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ABSTRACT

Building instances play a pivotal role in understanding pop-
ulation distribution and assessing vulnerability in the face of
potential risks. Building instance segmentation is a valuable
technique for identifying individual structures, however, com-
plex urban environments pose great challenges, especially in
the informal areas. In this study, we utilize a building in-
stance segmentation method specifically designed to discern
single buildings in both formal and informal settlements. Em-
ploying a SkipFuse-UResNet34 model, we generate building
instances for Medellin, Colombia, resulting in a more com-
prehensive building mask compared to conventional official
data sources. This enhanced mask serves as a vital tool for es-
timating the population at risk, enabling a thorough compar-
ison with official data and addressing current spatial knowl-
edge gaps.

Index Terms— building instance segmentation, informal
settlements, deep learning, urbanization, satellite imagery

1. INTRODUCTION

In the undulating slopes of Medellin, Colombia, where chal-
lenging topography intertwines with the vulnerability of com-
munities, the threat of landslides emphasizes the pursuit of
precise insights into this complex urban landscape. We ur-
gently require additional information to assess the potential
risks and determine the necessity of employing Al for the
instance segmentation of buildings. Medellin, faces unique
challenges as it is nestled in a valley surrounded by steep
slopes. Historical urbanization, driven by rapid industrial and
economic growth in the mid-20th century, led to an influx of
migrants settling informally on the city’s outskirts [1]. The
escalation of informal housing, exacerbated by conflicts be-
tween paramilitary forces and guerrilla groups, particularly
in later years, has extended the city into precarious, hard-to-
reach areas on these steep slopes.

The informal settlements, characterized by low-quality
building fabric, are highly vulnerable to landslide hazards

Fig. 1: Example of selected test area in Medellin and the
obtained instance segmentation results from the proposed
methodology.

due to frequent heavy rainfall and the presence of weak, ero-
sive rocks in the bedrock [2]. Effectively countering this risk
requires precise knowledge of the at-risk areas and an under-
standing of the potential impact on the population. However,
official population data for Medellin accurately geolocates
formal residents but significantly underrepresents the more
recent informal settlements on steep slopes, leading to a
substantial underestimation of the exposed population [3].

Detecting informal settlements poses significant chal-
lenges [4, 5] due to limited data availability and the uncer-
tainty associated with reference data [6, 7]. This difficulty
is further aggravated by the intra-and-inter urban variability
observed in informal areas [8]. While the utilization of very
high-resolution imagery proves advantageous for informal
settlement classification, as demonstrated in [9], the detection
of individual buildings within informal settlements remains
an extremely challenging task, often requiring manual inter-
vention [10].

To address this critical knowledge gap, we leverage
high-resolution remote sensing imagery in combination with
a digital surface model (DSM), capable of detecting single
buildings in the challenging urban environment of Medellin.
This approach will be tested in formal settlements, but even
more pertinent and demanding is its application in the city’s
informal settlements (see Fig. 1). The morphological charac-
teristics of these areas, marked by small-scaled, intricate, and
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Fig. 2: Locations of the AOIs within the administrative area of Medellin and detailed maps for the AOIs used for testing.

densely packed structures, are indicative of informal settle-
ments [11]. In this study, we employ a SkipFuse-UResNet34
in order to generate building instances, thus leading to a
more comprehensive building mask compared to official data
sources. This enhanced building mask serves as a crucial tool
to estimate the population at risk of landslides, allowing for
a comparison with official data and filling the current spatial
knowledge void.

2. STUDY AREA AND DATA

The study area is the municipality of Medellin (Fig. 2).
Three areas of interest (AOI) were used for training, each with
different sizes, i.e. from east to west, 3x5.5km, 2.5x3km, and
2.5x1.5km. The testing was undertaken in five distinct AOIs
within Medellin, each covering an expanse of 1.5x1.5km.
The selection of the test AOIs was guided by two primary
considerations. Firstly, they were chosen for their high build-
ing density, rendering them well-suited for our proposed
application. Secondly, these AOIs showcase a diverse array
of morphological building types, effectively capturing the
inherent structural complexity of buildings. AOI 1 is situated
in the central business district (CBD), AOI 2 is characterized
by a substantial industrial area, AOI 3 primarily consists of
residential building structures with varying heights, AOI 4 in-
corporates large communal and industrial buildings alongside
low- and mid-rise structures, and AOI 5 features a densely-
built informal area located at the steep slopes on the outskirts
of Medellin.

For the study area of Medellin, we use very high reso-
lution RGB satellite imagery from WorldView-3 with a ge-
ometric resolution of 0.3m. For training the model, addi-
tional imagery data depicting Berlin city from WorldView-4,
Bonn city from open source aerial data, and Hamburg city
from WorldView-2 were used. All images were brought to a
geometric resolution of 0.3 m.

In contrast to prior research, our model utilized a pan-
sharpened RGB image in addition to DSM generated by semi-
global matching (SGM) technique [12], rather than relying on
a single panchromatic channel and DSM. The RGB images
enables better visualization and interpretation of the details
present in the scene. For a challenging task like detecting
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Fig. 3: Visualization of the utilized network architecture.

small buildings in informal areas, spectral information plays
a crucial role. It provides the network with additional clues
about various structures, particularly in cases of dissimilar
textures.

We rely on official building cadaster data for training,
validation, and testing of our method. Cadaster data from
Germany for the cities of Berlin, Bonn, and Hamburg, were
used for training and validation. In addition to these, cadaster
data from Medellin was also used for the purpose of train-
ing, validation, and testing. This dataset encompasses the
footprints for a significant portion of building structures in
Medellin. Nevertheless, it is important to highlight that the
official building cadaster does not include numerous informal
or recently constructed buildings.

3. METHODOLOGY

With this paper, we are testing the applicability of our previ-
ously developed methodology [13] for building sections in-
stance segmentation on a new challenging area of Medellin.
The proposed method comprises two consecutive steps: Ini-
tially, a SkipFuse-UResNet34 architecture (see Figure 3) is
used to segment buildings and separation lines between build-
ing sections as a 3-class problem. The process utilizes RGB
and DSM images fed into two distinct encoders. To pre-
serve fine-grained spatial information, feature maps, obtained
at four distinct scales from the two encoders, are aggregated
by summation and serve as the input for the full-scale skip-
connections. During the network training, a combination of
three losses—Weighted Cross Entropy Loss, Dice Loss, and



(c) Sample of area from AOI 5 showing an informal settlement

(d) Instance segmentation results for sample of area from AOI 5

Fig. 4: Detailed visual analysis of building instance segmentation results on two challenging areas from AOI 4 and 5.

Topology Loss—was employed. For more details, please, re-
fer to [13].

Next, a map of building section instances is generated us-
ing the watershed transform [14] as a post-processing step.
Mainly, the watershed transform interprets the obtained 3-
class map of background, building, and separation line to-
gether with a seed image and a mask as a topographical sur-
face. The seed map and mask are extracted from the pre-
dicted information about buildings and separation lines. Sub-
sequently, watershed transform simulates a flooding scenario
where water initiates flooding from the seeds and settles into
basins. These basins are marked by watershed lines, aligning
with high image intensities. The mask confines the virtual wa-
ter flow to specific regions. The enclosed regions delineated
by watershed lines are then recognized as objects.

We conduct evaluations on five selected AOIs that com-
bine both formal urban environments and informal settle-
ments. Those complex areas are selected for the purpose to
better demonstrate the strength of the proposed methodology.

4. RESULTS AND DISCUSSION

Figure 4 illustrates two samples of complex and very dis-
similar regions of Medellin together with the obtained in-

Table 1: Quantitative results for IOU, FPR, FNR metrics of
building class and overall accuracy evaluated on five selected
AOIs for testing.

AOI IOUBLD FPRBLD FNRBLD OA

1 0.694 0.125 0.234 0.816
2 0.761 0.039 0.192 0.902
3 0.669 0.066 0.223 0.889
4 0.708 0.078 0.198 0.878
5 0.620 0.086 0.254 0.866

stance segmentation results from our proposed methodology.
In a city region (see Fig. 4a), buildings can have very com-
plex shapes with many sections within one building construc-
tion. To distinguish those sections or separation lines between
those sections is a challenging task even for a human eye.
Nevertheless, one can recognize a city layout within this re-
gion, which cannot be done by observing the informal settle-
ment area (Fig. 4c). Although buildings within informal set-
tlements often exhibit simple rectangular shapes, their dense
arrangement makes it challenging to distinguish each individ-
ual construction. Analysing the obtained instance segmenta-
tion results for both regions in Fig. 4b and Fig. 4d, we can say



that our developed methodology enables the identification of
even the smallest building segments, regardless of the build-
ing complexity or the region.

To quantify the quality of instance segmentation results,
we evaluate the metrics intersection over union (IOU), false
positive rate (FPR), false negative rate (FNR) and overall ac-
curacy (OA) and report their performance in Table 1. Our
approach achieves an IoU around or above 0.7 on the AOIs 1-
4. In the informal AOI 5, it still scores 0.62 IoU, whereas the
overall accuracy (OA) is high at above 0.8 for all AOIs. The
false positive rate (FPR) is very low for all AOIs, which in-
dicates that the method produces few false positives. On the
other hand, the resulting false negative rate (FNR) is above
0.19 for all AOIs, pointing at the issue that many small build-
ings are very hard to detect.

5. CONCLUSION

Our proposed building instance segmentation approach is able
to identify single building instances in both settlement types,
formal and informal. This framework can obtain detailed in-
stance segmentation masks, especially for informal regions,
facilitates the accurate counting of built houses and estimation
of the population residing in these areas. This information be-
comes critical during disasters and for coordinating humani-
tarian aid efforts.
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