

Remote Sensing Solutions to Assess Land Degradation and to German Remote

Sensing Data Center (DFD) Land Surface Dynamics

Enhance Smallholder Farming in West Africa

Jonas Meier¹, Frank Thonfeld¹, Niklas Heiss¹, <u>Verena Huber García¹</u>, Andreas Hirner¹, Ursula Gessner¹ ¹ German Remote Sensing Data Center, German Aerospace Center

BACKGROUND

Challenges in Sub-Saharan Africa

- ... Sub-Saharan Africa faces **multiple risks (climatic,**
- social, economic, ecological) with partly
- uncertain future developments
- Projected **population development** from **400** million to 1.2 billion in 2100
- Different risks and different impact of land use in different agro-ecological zones and under farmers' socio-economic conditions
- Limiting yields and thus the acceptance of certain measures by farmers
- . This generally leads to agricultural expansion to satisfy increased demands and compensate degradation
- **Rising population** as driver for **increase in** cropland and in livestock

Research on Mitigation and Adaption

in different projects

CONCERT

Mitigation: • Greenhouse gas emissions and mitigation options are evaluated

Suitability analysis for rice cultivation using climate and soil data Assessment of the actual used rice area using Sentinel-1 and Sentinel-2 data

Adaptation:

AgRAIN

PARTNERSHIPS FOR THE GOALS

8

- Co-Design with local farmers
- Identify socio-economic insentives for using SI practices
- Evaluation using EO data

Consequences are loss in carbon and loss in biodiversity

Mapping actual rice cropping area in inland valleys

METHODS

Delineation of field boundaries using a CNN in Senegal

- **Input:** Planet data (NICFI) 2016-07 2023-07 (5 bands: R, G, B, NIR, maxNDVI)
- Use of maxNDVI to map all active fields
- Training data creation:
 - 4 sample regions representing different agricultural systems
 - Polygons were drawn across all agricultural fields
 - Rasterized to Planet resolution

Preprocess data:

Cropping/forest

Slope

Cacoa, cotton, mango etc.

Stretch the dataset using augmentation techniques like flipping, rotating and scaling and image generators

Train the U-Net model (Ronneber et al., 2015):

- Tune hyperparameters and monitor learning curves to reach minimum loss
- fully convolutional neural network (CNN)
- Only convolutional layer

Comparison of field boundaries delineated from Planet (NICFI) data with:

- RGB high resolution image and ESA WorldCover
- Field data provided to local partner to plan with exact field sizes

Comparison of optimizer functions Adam optimizer Stochastic gradient descent

Esa WorldCover & Field Boundaries

Oberpfaffenhofen

jonas.meier@dlr.de

Tel.: +49 8153 28-3946

82234 Weßling

RESULTS

SPONSORED BY THE

Federal Ministry of Education and Research

This work is part of the COINS project funded by the German Federal Ministry of Research and Education (Förderkennzeichen 01LL2204A-F)

Deutsches Zentrum

für Luft- und Raumfahrt

German Aerospace Center

EO-based analysis show that 2% of the country area is used for rice cropping

Ronneberer, O.; Fischer, P.; Brox, T. (2015): Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol. 9351: 234-241.

Manobi Africa

Mapped areas follow inland valley

WASCAL

- North to south gradiant caused by the climate
- Rice cropping can increased from ~2-10% land area

Mangroves

Moss & Lichen

Contact: **Dr. Jonas Meier**

German Aerospace Center (DLR)

Earth Observation Center (EOC)

German Remote Sensing Data Center (DFD)

Real-world" field boundaries from the AgCelerant platform provided by Manobi Africa

UNIVERSITY UNU-EHS BOCHUM BOCHUM