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Abstract

The design of a complex product like an aircraft involves different engineering disciplines, which are
coupled with each other and exchange data in terms of inputs and outputs. Integration of such disci-
plines, their interaction with each other and exchange of diverse datasets leads to a time and resource
intensive workflow development process. The interconnections between the coupled disciplines can
lead to design inconsistency and transparency loss. To address these issues, the MDAO Workflow De-
sign Accelerator (MDAx) was developed. MDAx bridges the gap between the competence deployment
phase and multidisciplinary design analysis and optimization (MDAO) workflow execution by offering a
comprehensive MDAO workflow modeling platform. It is designed to be quick to learn and user-friendly
to operate, and provides efficient methods to inspect and explore the different disciplinary components
of the workflow and their data couplings. MDAx uses the eXtended Design Structure Matrix (XDSM)
representation to describe the workflows and takes a step further with some additional operations
resulting in an executable workflow which can be exported to process integration platforms. This pa-
per presents the latest additions to the environment, like modelling sub-workflows as components,
supporting dynamic MDAO, value based identification of variables, and separate execution tool nam-
ing. These developments are made based on feedback from various collaboration partners, in order
to enhance the ease of adoption of collaborative MDAO paradigms by competence developers with-
out requiring expert knowledge in MDAO architecting. Several application cases that leveraged the
capabilities of MDAx in the past few years are presented to demonstrate the potential of the software.
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1. General Introduction
The process of designing aircraft is inherently multidisciplinary and encompasses the definition and
creation of tightly coupled analysis systems. As aerospace systems continue to grow in complexity,
there is a need for the advancement of design approaches that make use of models and physics-
based simulation. These approaches aim to seamlessly integrate system design within a framework
of Model-Based Systems Engineering (MBSE) [1, 2]. MBSE approaches can help accelerate the
development of aircraft products through proper setup, deployment and operation of Multidisciplinary
Design Analysis and Optimization (MDAO) [3, 4] systems. The reason behind adoption of MDAO is
to analyse not only the individual disciplines but also the relationships and interaction between them.
The advantage of using MDAO techniques can be seen in terms of better designs at lower time and
cost penalties [5]. To that end, the AGILE Paradigm was a novel approach introduced to MDAO
processes, helping in reducing the setup time of MDAO systems to more than 40%, with respect to
conventional MDAO approaches [6].

The AGILE paradigm was a result of MDAO systems being evolved over the past years from
being restricted to single integrator - monolithic design systems to a multi integrator - polylithic sys-
tem which can consist of many disciplinary tools. This evolutionary process can be seen through
the three generations of MDAO [7], as depicted in Figure 1. The "1st generation" focused on the
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integration of the optimizer into the single large system consisting of all the disciplinary capabilities.
Although, this made the design process more time efficient, it left the desire for a distributed and
scalable system which enabled dynamic exchange and update of the integrated disciplinary system.
The "2nd generation" overcame the scalability aspect of the analysis part of the system, to a certain
extent, by utilizing high performance computational facilities to distribute large-scale analysis tasks.
Such tasks could now be performed quicker by relaying them to the respective computational facility
at the central optimizer’s request. The challenges that remained were the presence of a single in-
tegrator for the whole design system and of the increasing number of systems, and their respective
disciplines. These were addressed with the "3rd generation" MDAO system where the distribution of
tasks went beyond computational analysis facilities, to include all the engineers, distributed among
multiple specialized organizations [6]. Collaborative Engineering methods are used to realise such
"3rd generation" MDAO system.

(a) 1st Generation: Integrated
MDAO Systems

(b) 2nd Generation: Distributed
MDAO Systems

(c) 3rd Generation: Collaborative
MDAO Systems

Figure 1 – Evolution in MDAO sytems over the years (L→R). The dotted lines represent various
computational domains linked within the MDAO system [7]

Collaborative Engineering is a domain of engineering where disciplinary stakeholders work to-
gether to achieve a common goal. It focuses on the interaction of these stakeholders with each other
to integrate their expertise in order to realise their mutual interests and derive joint outcomes. By
combining the different strengths of multiple disciplines, the collaborative engineering process aims
to achieve a more comprehensive and efficient outcome [8].

An important step into the process of collaborative engineering is to bring all the disciplines,
along with their disciplinary experts, under a single umbrella and providing them with data-driven and
computer supported tools and methodologies to consolidate their expertise, ideas and knowledge
in an attempt to achieve a well-organized, multi-disciplinary, multi-engineer, and multi-organization
development process [9].

Since many different disciplines collaborate together, the utilization of a common data model
significantly reduces the number of possible interconnections between them and ensures a consistent
source of information[10]. Using a Central Data Schema (CDS) ensures that all disciplines "speak
the same language" and enables implementation and reuse of disciplines in collaborative MDAO
workflows. An example of a CDS is CPACS [10], an open-source XML-based format for exchanging
aircraft design data which has been applied successfully in many projects across disciplines and
organizations. Setting up workflows based on a CDS is supported by workflow formulation platforms
that automatically detect data connections based on input-output definitions of disciplinary tools.

To that end, the MDAO Workflow Design Accelerator (MDAx), developed by the Institute of
System Architectures in Aeronautics at the German Aerospace Centre (DLR), Hamburg, aims to
facilitate collaborative MDAO processes. MDAx provides stakeholders with an intuitive, interactive
platform for modeling MDAO problems using eXtended Design Structure Matrices (XDSMs). This
paper discusses recent advancements in MDAx, enhancing its capability to address complex and
novel MDAO problems, and revisits the foundational methodology behind the tool. Additionally, it
highlights applications of MDAx, showcasing examples from global organizations who have utilized
the platform for their MDAO studies.

2



MDAX : ENHANCEMENTS IN A COLLABORATIVE MDAO WORKFLOW FORMULATION TOOL

2. Methodology and Current Approach
Several MDAO problem formulation tools have been developed in the past, like OpenMDAO [11],
KADMOS [12] and GEMSEO [13]. Now, while some of them try to provide a platform that can address
the additional features of collaborative engineering, which is required for the modern-day efficient
aircraft design process, all of them take a "top-down approach" to MDAO problem formulation. The
top-down approach refers to the fact that designer needs to have the final MDAO problem well defined
with all the competences, their input and output (I/O) specifications and their couplings with other
competences, before it can be formulated in an MDAO platform. This is a prerequisite for the working
of the aforementioned tools. MDAx, on the other hand, employs a more "bottom-up approach" to the
formulation of the MDAO problem. The bottom-up approach gives more autonomy and independence
to the integrator and competence developers from the very beginning. MDAx eliminates the necessity
for designers to have pre-existing knowledge of the final MDAO problem formulation. It provides the
users with a very simple and intuitive interface. This is one of the major benefits of using MDAx
over other MDAO platforms. It enables the designers to inspect, add, and modify data couplings
between competences and introduce new competences without requiring a complete re-iteration of
the MDAO process. Furthermore, it utilizes a CDS, which is fundamental to the collaborative MDAO
process. A distinguishing feature of MDAx is the transparency it provides regarding the structure
of the CDS file and the node creation and usage, allowing users to inspect and understand the
couplings of their analysis tools. This transparency enables users to make necessary adjustments
to the CDS or coupling connections before executing the workflow, thereby facilitating the transition
from traditional MDAO to collaborative MDAO. This transition supports the adoption of methodologies
such as the AGILE paradigm in the industry [6]. MDAx specifically addresses the design process
formulation phase of the AGILE paradigm by automating the MDAO workflow development which
bridges the gap between the upstream competence deployment phase and the downstream workflow
execution phase. The resistance of the industry to adopt the AGILE paradigm was largely due to the
limitations like inflexibility in the setup processes, difficult customization of workflows, and lack of
user-friendliness [14]. This was addressed, to a large extent, via the MDAx tool.

MDAx, offers a novel approach to streamline collaboration in large-scale engineering projects.
Instead of pre-defining an MDAO problem and structuring the workflow accordingly, MDAx allows
workflow integrators to directly interact with an XDSM interface. This interaction involves drag-and-
drop operations, providing immediate feedback and the ability to undo actions, all without being bound
by rigid procedures. This grants users the flexibility to efficiently create and refine their workflow
models, representing tool configurations and process logic for executable workflows. There’s no need
for pre-existing schemes or tool repositories to initiate the modeling process. These can be defined
as the project progresses, facilitating the customization of workflows to suit specific preferences.
This allows for the exploration of potential workflow configurations that users may not have initially
considered. While conventional MDAO architectures can be generated if required, they are not rigidly
mandated for the creation of executable workflows.

The user interface (UI) is centered around the XDSM visualization format, providing a standard-
ized workflow model that allows for a clear examination of tool interactions. This includes real-time
evaluation of variable collisions and feedback connections. Details about this and the theory behind
them are discussed by Page Risueño et. al. [15]. The UI is intuitive and user-friendly, requiring
minimal introduction and explanation, thus reducing the learning curve. Export capabilities to various
Process Integration and Design Optimization (PIDO) tools facilitate the generation and organization
of MDAO workflows prior to execution in the preferred framework, minimizing manual setup efforts.
MDAx serves as an MDAO workflow model editor, diverging from a rigid step-by-step approach to
enhance usability. It offers a space for domain experts and integrators to explore and grasp the
overall system without the need for specific methodologies or technical jargon. The goal is to instill
confidence in engineers to navigate across various domains while comprehending the complexity of
the entire system, ultimately streamlining collaborative MDAO processes.

In other words, MDAx helps close the implementation gap between formulating the workflow
based on MDAO solution strategy and the execution of the workflow in a PIDO platform [16]. Figure 2a
shows a XDSM built for a sustainable aircraft design problem where different partner tools, and the
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(a) Initial part of a XDSM built for a sustainable aircraft design usecase with different IFAR partners
contributing their tools which interact in a collaborative MDAO framework with each other

(b) A portion of the executable workflow export for RCE with visible tool blocks along with their pre and post
processing blocks

Figure 2 – MDAO workflow model for design of a sustainable aircraft as part of the IFAR-ECN 2023
Conference [8]

coupling of variables between them, can be seen. The MDAO problem was part of the International
Forum for Aviation Research (IFAR) - Early Career Networking (ECN) conference event called the
IFAR-X Challenge [8]. The figure also shows an example of a converger driver being used to resolve
feedback between partner tools. There is also a clear distinction made between tools with only input
coupling (red block) as compared to tools with both input and output coupling (green blocks). A
detailed description of XDSM representation can be found in [17]. A full MDAx workflow made for the
IFAR-X event can be found in Appendix A. Experts from 18 IFAR member countries participated in
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the challenge. Further details on the collaboration and the results of the design study are available in
[8]. Figure 2b gives a view into the executable workflow which was exported from MDAx for an open-
source execution environment developed within DLR called Remote Component Environment (RCE)
[18]. The figure depicts the execution pathway that the simulation would follow and the direction of
exchange of data. It can also be seen that a simple looking tool in the XDSM representation, in reality
has a complex execution structure, full with pre and post processing scripts.

3. Recent Developments of MDAx
Extensive use of MDAx in aircraft design optimization studies in the years since its first release have
shed light on important workflow features that were still missing from the platform. Having addressed
some of them, it is the goal of the new developments to supplement the MDAO problem formulation
capabilities of the tool. These features are discussed in this section.

3.1 Sub-workflow as Components
One such feature which was added was of using ’Sub-workflow as Components’. Disciplinary ex-
perts usually have a set of competence tools that they commonly use and re-use in their analysis and
optimization studies. MDAx already provides a feature which allows the user to save their compe-
tence inputs and outputs in XML format to later reintroduce the competence in another MDAO prob-
lem without re-specifying the associated data I/O connections. However, the sub-workflow feature
takes it a step further by allowing, what can be referred to as "nested workflows". Figure 3 further
illustrates this concept. The component ’B’ is a smaller workflow further consisting of two compe-
tences in itself. This smaller workflow is referred to as a Sub-workflow. It is an independent workflow
which can be used as a component in other bigger workflow where its functionality is needed. Now,
instead of manually copying and pasting, the user may instead opt to integrate the workflow shown
in the figure as a tool to be used in other workflows. Another advantage of this feature is that it im-
proves the visibility of the XDSM components. The XDSMs is made more readable by clustering the
smaller and more detailed analysis components in a single component. Furthermore, it is possible
to have multiple layers of nested workflows, essentially, sub-workflows within sub-workflows. These
feature becomes even more powerful if the PIDO platform being used for execution of this workflow
also supports the sub-workflow as component feature. This is the case with RCE which allows the
competence experts to hide the details of the implementation, for example the use of an optimizer,
from users of the component and to easily update that implementation.

Figure 3 – Depiction of the sub-workflow element ’B’ in the XDSM which consists of two discipline,
namely, ’D’ and ’E’. The I/O data of the sub-workflow elements are collectively represented as I/O of
element ’B’ for coupling with other disciplines of the outer workflow.

3.2 Dynamic MDAO
An MDAO workflow is formulated only after the system architecture for the system under investiga-
tion is defined. System architecting refers to identifying components that system consists of, and how

5



MDAX : ENHANCEMENTS IN A COLLABORATIVE MDAO WORKFLOW FORMULATION TOOL

these components are combined to achieve the system goals [19]. However, a practical design study
begins with a larger number of possible system architectures. To that end System Architecture Opti-
mization (SAO) is employed for the application of numerical optimization algorithms to automatically
explore the architecture design space [20].

One hurdle in SAO is that a separate MDAO formulation is required for each architecture which
needs to be evaluated. This architecture specific workflow formulation and management is a time
consuming and repetitive task. To formulate and execute MDAO problems for application in SAO,
MDAO platforms have to deal with multiple challenges that arise during MDAO workflow development,
due to involvement of multiple objectives, hierarchical variables, mixed-discrete coupling variables
and black-box disciplines [21].

This section summarises the recent efforts to enable the use of collaborative MDAO techniques
for SAO [22].

Methodology
When addressing different system architectures, it is clear that modifications to the MDAO problem
formulation are necessary, tailored to the specifics of each new architecture. This section would
use existing examples available in literature to further discuss this fact. However, the most common
modifications to the MDAO problem formulation and execution, as caused by the different system
architectures, can be accommodated into four mainstream categories which are called architectural
influences:

1. Conditional variables: Each system is made of different components, and each component is
defined by different variables. As a consequence, the variables existing in the MDAO problem
will change depending on the architecture being analysed. The variables whose existence
depends on an architectural decision are called conditional variables.

2. Data connection: In some occasions, the connections between design disciplines might change
because of an architectural decision. This happens when there is a modification in the coupling
of a certain variable leading to a change in terms of which disciplines the variable is connected
to. Therefore, in MDAO problems used for system architecture optimization, rerouting of vari-
ables can happen, leading to dynamic connections between disciplines.

3. Discipline repetition: In some MDAO problems a discipline has to be repeated a fixed number
of times. However, in system architecture optimization, sometimes the discipline multiplicity is
a design variable and not a predefined fixed value, and therefore has to be readjusted automat-
ically.

4. Discipline activation: As a consequence of an architectural decision, there are multiple cases
where some of the disciplines included in the MDAO problem are no longer required for that
specific architecture. This is usually the case when two or more technologies are available to
perform a certain function.

Supporting Architectural Influences in MDAx
MDAO problems are formulated in several steps [16]: a tool repository is defined, the MDAO problem
is defined by selecting tools from the repository and establishing data connections, and the solu-
tion strategy is defined by adding non-linear solvers and/or applying an MDAO architecture [5]. To
benefit from MDAO for SAO problems, another step needs to be added to include the architectural
influences. These architectural influences are included by specifying the "influence logic": the logic
(if statements, loops, etc.) which defines how the MDAO workflow should modify its behavior for
evaluating different architecture instances. After formulation, the MDAO problem is deployed in some
execution environment, where it can be invoked as part of the SAO loop for a given architecture in-
stance generated by an architecture generator [21]. It should be noted that the formulation phase and
the optimization loop form two coupled yet separate steps of the whole process, as also depicted in
Figure 4. Four high-level strategies are identified for using MDAO for architecture evaluation: Single
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static, Multi static, Single Dynamic and On-demand [22]. MDAx adopts the single dynamic MDAO
problem strategy, which implements influence logic directly into the workflow such that its behavior
is automatically modified for a given architecture instance during the execution phase (Figure 4).

Figure 4 – High-level strategy for integrating architectural influences into MDAO workflows involves
executing the formulation phase (indicated by orange dashes) prior to the optimization loop

(indicated by blue dashes). The optimization loop then runs automatically without requiring user
interaction [22].

MDAx has been modified so that the MDAO workflow model contains all the logic for dynamically
modifying its execution behavior, which is materialized in an export to an external integration platform,
RCE, where the SAO problem is executed. The implementation of the four architecture influences
has been done as follows:

Discipline Activation: Discipline activation is implemented by attaching an activation assertion to
each discipline dependent on an architectural decision. If the assertion is true, the discipline is
executed; if false, it is skipped. These assertions are linked to specific nodes in the XML workflow file
and are executed by a script in RCE. Conditions can be based on node existence, repetition, or node
information. Assertions are implemented as composable Python classes that determine the routing
of the input file through or around the tool.
Discipline Repetition: Discipline repetition can be configured based on two strategies: parallel (mul-
tiple instances) or series (single instance repeated). MDAx and RCE use the series configuration,
translating multiple component instances into repeated nodes in the XML workflow file. Each exe-
cution involves converting data in the global XML workflow file to local representation and back, to
avoid confusion between the dataset values for the different component instances. This is managed
by "Global to Local" and "Local to Global" blocks. An "Iterator" block tracks iterations and ends the
loop after the specified repetitions.
Data Connection: Data connections in MDAx, which uses a central data schema, are managed by
modifying input-output specifications. Connections are deactivated by disabling the input variable in
the discipline’s definition, using assertions similar to those for discipline activation. These assertions
filter out corresponding XML nodes if the condition is true.
Conditional Variables: MDAx handles conditional input variables by searching for potential input
nodes in the XML workflow file before execution. Found nodes are added to the tool input file, while
missing nodes are ignored. For conditional output variables, deactivation conditions specified in the
configuration file are checked after tool execution. Satisfied assertions result in the variable being
removed from the outputs and not merged into the workflow XML file.

It is possible to have some or all of the architectural influences in a workflow. Figure 5 shows an
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example of the RCE components using which the four architectural influences are implemented. The
dynamic MDAO developement was tested out on a space rocket design application case [22]. Further
details of the study are out of the scope of this paper, however, the resultant XDSM for the problem
can be seen in Figure 13 in Appendix B. The UI implementation of the dynamic MDAO feature is
currently being implemented and therefore is not described in this publication.

Figure 5 – An export from MDAx to RCE showing the procedure used to implement architectural
influences in MDAx. First, the workflow XML enters into the activation logic script, which checks if
the activation logic assertion attached to the tool is true or false. The Global to Local component
handles various tasks such as determining the number of iterations, tracking the current iteration,
and selecting inputs and outputs for each iteration. The Local to Global component prepares tool
outputs for correct placement in the workflow XML. Lastly, the iterator block assesses whether the

discipline repetition has concluded. Figure reproduced from [22].

3.3 Other added features
Another feature which was introduced was of separate execution tool naming, to differentiate it from
the name of the competence component. It means that the user can now use the same executable
tool in the background for different disciplinary components. For example, under the propulsion
discipline, an expert can essentially use similar tools for motor and generator sizing where the major
difference lies in the component specific inputs and outputs. MDAx provides a mapping script before
the execution of the back-end simulation tool which maps the tool I/O from the variable structure being
used in the collaborative MDAO problem. As long as the coupling of the I/O variables is consistent
with choice of the tool being used for a generator sizing component or a motor sizing component,
the same back-end tool can be used for both by specifying a common execution tool name which is
different from either of the component names.

Another development by the name of "sub-value matcher" is introduced within the tool. This
feature allows the user to differentiate between identically named variable nodes by making a value
based distinction between them. Note, that the value under question must belong to a sub-node of
the variable node to be distinguished. This feature was added based on a requirement for CPACS
that arose during an overall aircraft design apllication-case under EXACT project [23], which is dis-
cussed in section 5.. This feature is particularly helpful when the chosen CDS, CPACS in this case,
has provision to have multiple nodes with the same name but which differ in the values of the sub-
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nodes. In such a situation, sub-value matching can be used to specify the difference between these
nodes by specifying the differentiating sub-node and their corresponding values, at the parent node
level itself.

The implementation of the graphical user interface for these feature can be seen in the next
section.

4. UI Implementation
MDAx’s foundation lies in a Python library that handles all the logic behind its workflows. The user
interface (UI) of MDAx is built on top of this code. It employs a web-based architecture: a Python
script on the back-end starts a web server and sets up the core, while on the front-end, a Vue.js1

application manages what the user sees and responds to their input. The back-end and front-end
communicate through a websocket. The application can be deployed and then accessed as a service
through any standard browser, without requiring installation on the user’s local computer. However, it
can also be deployed as a standalone application if necessary.

Figure 6 provides a view of the main UI screen: the workflow is presented in the center, with
buttons above it for manipulating the workflow and managing the current project. The status indicator
informs the user whether the workflow is currently executable. It can display a red exclamation mark
(indicating issues) or a green check mark (signifying that the workflow is executable, as shown in the
figure). More details on the basic UI of MDAx are well defined by Page Risueño et al. in the original
MDAx paper [15].

For the implementation of the sub-workflow as component feature, another button was added
in the tool bar as show in Figure 6a. All the inputs and outputs of the components within the sub-
workflow are indicated as I/O specification of the sub-workflow component in the original workflow.
The sub-workflow component also include an arrow icon to take the user inside the sub-workflow in
order to edit it’s contents. This icon is located on the top left of the component below the ’Delete’
icon. The sub-workflow window is similar to the original window with exception of the arrow in the title
bar which can be used to navigate to the outer workflow. Also, the sub-workflow component creation
icon is still visible in this window due to the fact that MDAx allows for multi-level nesting of workflow.
Thus the user can create sub-workflows within existing sub-workflows.

For the UI implementation of the "execution tool naming" feature, another field is added to
the tool edit window, namely, ’Execution Name’. This is separate from the ’Tool Name’ field which
represents the name of the disciplinary black-box component itself. By default, the execution name
is set as tool name. However, in the event that the user wants to use a multi-purpose back-end tool
for more than one disciplinary component blocks, the user needs to provide the same back-end tool
name as the execution name for all the disciplinary blocks. The export to RCE includes this name in
the metadata, eliminating the need for creating a manual link in RCE. Figure 7 shows an example of
a four engine aircraft with two different size engines on each wing, namely, inner and outer engine.
However, since the tool for engine sizing remains the same, they both have the same execution name
of the back-end tool as ’EngineSizer’.

Figure 8 shows the UI implementation of the sub-value matcher feature, using a conceptual
example consisting of two tools, ’A’ and ’B’. As can be seen in the variable tree of the CDS on
the left, the tools are not specified using a dedicated name, but are instead following a specified
schema where the parent node is ’tool’ and the name of the tool is stored in the sub-node ’name’.
However, since MDAx does not store any variable values, this presents a problem when the workflow
is exported for execution since the execution platform can no longer differentiate the location from
which the inputs and outputs have to read or written, respectively. This leads to addition work for the
user where the location of the data needs to be hard coded at the RCE tool level to avoid confusion
with the datasets for other tools. In such a case, a sub-value matcher can be specified for the
differentiating sub-node ’name’ and the specific name of the tool can be written there. This adds a
special attribute to the parent node ’tool’ which provides the indication to the execution platform on
where to read and write the variables for tool A and tool B. Therefore, the user can identify where

1https://vuejs.org/
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(a) Outer workflow with coupling of sub-workflow inputs and outputs with other disciplines

(b) Sub-workflow window similar to original window with possibility for multi-level workflow
nesting

Figure 6 – UI for Sub-workflow as component in a XDSM with arrows to navigate between workflows

the variable nodes of a specific tool are located and how they are coupled with other tools, without
confusion and in a time efficient manner. It also eliminates the risk of data being overwritten by other
tools at the time of execution.

5. Practical Application Cases
The main objectives behind the creation of MDAx were laid down in [15]. These objectives were clas-
sified into three categories based on the possible use-cases: Exploration, Verification and Documen-
tation. The exploration category involves setting up and inspecting available workflow components,
organizing and utilizing a common data schema, and creating a workflow model. The verification
category focuses on inspecting the selected workflow configuration, ensuring the proper conditions
for workflow execution, and checking the connections among workflow components. Lastly, the doc-
umentation category addresses the formalization and communication of MDAO workflow models.
This section will highlight some projects and their corresponding application cases where MDAx has
played a significant role in past years. In a product design process, MDAx’s role begins with helping
setup the CDS and maintaining it, and ends with communicating an executable workflow to the PIDO
platform. This means that the most effective use of MDAx in a project yields a viable application for
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Figure 7 – UI for Execution Tool Naming with arrows showing separate tool name for the inner and
outer engines which are using the same execution tool name, ’EngineSizer’ at the back-end.

Figure 8 – UI for sub-value matcher feature where the differentiable sub-node and its value can be
specified at the parent node to differentiate between the correct variable locations at the time of

execution

not just one but all the three aforementioned use-case categories. Thus, it should be noted that it
would not be ideal to segregate the application cases into these categories but to keep them in mind
while discussing each application.

MDAx found it’s first application in the project AGILE 4.0 [24]. The purpose of the project was
to develop new methods and technologies to improve, streamline and accelerate the development
of complex systems [25]. AGILE 4.0 focused on the aeronautical supply-chain: design, production,
certification and manufacturing, with dedicated application cases for each. MDAx was developed as
part of the AGILE 4.0 project and therefore, found a viable application in the design process aircraft
configurations involved in the project. MDAx was used to identify the tool interfaces with CDS and the
couplings between them to yield an executable workflow. The workflow was constantly updated based
on any modifications to the tools or change in the aircraft configuration. An aspect of design which
was addressed in this project was of aircraft family design. To that end, MDAx saw an expansion in the
application of the software beyond single aircraft architecture design cases. However, the dynamic
MDAO feature of MDAx was not developed until then and therefore, a workaround was found using
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the "single static MDAO" approach, described in [22]. This ensured that all architecture choices are
handled within the tool blocks themselves by the programmer. Figure 9 shows the XDSM generated
for the overall aircraft design of the 3 members of the aircraft family where each block has 3 separate
instances to address each of the three members. Each of these instances of the overall aircraft
design (OAD) block is a workflow in itself which does the design analysis of a specific aircraft family
member based on the inputs. It should be noted, that although the inputs and outputs of the three
instances is the same, their values differ due to the aircraft having different top-level requirements.
Further details, XDSMs and results can be found on the official website2.
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Figure 9 – XDSM for the design of a family of three business jets, trading-off aircraft performance
and investment costs by varying the amount of shared components [26]

Another important application case was found as part of the DLR project "Exploration of Electric
Aircraft Concepts and Technologies Projects" (EXACT) whose aim was to design aircraft concepts
for climate-friendly flying while analysing and evaluating the entire life cycle of the aircraft [23]. Since
the goal of the project was to investigate novel concepts, there remained a significant gap between
the competences required to successfully analyse the configuration and the available competences
among the partner organizations. Therefore, in order to identify and consolidate the available and
the missing competences, MDAx was employed. Note, that over a 100 experts from over 30 different
DLR institutes were part of the project. MDAx was used as an interface and platform for these
experts to discuss the competences and define the necessary inputs that such competences would
require in order to provide the desired outputs. This also helped the experts identify the possible
coupling that such competences would have which in-turn provided the knowledge of how they would
affect each other. Figure 10 shows an example of the competence overview created for the life cycle
analysis part of the project. It can be seen that in the beginning, a larger number of competences
were laid down. These were hypothetical and even included some competences which were out of
the scope of the project. However, these were translated into real tools during the course of the
project, which lead to an increase in the detailed knowledge about these competences. Thus, some
inconsistencies and redundancies were removed, some competences were merged due to higher
correlation and some were deemed out of scope. By the end of the project a more realistic XDSM
was achieved (lower XDSM in Figure 10) where each of the competence had an analysis tool to carry
out the task. A follow-up project of EXACT, called EXACT 2, has recently commenced, where MDAx
is used to a wider extent to develop and run the overall aircraft design workflow and not just focus
on a single aspect of the whole design chain. Currently, the ’subworkflow as component’ feature has
been employed to create the overall project workflow involving all the discipline. The next task would

2https://www.agile4.eu/
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to refine the definition of the inputs and outputs of the various tools and generate an executable
workflow. It is planned to employ the new "Dynamic MDAO" feature of MDAx, if possible, at a later
stage in the project for the ’Drive and System Design’ discipline. An insight into the latest version of
the overall workflow can be see in Figure 11

Figure 10 – An overview of the initially identified competences for life cycle assessment of aircraft as
part of EXACT project along with the finalised workflow at the end of the project based on developed

competences.

Figure 11 – An XDSM overview of the different aspects of aircraft design to be addressed as part of
the EXACT 2 project where each disciplinary block is a sub-workflow in itself.

EXACT and EXACT 2 are DLR internal project involving experts across DLR institutes. The
use of MDAx in these projects has helped establish a base for using digital methods for collaborative
MDAO within DLR. Another project which has helped in this task is ALICIA (Aviation Life Cycle and

13
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Impact Assessment) where the aim is to develop a digital platform for modeling and assessing air-
craft over the entire life-cycle 3. MDAx was again used as a platform to bring together all the experts
and their respective tools together in order to help automatically identify the couplings between the
respective tools and refine the CDS according to nomenclatures acceptable to all the partners. The
resultant workflow for the air transport system (ATS) level analysis can be seem in Figure 14 in Ap-
pendix C. Project ProTekT (Probabilistic Technology assessment of complex Transport systems) is
another initiative where MDAx has played an instrumental role [27]. The project focuses on develop-
ing methods for the technological assessment of complex system architectures that take uncertainties
into account. A project XDSM can be seen in Figure 15 in Appendix D.

Furthermore, just like the AGILE 4.0 project, there are an increasing number of international
projects where MDAx is being used. One such project is Impact Monitor where the goal is to develop
a comprehensive and integrated impact assessment framework and toolbox that aids the European
Commission (EC) in making informed, science-based decisions regarding the environmental, eco-
nomic, and societal impacts of European aviation research and innovation (R&I) policies and tech-
nologies4. An insight into the workflow generated using MDAx for the continuous decent operations
application case can be seen in Figure 16 in Appendix E. Apart from these, there have been initiative
where the collaborative engineering framework of DLR, which consists of CPACS, MDAx and RCE,
has been disseminated and introduced to international agencies across the work. A good example
of such an initiative was the IFAR-ECN event which was mentioned earlier in the paper [8]. Young
experts from 18 countries across 4 continents were trained on the framework with the hope of es-
tablishing a standard for approaching multi-disciplinary design tasks, across the world. The workflow
can be seen in Figure 12 in Appendix A. Lastly, initiatives by Korea Aerospace Research Institute
(KARI) in the field of MDAO has already made it evident that MDAx is finding it’s reach internationally
[28]. An example workflow generated using MDAx for their hybrid eVTOL aircraft application case
can be seen in Figure 17 in Appendix F.

6. Conclusion and Outlook
Conventionally, simulation workflows are constructed manually, involving time-consuming and

repetitive tasks. Modifying these workflows, such as adding or removing simulation tools or en-
hancing tool fidelity, demanded considerable effort, particularly in complex systems with numerous
interacting disciplines. MDAx addresses these challenges by offering a flexible modeling environment
for simulation workflows. Its XDSM-centric design simplifies workflow modeling, allowing engineers
without extensive MDAO knowledge to engage in and lead collaborative design studies. With all
workflow components treated as black boxes, MDAx is versatile and applicable across a wide range
of engineering disciplines.

The current paper reiterates the theory and methodology behind the development of MDAx,
while highlighting some of the latest additions to the features provided by the software. One of these
is the possibility of specifying a "subworkflow as component" in the MDAO workflows. It allows disci-
plinary experts to save and reuse their competence tools chains as a black-box in a bigger workflow.
Thus, enabling nested workflows for more efficient integration and updates. The corresponding UI
for the same has also been implemented in the software. Another important addition was to en-
able the creation of "Dynamic MDAO" workflows. Dynamic MDAO is particularly valuable in System
Architecture Optimization (SAO) problems which explore optimal architectures within a large combi-
natorial design space, using MDAO to evaluate different architectures considering all coupled design
disciplines. In order to achieve this, a collaborative MDAO platform is required that can automatically
adjust the MDAO problem for each architecture. Out of the various strategies for applying MDAO in
SAO, a suitable one for dynamic modifications is implemented in the MDAx platform. This involves
defining architectural influences that guide necessary modifications in the MDAO formulation. Some
other features were also implemented like allowing multiple disciplinary blocks to have a common
back-end tool for execution and also, enabling sub-value matching which allows for a value based
variable identification instead of name based.

3https://event.dlr.de/en/ila2024/alicia/
4https://impactmonitor.eu/
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A few application cases, where MDAx has played a role in establishing the MDAO workflow,
are mentioned in this paper. These applications not only include internal project across many DLR
institutes, but also include European and other international project where partners from all over
the world have worked on MDAx. This is proof enough of the fact that such MDAO platforms are
needed for a faster and more efficient design process. Moreover, some of these examples showed
the application of the recently added features already. This shows the fact the current development
of the software is synonymous with the expert requirements.

The next step in further development of MDAx will be to implement the UI for the dynamic
MDAO feature. This would also need a modification to the description of XDSMs to include the dy-
namic MDAO features. Moreover, it can be foreseen that implementing dynamic MDAO features for
sub-workflows might pose a challenge that needs to be overcome. One way achieve this, would be
to apply the dynamic MDAO feature to groups of tools rather than individual tools. Another step, is to
improve MDAx for higher fidelity collaborative MDAO applications. This would include enabling meth-
ods to specify surrogate models and reduced order models. This would further lead to a need for
specifying parameters for uncertainty quantification of the uncertainties that arise due to surrogates
and approximations. Furthermore, MDAx has a well established connection with the workflow execu-
tion phase which follows the workflow formulation. This can be made even stronger by implementing
the export of novel feature like sub-workflow as component and dynamic MDAO for other MDAO
platforms and PIDO platforms apart from RCE. On the other hand, the connection of MDAx with the
system architecting phase which precedes it, is still manual and requires methodology development
to enable automation.
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Figure 12 – XDSM with 15 competences addressing various aircraft design disciplines within the MDAO workflow model for design of a sustainable
aircraft as part of the IFAR-ECN 2023 Conference [8]
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Figure 13 – XDSM of the space rocket benchmark problem depicting the analysis disciplines, constraints and the variable couplings between them.
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Figure 14 – An XDSM overview of the air transport system (ATS) level analysis of the aircraft including climate and life cycle analysis disciplines as part
of ALICIA project
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Appendix D

Figure 15 – XDSM generated as part of the project ProTekT for technological assessment of transport systems
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Figure 16 – A preliminary XDSM generated for the continuous descend operation application case of the Impact Monitor Project
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Figure 17 – Use of MDAx by KARI for the MDAO analysis of their hybrid eVTOL aircraft application case
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