EVALUATION OF THE EMPIRICAL SCALING OF JOULE HEATING RATES IN PHYSICS-BASED ATMOSPHERE-IONOSPHERE MODELS

6. NATIONALER WELTRAUMWETTERWORKSHOP

25 SEPTEMBER 2024

Florian Günzkofer¹, Huixin Liu², Gunter Stober³, Dimitry Pokhotelov⁴, Claudia Borries¹

¹ Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR)

² Department of Earth and Planetary Sciences, Kyushu University

³ Institut für Angewandte Physik & Oeschger Centre for Climate Change Research, Universität Bern

⁴ Institut für Physik, Universität Greifswald

High-Latitude Joule heating in models

[Günzkofer, PhD thesis, LMU München, 2024]

- electric fields propagate down along magnetic field lines into the ionospheric dynamo region
- resulting currents cause Joule heating (Pedersen currents) and geomagnetic disturbances (Hall currents)

[Weimer, J. of Geophys. Res., 110, A05306, 2005]

Empirical plasma convection is commonly applied in ionosphere models

Dawn

convection model	parameter(s)	
Heelis	Кр	
Weimer	$B_y, B_z, v_{SW}, \rho_{SW}$	
AMGeO (assimilative)	SuperDARN, SuperMAG, +	

Empirical scaling factor (Codrescu et al., 1995)

 $\frac{|v_i - v_{i+5min}|}{v_i} \sim 1.5 \longrightarrow E = e_m + x \cdot e_v \quad (e_v \sim 1.5e_m)$ $Q_J \propto \overline{E}^2 = \int_{-1}^{+1} (e_m + x \cdot e_v) \cdot f(x) \, \mathrm{d}x = e_m^2 + \frac{e_v^2}{3} \sim 1.5e_m^2$ $Q_I \sim 1.5 \cdot Q_{Im}$

JOULEFAC

[Codrescu et al., Geophys. Res. Lett., 22, 2393-2396, 1995]

Joule heating factor. This factor is multiplied by the joule heating calculation (see subroutine qjoule_tn in qjoule.F).

Data type: real[from TIE-GCM userguide]Default: 1.5

BUT: JOULEFAC is based on a 6-hour, geomagnetically disturbed measurement period

- geomagnetic activity
- local time

- latitude
- season (Emery et al., 1999)

3

EISCAT electric field measurements (69°N, 19°E)

- 3D ion velocity measurements with EISCAT beam-swing campaigns
- two TIE-GCM runs with Heelis/Weimer convection

 $q_{J,E} = \sigma_P(N_{e,E}) \cdot E_E^2$ $q_{J,m} = \sigma_P(N_{e,m}) \cdot E_m^2$

 \hat{x} : most probable solution

 Σ : covariance matrix of ϵ

Q: Fisher information matrix

Stochastic inversion, following Nygren et al., (2011):

 $\boldsymbol{M} = \mathbf{A} \cdot \boldsymbol{x} + \boldsymbol{\epsilon} \qquad \qquad \widehat{\boldsymbol{x}} = \mathbf{Q}^{-1} \cdot (\mathbf{A}^T \cdot \boldsymbol{\Sigma}^{-1}) \cdot \boldsymbol{M}$

M: measurement vector

- A: theory matrix
- x: unknow variables (v^F)
- ϵ : measurement uncertainties

$$\boldsymbol{E}_{\perp} = -\boldsymbol{v}^F \times \boldsymbol{B}$$

Heelis: f = 1.60

Weimer:
$$f = 1.41$$

[Günzkofer et al., Earth Space Sci., 11, e2023EA003447, 2024]

EISCAT CP2 database and method

2003 - 2017

bin measurement/model q_I profiles with respect to

- *Kp* index
- Kan-Lee merging electric field (solar wind and IMF parameters)
- magnetic local time

determine scaling factor with non-linear least-square fit of Joule heating rate profiles:

 $q_{J,E}(h) = f \cdot q_{J,m}(h)$

total: ~ 2220 hours

Required scaling factor - *Kp*

[Günzkofer et al., Earth Space Sci., 11, e2023EA003447, 2024]

Table 4 Adjusted Scaling Factors f_H and f_W for Heelis- and Weimer-Driven Model Runs With Respect to Kp Index and E_{KL}					
Кр	$f_{\rm H}$	$f_{\mathbf{W}}$	$E_{KL} (mVm^{-1})$	$f_{\rm H}$	$f_{\mathbf{W}}$
0	9.50	3.97	0-0.1	4.76	2.09
0.333	8.49	2.53	0.1-0.2	10.44	2.72
0.667	10.26	2.00	0.2-0.35	12.11	4.21
1	4.96	2.19	0.35-0.5	8.44	1.82
1.333	5.00	1.84	0.5-0.7	5.44	1.45
1.667	3.53	2.14	0.7-0.9	3.35	1.44
2	3.05	1.78	0.9-1.15	1.40	1.21
2.333-2.667	2.16	1.91	1.15-1.6	2.19	0.93
3-3.333	2.63	1.46	>1.6	1.38	0.67
3.667-4	1.77	1.59			
4.333-5	1.59	1.61			
5.333-6	1.24	1.60			
>6	0.77	2.89			

strong deviations from default f = 1.5 found

- low Kp: no major impact on absolute q_I/Q_I
- medium Kp: f = 1.5 works considerably well
- high Kp: low occurence

Required scaling factor – magnetic local time

Table 5

Adjusted Scaling Factor f_H and f_W for	Heelis- and Weimer-Driven Model Runs	With Respect to the Kp Index and MagLT
---	--------------------------------------	--

Kp/MagLT	03–09	09–15	15–21	21-03
0-2	$f_H = 13.32$	$f_H = 5.59$	$f_H = 3.45$	$f_{H} = 18.91$
	$f_W = 3.16$	$f_W = 8.31$	$f_W = 1.40$	$f_W = 0.87$
2–4	$f_{H} = 2.68$	$f_H = 1.32$	$f_H = 3.57$	$f_H = 2.89$
	$f_W = 1.88$	$f_W = 2.90$	$f_W = 2.20$	$f_W = 1.24$
4–9	$f_H = 1.31$	$f_{H} = 0.46$	$f_{H} = 1.64$	$f_H = 1.43$
	$f_W = 1.04$	$f_W = 1.23$	$f_W = 3.28$	$f_W = 1.49$

Table 6

>0.5

Adjusted Scaling Factor f_H and f_W for Heelis- and Weimer-Driven Model Runs With Respect to E_{KL} and MagLT				
E _{KL} (mVm ⁻¹)/MagLT	03–09	09–15	15–21	21-03
0-0.2	$f_{H} = 8.90$	$f_H = 4.49$	$f_H = 5.61$	$f_H = 9.27$
	$f_W = 2.52$	$f_W = 6.62$	$f_W = 2.86$	$f_W = 1.00$
0.2-0.5	$f_H = 13.00$	$f_H = 7.62$	$f_H = 6.25$	$f_H = 21.15$

 $f_W = 10.63$

 $f_{H} = 1.28$

 $f_W = 2.61$

 $f_W = 1.18$

 $f_{H} = 4.47$

 $f_W = 1.30$

 $f_W = 1.27$ $f_H = 2.92$

 $f_W = 1.14$

 $f_W = 3.42$

 $f_{H} = 3.04$

 $f_W = 1.51$

[Günzkofer et al., Earth Space Sci., 11, e2023EA003447, 2024]

- day-night variation:
 - Weimer-driven ↑
 - Heelis-driven ↓
- daytime Q_I underestimated for low Kp/E_{KL}
- afternoon Q_I underestimated for high Kp

7

Summary

- 1. Default Joule heating scaling factor f = 1.5works considerably well as the general average
- 2. Distinct variations of the required scaling factor with **geomagnetic activity**, **magnetic local time**, and **plasma convection model**
- 3. Look-up tables with **corrected scaling factors** provided in **Günzkofer** *et al.*, (2024)

1. Measurements:

• Problem: single-point measurements

Outlook

- \rightarrow no latitudinal or longitudinal variations
- → including PFISR (Fairbanks, Alaska)
- Problem: low time resolution for 3D ion velocity/electric field measurements
 - → apply **phased-array ISRs** (PFISR, EISCAT_3D)
- 2. Modelling:
 - do assimilative convection models perform better?
 AMGeO convection model
 - what impact has a higher time resolution on the model Joule heating rates?
 - → high-res WACCM-X

References:

8

Günzkofer, *PhD thesis*, LMU München, doi: 10.5282/edoc.33661, 2024 Günzkofer *et al.*, *Earth Space Sci.*, **11**, e2023EA003447, 2024 Nygrén *et al.*, *J. Geophys. Res.*, **116**, A05305, 2011 Weimer, *J. of Geophys. Res.*, **110**, A05306, 2005 Emery *et al.*, *J. Atmos. Sol.-Terr. Phys.*, **61**, 329-350, 1999 Codrescu *et al.*, *Geophys. Res. Lett.*, **22**, 2393-2396, 1995

florian.guenzkofer@dlr.de

