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2Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany

3Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Colaba, Mumbai - 400005, India
4Departamento de Astrof́ısica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain

5Instituto de Astrof́ısica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain
6INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-10025, Pino Torinese, Italy

7McDonald Observatory, The University of Texas, Austin Texas USA
8Center for Planetary Systems Habitability, The University of Texas, Austin Texas USA

9Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, 87-100 Toruń,
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ABSTRACT

We report the discovery and characterization of a small planet, TOI-1408 c, on a 2.2-day orbit

located interior to a previously known hot Jupiter, TOI-1408 b (P=4.42 d, M=1.86±0.02MJup, R=2.4±
0.5RJup) that exhibits grazing transits. The two planets are near 2:1 period commensurability, resulting

in significant transit timing variations (TTVs) for both planets and transit duration variations (TDVs)

for the inner planet. The TTV amplitude for TOI-1408 c is 15% of the planet’s orbital period,

marking the largest TTV amplitude relative to the orbital period measured to date. Photodynamical

modeling of ground-based radial velocity (RV) observations and transit light curves obtained with

the Transiting Exoplanet Survey Satellite (TESS) and ground-based facilities leads to an inner planet

radius of 2.22± 0.06R⊕ and mass of 7.6± 0.2M⊕ that locates the planet into the Sub-Neptune regime.

The proximity to the 2:1 period commensurability leads to the libration of the resonant argument of

the inner planet. The RV measurements support the existence of a third body with an orbital period

of several thousand days. This discovery places the system among the rare systems featuring a hot

Jupiter accompanied by an inner low-mass planet.

Keywords: Exoplanet dynamics (490)–Hot Jupiters (753)–Hot Neptunes (754)–Transit timing variation

method (1710)–Transit photometry (1709)–Radial velocity (1332)

1. INTRODUCTION

The discovery of the first exoplanet around a main

sequence star, 51 Peg b, significantly advanced our un-

derstanding of planetary systems due to its dissimilar-

ity (e.g. short orbital period) from any known planets

in our Solar system (Mayor & Queloz 1995). Nearly 30

years later, the origins of such hot Jupiters (HJs)—gas

giants with orbital periods less than 10 days and with

planet masses higher than 0.1MJup following the defini-

tion from Wang et al. (2015)—remain elusive. Theories

suggest that HJs could form in situ (e.g., Batygin et al.

2016), migrate inward from beyond the ice line through

the interaction with the gas disk during formation (e.g,

Lin et al. 1996), or undergo high-eccentricity migration

(HEM: Rasio & Ford 1996) at a later stage. For an

overview, see Dawson & Johnson (2018) and references

therein.
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The lack of detections of low-mass planets interior to

HJs (Steffen et al. 2012; Mustill et al. 2015; Huang et al.

2016; Hord et al. 2021) is a key argument supporting

HEM as the dominant formation channel. However, ex-

ceptional systems where an inner low-mass planet ac-

companies an HJ have been detected, such as WASP-

47 (Hellier et al. 2012; Becker et al. 2015; Nascimbeni

et al. 2023), WASP-84 (Anderson et al. 2014; Maciejew-

ski et al. 2023), Kepler-730 (Zhu et al. 2018; Cañas et al.

2019), TOI-2000 (Sha et al. 2023), WASP-132 (Hellier

et al. 2017; Hord et al. 2022; Grieves et al. 2024), and

TOI-1130 (Huang et al. 2020a; Korth et al. 2023). These

systems cannot be explained by HEM and require dy-

namically quiet formation process, such as disk migra-

tion (Fogg & Nelson 2005, 2007; Wu et al. 2023; Wu &

He 2023; He et al. 2024), or a less quiet process, such as

in situ formation (Poon et al. 2021).

In this paper, we present the discovery of another of

these rare systems containing an HJ and a low-mass

planet close to the 2:1 period commensurability, result-

ing in measurable TTVs, similar to TOI-1130. We re-

port the discovery and characterization of a small planet,

TOI-1408 c, interior to a known grazing hot Jupiter,

TOI-1408 b, discovered using the Transiting Exoplanet

Survey Satellite (TESS; Ricker et al. 2015) photometry

and confirmed by Galazutdinov et al. (2023). Our anal-

ysis also refines the orbital and geometric properties of

TOI-1408 b.

2. OBSERVATIONS

2.1. Photometric Observations

2.1.1. TESS Photometry

TOI-1408 (TIC 364186197) was observed at 2-min ca-

dence by TESS in Sectors 16, 17, 18, 19, 24, 25, 52, 57,

58, 59, 73, and 76 from 2019-09-12 to 2024-03-25, span-
ning 61 transits for TOI-1408 b and 114 transits for TOI-

1408 c. We used the publicly available Presearch Data

Conditioning (PDC) light curves (Smith et al. 2012;

Stumpe et al. 2012, 2014) produced by the Science Pro-

cessing Operations Center (SPOC: Jenkins et al. 2016)

at NASA Ames Research Center, downloaded from the

Mikulski Archive for Space Telescopes.1

2.1.2. Ground-based Photometry

NOT/ALFOSC—We observed five TOI-1408 b transits

in the i band using the Alhambra Faint Object Spec-

trograph and Camera (ALFOSC) instrument installed

at the 2.56-m Nordic Optical Telescope (NOT) at the

Roque de los Muchachos Observatory on La Palma,

1 https://mast.stsci.edu.

Table 1. Ground-based photometry.

time [BJD] Flux e Flux Instrument

2459501.794176 1.001 0.002 M3 g

2459501.794335 1.002 0.002 M3 g

2459501.794457 0.999 0.002 M3 g

2459501.794579 1.000 0.002 M3 g

2459501.794702 0.999 0.002 M3 g

2459501.794824 1.000 0.002 M3 g

Note—Table 1 is published in its entirety in the
machine-readable format. A portion is shown here for

guidance regarding its form and content.

Spain, between 2021-07-08 and 2022-08-28. The pho-

tometry was reduced with our pipeline following stan-

dard photometry practices (Parviainen et al. 2019). The

reduced photometry from NOT and all the other instru-

ments is available in Table 1.

LCOGT/Sinistro—We observed six TOI-1408 b tran-

sits in the i band using the Sinistro cameras installed

at 1-m telescopes from the Las Cumbres Observatory

Global Telescope (LCOGT; Brown et al. 2013) between

2021-07-21 and 2023-07-30. The photometry was re-

duced with the same pipeline as the NOT photome-

try. We also observed two transits of TOI-1408 b on

2021-05-21 and on 2022-09-11 in Pan-STARRS z-short

band. The z-short band images were calibrated by the

standard LCOGT BANZAI pipeline (McCully et al. 2018)

and differential photometric data were extracted using

AstroImageJ (Collins et al. 2017).

LCOGT/MuSCAT3—We observed two transit of TOI-

1408 b using the multi-color MuSCAT3 instrument

(Narita et al. 2020) installed at the 2-m Faulkes Tele-

scope North of LCOGT in Maui, Hawaii on 2021-10-14

and 2022-11-12. The transits were observed simulta-

neously in the g, r, i, and zs bands. The images were

calibrated by the BANZAI pipeline (McCully et al. 2018),

and aperture photometry was performed with a custom

pipeline described in Fukui et al. (2011). We included

only the first transit due to the low S/N of the second

observation.

Palomar/WIRC—We observed one transit of TOI-

1408 b on 2022-09-02 in the K-continuum band using

the Wide-field Infrared Camera installed on the 5.1-m

Hale Telescope at Palomar Observatory in California.

We calibrated the images with the pipeline described in

Vissapragada et al. (2020), and then performed aper-

ture photometry and detrended the light curve with the

procedure described in Greklek-McKeon et al. (2023).

https://mast.stsci.edu
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Table 2. RV measurements and their uncertainties.

time [BJD] RV [m/s] e RV [m/s] Instrument

2459114.650183 -33581.2 12.5 McD HJST

2459115.814081 -33383.9 19.8 McD HJST

2459116.786824 -33541.8 16.2 McD HJST

2459133.725274 -33413.8 19.9 McD HJST

2459135.701365 -33784.5 22.7 McD HJST

2459143.690476 -33627.5 8.7 McD HJST

Note—Table 2 is published in its entirety in the
machine-readable format. A portion is shown here for

guidance regarding its form and content.

2.2. Spectroscopic Observations

HARPS-N—We obtained 60 high-resolution spectra us-

ing the High Accuracy Radial velocity Planet Searcher-

North (HARPS-N: λ∈ (378–691) nm, R ≈ 115 000;

Cosentino et al. 2012) mounted at the 3.58-m Telesco-

pio Nazionale Galileo (TNG) of Roque de los Mucha-

chos Observatory in La Palma, Spain, under the observ-

ing program CAT21A 119 between 2021-05-21 and 2024-

06-19. The exposure time was set to 480–1800 seconds

based on weather conditions and scheduling constraints,

leading to a signal-to-noise ratio (SNR) per pixel of 36–

112 at 550 nm. The spectra were extracted using the off-

line version of the HARPS-N DRS pipeline (Cosentino

et al. 2014), version HARPN 3.7. Absolute radial veloci-

ties (RVs) were measured using an on-line version of the

DRS, the YABI tool,2 by cross-correlating the extracted

spectra with a G2 mask (Baranne et al. 1996). The DRS

RVs from HARPS-N and all other instruments can be

found in Table 2.

McDonald—We observed 89 high-precision spectra of

TOI-1408 using the McDonald Observatory 2.7-m Har-
lan J. Smith telescope (HJST) with its Tull Coudé spec-

trometer (λ∈ (340–1090) nm, R ≈ 60 000; Tull et al.

1995). We pass the starlight through an I2 gas ab-

sorption cell in front of the spectrograph entrance slit

in order to impose our high-precision RV metric on the

spectrum. We used an exposure meter to terminate each

observation when an SNR of about 25-40 per pixel was

achieved. All observations were reduced and 1-D spec-

tra were extracted using standard IRAF routines. We

computed the radial velocities given in Table 2 using the

AUSTRAL code (Endl et al. 2000).

TLS—We obtained 232 spectra of TOI-1408 using

the Coudé-Échelle spectrograph of the 2-m-Alfred Jen-

2 Available at http://ia2-harps.oats.inaf.it:8000.

sch telescope of the Thüringer Landessternwarte (TLS)

Tautenburg. The spectrograph’s old camera (CCD3,

λ∈ (452–765) nm, R = 51 000) was updated to a new

(Andor, λ∈ (460–734) nm, R = 63 000) during the ob-

serving period. When modeling the RVs, we allowed

for a velocity offset between the pre-upgrade and post-

upgrade datasets because of the difference between the

two cameras. We obtained 74 spectra with CCD3 and

158 spectra with the Andor-CCD with most exposure

times of 1200 s. The observations were carried out using

an iodine cell for wavelength calibrations. The RVs were

obtained from the reduced spectra using viper (Zech-

meister et al. 2021) and the co-added HARPS-N spec-

trum as a template.

CAFE—We observed 20 spectra of TOI-1408 with

the Calar Alto Fiber-fed Echelle (CAFE) spectrograph

(λ∈ (407–925) nm, R = 60 000; Aceituno et al. 2013)

mounted at the 2.2-m telescope of the Calar Alto obser-

vatory between 2021-11-10 and 2022-08-19 with a typ-

ical signal-to-noise ratio of 30. We used the observa-

tory pipeline described in Lillo-Box et al. (2020) to per-

form the basic reduction and extraction of the spectra.

This pipeline also determines the radial velocity by per-

forming cross-correlation against a solar binary mask

and correcting them from intra-night drifts using the

Thorium-Argon frames obtained in between each science

frame. Usually, several epochs were obtained per night

with a mean individual radial velocity uncertainty of 17

m/s. The RVs were corrected for nightly zero points de-

termined by observing the same sample of radial velocity

standards every observing night.

SOPHIE—We observed 15 high-precision spectra

of TOI-1408 with the SOPHIE échelle spectrograph

(λ∈ (387–694) nm, R = 75 000) between August 2020

and August 2023 installed at the 1.93-m telescope of Ob-

servatoire de Haute-Provence, France (Perruchot et al.

2008; Bouchy et al. 2009). For each spectrum, the ex-

posure time was between 360 s and 1020 s, providing an

SNR per pixel at 550 nm between 38 and 53 depending

on the weather conditions. The radial velocities were ex-

tracted with the standard SOPHIE pipeline using cross-

correlation as presented by Bouchy et al. (2009) and

refined by Heidari et al. (2024). The derived radial ve-

locities have typical uncertainties of the order of ±7 m/s.

MaHPS—We observed 61 spectra between May and Oc-

tober 2022 using the 2.1 m Fraunhofer Telescope at the

Wendelstein Observatory (WO) in the German Alps.

Our Manfred-Hirt-Planet Spectrograph (MaHPS) com-

prises the high-resolution spectrograph FOCES com-

bined with the Menlo Systems Astrofrequency comb as a

calibration light source (λ∈ (380–880) nm, R = 60 000).

http://ia2-harps.oats.inaf.it:8000
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For the data reduction from 2D to 1D, we used GAMSE.

For the comb calibration, creation of the b-spline opti-

mized templates, and RV extraction via a fit, we used

our pipeline MARMOT. Descriptions of both can be found

in Kellermann (2021). We provide two data sets one

with Thar and one with comb calibration.

TRES—We obtained 18 spectra with the Tilling-

hast Reflector Echelle Spectrograph (TRES; λ∈ (384–

910) nm, R = 44 000; Fűrész 2008) mounted on the 1.5-

m Tillinghast Reflector at the Fred Lawrence Whipple

Observatory on Mount Hopkins in southern Arizona be-

tween 2019-12-05 and 2024-06-17. The reduction and

RV analysis followed the procedures described in Buch-

have et al. (2010) and Quinn et al. (2012). The main

difference is that the template spectrum for the RV ex-

traction was created by median-combining all of the out-

of-transit observed spectra of TOI-1408 (after shifting

to align them). Thus, these are relative velocities where

the internal precision of each observation has been based

on the scatter in the velocities between the individual

echelle orders.

OES—We observed 14 spectra with the Ondrejov

Echelle Spectrograph (OES; λ∈ (380–900) nm, R =

50 000; Kabáth et al. 2020) installed on a 2-m Perek

telescope in Ondřejov, Czech Republic. Exposure times

varied from 2700 s to 3600 s depending on the weather

conditions. The data are reduced via standard spectro-

scopic IRAF routines. OES is used for the KESPRINT

follow-up of TESS targets (Šubjak et al. 2020; Tran et al.

2022; Kabáth et al. 2022).

HERMES—We monitored the system for ten days in

August 2020 with the High Efficiency and Resolution

Mercator Echelle Spectrograph (HERMES; λ∈ (375–

900) nm, R = 90 000; Raskin et al. 2011), mounted on

the 1.2 m Mercator telescope at the Spanish Observa-

torio del Roque de los Muchachos of the Instituto de

Astrof́ısica de Canarias. We obtained these observa-

tions with simultaneous thorium-argon emission spec-

tra, which allows a precision of 2 to 3 m/s (Beck et al.

2015).

3. ANALYSIS

3.1. Stellar characterization

We carried out a stellar analysis using the co-added

HARPS-N spectra following an approach described in

Fridlund et al. (2017) and Persson et al. (2018) using

the empirical SpecMatch-Emp code (Yee et al. 2017)

and the Spectroscopy Made Easy (SME) analysis pack-

age (Valenti & Piskunov 1996; Piskunov & Valenti 2017)

version 5.22 to obtain the effective temperature, Teff , the

Table 3. Stellar parameters of TOI-1408.

Parameter Value Reference

RA [J2000, epoch 2016] 20:54:02.653 1

Dec [J2000, epoch 2016] +72:34:50.34 1

parallax [mas] 7.16 ± 0.01 1

µα⋆ [mas yr−1] 11.85 ± 0.01 1

µδ⋆ [mas yr−1] 28.73 ± 0.01 1

RUWE 0.88 1

Distance [pc] 139.13 ± 0.2 1

V [mag] 9.27 ± 0.02 2

J [mag] 8.37 ± 0.02 3

Spectral type F8 V this work

Age [Gyr] 2.7 ± 0.3 this work

Teff [K] 6117 ± 31 this work

[Fe/H] [dex] 0.25 ± 0.06 this work

log g [cm s−2] 4.10 ± 0.06 this work

V sin i⋆ [km s−1] 9.8 ± 0.7 this work

M⋆ [M⊙ ] 1.31 ± 0.01 this work

R⋆ [R⊙ ] 1.53 ± 0.02 this work

ρ⋆ [g cm−3] 0.51 ± 0.02 this work

L⋆ [L⊙] 2.96 ± 0.10 this work

References—1: Gaia DR3 (Gaia Collaboration et al. 2016,
2023; Babusiaux et al. 2023), 2: Tycho-2 (Høg et al. 2000),

3: 2MASS (Cutri et al. 2003).

logarithm of the surface gravity, log g, V sin i⋆, and the

abundance of iron relative to hydrogen, [Fe/H]. The de-

rived stellar parameters from SME were used to model

the stellar radius and mass with the spectral energy

distribution Bayesian model averaging fitter (ARIADNE;

Vines & Jenkins 2022) using the Phoenix v2 (Husser

et al. 2013), BtSettl (Allard et al. 2012), Castelli &

Kurucz (2003), and Kurucz (1979) atmospheric model

grids. The stellar rotation period, estimated from the

spectroscopically derived V sin i⋆ and the stellar radius

assuming that the star is seen equator-on, is 7.9± 0.6 d.

This period is also identified from the TESS photometry

with a Lomb-Scargle periodogram as well as by running

the rotation pipeline (Mathur et al. 2010; Garćıa et al.

2014; Santos et al. 2021) on the Quick Look Pipeline

(Huang et al. 2020b) data, we derived a rotation period

of 7.5±0.62 d, indicating that the planetary orbital axis

is indeed well-aligned with the spin of the star. This

supports a more quiet formation scenario, such as disk

migration. The results from the models are listed in

Table 3 alongside further stellar properties.

3.2. Discovery of TOI-1408 c

A transit timing variation (TTV) search using Python

Tool for Transit Variation (PyTTV; Korth et al. 2023) re-

https://github.com/samuelyeewl/specmatch-emp
http://www.stsci.edu/~valenti/sme.html
https://github.com/jvines/astroARIADNE
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vealed a clear TTV signal for TOI-1408 b, suggesting the

presence of an additional body in the TOI-1408 system.

We used the Open Transit Search pipeline (OpenTS;

Pope et al. 2016) to search for additional transit sig-

nals from the TESS Sectors 16, 17, 18, 19, 24, and 25.

This analysis identified a transit-like signal with a pe-

riod of 2.22 d, depth of 100 ppm, and transit duration

of 0.62 h. This signal has not been reported as a TOI

by the TESS mission. We also identified the transiting

signal using the Détection Spécialisée de Transits code

(DST; Cabrera et al. 2012).

Following the detection of the tentative transit sig-

nal, we carried out a dynamical stability analysis using

Rebound (Rein & Liu 2012), which confirmed that the

orbits are compatible with long-term stability and pre-

dicted large TTVs. Further analysis of individual TESS

sectors supported the existence of large TTVs for TOI-

1408 c. The transit durations and depths estimated from

single sectors differed from those estimated by combin-

ing multiple sectors, leading to smearing of the transit

shape. The orbital period was estimated to vary be-

tween 2.18 to 2.22 d from sector to sector. The individ-

ual transits have too low SNR to measure their transit

durations, but we estimated the average transit dura-

tions combining two TESS sectors. Sectors 16 and 17

yield an average transit duration of 2.75 h, while Sectors

73 and 76 yield an average transit duration of 2.42 h.

After our detection, the SPOC conducted an inde-

pendent multi-sector transit search of the light curves

up to Sector 59, using an adaptive, noise-compensating

matched filter (Jenkins 2002; Jenkins et al. 2010, 2020).

The 4.42-day signal of TOI-1408 b was identified with

a high significance, and after removing TOI-1408 b’s

transits, the next strongest signal (8.16σ) had an or-

bital period of ∼ 2.22 days. Despite exceeding the

7.1σ threshold, this detection was vetoed by the transit

search pipeline’s χ2 discriminator (Seader et al. 2013),

likely due to smearing from large TTVs.

3.3. Radial Velocities

We carried out a two-planet RV analysis using all the

RV data described in Sect. 3.3 with PyTransit’s RVLPF

RV modeling class (Parviainen 2015). This code mod-

els the RV signals from two planets, incorporating an

additional free RV offset and jitter term for each RV

data set, a sinusoidal stellar rotational signal, and a

quadratic trend in time to account for possible long-

period companions. An analysis with wide normal pri-

ors on the planet b and c periods and transit centers

identified with OpenTS leads to a posterior period esti-

mate of 2.1613 ± 0.0002 d and an RV semi-amplitude

of 5.0± 1.0 m/s that correspond to a minimum mass of

13.0 ± 3.0 M⊕. The RV information about TOI-1408 c

comes from the HARPS-N data combining high preci-

sion with a long observing time span. For TOI-1408 b,

we obtain a close-to-circular orbit with an RV semi-

amplitude of 191.3± 0.9 m/s, translating to a minimum

planet mass of 1.846± 0.009 MJup.

The RV analysis also detected a clear non-linear trend

showing evidence of an outer companion with an or-

bital period of thousands of days. Including the first

two TRES points observed ∼200 days before the main

observing campaign started gives a Keplerian orbit with

a period of ∼2530 d with K = 195 ± 4m s−1, Mp =

14.6± 0.3MJup and an eccentricity of 0.35± 0.02. How-

ever, since the two points responsible for the solution are

separated from the rest, we leave the characterization of

the outer planet as future work requiring significantly

longer RV follow-up.

Gaia DR3 astrometry indicates that the source is a

primary star with 25 visibility periods and a ruwe of

0.88, indicating the solution is a good fit to linear space

motion. At first sight, this would indicate it is a sin-

gle star (Gaia astrometry could not detect planets with

periods of a few days). However, the astrometry also

shows an excess noise of 0.062 mas with a high signif-

icance of 4.7, which indicates there is a significant but

small disturbance remaining. Gaia DR3 uses 34 months

of data and may be sampling a substantial fraction of

the suggested orbital period; however, very long orbital

periods would require much more than 34 months of

data to detect a companion.

We can estimate the astrometric signature of the long-

period outer companion using the parameters given in

this paper and assuming an almost circular orbit. The

period can be used to estimate a semi-major axis for a

roughly circular orbit, and the astrometric signature is

obtained using

α =

(
Mp

M⋆

)( ap
1 AU

)(
d

1 pc

)
[arsec] . (1)

The suspected third planet gives an astrometric signa-

ture of 0.364 mas which should be easily detectable by

Gaia, but with a period of almost 7 years compared to

the Gaia mission duration of only 2.8 years, it could

remain undetected until Gaia DR4 or DR5, especially if

the planet is near apogee or if its period is underesti-

mated.

3.4. Photodynamical analysis

Since the planets strongly interact gravitationally,

producing significant TTVs, we performed a photody-

namical analysis by modeling the TESS photometry, the

ground-based photometry, and the ground-based RVs

https://github.com/hpparvi/opents
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Figure 1. Photometry from TESS (top) and the RV measurements from different instruments (bottom) with the posterior
models from the photodynamical analysis. The photometry is centered around the transit centers, with light gray points
showing the raw photometry and black points with error bars show the photometry binned to 7 min. The RV figure shows the
RV observations as black symbols with error bars, the photodynamical RV model as a green line, and the quadratic trend as a
black dashed line. The gray symbols mark observations with uncertainties > 25 m/s, and the black symbols observations with
uncertainties < 25 m/s. See Fig. 5 in Appendix A for the ground-based photometry of TOI-1408 b and Fig. 6 in Appendix B
for a detailed illustration of the RV observations and the RV model.

from various facilities. This was done using PyTTV fol-

lowing the approach described in Korth et al. (2023).

We assumed a two-planet model, a sinusoidal RV sig-

nal to account for the stellar rotation based on the re-

sults from the stellar characterization in Sec. 3.1, and

a quadratic RV trend based on the results from the RV

analysis in Sec. 3.3. The model is parametrized as de-

scribed in Korth et al. (2023), with the exception of the

impact parameter, b. Instead, we used the grazing pa-

rameter, g = b/(1 + k), where k is the radius ratio, due

to the grazing geometry of TOI-1408 b. The longitudes

of the ascending notes, Ω, are fixed to π for both planets.

The model is parameterized using the sampling parame-

ters
√
e cosω and

√
e sinω, but we also set a prior on the

orbital eccentricities. The model parameters and their

priors are listed in Table 4.
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Figure 2. Posterior TTV model from the photodynamical modeling of TOI-1408 c (upper panel) and TOI-1408 b (lower panel).
The colored lines span the 0.5 to 99.5 percentiles of the TTV model posterior distribution from the photodynamical analysis,
but the uncertainties are mostly smaller than the line width. The dashed lines mark the subtracted mean orbital periods and
the TTVs with their individual uncertainties measured by fitting each transit center separately are shown as black (TESS) and
gray (ground-based) points with error bars for comparison.

The code models the photometry and RVs simultane-

ously using Rebound (Rein & Liu 2012; Rein & Spiegel

2015; Tamayo et al. 2020) for dynamical integration,

including General Relativity effects as implemented in

Reboundx (Tamayo et al. 2020), and PyTransit (Parvi-

ainen 2015, 2020; Parviainen & Korth 2020) for transit

modeling. The analysis begins with a global optimiza-

tion using the differential evolution method (Storn &

Price 1997; Price et al. 2005), followed by Markov Chain

Monte Carlo (MCMC) sampling starting from the global

optimization results with the emcee sampler (Foreman-

Mackey et al. 2013).

We show the TESS photometry and RV measure-

ments with their corresponding model in Fig. 1, the

ground-based photometry in Fig. 5 in Appendix A, the

TTV model in Fig. 2, and the full RV model in Fig. 6

in Appendix B. The posteriors for model parameters

and the derived planetary parameters are listed in Ta-

ble 4. The posterior mean ephemeris for TOI-1408 c

is T0,c = 2458739.845 ± 0.002 d and Pc = 2.19592 ±
0.00002 d, while for TOI-1408 b, the ephemeris is T0,b =

2458740.8584±0.0002 d and Pb = 4.424703±0.000001 d.

TOI-1408 c exhibits a TTV period of 138 d with an am-

plitude of 8 h, and TOI-1408 b shows TTVs with an

amplitude of 8 min. TOI-1408 c’s TTV amplitude is

15% of its orbital period, the largest TTV amplitude

relative to a planet’s orbital period known at the time

of writing. The TDVs for TOI-1408 c calculated from

the photodynamical model agree with the measured val-

ues.

In a previous study by Galazutdinov et al. (2023),

TOI-1408 b was found to have a mass of 1.69±0.20MJup

and an eccentric orbit (e = 0.259 ± 0.026). While their

mass value agrees within 1σ with our (largely more pre-

cise) value of 1.86±0.02 MJup, we find the TOI-1408 b’s

orbit to be nearly circular. Additionally, our photody-
namical modeling could constrain the TOI-1408 b’s ra-

dius more reliably.

4. DISCUSSION

4.1. Dynamics

Besides the large TTVs, TOI-1408 c also exhibits tran-

sit duration variations (TDVs). Forward modeling of

the posterior solution from Table 4 allowed us to iden-

tify three main contributions to the TDVs, similar to

those observed in KOI-142 (Nesvorný et al. 2013). The

largest contribution arises from the variability in e cosω

with a period of ∼ 1 y and a peak-to-peak (ptp) am-

plitude of 0.4 h. The second largest contribution is due

to variations in the orbital inclination, with a period of

∼ 15 y and a ptp amplitude of 0.2 h. The third contri-

bution comes from the variation in tangential velocity
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Table 4. Photodynamical model parameters with their priors and posteriors, and the posteriors for derived planetary parame-
ters. N (µ, σ) stands for a normal prior with a mean µ and standard deviation σ, and U(a, b) stands for a uniform distribution
from a to b. The osculating orbital elements are valid for the reference time T0 = 2458739.84.

Stellar parameter Prior Posterior

R⋆ [R⊙ ] N (1.534, 0.021) 1.53 ± 0.02

M⋆ [M⊙ ] N (1.309, 0.012) 1.312 ± 0.009

Limb darkening q1 U(0, 1) 0.5 ± 0.1

Limb darkening q2 U(0, 1) < 0.85a

ρ⋆ [g cm−3] 0.52 ± 0.02

RV parameter

γ [m s−1] Nb

γ̇ [m s−1 days−1] N (0, 1) −0.344 ± 0.002

γ̈ [m s−1 days−2] N (0.000, 0.001) 0.000143 ± 0.000004

log10 RV-jitter [log10 m s−1] Nc

Prot [days] N (7.90, 0.05) 7.91 ± 0.02

Arot [m s−1] U(0, 40) 2.3 ± 0.7

TOI-1408 c TOI-1408 b

Fitted planet parameter Prior Posterior Prior Posterior

P [days] N (2.170, 0.005) 2.1664 ± 0.0001 N (4.424, 0.005) 4.42587 ± 0.00003

T0 [BJD] N (2458739.84, 0.01) 2458739.847 ± 0.004 N (2458740.85, 0.01) 2458740.8581 ± 0.0002

log10Mp [log10M⊙] U(−5.3,−3.9) −4.64 ± 0.01 N (−2.7, 0.03) −2.749 ± 0.003

Rp/R⋆ N (0.014, 0.004) 0.0134 ± 0.0003 U(0.05, 0.35) 0.15 ± 0.02
√
e cosω U(−0.5, 0.5) −0.353 ± 0.0005 U(−0.5, 0.5) 0.012 ± 0.007

√
e sinω U(−0.5, 0.5) 0.103 ± 0.002 U(−0.5, 0.5) −0.046 ± 0.006

g U(0, 1) 0.73 ± 0.02 U(0, 1) 0.939 ± 0.004

Derived planet parameter

Mp [M⊕ ] 7.6 ± 0.2 593 ± 4

Rp [R⊕ ] 2.22 ± 0.06 25 ± 4

ρp [g cm−3] 3.8 ± 0.3 0.18+0.17
−0.08

T14 [h] 2.67 ± 0.06 1.65 ± 0.03

e N (0, 0.083) 0.1353 ± 0.0001 N (0, 0.083) 0.0023 ± 0.0005

ω [◦] 286.3 ± 0.3 170 ± 10

i [◦] 82.6 ± 0.3 82.4 ± 0.2

a/R⋆ 5.04 ± 0.06 8.13 ± 0.09

a [AU] 0.03587 ± 0.00008 0.05778 ± 0.0001

aThe q2 limb darkening coefficient is not well constrained so we give only its 99th percentile upper limit.

bThe instrument-specific RV shifts, γ, have loosely informative priors based on the RV measurement medians and scatters.

cAll RV jitter terms have the same prior N (−1, 1).

at mid-transit, which has a period similar to the TTV

period and a ptp amplitude of 0.08 h.

The two planets of TOI-1408 lie close to the 2:1 period

commensurability (Pb/Pc ≈ 2.04), raising the question

of whether the system is dynamically in resonance. We

first checked for libration of the resonant argument of

the lower-mass interior planet θc = 2λb − λc −ϖc. This

resonant argument shows libration about 0◦, suggest-

ing a resonant state (Fig. 3, left). To understand the

resonant dynamics more deeply, we then compared the



10

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
ec cos θc

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

e c
si

n
θ c

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Ψ cosψ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ψ
si

n
ψ

Figure 3. Resonant behavior of the TOI-1408 b–c pair. Left: behavior of the single-planet resonant argument, θc, from the
photodynamical simulations, showing libration about zero. Right: the same solution, transformed to the canonical resonance
model of Nesvorný & Vokrouhlický (2016), where Ψ is a function of both planets’ eccentricities, and ψ of both planets’ resonant
arguments, although both are dominated by the inner planet c. This numerical solution is marked in salmon, and ψ librates
about π. However, a comparison to level curves of the Hamiltonian (grey, with black marking the analytical curve corresponding
to the numerical solution) shows that no resonant separatrix exists for these system parameters.

system’s behavior to the Hamiltonian resonance model

of Nesvorný & Vokrouhlický (2016). The resonant argu-

ment in this model still librates (about 180◦), but when

we examine the full phase portrait, the resonant sepa-

ratrix does not exist (Fig. 3, right). The separation to

resonance, quantified by the parameter δ of Nesvorný

& Vokrouhlický (2016), is around δ = 0.3 for all poste-

rior draws (mean δ = 0.297 with a standard deviation

of 0.002). The resonant separatrix exists only for δ ≥ 1,

and hence this system is by this definition just wide of

resonance, similar to KOI-142 and TOI-2202 (Nesvorný

et al. 2022). This could imply that convergent migration

in the protoplanetary disc did not proceed far enough to

drive the system deeply into resonance, or alternatively,

that tidal forces or other effects caused the orbits to di-

verge and escape from the resonant state (Delisle et al.

2012).

4.2. Stability

We performed a numerical stability analysis using

Rebound and its implementation of the Mean Exponen-

tial Growth factor of Nearby Orbits (MEGNO; Cincotta

& Simó 2000) indicator to determine if the planetary

system lies in a stable configuration, which we define as

|MEGNO− 2| < 0.4. We mapped the system’s stability

in the Pb − Pc, and ec − Pc parameter spaces by draw-

ing samples from the photodynamical model posterior

and replacing the mapped parameters with samples cre-

ated using a quad-tree based importance sampler. We

simulated the system for 1.6 million TOI-1408 c orbits

for each sample using the WHFast integrator (Rein &

Tamayo 2015) and saved the MEGNO indicator. We

visualize the results as a stability map shown in Fig. 4,

where the value of a cell represents the fraction of sta-

ble orbits within that cell. It is worth noting that the

system is close to a narrow zone of instability.

4.3. Implications from Occurrence rates

The results highlight the unique position of TOI-1408

as a stable island in a chaotic environment, particularly

given the low occurrence rate of inner companions to

HJs, estimated at 1.4%±1.0% by He et al. (2024). Their

findings, based on N-body simulations spanning a period

of 108 years, agree with the lower limit from a previous

study by Wu et al. (2023), which reported a rate of non-

aligned nearby planetary companion to hot Jupiters at

12% ± 6% based on a search for TTVs in the Kepler

sample. He et al. (2024) also found that the occurrence

rate of inner companions to HJ significantly decreases

as the HJ’s orbital period shortens, resulting in only a

few stable systems with HJ orbital periods less than 6 d.

5. CONCLUSIONS
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Figure 4. Two-dimensional MEGNO maps probing the stability near the posterior solution from the photodynamical analysis.
The color indicates the orbital stability, and the dashed lines show the parameter posterior median values listed in Table 4.

In this study, we report the discovery and photo-

dynamical characterization of TOI-1408 c, a transit-

ing sub-Neptune on a 2.2-day orbit located interior

to a transiting hot Jupiter, TOI-1408 b (P=4.42 d,

M=1.86±0.02MJup, R=2.4±0.5RJup). The planets are

near a 2:1 period commensurability with librating res-

onant arguments, yet both remain outside the resonant

configuration. This configuration leads to remarkable

TTVs and TDVs, with TOI-1408 c exhibiting the largest

TTV amplitude relative to its orbital period recorded

thus far.

The existence of a small inner planet in such a tight

orbit around a hot Jupiter adds a valuable data point

against the backdrop of current planet formation the-

ories, challenging the typical scenarios suggested for

close-in giant planets. The planets in the TOI-1408 sys-

tem are both transiting and exhibit measurable TTVs,

similar to TOI-1130, but in a much tighter orbit config-

uration.

Additionally, RV measurements suggest a third, long-

period outer body in the system, indicating a complex

dynamical environment, such as WASP-47 and WASP-

132. The system’s dynamic nature and the likely pres-

ence of a third body invite further observational cam-

paigns to refine the orbital parameters and investigate

long-term stability.

This research not only deepens our understanding of

multi-planet systems involving hot Jupiters with inner

low-mass companions but also underscores the need for

continued exploration to uncover the diverse architec-

tures of exoplanetary systems.
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Figure 5. Ground-based transit measurements observed with the different facilities shown as gray points, the same points
binned to 15-min as black points with error bars, and the photodynamical model in blue.

APPENDIX

A. GROUND-BASED TRANSITS FOR TOI-1408 b

B. RADIAL VELOCITY MODEL FROM THE PHOTODYNAMICAL ANALYSIS
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Fűrész, G. 2008, Phd thesis, University of Szeged, Hungary

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al.

2016, A&A, 595, A1, doi: 10.1051/0004-6361/201629272

Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al.

2023, A&A, 674, A1, doi: 10.1051/0004-6361/202243940

Galazutdinov, G. A., Baluev, R. V., Valyavin, G., et al.

2023, MNRAS, 526, L111, doi: 10.1093/mnrasl/slad127
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