the base price. The calibration process for this model is described in (Kitzing and Weber 2014). 
In this paper, we only make theoretical assumptions about the short-term parameters.
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arbitrary parameters � = 3.7,� = 0.5,�� = 0.001, � = 0.5, �xi = 0.1, �� = 0.1 
and overlay the resulting short-term fluctuations with the long-term clearing price 
to account for more stochastic (and thus closer-to-reality) revenue streams of the 
investors.

Appendix E.2: Numerical determination of financing conditions

For computing the strike price endogenously, we make use of the algorithm derived 
by Neuhoff et al. (2022).53 This method sums over the distribution � of all expected 
market values of power plants to yield the required amount of equity (E) in the pro-
ject, given the strike price S:

Equation (23) states that the equity-serving cash flow equals the expected revenue 
streams from a power plant beyond the strike price S, yielding its physical output 
Ỹ  for a given period. Here, ae is the equity-serving factor (the expected fraction of 
equity to be paid to shareholders in each financing period). This equation reflects 
that insecure revenue streams are backed by equity. The distribution � influences 
how strict this rule applies. If expectations are relatively stable, � might be a func-
tion with a sharp peak around S, and equity will only account for a short right 
tail. If expectations are fuzzy, � exhibit a broader tail beyond S and the amount of 
equity required increases. In this paper, �(pi) ∼ N(��, ��) is a normal distribution 
of expected market values across power plants of the same technology,54 where �� 
is given by last period’s power price level and the standard deviation ��(= 2.0) is 
an indicator of heterogeneity in expectations. Mind that this is a conservative and 
myopic strategy as market values tend to fall with increasing renewable ramp-up 
in the long run. The portion of debt D in the investment covers at least the costs of 
electricity generation:

Here, the costs Cvar and Cfix for variable and fixed operational costs are included. 
The debt-serving factor ad and equity-serving factor ae read55

(23)aeE(S)
!
= Ỹ ∫

∞

S

𝜙(p�)dp�.

(24)ãdD(S)
!
= Ỹ(S − Cvar) − Cfix.

53 We forward the interested reader to this article, which represents a thorough derivation and investiga-
tion of the method summarized here. The only difference in our model is that also fixed expenditures are 
covered by debt.
54 We approximate the integral in equation 23 over a discrete distribution of expected market values.
55 The debt and equity-serving factors result from the geometric sum over discounted cash flows in the 
entire project lifetime T, i.e., D =

∑Tp

t=1
adD∕(1 + r�)t,E =

∑Tp

t=1
aeE∕(1 + re)

t . A more thorough deriva-
tion can be found for example in Götze et al. (2008).



Project finance or corporate finance for renewable energy?…

56 In our model, project lifetimes exceed the end of the simulation and are therefore not regarded. Mind 
that ad ≈ r

�
 and ae(j) ≈ re for Tp ≫ 1.

where the adjusted debt-serving factor ãd , introduced by Neuhoff et  al. (2022), 
includes the assumption that a minimum share �(= 0.2) of equity is required in all 
cases to secure the project debt, and Tp denotes the project lifetime.56 Equations (23) 
and (24) can be interpreted as the constraints f (equation 12) and g (Eq. 11) from the 
main text when solved for E and D, respectively:

These equations are used in two different ways in this model. The government deter-
mines the optimal strike price, using average financing rates. Investors then take this 
optimal strike price as given, and compute D and E using their individual financing 
conditions, as explained in section 2.5.1. For the calculation of debt and equity for a 
specific investor j, S is taken as given. In the latter case, consider an investor j. In 
equation (25), the interest rate r

�
= r�

k�(j)
 of the current favorite bank for credits and 

the expected per-period return on equity re = �[re(j, �)] were used. We determine 
�[re(j, �)] by plugging in equation (14) for the technology � investor j aims to invest 
in.

Appendix F: Initialization of stocks

In the beginning of the simulation, the deposits and loans of investors are set up. 
Investors are businesses of varying size in employees, and the number of persons in 
this business is directly linked to its initial financial wealth.57 The simulation con-
tains in sum 100 investor agents. Each investor j is initialized by providing an equity 

(25)ad(r�) =
r
�
(1 + r

�
)Tp

(1 + r
�
)Tp − 1

, ae(re) =
re(1 + re)

Tp

(1 + re)
Tp − 1

(26)ãd(r� , re) = (1 − 𝛼)ad + 𝛼ae

(27)E = g(Ỹ , S,𝜙, re) =
1

ae(re)

(
Ỹ ∫

∞

S

𝜙(p�)dp�
)
,

(28)D = f (y, r
�
, re) =

y

ãd(r� , re)

(29)where y ∶=
(
Ỹ(S − Cvar) − Cfix

)
.

57 As we do not include a labor market, the number of employees has no further effect on the model 
dynamics.
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ratio �0
j
 and a number of employees nj , sampled randomly from a Pareto distribution 

with probability density p(nj) = ama∕xa+1 with scale m = 1 and shape a = 1 . The net 
worth is scaled linearly between a minimum value Ē = 100 and maximum value 
Ê = 3000 (monetary units) such that the net worth of investor j matches the ratio 
between j’s number of employees and the maximum number of employees in the 
simulation, n̂j : Ej,0 = nj∕n̂j ⋅ (Ê − Ē) + Ē. The ratio �0

j
= 0.1 of each agent deter-

mines the total assets, which are linked to total deposits via Dj,0 = Ej,0∕�
0
j
 . The ini-

tial loans of each agent are computed via Lj,0 = Aj,0 − Ej,0 = Dj,0 − Ej,0 Note that, for 
consistency of the stocks, each investor requires a bank for deposits and a bank for 
loans. Each agent chooses a random bank k in the beginning, and all loans are issued 
by a second random bank k′ , such that Lj,0 = Lj,k� , Lj,� = 0 ∀� ≠ k� and 
Dj,0 = Dj,k,Dj,� = 0 ∀� ≠ k.

Banks (indexed with k) have an initial set of loans and deposits stemming from both 
the investors and the rest of the economy. We sample 20 commercial banks given a list 
of total assets Ak,0 for each bank (cf. Table 12). The composition of total assets of the 
bank k reads Ak,t =

∑
j Lj,k,0 + L�

k,t
+ Rk,0 where j indexes the bank’s clients for loans. 

To determine the quantity of reserves at each bank, we apply fixed exogenous shares, 
i.e., Rk,0 = �rAk,0 . Finally, we compute the loans stemming from the rest of the econ-
omy (not from the energy investors) L′ as the residual L�

k,0
= Ak0

− Rk,0 −
∑

j Lj,k,0 . On 
the liability, side, banks are assigned a share for central bank loans, �cb . The liabilities 
of bank k are initially Lk,0 =

∑
j Dj,k,0 + D�

k,0
+ LCB

k,0
 such that the rest of the economy’s 

deposits become D′
k,0 = Lk,0 −

∑

j Dj,k,0 − LCBk,0  . The initial equity of banks finally reads 
Ek,0 = Ak,t − Lk,0 =

∑

j Lj,k,0 + L′k,0 + Rk,0 −
(

∑

j Dj,k,0 + LCBk,0
) . If the equity resulting from this proce-

dure is lower than a minimum share �A = 0.01 of total assets, reserves of the missing 
amount are added to the bank’s balance sheet in order to meet this requirement. For 
simplicity, �cb = 0 is set in the beginning of the simulation and �r = 0.03 as a fraction 
of initial reserves for all banks. Initial rates on credits and deposits are sampled from 
uniform distributions ( r�

k,0
∼ u(0.020, 0.030), r�

k,0
∼ u(0.0001, 0.0015)).

The initial distribution of power plants is an approximate scaled-down version 
of the German energy system.58 In order to reduce computational resources, the 

58 This representation is very stylized and therefore cannot be used for direct policy analysis for a spe-
cific country.

Table 12  Financial parameters for banks: total assets (monetary units)

Bank Index 0 1 2 3 4 5 6 7 8 9
Total Assets 1348 519 490 462 287 241 220 169 163 154

Bank Index 10 11 12 13 14 15 16 17 18 19
Total Assets 45 27 26 19 19 16 15 12 12 12
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characteristic generation capacity is scaled up artificially with respect to the real-
world capacity. Table 13 gives an overview of the initial power plant distribution 
employed in the model. In total, there are 188 initial power plants.
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