EVALUATION OF THE EMPIRICAL SCALING OF JOULE HEATING RATES IN PHYSICS-BASED ATMOSPHERE-IONOSPHERE MODELS

6. NATIONALER WELTRAUMWETTERWORKSHOP

25 SEPTEMBER 2024

Florian Günzkofer¹ , Huixin Liu² , Gunter Stober³ , Dimitry Pokhotelov⁴ , Claudia Borries¹

¹Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR)

²Department of Earth and Planetary Sciences, Kyushu University

³Institut für Angewandte Physik & Oeschger Centre for Climate Change Research, Universität Bern

⁴Institut für Physik, Universität Greifswald

1

High-Latitude Joule heating in models

- electric fields propagate down along magnetic field lines into the ionospheric dynamo region
- resulting currents cause Joule heating (Pedersen currents) and geomagnetic disturbances (Hall currents)

[Günzkofer, *PhD thesis*, LMU München, 2024] [Weimer, *J. of Geophys. Res*., **110**, A05306, 2005]

Empirical plasma convection is ! **commonly applied in ionosphere models** !

Dawn

Empirical scaling factor (Codrescu *et al.***, 1995)**

JOULEFAC

[Codrescu *et al*., *Geophys. Res*. *Lett*., **22**, 2393-2396, 1995]

Joule heating factor. This factor is multiplied by the joule heating calculation (see subroutine qioule tn in qioule.F).

Data type: real [from TIE-GCM userguide] Default: 1.5

BUT: JOULEFAC is based on a 6-hour, [1974]
 example in the interval on a 4-hour community of the district of the community of the district of the district
 example interval on the district of the district of the distr geomagnetically disturbed measurement period

- geomagnetic activity
- local time
- latitude
- season (Emery *et al.,* 1999)

EISCAT electric field measurements (69°N, 19°E)

- 3D ion velocity measurements with EISCAT beam-swing campaigns
- two TIE-GCM runs with Heelis/Weimer convection

 $q_{J,E} = \sigma_P(N_{e,E}) \cdot E_E^2$ $\boldsymbol{q_{J,m}} = \boldsymbol{\sigma_P}(N_{e,m})\ \cdot \boldsymbol{E_m^2}$

 \hat{x} : most probable solution

 Σ : covariance matrix of ϵ

: Fisher information matrix

Stochastic inversion, following Nygren *et al.***, (2011):**

 $M = A \cdot x + \epsilon$ $^{-1}\cdot({\bf A}^T\cdot\Sigma^{-1})\cdot M$

M: measurement vector

- : theory matrix
- \pmb{x} : unknow variables $(\pmb{\nu}^F)$
- ϵ : measurement uncertainties

$$
\boldsymbol{E}_{\perp}=-\boldsymbol{\mathit{v}}^{F}\times\boldsymbol{B}
$$

22-day campaign September 2005

$$
Kp>2
$$

Heelis: $f = 1.60$

Weimer:
$$
f = 1.41
$$

4 [Günzkofer *et al.*, *Earth Space Sci.*, **11**, e2023EA003447, 2024]

EISCAT CP2 database and method

2003 - 2017

bin measurement/model q_I profiles with respect to

- Kp index
- Kan-Lee merging electric field (solar wind and IMF parameters)
- magnetic local time

determine scaling factor with non-linear least-square fit of Joule heating rate profiles:

 $q_{I,E}(h) = f \cdot q_{I,m}(h)$

total: ∼ **hours**

Required scaling factor -

[Günzkofer *et al.*, *Earth Space Sci.*, **11**, e2023EA003447, 2024]

strong deviations from default $f = 1.5$ found

- low *Kp*: no major impact on absolute q_J/Q_J
- medium $Kp: f = 1.5$ works considerably well
- high *Kp*: low occurence

Required scaling factor – magnetic local time

Table 5

7

[Günzkofer *et al.*, *Earth Space Sci.*, **11**, e2023EA003447, 2024]

- day-night variation:
	- − Weimer-driven ↑
	- − Heelis-driven ↓
- daytime Q_I underestimated for low Kp/E_{KL}
- afternoon Q_I underestimated for high Kp

Summary Outlook

- 1. Default Joule heating scaling factor $f = 1.5$ works considerably well as the general average
- 2. Distinct variations of the required scaling factor with **geomagnetic activity**, **magnetic local time**, and **plasma convection model**
- 3. Look-up tables with **corrected scaling factors** provided in **Günzkofer** *et al.***, (2024)**

1. Measurements:

- Problem: single-point measurements
	- **→** no latitudinal or longitudinal variations
	- ➔ including **PFISR (Fairbanks, Alaska)**
- Problem: low time resolution for 3D ion velocity/electric field measurements
	- ➔ apply **phased-array ISRs** (PFISR, EISCAT_3D)
- 2. Modelling:
	- do assimilative convection models perform better? ➔ **AMGeO convection model**
	- what impact has a higher time resolution on the model Joule heating rates?
		- ➔ **high-res WACCM-X**

References:

Günzkofer, *PhD thesis*, LMU München, doi: 10.5282/edoc.33661, 2024 Günzkofer *et al.*, *Earth Space Sci.*, **11**, e2023EA003447, 2024 Nygrén *et al.*, *J. Geophys. Res.,* **116**, A05305, 2011 Weimer, *J. of Geophys. Res*., **110**, A05306, 2005 Emery *et al.*, *J. Atmos. Sol.-Terr. Phys.*, **61**, 329-350, 1999 Codrescu *et al.*, *Geophys. Res*. *Lett*., **22**, 2393-2396, 1995

florian.guenzkofer@dlr.de

