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Quantum DDPG Agent

   

Portfolio Allocation
A strategic approach to distribute investment capital across various
 assets to maximize returns and minimize risk.
The QRL agent dynamically adjusts the optimal allocation weight 
vector daily, responding to market fluctuations for effective time 
series optimization and meeting investment objectives.

Task Complexity:

Variations (constraints):
Risk minimization, transaction 
costs, diversity, restrictions of 
weight distribution.

From linear problem to NP-
complete based on constraints 
and number of assets.  
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Actor-Critic model (Q-Learning) for continous actions and percepts
with tartet networks to stabilize training. Off-policy model with replay buffer.
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Variational Quantum Policies

Motivation 
In the era of NISQ devices, Variational Quantum Circuits in Quantum Machine 
Learning are gaining attention, advancing towards practical quantum computing 
applications on NISQ devices. Reinforcement Learning (RL), known for its human-
like, trial-and-error learning, is inherently suited for dynamic financial applications 
that require adaptability [1,2]. Classical deep RL models like DDPG and PPO show 
promise, while emerging quantum neural networks offer potential for improved 
function approximation, better generalization capabilities and reduced parameters 
[3]. In light of these advancements, we explored a quantum-enhanced version of 
the DDPG agent, aiming to leverage these quantum capabilities for more efficient 
financial decision-making processes. Our objective is to explore the practicality 
and potential benefits of QRL in finance, aiming to realize viable quantum 
computing applications on NISQ devices.

Reinforcement Learning
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Reward function: Portfolio value 

Features: Technical Indicators, values of covariance
matrix or principle components of PCA

Split of training period and evaluation period

Environment: market simulation from historical data

Example of a one layer VQC of the actor

Raw

Softmax Methodology:

Results

d.) Average cumulative returns of 15 Q-DDPG agents with raw 

policy on an evaluation dataset are compared to a baseline 

resembling the underlying market dynamics and the Min-

Variance strategy. Sharpe ratios: Q-DDPG 1.20, Min-Variance 

0.96, baseline 0.81, indicating superior balance of returns and 

risks.                                                                                                                

Softmax (noisy) Raw (noiseless)

a.)

b.)

c.)

d.)
Performance Benefits: Achieves favorable return-to-risk 
ratios compared to conventional Min-Variance strategy and 
baseline.

Reduced Parameters: Requires fewer trainable 
parameters than traditional deep RL methods.

Scalability and Efficiency: Demonstrates scalability in 
asset counts                          with gate counts
                                 , supporting realistic portfolio sizes. 

Noise Resilience:  Evaluation shows robustness to 
depolarizing, amplitude damping, phase damping, 
measurement, and shot noise while training. However, 
noise during evaluation can be detrimental, particularly at 
higher noise levels. 
Specific noise types, such as depolarizing, have similar 
effects to classical hyperparameters, enhancing learning in 
particular scenarios.

Conclusion 
                                                                                                                
Performance during market downturns (training noise)                                                                                                           

Training noise                                                                                                              

Training and evaluation noise                                                                                                              

a.)-c.) Exemplary performance of Q-DDPG agents with softmax 

policy under depolarizing noise (seed 43). Demonstrating how 

noise during training can prevent suboptimal policies, while 

evaluation noise converges to market baseline with increasing 

noise levels.                                                                                                               

Update routine of DDPG [4]:

   1. Randomly sample batch B from buffer

   2. Compute targets

   3. Update Q-function (gradient descent)

   4. Update policy (gradient ascent)

   5. Update target networks 


