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Abstract

Outdoor sound propagation can be modeled numerically, but it is difficult to validate the
results using measurements. The main objective of this master’s thesis was to quantify meteo-
rological effects on outdoor sound propagation using noise measurements and weather data
obtained by the Hamburg airport for air traffic control purposes. 91,000 A320 measurements
from the period August 22 - August 23 were recorded. This data is supplemented by weather
profiles measured at the Hamburg Weathermast. In addition to the precise modeling of the
noise emissions generated at the source, of the aircraft, the modeling of atmospheric effects
is also crucial to accurately determine the noise measured on the ground. To analyze the
data, we first perform a Principal Component Analysis (PCA) to investigate the correlation
of the combined noise, flight, and weather parameters. The Analysis of Variance (ANOVA)
method is used to investigate whether there are significant differences in the A-weighted
maximum sound pressure level LAS,max values between different meteorological parameters.
In addition, we use the mean decrease in impurity (MDI) and permutation importance of
a random forest model to evaluate how weather parameters can be used in the prediction
of noise from aircraft overflights. A positive and negative temperature gradient differed on
average by 2.13 - 2.61 dB, p-value < 0.05. A measured difference of 1.2 dB on average, p-value
0.00, was found between the upwind and downwind classes. When predicting noise with a
Random Forest model, the removal of the weather parameters would lead to a loss of 14.85%
accuracy on the training data. Overall, the noise can be predicted with an accuracy of 1 dB at
a specific measuring station for the A320 type depending on the state of the source, e.g. the
aircraft’s configuration and flight procedures. From the measurement data, it is possible to
derive audible differences for humans depending on the weather conditions. However, we
can’t yet predict noise for all aircraft types and locations.
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Kurzfassung

Die Schallausbreitung im Freien kann numerisch modelliert werden, aber es ist schwierig,
die Ergebnisse anhand von Messungen zu überprüfen. Das Hauptziel dieser Masterarbeit
war die Quantifizierung der meteorologischen Effekte auf die Schallausbreitung im Freien
anhand von Lärmmessungen und Wetterdaten, die der Hamburger Flughafen für Zwecke
der Flugsicherung erhebt. Neben der genauen Modellierung der Lärmemissionen, die an der
Quelle, dem Flugzeug, entstehen, ist auch die Modellierung der atmosphärischen Effekte
von entscheidender Bedeutung, um den am Boden gemessenen Lärm genau zu bestimmen.
91,000 A320-Messungen aus dem Zeitraum August 22 bis August 23 wurden aufgezeichnet.
Diese wurden durch Wetterprofile ergänzt, die am Hamburger Wettermast gemessen wurden.
Um die Daten zu analysieren führen wir zunächst eine Hauptkomponentenanalyse (PCA)
durch, um die Korrelation der kombinierten Lärm-, Flug- und Wetterparameter zu unter-
suchen. Mit der Varianzanalyse (ANOVA) wird untersucht, ob es signifikante Unterschiede
in den A-bewerteten maximalen Schalldruckpegeln LAS,max zwischen Klassen verschiede-
ner meteorologischer Parametern gibt. Darüber hinaus verwenden wir die "mean decrease
in impurity"(MDI) - Metrik und die "permutation importance Metrik eines eines Random-
Forest-Modells, um zu bewerten, wie Wetterparameter für die Vorhersage von Fluglärm
verwendet werden können. Ein positiver und ein negativer Temperaturgradient unterschieden
sich durchschnittlich um 2,13 - 2,61 dB, p-Wert < 0,05. Ein gemessener Unterschied von
durchschnittlich 1,2 dB, p-value 0,00, wurde zwischen der Auf- und Abwindklasse festge-
stellt. Bei der Vorhersage von Lärm mit einem Random Forest Modells würde das Entfernen
der Wetterparameter aus dem Datensatz zu einem Verlust von 14,85% Genauigkeit auf den
Trainingsdaten führen. Insgesamt lässt sich der Lärm mit einer Genauigkeit von 1 dB an einer
bestimmten Messstation für den Typ A320 vorhersagen, abhängig vom Zustand der Quelle, in
Bezug auf z.B. Flugzeugkonfiguration und Flugverfahren. Aus den Messdaten lassen sich hör-
bare Unterschiede für den Menschen in Abhängigkeit von den Wetterbedingungen ableiten.
Allerdings können wir noch nicht für alle Flugzeugtypen und Standorte Lärm vorhersagen.
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1. Introduction

This master’s thesis is a data science approach to aircraft noise immission modeling with
measured noise under consideration of weather data gathered around the airport of Hamburg.
To better protect residents living near the airport from noise, it is essential to take into account
the influence of meteorology on noise. Using the existing weather data recorded at the airport
and the respective noise measurement stations (wind speed and direction, relative humidity,
and air temperature), supplemented by vertical profiles of these parameters measured at the
280-meter-high Hamburg weather mast, we calculate the positive and negative effects of the
weather on the noise heard by residents. The new approach of this work is to investigate
how Hamburg Airport can use data that it already records for air traffic control purposes
to improve the protection of residents from noise. Furthermore, as a new approach, we
evaluate how the Hamburg weather mast can be used as an additional source of weather data
to account for effects such as noise refraction. Aircraft noise immission is the sound level
measured on the ground as opposed to the noise emitted by the aircraft. The investigation of
aircraft noise emissions examines all noise-generating components, e.g. the engines, wings,
landing gear, take-off weight (TOW), thrust setting, and high-lift components [1]. Studies
of these components are outside of the scope of this work because of the lack of availability
of this type of data. We focus on a specific aircraft type, the Airbus A320-200 passenger
aircraft as it’s one of the most flown aircraft worldwide. Using mathematical methods, we
filter out the dependency on sound source-specific parameters as much as possible. Using
the data from Hamburg Airport, we determine the influence of the atmosphere as a sound-
transporting medium on the sound immissions measured on the ground. The aircraft position
data from the radar is combined with weather data from the airport and the weather mast
of the University of Hamburg to obtain the meteorological conditions that influenced the
measured aircraft noise.
Atmospheric acoustics is a complex topic due to the complex and inhomogeneous nature
of the atmosphere. Often numerical schemes are employed to simulate the governing PDEs
over a given time. AKU3D a finite-difference time-domain sound propagation model [2] and
AKUMET a sound particle model [3] are two such schemes developed by the DLR. These
models can simulate sound propagation for complex meteorological fields as well as local
topographical conditions like hills or ground impedance.
On the one hand, we look at the known influence of meteorological parameters on the
measured noise, on the other hand, we also look at specific measuring stations in detail.
We are investigating the extent to which AI methods can be used to filter the influence of the
measured weather parameters wind, temperature, and humidity on noise immissions and
what information is needed to predict the noise from overflights at measuring stations.
The structure of this work is as follows: In chapter 2, current research in the field of
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1. Introduction

aeroacoustics is introduced. Some projects with a focus on aircraft noise immission modeling
will be highlighted. Chapter 3 will first introduce the theory of atmospheric physics. The
structure of the atmosphere plays a crucial role as it is the medium of sound propagation for
aircraft noise [4]. We will go on to the topic of acoustics, what the different noise parameters
mean, and what one should pay attention to when working with noise data. The theory of
acoustics is the foundation for the subject of aeroacoustics where we look at noise generation
through aerodynamic forces or turbulent flows. Various effects like sound refraction occur in
the atmosphere that influence the propagation of sound which we examine in this work. The
collection of data at the airport of Hamburg and the measuring stations, in particular, will
be described in chapter 4. The weather instruments inside the Noise Monitoring Terminal
(NMT) have limited capabilities because they measure the weather at a single point close to
the ground, therefore extended weather profiles from the weather mast are used. This data
allows us to compute vertical gradients and use them as parameters for statistical methods
to model and quantify the influence of the atmosphere. Chapter 5 defines the methods
used for this work. Multiple statistical methods and machine learning methods are used
to build a model from the various data sources described in chapter 4. First, a Principal
Component Analysis (PCA)[5] is performed in chapter 5.3 on several location-specific data
sets to compute correlations in the data, visualize groups in the data set and determine
significant parameters. The data is grouped according to several of these parameters for the
Analysis of Variance (ANOVA) statistical method in chapter 6. As part of a complete statistical
analysis, the mean difference in dB between the groups is calculated and the influence of
atmospheric effects is quantified. We’re interested in the question of whether and how noise
immission can be predicted using machine learning methods. We train a random forest
regression model [6] and determine the feature importance for all parameters in chapter
7 as a further metric to determine how much influence a specific weather parameter has
on outdoor sound propagation. We go on to combine the information and findings of the
previous chapters to predict the noise at a specific Noise Measuring Terminal for A320-200
overflights before concluding the work in chapter 8. Due to the data basis, only the A320
is considered in this work. In addition to this type, the Boeing 777, the Airbus A330, or,
for example, the Boeing 737-800, which is very similar to the A320 in terms of size, flight
behavior, and area of operation, also land at Hamburg Airport, along with other types. The
B777 and the A330 are wide-body long-haul aircraft that are heavier than the A320. As a
result, these types climb more slowly on take-off, depending on the load, and therefore fly
closer to the microphones and need more thrust. Depending on the type, this results in a ∆L
in the sound pressure level compared to the A320. We briefly look at these differences in
chapter 6. In addition, the aircraft types also differ in the frequency spectrum of the noise
emissions. We cannot take these differences into account as the spectrum was not recorded
during the noise measurements. If these differences of ∆L are taken into account, the results
of the A320 concerning the influence of meteorological effects can be transferred to other
types with an offset.
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2. State of the art

Aircraft noise has a significant impact on the health of the people affected. Effects on the
number of prescriptions for antihypertensive drugs, sleep behavior and prescriptions of
related drugs, and the deterioration of children’s learning behavior due to aircraft noise were
investigated using epidemiological data from 2000-2007 [7]. Effects on health, especially
in the vicinity of airports, were investigated by Franssen et al. at Schiphol Airport in the
Netherlands [8]. Here, an increase in the number of prescriptions for sleep, cardiovascular,
and high blood pressure medication was observed. It should be noted that these effects were
not linked to noise exposure during the night, but to noise exposure in the late afternoon. The
International Civil Aviation Organization (ICAO), the UN’s governing body for international
civil aviation has for this reason set the goal for its member countries to reduce the adverse
effects and protect the population, especially vulnerable groups like children, chronically
ill, and the elderly from aircraft noise. One of the goals of the ICAO is to limit or reduce
the number of people affected by significant aircraft noise [9]. To reduce the number of
people affected by noise through aircraft traffic around airports the noise generation and
propagation models must be accurate. There are various approaches to modeling the complex
meteorological relationships in the atmosphere and how they influence sound propagation.
Various technologies such as numerical simulations or empirical methods can be used for
this purpose. The relevant physical effects are described in more detail in chapter 3. In
general, we have to distinguish between emission and immission modeling. Yunus et al.
[10] developed an atmospheric propagation model using ray acoustics while considering
vertical wind velocity and air temperature profiles. The noise emission of the aircraft is
modeled by sampling noise sources in a hemisphere around the aircraft and then propagating
the noise on the ground. They conclude that refractive sound shadow zones appear under
the right conditions, i.e. when the direction of sound propagation is opposed to the wind
direction. It is concluded that the weather has a significant and hearable difference in the
sound pressure level. Isermann et al. [1] provide a general introduction to the modeling of
aircraft emissions. They describe different possibilities of source modeling of best-practice
models such as Noise-power-distance (NPD) based models or models that explicitly model
the source in its entirety. Scientific models are presented, with the difference that they model
the source as the sum of its components. This makes it possible to perform more accurate
calculations, as not all components are equally relevant along the trajectory. Different models
are suitable depending on the context. Isermann et al. [1] identify various objectives:

a) Support of land use planning and noise legislation;

b) Modeling of noise mitigation measures;

3



2. State of the art

c) Development of noise abatement flight procedures;

d) Modeling of noise reduction at the source;

e) Low-noise aircraft design.

Engine noise and airframe are identified as the two contributors to aircraft noise. In more
advanced scientific models these are modeled in detail, however, the necessary data is
generally only available to large institutions like NASA or DLR or main manufacturers like
Boeing or Airbus [1]. Johansson et al [11] employ a data-driven approach to analyze A321
neo fly-over noise measurements not far away from the runway. Various linear methods like
Analysis of Variance (ANOVA) [12] or hierarchical regression [13] are used to investigate
the influence of specific meteorological parameters on the measured sound pressure level
variance. The authors determine a significant dependence of noise immissions on the
distance to the microphone (60 % of the variation of the noise data) aircraft speed and the
configuration (together 20 %), while meteorological parameters have a relatively smaller
impact (around 2-5 %). They note that temperature and relative humidity mainly contribute
to the variation of the noise data while the wind is negligible. Johansson et al. [11] compare
aircraft configurations with each other to calculate the influence of individual parameters
such as distance or pitch on the emitted noise. Zellmann et al. [14] present a middle way
between highly simplified and highly complex parameterized models for the calculation of
aircraft noise. Modeling the source in its entirety is often not possible due to missing data
or parameters and one has to ask oneself which parameters are relevant or how to replace
missing data from measurement data. They work with a data set of flight tracks, sound
pressure level measurements which contain similar parameters as the data set in this work,
and meteorological profiles to calculate the emitted noise and the flight parameters. The
Parametric Aircraft Noise Analysis Module (PANAM) is a program to predict noise immission
on the ground for a homogeneous atmosphere and different types of aircraft Bertsch [15].
An extension for PANAM is presented to assess the uncertainty of noise simulations Bertsch
et al. [16]. Noise emissions are predicted based on information about the aircraft engines and
the airframe, the configuration and position of the aircraft, and the position of the receiver
on the ground relative to the aircraft. To project the emissions to immissions, effects that
occur during sound propagation in the atmosphere are also taken into account. In a recent
paper, Römer et al. [17] combine uncertainty of the parametric input and uncertainty from
the simplification of the noise calculation in an uncertainty quantification study. They use
a component-based method for noise calculation in a time-stepping procedure and extend
the PANAM [18] model. Especially in multi-parameter simulations, they emphasize the need
to pay attention to the uncertainty of input parameters. Whenever results from simulation
are compared with measured values, uncertainty quantification is crucial. Several models
already exist for modeling aircraft noise immissions [1][15]. However, these models don’t
take atmospheric effects such as sound refraction or atmospheric absorption into account
sufficiently, but these effects do play a role in outdoor sound propagation. We consider vertical
weather profiles of these parameters and investigate the extent to which these measurements,
which are not carried out directly at the airport, can be used there.
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3. Fundamentals of Outdoor Sound
Propagation

3.1. Vertical profiles and daily evolution of meteorological
parameters

The atmosphere’s primary properties are its pressure, density, temperature, composition, and
motion of the molecules [4]. These properties vary greatly depending on where you are in the
atmosphere, which is around 40 km high. At ground level, the temperature tends to decrease
with altitude, both in summer and in winter. The first layer in the atmosphere is called the
troposphere and extends between 8-16km upwards [4]. Density and pressure decrease with
altitude due to gravity. Horizontal gradients generally disappear because gravity sorts the
layers in the atmosphere accordingly. The atmosphere establishes the hydrostatic equilibrium
[4]. The part of the troposphere closest to the ground is called the atmospheric boundary
layer (ABL). Depending on the location, time of day, and season, the temperature can also
rise with altitude. This situation is called an inversion. Especially for take-offs and landings of
airplanes, it is crucial to pay attention to the weather conditions in the atmospheric boundary
layer, as temperature, wind, humidity, and pressure have different effects on the lift of the
flights [19]. From a certain altitude, the decrease in temperature stops. This layer of the
atmosphere is called the tropopause. The stratosphere begins above the tropopause. This
extends up to an altitude of 50 km and is characterized by a temperature inversion. In figure
(3.1), one can see from an atmospheric pressure of around 50 hPa, i.e. an altitude of around
20 km, that the temperature increases with increasing altitude. There are also the mesosphere
and the thermosphere at much greater heights. Aircraft during approach or departure move
inside the ABL which is the layer we focus on.

At sea level, the average atmospheric pressure is 1 atm or approx. 1013.25 hPa. The air
pressure as a logarithmic scale then decreases linearly with altitude. Figure (3.1) shows the
temperature curve depending on altitude and air pressure. The data for figure (3.1) and
figure (3.2) is published on the website of the University of Wyoming 1. The data used here is
from station 10868.

The troposphere consists of the boundary layer, which is of particular interest to us because
it is the part of the atmosphere where starts and landings of aircraft take place, up to a height
of approx. 1 km and the free atmosphere. The boundary layer is defined as the part of the
tropopause that is directly influenced by the presence of the Earth’s surface, Stull [20]. In
the boundary layer, turbulence occurs as transport processes, triggered by the heat of solar

1https://weather.uwyo.edu/upperair/sounding.html
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3. Fundamentals of Outdoor Sound Propagation

Figure 3.1.: Temperature measurements from the ascent of a weather balloon with radiosonde
in Oberschleissheim near Munich on June 01, 2023 published by the University
of Wyoming. The height is given by the measured pressure value in hPa. The
measurements start at ground level and go up to a height of around 33km.

radiation on the Earth’s surface. The boundary is structured into three components: the
mixed layer, the residual layer, and the stable boundary layer. The composition of these three
layers changes over a day. About 30 minutes after sunrise, the turbulent mixed layer begins
to form. The warm air heated by sunlight on the ground rises. The resulting turbulence tends
to distribute the temperature and relative humidity evenly throughout the layer. Towards the
afternoon, the mixed layer reaches its maximum expansion [20]. About half an hour before
sunset, the thermals stop forming due to a lack of cold air advection. The name residual layer
comes from the fact that the average initial value of the state and concentration variables
is the same as that of the mixed layer. Variables such as the potential temperature usually
decrease slowly at night. The lower part of the residual layer slowly transforms into the stable
boundary layer during the night through contact with the ground. This zone is characterized
by calm winds at night.

3.2. Acoustics

Sound waves in the atmosphere consist of pressure oscillations where particles move in a
longitudinal direction [4]. The frequency [Hz] (f) and the sound pressure amplitude [Pa] (p̂)
characterize a sound wave. For humans, frequencies between 20 Hz and 20 kHz are normally
hearable [21]. The sound pressure level is a logarithmic scale that refers to the sound pressure

6



3. Fundamentals of Outdoor Sound Propagation

Figure 3.2.: Wind speed measurements from the ascent of a weather balloon with radiosonde
in Oberschleissheim near Munich on June 01, 2023 published by the University
of Wyoming. The height is given by the measured pressure value in hPa. The
measurements start at ground level and go up to a height of around 33km.

amplitude

SPL = 10lg
(

p̂2

p2
0

)
dB (3.1)

where p2
0 = 2 · 10−5Pa is the reference pressure amplitude at the threshold of hearing. From

this equation, it follows that the doubling of sound sources, e.g. from one to two leads to
an increase in sound pressure level of approximately 3 dB [4]. People do not perceive all
frequencies equally well, or are not disturbed by all frequencies to the same extent. For this
reason, the sound pressure level is weighted according to certain frequencies. The often used
’A-weighting’ takes frequencies between 1kHz and 6kHz more into account.
For dry air where we do not consider the effect of humidity on sound propagation the sound
speed c is defined as:

c =
√

κRdT, (3.2)

where κ =
cp
cv

with cp = 1005J/(kgK) and cv = 718J/(kgK) is the ratio of the specific heat
capacities of dry air at constant pressure and constant volume, and Rd = 287J/(kgK) the gas
constant of dry air [22].
The speed of sound for 0◦C and 1013 hPa is

c0 = 331.5m/s (3.3)

For 20◦C, the speed of sound is
c0 = 342m/s. (3.4)

7



3. Fundamentals of Outdoor Sound Propagation

The speed of sound is dependent on the temperature [◦C] (T).
If we do not consider a homogeneous atmosphere but only a horizontally homogeneous

atmosphere vertical refraction of the sound waves occurs and needs to be accounted for. A
vertical effective sound speed gradient ∂ce f f /∂z leads to sound refraction. The effective sound
speed can be computed by adding the sound speed in calm air c and the horizontal wind
component in the direction of the sound propagation:

ce f f = cair + Vcos(α), (3.5)

where V is the horizontal wind speed, α is the angle between the direction of the wind vector
and the direction of sound propagation and z is the height of ground in meters [22].

3.3. Noise equations

In practice, the noise or sound pressure level [dB] (SPL) is measured as a time series over
a time t. The function L(t) is defined by the maximum level Lmax and the duration t of the
noise. For aircraft noise, the maximum A-weighted sound pressure level of the aircraft with
the "SLOW" rating (immission at a certain observer) [dBA] (LAS,max) is used [1]. Iserman et
al. [1] describe the A-weighted single event sound level [dB] (LE) as

LE = 10 × log
(

1
t0

×
∫ t2

t1

10L(t)/10dt
)
= Lmax + 10 × lg

(
te f f

t0

)
(3.6)

for a normalizing time t0 of 1 second and the effective duration te f f which is defined as
follows ∫ t2

t1

10L(t)/10dt = te f f × 10Lmax/10. (3.7)

Long-term effects of noise are generally defined by the equivalent continuous sound level,
[dBA] (Leq), which is determined from a series of N noise events LE,i over a characterization
time TC and a normalization time t0 [1],

Leq = 10 × log

(
t0

Tc
×

N

∑
i=1

10LE,i/10

)
. (3.8)

Since decibels are a logarithmic scale, the energetic mean value formation as in equation (3.8)
can be misleading for the actual noise situation. A single very loud noise event can greatly
increase the average value over a long period, even if the exposure is only very brief. In
addition, individual very loud events are particularly disturbing but are averaged out over a
series of events. A specific single-event sound level can be the result of a short noise with
a high maximum level or a long noise event with a lower maximum level [1]. The human
perception of loud and quiet results from the magnitude. Therefore, in this work LAS,max is
used as the metric of loudness.

To calculate the mean value over several noise events, it is important to adapt to the
logarithmic decibel scale. According to Taraldsen et al. [23], let Li be a series of observed
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3. Fundamentals of Outdoor Sound Propagation

sound pressure levels. We calculate values Pi = P010Li/10 with P0 as reference value. P is
calculated as mean of values Pi with P = (P1 + ... + Pn)/n, with n being the number of noise
events. Then P is converted back to the decibel scale with

LP = 10log
(

P
P0

)
. (3.9)

LP refers to the mean of the sound pressure level L over a series of noise events Li, [dBA]
(LP).

3.4. Effects on sound pressure level

Depending on the type of source or the state of the atmosphere, the propagation of the sound
wave is influenced in many ways [4]. Sound can be refracted, reflected, or absorbed. These
effects usually depend on the air temperature, the relative humidity, the frequency spectrum
of the sound wave, or the relative impedance of the ground.

Geometrical spreading The shape of the source and the number of dimensions we consider
determine the shape of the wavefront with which the sound propagates. If we assume a point
source the sound intensity then decreases in proportion to 1/d2, where d is the distance to
the source because of spherical spread proportions. Doubling the distance would reduce the
SPL by 6dB. If it were a line source, the SPL would decrease by approximately 3 dB when the
distance is doubled because of cylindrical spread proportions. The SPL then decreases with
the ratio 1/d frequency independent [4].

Air absorption In addition to the decrease in sound energy due to geometric propagation,
part of the energy is released as thermal energy due to the friction of the particle weave
about the sound wave. This attenuation depends on the temperature, the relative humidity,
and the frequency of the sound wave. Very high frequencies in particular are strongly
attenuated, while low frequencies are affected less. Figure (3.9) shows the attenuation due to
the atmosphere in dB per 100m for different frequencies as a function of relative humidity
and temperature. This attenuation accounts for part of the difference between emitted SPL at
the source and measured SPL at the receiver. The attenuation through absorption Aa can be
calculated with

Aa = −20log10

[
P(r)
P(0)

]
= −20log10[exp(−αr)] = ar dB (3.10)

where P(r) is the sound pressure after traveling the distance r and a is the attenuation
coefficient in dB per meter. The absorption of sound in still air in Nepers per meter can be
calculated with the equation from Bass et al. [24],

α = f 2
[
1.84 × 10−11

(
ps

ps0

)−1 ( T
T0

) 1
2

+

(
T
T0

) 5
2

× {1.278 × 10−2[exp(−2239.1/T)]/

[ fr,O + ( f 2/ fr,O)] + 1.068 × 10−1 × [exp(−3352/T)]/[ fr,N + ( f 2/ fr,N)]}
]
,

(3.11)
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3. Fundamentals of Outdoor Sound Propagation

Figure 3.3.: Attenuation for f = 50 Hz Figure 3.4.: Attenuation for f = 250 Hz

Figure 3.5.: Attenuation for f = 500 Hz Figure 3.6.: Attenuation for f = 1000 Hz

Figure 3.7.: Attenuation for f = 2500 Hz Figure 3.8.: Attenuation for f = 5000 Hz

Figure 3.9.: Attenuation coefficient of atmospheric absorption as a function of temperature
and relative humidity for a series of different frequencies
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where f is the acoustic frequency in Hz, ps is the atmospheric pressure, ps0 is the reference
atmospheric pressure (1 atm), T is the atmospheric temperature in Kelvin, T0 is the reference
atmospheric temperature in Kelvin (293.15 K), fr,O is the relaxation frequency of molecular
oxygen and fr,N is the relaxation frequency of molecular nitrogen. Neper is a unit of
logarithmic scale like the decibel scale where 1NP = 20logee dB. It is based on Euler’s
number [25] where the level ratio L is defined as,

L = 10log10
x2

1

x2
2

dB

= 20log10
x1

x2
dB

= ln
x1

x2
Np

(3.12)

Sound refraction Sound refraction occurs when there are temperature gradients or gradients
of the wind speed U in the atmosphere and thus gradients of the sound speed c [4]. Then the
sound does not propagate straight ahead but the sound rays are curved in the direction of the
lower temperature or wind speed U. Heimann, Schady, and Feng [4] note that the curvature
of the sound rays is proportional to the velocity gradients in the atmosphere. Furthermore,
sound refraction mostly occurs in the atmospheric boundary layer near the ground. For
elevated sources like airplanes, the effect only occurs for farther away sources. Upward
refraction typically occurs during the day when the ground is relatively warmer than the
cold air, thus creating sound shadow zones at the ground where residents live. Downward
refraction typically occurs during the night in the case of a temperature inversion in the
atmosphere. Then the sound is refracted towards the colder ground.

Sound diffraction Sound diffraction typically occurs around convex surfaces where a part
of the sound wave is diffracted into the protected space, i.e. around a noise barrier into the
direction of the houses behind the barrier [4]. This is mainly relevant to the noise emitted by
cars on highways or trains. For aircraft noise, this effect is of minor concern.

Sound reflection Sound is reflected on the ground or off the surface of a building or any
obstacle. The reflection mainly depends on the angle of incidence and the impedance of the
reflecting surface relative to the impedance of the air (Z = ρc) with ρ being the density of the
air [4]. Media such as concrete have a high impedance and thus reflect a lot of sound energy,
while media such as grass have a low impedance and reflect less sound. Sound reflection is
mainly relevant for near-ground to near-ground sound propagation.
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Sound propagation in the atmosphere is a complex topic that depends on many parameters
and thus many different types of data need to be utilized to draw conclusions about depen-
dencies. The theory of outdoor sound propagation is discussed in chapter (3). This chapter
aims to define the data and measurements related to the source (aircraft) and the receiver
of sound (microphone on the ground). The data set is extended by measurements from the
weather mast of the University of Hamburg. Vertical profiles of temperature, wind direction,
wind speed, and relative humidity measurements at different heights will complement the
weather data.

4.1. Position data

At the time where the maximum sound pressure level LAS,max is measured (TLas,max), the
airport’s data management system notes the position of the aircraft in latitude and longitude,
the speed in knots, the altitude in ft, the elevation angle between NMT and aircraft, the
current heading of the aircraft in degrees and multiple IDs to identify and match the data.
This information is provided by the Automatic Dependent Surveillance-Broadcast system
(ADS-B), which determines its position via satellite navigation and passes it on to air traffic
control [26].

Figure 4.1.: Flight tracks around Hamburg airport from 2023-06-15 from 09:30 - 10:30. The
dark blue lines are the earlier flights while the yellow flight tracks are later flights.
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Figure 4.2.: Consecutive noise measurements at NMTs 01 and 11. Starting planes on runway
33 first pass NMT 11 Norderstedt, Reitstall Ohlenhoff, and a few minutes later
NMT 01 Hasloh, Alter Kirchweg. We note the overall lower sound pressure level
of the blue plot since aircraft are higher in the air at the point of measurement at
this NMT.

In figure (4.1) we see that airliner operations always follow standard Standard Instrument
Arrival (STAR) routes. Noise measurements at the same NMT are comparable because the
aircraft follow fixed tracks in the vicinity of the airport.

To be able to use the GPS coordinates for evaluation, they are processed in a geodata frame
from the Geopandas library in Python. The Coordinate Reference System (CRS) of the data
frame is set to the World Geodetic System 84 (EPSG:4326) initially since the source of the data
is saved in this CRS. Then we project the data to the EPSG 3857 coordinate system to use the
coordinates with OpenStreetMap tiles and create maps with the data.

4.2. Noise Monitoring Terminals

There are fifteen so-called Noise Monitoring Terminals (NMTs) in the vicinity of the airport
of Hamburg. These continuously measure the sound pressure levels in decibels. The
microphones are usually located 6-10 meters above the ground as recommended by DIN
45643 [27]. Sometimes they are located on top of a long mast, sometimes on top of single-
family homes and some are on the roof of larger public buildings like schools. The NMTs are
located under or near the flight path of airplanes approaching or departing from Hamburg
Airport. Typically the distance in three dimensions between passing aircraft and the NMTs
ranges from a few hundred meters to a few kilometers depending on where the NMT is
located. The closer the aircraft is to the airport the closer they are to the ground and thus
closer to the NMT.

13
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NMT wind-speed -direction T air pressure relative humidity m over
[m/s] [◦] [◦C] [mBar] [%] ground

02 x x ∼ 9
03 x x ∼ 9
06 x x x ∼ 2
13 x x x x ∼ 3
14 x x x x x ∼ 3

Table 4.2.: Overview of the weather stations

NMT number Weather from Name (Lat ◦ N, Long ◦ E)

01 03 Hasloh, Alter Kirchweg (53.698194, 9.926267)
02 02 Harkshörn, Grundschule (53.733783, 9.998408)
03 03 Quickborn, Goethe-Schule (53.723772, 9.914022)
04 METAR Norderstedt, Altes Rathaus (53.680611, 9.976847 )
05 METAR Langenhorn, Kohrswort (53.641469, 10.006639)
06 06 Lufthansa Werft (53.623753, 9.985658)
07 06 Langenhorn, Kortenkamp (53.649556, 10.026608)
08 06 Niendorf, Empfängerstation (53.634486, 9.981875)
09 03 Quickborn, Droysenkehre (53.742253, 9.957981)
10 METAR Stellingen, Wasserwerk (53.604647, 9.936033)
11 06 Norderstedt, Reitstall Ohlenhoff (53.674994 , 9.9636)
12 METAR Groß Borstel, Seniorenwohnheim (53.615267, 9.972339)
13 13 Poppenbüttel, Kiwittredder (53.6656, 10.059489)
14 14 Lurup (53.595349, 9.894492)

C02 METAR Mobile Meßstelle 2 (53.744033, 10.214648)

Table 4.1.: There are fifteen Noise Monitoring Terminals (NMTs) in the area around the airport
of Hamburg. The table shows the number and name of the NMT that are used
to identify the different stations. Some stations measure weather (wind speed,
direction, and temperature), while others use values from nearby NMTs. Some
NMTs get their value from the airport’s METAR reports. The exact position is
noted in latitude and longitude [28].

Complete list of all fifteen NMTs around the airport of Hamburg and nearby villages. The
position of each NMT is given by coordinates in the EPSG:4326 coordinate reference system
(CRS). These coordinates will be used to calculate the distance on the ground between the
aircraft and the microphones. The noise measurements at NMT 06 Lufthansa Werft from
the specified period are not used for this work but we will use the weather measurements
from this NMT for NMT 11. The corresponding weather station is noted for each NMT. Some
NMTs with no weather station nearby get their weather information from the METAR which

14
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Figure 4.3.: The plot shows all fifteen NMTs in the area of the airport of Hamburg. When we
compare the position of the NMTs with the plot of the flight tracks (fig 4.1) we
see that the NMTs are located along the main start and landing routes.

is provided by the "Deutscher Wetterdienst (DWD)" every 20 minutes [28]. All of the NMTs
measure the sound pressure level. Only four of the fifteen NMTs have the technical capability
to measure weather data. NMT 02 and NMT 03 can also measure wind direction and wind
speed while NMT 06 also measures the temperature. Furthermore, NMTs 13 and 14 measure
air pressure and relative humidity. The wind speed measurement is not available due to
erroneous data.
When a sound event is registered at one of the NMTs without a weather station the system
automatically fills in the weather variables from the corresponding weather station according
to table (4.1).
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Figure 4.4.: Outside view of the technical structure of a Noise Monitoring Terminal (NMT).
The photo shows NMT 14 Lurup. An NMT consists of a long mast that carries a
lightning rod to protect the NMT, a microphone to measure the sound level, and
instruments to measure the wind direction and wind speed. Not all of the NTMs
consist of wind measuring equipment. These NMTs receive the wind data from
nearby NMTs or METAR reports from the airport.
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Figure 4.5.: Inside view of the Noise Monitoring Terminal (NMT). Hamburg airport employs
the TANOS management system from the company Topsonic. The photo shows
the technical equipment in figure (4.4). The equipment is used to save and transfer
the data to the central data management system of the airport. It consists of a
router, sound level meter, fuses, and a battery in case the electricity goes out.

The microphones inside the NMT measure the sound pressure level as a time series for
every second. From this we can compute the equivalent continuous sound pressure level Leq
which is an important metric to determine how much residents are affected by noise over a
long period of time. Acoustics is a field of physics where human perception is a crucial factor.
Multiple small planes starting over a long period could have the same total sound energy as a
single loud noise event like the start of a large Boeing 747. For some residents, the latter event
is much more noticeable while for others a series of small planes might disturb their living
conditions more. The airport’s TANOS system continuously measures the sound pressure
level and attempts to detect individual noise events such as aircraft overflights.
The noise event detection process works as follows: A threshold value is defined for each
measuring point based on local conditions such as trees or proximity to the aircraft. If the level
exceeds the threshold value, a noise event is registered. The system then automatically saves
all relevant data. The time series of the sound pressure level is recorded, as is the maximum
sound pressure level. Using the data from the ADS-B, the position of the aircraft at the time
of the measurement is determined and given an ID so that all the data can be combined. In
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addition, the weather data of the NMT is stored, as well as additional information about the
flight, such as the aircraft type, the route, the airline, which approach or departure route was
used, whether it was a take-off or a landing, and some other information. With the ID of
the measurement and the time stamp, the time series of the sound pressure level and the
calculated values such as LASmax and Leq can be combined with weather data and analyzed.
This allows us to measure the influence of weather data on measured noise data. We can also
combine data from the airport with third-party data.

It is not only the atmosphere as a medium, or the source and receiver of the noise, that
affects sound propagation outdoors. Local topographical conditions also influence sound
propagation. At many measuring points, the angle of incidence of aircraft noise, which would
be the angle we have to tilt our head up if we look at an aircraft from the ground, is high.
However, especially near airports, the noise can come from an almost horizontal direction, see
figure (4.7). Properties of the ground or the surrounding area, such as woodland or buildings,
have a greater influence when the angle incidence is low. Scientific works like Defrance et
al. [29] examine in detail the dependence of topographical conditions on sound propagation
outdoors. Topographical factors are not differentiated here. In addition, the type of source
(point source, line source, or other) has an influence. Chapter (2) shows other works regarding
the noise emissions of aircraft. With our data, we focus on noise immissions and how they
relate to the weather.

4.3. Noise data

The data used in this study includes noise measurements from August 2022 to August 2023.
In total, there were 115,796 unique flights in this period. Each of them includes 1-10 noise
measurements at measuring stations. On average an airplane flies over 3.6 stations with a
standard deviation of 1.3 stations. Overall there are 414,205 single noise events. The noise
level is recorded as a continuous time series by the NMTs. The time series for one such NMT
can be seen in figure (4.6).

Figure 4.6.: Noise event level for NMT 01 Hasloh, Alter Kirchweg for 15th June 2023 from
09:32 to 11:49. The peaks represent a series of noise events from overflights while
the background noise level is around 53 dB.
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First, we need to define what a noise event is. For this work we want to detect an
airplane that flies over the NMT and in the process creates a peak in the sound pressure level
measurements. As seen in figure (4.6) there might be an intermediate peak when the aircraft
approaches the NMT and another peak as the aircraft flies further away from the NMT. At
each time step, we have an A-weighted noise level LA which peaks at some point, usually very
close to the NMT. L is usually measured with a time weighting "SLOW", LAS [1]. The "SLOW"
rating reacts more slowly to impulsive noise. The measurement threshold for detecting
an overflight must be at least 5 dB above the background noise level. This is determined
individually for each measuring point. The closer an airplane gets to the NMT, the louder
the noise becomes. The level must exceed the measurement threshold by the maximum
level threshold. A noise event is generated when the measurement threshold is exceeded by
the maximum level threshold and a minimum time is exceeded. A noise event has ended
when the level does not exceed the threshold again within the listening time after falling
below the measurement threshold. Both the minimum time and the listening time are set
individually on each NMT. Normally these are 5 seconds [30]. The peak of the "A-weighted"
"SLOW"-weighted sound pressure level is called LAS,max. For further chapters in this work,
the LAS,max value is used for evaluations, unless otherwise specified.

4.4. Weather data

Multiple weather data sources are used in this work. On the one hand we use the weather mea-
surements from the NMTs as shown in figure (4.2). On the other hand, weather measurements
from the Hamburg Weather Mast are used [31].

height wind speed wind direction temperature relative humidity
m [m/s] [◦] [◦C] [%]

2 x x
10 x x x x
50 x x x x
70 x x
110 x x x x
175 x x
250 x x x x
280 x x x x

Table 4.3.: Measurements from the Hamburg Weather Mast that are used in this work

The measurements from the Hamburg weather mast include wind speed and direction, as
well as temperature and relative humidity at various heights between 2m and 280m above
the ground. These supplement the weather data set with important weather profiles. This
makes it possible, for example, to include vertical gradients in the analysis, e.g. the vertical
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temperature gradient, which is crucial for sound refraction, see chapter (3).
The temperature gradients and wind gradients are calculated from the data measured at the

Hamburg Weathermast. The gradients are calculated for the heights [10m, 70m, 110m, 175m]

as follows:

∆T10m =
T70m − T2m

70m − 2m
∆T70m =

T110m − T10m

110m − 10m

∆T110m =
T175m − T70m

175m − 70m
∆T175m =

T280m − T110m

280m − 110m

where Ty is the temperature in height y. The wind speed gradients for the heights
[50m, 110m, 175m] are calculated in the same fashion:

∆WS50m =
WS110m − WS10m

110m − 10m
∆WS110m =

WS175m − WS70m

175m − 70m

∆WS175m =
WS280m − WS110m

280m − 110m

where WSy is the wind speed in height y.
As with the noise measurements, the data originates from the period 01.08.2022 to 31.08.2023.

These are 10-minute averages. The time difference between the 10-minute intervals results
from the final value minus the initial value divided by the reduced number of measured
values in the file because Windows adds an empty row at the end.

∆t =
t2 − t1

n − 1
(4.1)

The start time of the 10-minute averaging interval is indicated in the file name. The interval
for noon therefore contains the values for 12:00 to 12:09. The measurements for the noon
10-minute average therefore originate from measurements between 11:59 and 12:09 [31]. The
data from the Hamburg Weather Mast are used in addition to the weather measurements
from Hamburg Airport throughout the paper, in particular as comparative values and when
height profiles of weather parameters are used. One question that arises is to compare the
extent to which the very precise and extensive measurements of the weather mast, which is
located approx. 13.7 km from Hamburg Airport, can be used for weather-related issues at the
airport, e.g. concerning aircraft noise.

20



4. Measurements and Data

Figure 4.7.: NMT 05
Langenhorn, Kohrswort

Figure 4.8.: NMT 07
Langenhorn, Kortenkamp

Figure 4.9.: NMT 11
Norderstedt, Reitstall Ohlenhoff

Figure 4.10.: NMT 12
Poppenbüttel, Kiwittredder
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We try to understand the effects of atmospheric and non-atmospheric parameters on the
propagation of noise at this specific location. The target variable will therefore be the
maximum loudness of a noise event called LAS,max. Other important noise parameters like the
Equivalent Continuous Sound Level Leq or the A-weighted sound exposure level (immission
at certain observer), [dBA] (LAE) could be used as target variables. The maximum loudness
was chosen since this variable describes better the magnitude of the noise event that residents
around the airport hear compared to integrated quantities like Leq or LAE. These variables
are also heavily correlated as shown in chapter 5.3.

Intuitively, from the literature we have some idea about which parameters affect the target
variable and to what extent. However, the goal is to quantify the importance of parameters as
accurately as possible within the range of error of the measured data. Even if all data was
measured perfectly there would still be factors that we couldn’t include in the data set due
to availability of the data or safety regulations like the configuration of the airplanes during
start or landing like thrust settings or whether or not the landing gear is deployed.

5.1. Principal Component Analysis (PCA)

We start with the principal component analysis (PCA) as one of the core methods of
multivariate data analysis. PCA makes it possible to filter out similar groups of entries from
complex data sets or to find new grouping parameters that better describe the data. For
example, it is possible to find characterizing features for wine varieties or chemical compounds
or to filter out distinctive properties of images. The method is universally applicable to all
possible types of data. The main objective of PCA is to reduce the dimensionality of a
multidimensional data set. This could, for example, be a data matrix containing noise
measurements with the meteorological conditions prevailing at the time of measurement, as
well as other parameters related to air traffic. In other words, dimension reduction is about
presenting the data in a new, more meaningful base. Due to this very generally formulated
objective, PCA can be found in almost all scientific disciplines in which data is analyzed.
In addition to dimension reduction, other application examples include data compression,
feature extraction and data visualization [32]. In principle, PCA works in such a way that
the data set in its original basis is represented by a new basis, with the new basis vectors
representing linear combinations of the original parameters. The first principal component
is chosen so that the variance along this axis is maximized. In other words, maximizing the
variance means trying to orient the axis in the data matrix in such a way that it explains
the data as well as possible. The alternative formulation of this problem is to minimize the
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error, i.e. the distance between the entry and the axis. The second principal component is
orthogonal to the first principal component and again maximizes the variance. Principal
components are added until the largest percentage of the original variance is explained by
the new principal components [33].

Algorithm The PCA is computed by means of the singular value decomposition (SVD).
The algorithm as defind by Kurita et al. [32] and Svante et al. [33] is used. We define a data
matrix X = [x1, ..., xN ] where xN are parameters of data set with N variables each. The sample
mean vector x and the sample covariance matrix ∑ can be written as

x =
1
N

N

∑
i=1

xi, (5.1)

∑ =
1
N

N

∑
i=1

(xi − x)(xi − x)T =
1
N

X̃X̃T, (5.2)

where matrix X̃ is centered data matrix X and defined as X̃ = [x1 − x, ..., xN − X̃]. The data
matrix X̃ can be decomposed by the SVD as

X̃ = S∆VT (5.3)

where S contains the left singular values, V contains the right singular values, and ∆ is the
diagonal matrix of singular values. We rewrite the covariance matrix as

∑ =
1
N

X̃X̃T =
1
N

S∆VTV∆ST =
1
N

S∆2ST. (5.4)

To obtain the eigenvector equation we multiply S from the right

∑ S = S
1
N

∆2. (5.5)

Kurita et al [32] note that from this it follows that the loading vectors A are equal to S and that
the diagonal matrix of eigenvalues Λ is equal to 1

N ∆2 if the number of principal components
L is equal to the rank of the data matrix X with reference to the eigenvector equation

∑ A = AΛ. (5.6)

The optimal linear projection of PCA is given by Y = ATX̃ [32]. With equations (5.3) and
from the relation in equation (5.5) we can write

Y = ATX̃ = STS∆VT = ∆VT (5.7)

where the parameter scores y1i are defined as y1i = aT
1 (xi − x), (i = 1, ..., N). They represent

the coordinates on the new component. A = [a1, ...a2] with an = (a11, ..., aM1)
T is the set of

loading vectors of the linear combinations of the original variables. The variance of the first
new component is exactly equal to the biggest eigenvalue λ1 of the covariance matrix. The
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1 loadings = sorted_eigenvectors * np.sqrt(sorted_eigenvalues)

Source Code 5.1.: Computation of the loadings in Python

corresponding eigenvector defines the orientation of the new component or axis in reference
to the old axis, whereas loadings are eigenvectors that hold information about the magnitude
of the rotated information. They can be computed by multiplying the eigenvector with the
square root of the corresponding eigenvalue.

If we take equation (5.7) then the data matrix X̃ can be represented as the product of the
score vectors Y and the loading vectors A:

X̃ = S∆VT = AY = AATX̃ (5.8)

More components are added in an iterative process where the eigenvector with the second
largest eigenvalue λ2 will be the second added component, and so on.

In Python, the algorithm would look similar to this. We assume that the data matrix X̃ is
already normalized, and standardized and that all features are quantifiable. Nominal data
could be handled with a one-hot encoding, increasing the dimensionality of the data matrix
in the process. The Python library Pandas was used to store X̃ in a data frame and Numpy
was used to calculate the covariance matrix and the eigenvalues- and vectors. The variable n
denotes the number of dimensions the data matrix will be reduced to.

1 X_centered = X - X.mean()
2 X_centered.dropna(inplace=True) # remove incomplete samples
3 covariance_matrix = np.cov(X_centered , rowvar = False)
4 eigen_values, eigen_vectors = np.linalg.eigh(covariance_matrix)
5 sorted_index = np.argsort(eigen_values)[::-1]
6 sorted_eigenvalues = eigen_values[sorted_index]
7 sorted_eigenvectors = eigen_vectors[:, sorted_index]
8 eigenvector_subset = sorted_eigenvectors[:, 0:n]
9 X_reduced = np.dot(eigenvector_subset.transpose(), X_centered.transpose()).transpose()

Source Code 5.2.: PCA algorithm using the Python libraries Pandas and Numpy

After we conduct the PCA we can create a biplot showing the data represented by the new
components. First, the data needs to be reduced to either two or three dimensions so we can
visualize it. The shown code works for two dimensions. The scores represent the coordinates
of the data in the new coordinate system while the loadings can be used to show how the
parameters load onto the components. From this plot, we can show the parameters correlate
and how they correspond to the components. The new basis could also reveal previously
hidden groups in the data. For this code, we assume to have some PCA-object that holds
the reduced data matrix Xreduced and the loading matrix. The Python library matplotlib is
imported and used under the name plt. The arrows that annotate the loadings are scaled for
better visibility.
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1 def plot_biplot(self, target, title, scaling):
2 mean = [self.X_reduced[i, :].mean() for i in range(0,2,1)]
3 loadings_matrix = self.loadings
4 fig = plt.figure(figsize=(15,15))
5

6 plt.scatter(self.X_reduced[:, 0], self.X_reduced[:, 1], c=self.X_centered[target],
7 cmap=plt.cm.get_cmap("Spectral",10), alpha=0.7)
8

9 for i, elem in enumerate(loadings_matrix):
10 plt.arrow(0, 0, loadings_matrix[i,0] * scaling, loadings_matrix[i,1] * scaling,
11 color = 'k', alpha = 1,linestyle = '-', linewidth = 1.5, overhang=0.2)
12 plt.text(loadings_matrix[i,0]* (scaling+0.5), loadings_matrix[i,1] * (scaling+0.5),
13 self.df_centered.columns[i], color = 'k', ha = 'center', va = 'center',fontsize=15)
14

15 plt.rcParams.update({'font.size': 25})
16 plt.xlabel("PC1", size=22)
17 plt.ylabel("PC2", size=22)
18 plt.title(f"Scores and Loadings Biplot {target} {title}")

Source Code 5.3.: PCA biplot code to show the scores and loading of the reduced data matrix
in Python e.g. figure (5.1)

5.2. Analysis of Variance (ANOVA)

We’re using standard linear regression to construct an initial model for noise propagation
in the atmosphere. With regards to the differential equations in chapter (3) we know that a
linear model will be insufficient, however, the regression parameters will provide insights
into the importance of single parameters. From these results, we can then build a model for
the noise propagation in the atmosphere in the context of measured data. The Analysis of
Variance or short ANOVA is a collection of established statistical methods to analyze the
differences in variance among and within groups [12]. In principle, we divide the data into
several groups according to a parameter, e.g. how strongly the wind opposes the sound, and
then compare the average noise measurement value between the groups to see if there are
any differences. Some assumptions need to be fulfilled so that the results of statistical tests
are reliable:

• The data is distributed normally

• Sample variances are equal

• The groups and the measurements are independent

The first two assumptions can be tested while the third assumption independence is inherent
to the experimental setup or the study design. Levene’s test [34] will be used to check for
homogeneity of variances and quantile-quantily plots [35] will be used to visually confirm
if the data (the standardized residuals) are normally distributed. Noise measurements
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Source of variation (Df) (SS) (MS) F-value significance

Group D fb = a − 1 SSb MSb = SSb/D fb MSb/MSe p-value
(between)

Residuals D fE = a(n − 1) SSE MSE = SSE/D fE

(within)

Total D fT = an − 1 SST

Table 5.1.: Calculation of the ANOVA table

from overflights of airplanes and weather measurements are assumed to be independently
measured. The measurements were taken from distinct samples.
In the one-way (one factor) ANOVA [36] we have one independent variable (factor) and at
least two groups. We compare the variance of mean between groups to the variance of means
within the groups. In general, the null hypotheses H0 is that all group means µ0, ...µn are
equal: µ0 = ... = µn. We reject the null hypothesis if one group’s mean is different from the
other group’s means. Our motivation is to categorize the noise measurements into different
groups according to local atmospheric parameters such as wind direction or temperature
gradients at the time of measurement and to compare whether these have an influence on
the average noise measured. Johansson et al. [11] have used ANOVA in a similar context for
noise measurements of landing A321 aircraft.

The basic ANOVA is a linear model that assumes that a value y = µ + α + e can be
decomposed into the population mean µ, the effects of an independent variable α and some
error e [36]. The idea is to test the mean differences against naturally occurring variability
as represented by the error term e. The total sum of squares is the sum of squares between
groups (SSb) plus the sum of squares within groups (SSE)

SST = SSb + SSE (5.9)

For these to become variances they are averaged by the degree of freedom which is partitioned
similarly.

D fT = D fb + D fE (5.10)

The ANOVA table shows the source of variation, the degree of freedom (Df), the Sum of
Squares (SS), the Mean Square (MS), the F-value, and the significance.

where N is the total number of samples, a is the number of groups, and n the number of
samples within each group. The sum of squares is defined as

SSb = ∑
i

aj(yj − y)2 (5.11)

SSE = ∑
i

∑
j
(yij − yi)

2 (5.12)
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Since the ANOVA test only tells us that there are differences between the groups, but not
which groups differ, a post-hoc test is necessary. To find out which pairs are specifically
different, we apply Tukey’s honestly significantly differentiated (HSD) post-hoc test. For
equal group sizes, the HSD is defined as follows [37]

HSD = qa,α,d f

√
MEE

n
(5.13)

where q is a studentized range statistic with α is the significance level (0.01) and d f is the
degrees of freedom.

As a metric of effect size, η2 and ω2 are used.

η2 =
SSb

SST
(5.14)

Eta-squared describes the ratio of variance explained in the dependent variable by a parameter
while controlling for other parameters.

ω2 =
SSb − D fb · MSE

SST + MSE
(5.15)

Omega-squared is a less biased estimator of the variance explained by the population.
The Levene test for equal variances tests for the null hypotheses H0 that the variances

between the groups are equal: σ2
1 = σ2

2 = ... = σ2
k . The alternative hypothesis is that at least

the variance of one pair is different. For a variable Y with a sample size of N divided into k
subgroups, where Ni is the sample size of subgroup i. The test statistic is defined as

W =
(N − k)
(k − 1)

∑k
i=1 Ni(Zi. − Z..)2

∑k
i=1 ∑Ni

j=1(Zij − Zi.)2
(5.16)

where Zij = |Yij − Yi.| and Yi. is the mean of the i-th subgroup. Zi. are the group means of
the Zij and Z.. is the overall mean of the Zij [34].

5.3. Application of the PCA for Noise

The combined data set of noise measurements, flight information, position data, and weather
parameters contains a total of 80 parameters. A total of 14497 data records from the A320-200
are available for NMT 11 Norderstedt, Reitstall Ohlenhoff which will be examined in this
chapter. PCA plots for the other NMTs can be found in the appendix. Many different
parameters like the distance and the aircraft type have an influence on LAS,max. As the data
set is too extensive to recognize patterns, the dimensionality of the data is first reduced
using PCA in order to make dependencies visible. In the next step, it is then possible
to further filter the data for the statistics. PCA also makes the covariances between the
parameters visible. On the one hand, this is interesting to understand on which measurement
data the noise depends, but also how much the weather measurements from the airport
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correlate with the weather measurements from the Hamburg weather mast. If there is a
strong correlation, measured weather profiles from the weather mast can be included in the
analysis to better depict the physical processes in the atmosphere. PCA is applied in such a
way that grouping parameters are identified step by step according to which the data sets
can be divided for further analysis with the aim that in the end the relative influence on the
variance of LAS,max of the weather parameters is maximized. Before PCA is applied, the data
is normalized and standardized so that parameters with high values do not carry excessive
weight. The sklearn.preprocessing.MinMaxScaler library 1 is used for normalization. The
LAS,max measurements are normalized to the interval [0,1].

1 X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
2 X_scaled = X_std * (max - min) + min

Source Code 5.4.: Definition of the MinMaxScaler from sklearn

The standard scaler from sklearn 2 is used to set the mean value of the data series to 0 with
unit variance.

1 z = (x - u) / s

Source Code 5.5.: Definition of the StandardScaler from sklearn

where x is the sample, u the mean of the parameter, and s the standard deviation. For
NMT 11 Reitstall, Ohlenhoff we have 49768 measurements of different types of airplanes.
The associated runway 33 is the main take-off direction. Restricted to the A320-200, 14497
measurements remain. PCA is applied and the scores and loadings are displayed in a biplot.
For this purpose, the data set is reduced to two dimensions. The scores are the coordinates of
the original data, displayed in the new coordinate system of the principal components. The
loadings show how the original parameters are represented by the principal components. In
figure 5.1, the scores are categorized according to whether it is a take-off or a landing.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Figure 5.1.: Scores and loading biplot for a reduced A320 data set at NMT 11 Norderstedt,
Reitstall Ohlenhoff. The measurements from departures are colored in purple.
Measurements from landings are colored in red. The biplot for the other NMTs
can be found in the appendix.

After running the PCA, you can see the grouping of the measured values into take-offs
and landings. The parameter Landing [True/False] contributes significantly to the first
component. Together with the parameters distance, speed, altitude, and elevation angle, most
of the variance is explained along this axis. Three of the four parameters describe the distance
between the NMT and the aircraft at the time of measurement in space. It should also be noted
that the LAS,max parameter correlates very strongly with these four parameters. In this case, it
is a correlation and not only a covariance between the parameters even though the covariance
matrix was computed originally, as the data set is centered. The data is standardized and the
parameters can be compared with each other. The second main component is determined
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by temperature-related parameters such as the temperature at the NMT and at the weather
mast, the air humidity, and the atmospheric absorption as a composite variable. Here it can
be seen that the weather measurements of the NMT correlate very strongly with those of the
weather mast. It should also be noted that the wind speed profile and the temperature profile
are both linear profiles.

Parameter PC 1 PC 2 % of variance explained

01 Departure [True/False] 0.95 0.21 0.95
02 Height [ft] -0.94 -0.14 0.90
03 Elevation angle [◦] -0.92 -0.15 0.87
04 Distance to NMT [m] -0.80 -0.11 0.65
05 WM air temperature 280m [◦C] 0.22 -0.76 0.63
06 WM relative humidity 280m [%] -0.25 0.75 0.62
07 NMT temperature [◦C] 0.19 -0.76 0.61
08 LAS,max [dB] -0.77 -0.12 0.61
09 Speed over ground [kn] -0.67 -0.36 0.58
10 Absorption 1000Hz [ dB

m ] 0.21 -0.68 0.51
11 Ttotal [s] -0.63 0.20 0.44
12 NMT relative humidity [%] -0.18 0.60 0.39
13 WM wind speed 280m [m/s] 0.15 0.45 0.23
14 NMT wind direction [◦] -0.45 0.11 0.21
15 WM wind direction 280m [◦] -0.40 0.20 0.20
16 NMT air pressure [mBar] -0.11 -0.36 0.14
17 T10 [s] -0.10 0.29 0.09
18 WM wind speed grad. 175m [ m/s

m ] 0.24 0.16 0.08
19 WM temperature grad. 250m [

◦C
m ] 0.23 0.12 0.07

20 NMT wind speed [m/s] -0.14 0.11 0.03

Figure 5.2.: Loadings of the parameters onto the first two principal components for the data
matrix from NMT 11 with A320 measurements

The table shows the corresponding loadings for the NMT 11 Norderstedt, Reitstall Ohlen-
hoff data. The explained variance per variable is computed by squaring and adding up the
loadings for each principal component,

variance component i that is explained = PC12
i + PC22

i (5.17)

where PCji is the loading of parameter i on principal component j.
There are various methods in the literature for deciding how many components should be

chosen to represent the data. Abdi et al. [6] mention the "scree" or "elbow" test where we plot
the eigenvalues in decreasing order. We look for a point in the graph where the slope of the
eigenvalues goes from steep to flat and select the eigenvalues before that point. These are
the most meaningful ones. In figure (5.3) we see that this point is approximately between
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
variance 0.28 0.17 0.11 0.08 0.08 0.07 0.04 0.03 0.03 0.02

cum. variance 0.28 0.45 0.56 0.64 0.72 0.79 0.83 0.86 0.89 0.91

Table 5.2.: percentage of variance explained with the principal components in figure (5.1)

the 7th and the 8th eigenvalue. The first seven eigenvalues and the corresponding principal
components represent 83% of the total variance in the data set according to table (5.2).

Figure 5.3.: Scree test to determine how many eigenvalues for figure (5.1) sufficient to repre-
sent the data set

We summarize that the first 7 eigenvalues are significant enough. The first 7 components
are sufficient to present 83 % of the data in a meaningful way. Compared to the 20 parameters
from the reduced data set and the 80 parameters from the original data set, the data can be
presented in a much more compact way. With a view to machine learning applications, the
training time of neural networks can be significantly reduced. As a second result, take-offs
and landings are considered separately in further analyses, as these two groups differ in
terms of take-offs and landings and the influence of weather parameters is hardly significant
in comparison.
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This chapter uses statistical methods to answer the two research questions "What is the
relationship between weather and noise pollution in the vicinity of Hamburg Airport?" and
"What is the relationship between weather and noise pollution at individual measuring
stations?".
First, we calculate the average noise values according to NMT and group by aircraft type
according to equation (3.9). The NMT-ID as a parameter is important because the topograph-
ical conditions in the vicinity of the measuring station have a decisive influence on sound
propagation. We want to filter out these influencing factors as far as possible. All statistics
are therefore usually performed for a specific NMT. In figure (6.2) you can see the different,
sometimes very different, average noise levels. The map (6.2) shows the average noise in the
period 01.08.2023 - 31.08.2023 for all NMTs and all aircraft types. The red color represents the
noise, the louder, the darker the red color. The number of recorded overflights is represented
by the size of the circle. In this map, both take-offs and landings are recorded to capture the
entire noise impact on residents as completely as possible. Without looking at the data in
detail, it is already clear that noise pollution is highest in the airport’s immediate vicinity.
NTMs 05, 07, 11, and 12 are all very close to the airport. Here the aircraft are already very
close to the ground and the distance between the source of noise and the receiver is short.
Most aircraft take off in a north-westerly direction to avoid flying over the city of Hamburg,
some depart towards the west. The area around NMTs 08, 11, 01, and 03 is therefore very
noisy, as take-offs are comparatively much louder than landings. During take-off, the engines
are operated under take-off thrust, while aircraft use less thrust on the glide path to the
runway when landing. Approx. 50 % of the landings come from the north-east. The series
of measuring stations from NMTs 13, 07, and 05 is therefore mainly overflown by landing
aircraft. A further 28% land from the north and 20% from the south-east.
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6. Statistics of measured Data

Figure 6.1.: Average LAS,max by NMT ID and standard deviation

Figure 6.2.: Map of NMTs in the vicinity of Hamburg Airport. For each NMT, the average
noise level (from the figure (6.1) shown as a combination of the average noise
measurements and the number of overflights
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The type of aircraft is another important factor influencing the noise measurements. Al-
though this work exclusively uses data from the A320-200 type (comprised of the A3202 and
A320A type in plot (6.3)), we would like to briefly show the average noise measured for the
other widely used types as comparative values. Only aircraft types with at least 1000 mea-
surements in the period 01.08.2022 - 31.08.2023 in the area of Hamburg Airport were included
in the statistics. The Airbus aircraft hangar in nearby Finkenwerder should also be briefly
mentioned at this point. Flights with destination Finkenwerder represent a not insignificant
proportion of flights in the area of Hamburg Airport (formerly Hamburg-Fuhlsbüttel). In
addition, these are often test flights for new airliners. These can include unusual aircraft
operations such as the use of the so-called ram-air turbine. In an emergency, this is released
from the aircraft fuselage by gravity and produces emergency power, but also generates
a very distinctive noise. In addition, the heavily loaded Beluga transport planes land in
Finkenwerder, bringing entire aircraft parts to Hamburg for production. As these flights have
highly unusual characteristics and different routes than the flights with Fuhlsbüttel as their
destination, this data is filtered out by the airport and is not included in this work.

Figure 6.3.: Average maximum LAS,max [dB] by aircraft type for all NMTs combined

In the graphic (6.3) we see the energetic average maximum sound levels, LAS,max by aircraft
type. The loudest aircraft at Hamburg Airport is also the largest, as you would expect. The
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Boeing 777 and the A330-200 and -300 are on average 3-4 dB louder at approximately 80
dB compared to an average noise of approximately 76 dB of the smaller singe-aisle aircraft
(aircraft with only one aisle between the two rows of seats, opposed to larger aircraft with
two aisles between three rows of seats) such as the A320. This is a significant increase in noise
as a 3 dB increase would be a doubling of noise sources.

Figure 6.4.: Average maximum LAS,max [dB] by aircraft type at NMT 11 Norderstedt, Reitstall
Ohlenhoff and NMT 13 Poppenbüttel, Kiwittredder

Airplanes often fly the same routes between two cities. Since it could be that one type of
airplane always flies over a certain route, which is louder due to the topographical conditions
and the distance to the measuring point, we compare the average noise per airplane type with
at least 1000 measurements again for two specific NMTs. For NMT 11 Norderstedt, Reitstall
Ohlenhoff and for NMT 13 Poppenbüttel, Kiwittredder we calculate LAS,max [dB] separately.
The Boeing 737-800 (symbol B738H) is 1-2 dB louder than the A321 and the A320 in both
cases. On all three types the CFM-56 engines are used, therefore this difference is due to the
different aerodynamics and possibly different flight operations.

6.1. Engine type

As the primary noise-generating component of an aircraft, the engines are an important
parameter for the dependent variable LAS,max. When investigating parameters that influence
noise, we first consider other station-independent parameters in addition to the location and
aircraft type. The A320-200 series uses a range of engines. The older ceo models largely
use the CFM-56 engines, which are also used by Boeing 737 types. However, the newer
A320 neo aircraft use Pratt & Whitney’s PurePower PW1100G-JM geared turbofan, and CFM
International’s LEAP-1A 1. Figure (6.5) compares the different engine types that are used.
Only values from starts are used as starts and landings are too distinct to be compared
together as we’ve seen in chapter 5.3. The engines used on the A320 neo are colored orange,
and the engines of the A320 ceo in red. Measurements of take-offs were chosen as data,

1https://aircraft.airbus.com/en/aircraft/a320-the-most-successful-aircraft-family-ever/a320neo
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as the engine has to call up much more power during take-off than during a landing. The
proportion of the total noise generated by the engine is greater during take-off, so differences
are more noticeable. In order to make the differences between the engines independent of
the topography of the measuring points, we look explicitly at NMT 11, the main take-off
direction. This has the most data compared to the other measuring points.

Figure 6.5.: Boxplot for NMT 11 departure data, grouped by A320 engine types

We can see that the new CFM LEAP-1A engines are significantly quieter, in some cases by
3-5 dB on average. The exact pairwise comparisons are broken down in more detail in table
(6.2).

The One-Way ANOVA method [5] confirms that the parameter "engine type" has a signif-
icant effect on the measured maximum noise LAS,max. Both the value of ω2 and that of η2

indicate a large effect size. Table (6.1) first shows the average values per engine type at NMT
11, the sample size per group N, the standard deviation sd, the standard error se, and the
95% confidence interval. The sample size is equal for all populations. This is important so
that assumptions of equal variances hold and for the sum of squares computations.

sum2 df mean2 F-value p-value η2 ω2

C(Engine type) 1525.14 10.00 152.51 78.28 0.00 0.49 0.48
Residual 1585.96 814.00 1.95

Figure 6.6.: ANOVA results for the engine parameter of A320 measurements
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Table 6.1.: Mean LAS,max [dB] values grouped by engine type of the A320. Ceo (current engine
option) and neo (new engine option) engine options are shown

N mean sd se 95 % confidence interval
Engine lower CI upper CI

CFM LEAP-1A26 75 73.22 1.34 0.15 72.91 73.53
CFM56-5A1 75 77.86 1.42 0.16 77.54 78.19
CFM56-5A3 75 78.82 1.76 0.20 78.41 79.22
CFM56-5B4/3 75 76.65 1.69 0.19 76.26 77.03
CFM56-5B4/P 75 77.22 1.10 0.13 76.97 77.48
CFM56-5B4/P -/3 (I) 75 76.58 1.23 0.14 76.30 76.86
CFM56-5B6/3 75 77.21 1.33 0.15 76.90 77.52
CFM56-5B6/P 75 77.16 1.63 0.19 76.78 77.53
PW1127G-JM 75 76.51 1.19 0.14 76.24 76.79
V2527-A5 75 76.00 1.14 0.13 75.74 76.26
V2527-A5 SelectOne 75 75.63 1.35 0.16 75.31 75.94

In order to determine the pairwise differences between the engine types, we carry out a
post-hoc test 2. Table (6.2) shows the mean difference in decibel between each pair of engine
types, the standard error, the t-value since we look at the difference in mean here, the p-value
(only pairs with a significant p-value < 0 are shown), and the 95% confidence interval.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukey_hsd.html
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Table 6.2.: Tukey posthoc test for engine types: pairwise comparisons

mean diff std error t-value p-value 95% ci
groups upper lower

CFM LEAP-1A26 : CFM56-5A1 4.64 0.16 20.61 0.00 9.10 0.19
CFM LEAP-1A26 : CFM56-5A3 5.60 0.18 21.93 0.00 10.06 1.14
CFM LEAP-1A26 : CFM56-5B4/3 3.43 0.18 13.78 0.00 7.88 -1.03
CFM LEAP-1A26 : CFM56-5B4/P 4.01 0.14 20.01 0.00 8.46 -0.45
CFM LEAP-1A26 : CFM56-5B6/3 3.99 0.15 18.32 0.00 8.44 -0.46
CFM LEAP-1A26 : CFM56-5B6/P 3.94 0.17 16.15 0.00 8.39 -0.51
CFM LEAP-1A26 : PW1127G-JM 3.29 0.15 15.93 0.00 7.75 -1.16
CFM LEAP-1A26 : V2527-A5 2.78 0.14 13.73 0.00 7.24 -1.67

CFM56-5A1 : CFM56-5B4/3 -1.22 0.18 4.77 0.00 3.24 -5.67
CFM56-5A1 : PW1127G-JM -1.35 0.15 6.31 0.00 3.10 -5.80
CFM56-5A1 : V2527-A5 -1.86 0.15 8.86 0.00 2.60 -6.32

CFM56-5A3 : CFM56-5B4/3 -2.17 0.20 7.71 0.00 2.28 -6.62
CFM56-5A3 : CFM56-5B4/P -1.59 0.17 6.65 0.00 2.87 -6.06
CFM56-5A3 : CFM56-5B6/3 -1.61 0.18 6.31 0.00 2.85 -6.07
CFM56-5A3 : CFM56-5B6/P -1.66 0.20 5.99 0.00 2.79 -6.11
CFM56-5A3 : PW1127G-JM -2.31 0.17 9.40 0.00 2.16 -6.77
CFM56-5A3 : V2527-A5 -2.82 0.17 11.64 0.00 1.65 -7.28

CFM56-5B4/P : V2527-A5 -1.22 0.13 6.69 0.00 3.23 -5.67
CFM56-5B6/3 : V2527-A5 -1.21 0.14 5.98 0.00 3.25 -5.66
CFM56-5B6/P : V2527-A5 -1.16 0.16 5.03 0.00 3.30 -5.62

The differences between the new neo engines CFM LEAP-1A26 and the older CFM56-
5A/B ceo engines are the biggest. The CFM LEAP-1A26 : CFM56-5A3 group is the most
noticeable with a difference of 5.6 dB. For a point source that emits sound, an increase of 6
dB would mean halving the distance between the transmitter and receiver. Finally, we check
the assumption of the normality of the ANOVA method with a histogram compared with a
normal distribution in red and a QQ plot of the standardized residuals. We visually confirm
the assumption as fulfilled.
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Figure 6.7.: Histogram (left) and QQ-plot (right) of standardized residuals for the engine type
parameter

6.2. Distance between aircraft and NMT

The effect of the non-atmospheric parameters will be analyzed and then used as a baseline
to compare the effect of the atmospheric parameters. The distance between the aircraft and
the microphone in the NMT on the ground, together with the engine type, aircraft type and
location of the measurement by narrowing down the data, have the greatest influence on the
noise [1].

Figure 6.8.: Boxplot for NMT 11 departure data grouped into 250m groups. The distance is
the distance d at time TLas,max, dTLAS,max .

The boxplot shows visible differences in the mean maximum loudness among the groups.
Specifically, LAS,max measured values of A320-200 aircraft at NMT 11 Reitstall, Ohlenhoff
are classified into the three distance groups [750m, 1000m), [1000, 1250m) and [1250m, 1500m).
The distance dTLAS,max denotes the distance between the aircraft and the NMT at the time
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sum2 df mean2 F-value p-value η2 ω2

C(Distance) 2411.70 2.00 1205.85 557.54 0.00 0.48 0.48
Residual 2582.39 1194.00 2.16

Figure 6.9.: ANVOA results for the distance parameter of A320 measurements

Table 6.3.: Statistics of the LAS,max values grouped into distance groups

Distance [750m,1000m) [1000m,1250m) [1250m,1500m)

N 399 399 399
mean 77.17 75.90 73.73
sd 1.17 1.43 1.75
se 0.06 0.07 0.09
95 % ci lower limit 77.06 75.76 73.56
95 % ci upper limit 77.29 76.04 73.91

TLas,max. The distance between the aircraft and NMt is calculated as

d =
√

h2
i − s2

i,j (6.1)

where d is the distance parameter, hi is the height over ground of airplane i, and sij is the
distance on ground between aircraft i and NMT j. To confirm this finding the One-Way
ANOVA method from scipy.stats is computed and reported.

The null hypothesis H0 is that the means of the three groups are equal. The p-value is
below the threshold of 0.05 therefore we reject H0 and conclude that the "distance" parameter
has a significant effect on the mean measured maximum sound level LP. Figure (6.3) shows
the LP value per group, the number of samples per group N, the standard deviation, the
standard error, and the 95% confidence interval.

From table (6.4) we can see the pairwise differences between the distance groups and then
compare them with the behavior of the geometric spreading of sound (3). The average sound
pressure level LP decreases by 3.44 dB between the groups [750m,1000m) and [1250,1500). The
distance between the shortest and the longest distance in the two intervals is doubled. For a
point source, doubling the distance would mean a reduction of SPL by 6 dB. However, we
note that the distance doesn’t strictly double between the intervals as this statement cannot
be made when we compare intervals where the distance values at the borders of the intervals
are closer to each other while other values are further apart.
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Table 6.4.: Tukey posthoc test for the distance parameter, pairwise comparisons

groups [1000m,1250m) [750m,1000m) [750m,1000m)
[1250m,1500m) [1000m,1250m) [1250m,1500m)

mean difference -2.17 (∆250m) -1.27 (∆250m) -3.44 (∆500m)
std error 0.08 0.07 0.07
t-value 19.11 13.78 32.57
p-value 0.00 0.00 0.00

lower limit -5.49 -2.05 0.12
upper limit 1.16 4.59 6.76

Finally, we check the assumptions of the ANOVA method again. The histogram and the
Quantile-Quantile plot of the standardized residuals confirm the assumption that the data are
normally distributed. There are a few outliers at the edges of the QQ plot, but the ANOVA
method is quite robust against such violations. With a value of 0.99, the Shapiro-Wilk test
3 shows that we do not reject the hypothesis that the data are normally distributed and
conclude that both visually and confirmed by the test that the distance samples came from
a normal distribution. The assumptions to draw reliable and meaningful results from the
ANOVA method are met.

Figure 6.10.: Histogram and QQ plot of standardized residuals for the distance parameter

6.3. Starts/Landings

In Chapter (5.3), we have already seen that take-offs and landings differ greatly in terms
of noise pollution for the surrounding area. At NMT 11, Reitstall Ohlenhoff we have 4672
landings and 9822 take-offs from the A320-200. For the ANOVA, we sample both groups so
that both have the same number of samples. Using the ANOVA method and the post-hoc
test, we obtain a difference of almost 5 dB and a p-value of 0.00.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
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Figure 6.11.: Boxplot for NMT 11 grouped by starts and landings of the A320

6.4. Winglets

The A320 Neo aircraft have modern sharklets on their wings. These are approx. 2.5 m
high and, according to the manufacturer, should ensure lower fuel consumption in flight 4.
The data set contains sufficient noise measurements for the ceo variants with conventional
winglets and for the neo variant with sharklets. However, the LP values of these two groups
do not differ. Compared to parameters such as the distance to the receiver or the engine type,
the winglets are negligible as parameters.

6.5. Dependencies of LAS,max at single stations

To further evaluate the importance of the multiple parameters on the sound pressure level
we’re going to look at several specific NMTs around the airport of Hamburg. First, we’re
looking at data from starts at NMT 11 Norderstedt, Reitstall Ohlenhoff which is located
towards the north-west of the airport. It is situated right underneath the path of planes
landing on runway 15 or departing on runway 33. As in chapter (5.3) we analyze the influence
of parameters on the noise propagation in the atmosphere. We’ll apply the Analysis of
Variance method (ANOVA). In general, our target variable will be the maximum loudness
LAS,max of a noise event. The data will be split into multiple groups for a specific parameter
and the variance within the groups is compared with the variance among the groups. If the
assumption of the ANOVA method is satisfied and the p-value is below the threshold of 0.05,
then the null hypotheses H0 that there is no difference between the groups will be rejected
and a statistically significant effect of the parameter on the target variable can be concluded.

4https://www.airbus.com/en/products-services/commercial-aircraft/passenger-aircraft/a320-family
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Weather Previous work has mainly investigated basic atmospheric variables such as temper-
ature, wind direction, and speed [1]. As noted in chapter (2) aircraft noise prediction models
such as PANAM consider a homogeneous atmosphere in the analysis. Effects such as sound
refraction are not considered resulting in an overestimation of noise at long distances [18]. In a
more recent version of PANAM from 2019 [17], the ambient humidity and temperature on the
frequency-dependent atmospheric absorption coefficient, and effects such as refraction and
scattering are considered. By supplementing the noise and flight data set with measurements
of weather profiles from the Hamburg weather mast, it is possible to investigate these effects.
While earlier works note that the weather is a small factor for outdoor sound propagation as
we discussed in chapter (2) we note that weather parameters are significant when we look at
single NMTs. The local setting can differ greatly due to circumstances like buildings, tree
lines, hills, and other features of the landscape which affect the temperature and the wind.
Therefore the local effect of atmospheric attenuation and sound refraction might differ when
comparing NMTs. In this chapter, we’ll study the difference in the magnitude of influence of
the atmospheric effects for single NMTs.

The theory of atmospheric physics and outdoor sound propagation is explained in chapter
(3). In this section, the measured data are analyzed using the influence of temperature
gradients and various wind profiles. These values can vary greatly depending on the
measuring point, time of year, and time of day. The figures (6.12), (6.13), (6.14), and (6.15)
show the weather parameters wind speed, wind direction, and temperature at NMT 14 Lurup.
The figures each show the development of the three parameters over the 14th of each month
from 00:00 to 24:00. The wind direction (light blue crosses) largely stays approximately
constant over the day. At NMT 14, wind directions between approx. 90◦ and 180◦ mean
favorable downwind conditions. In December the wind seems to come more from this
direction, while in June and September, the wind tends to come from the north, which leads
to light upwind or cross-wind conditions. The wind speed (dark blue line) tends to increase
from noon until the early evening hours. In spring and summer, the temperature (red line)
seems to rise around 07:00 am, changing the negative sign of the temperature gradient of the
night to a positive sign in the morning. This effect does not seem to be as pronounced in the
cold months, as temperatures do not rise as much during the day.

Wind: Comparison NMT 02 and NMT 03 For each overflight of an A320 landing at
Hamburg airport, we measure one maximum sound level for the overflight LASmax[dB] at
each NMT that is on the route of the aircraft. The time TLASmax[s] is where the sound level
LASmax was measured is noted and used to look up the corresponding wind direction and
speed at the NMT during that time.
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Figure 6.12.: Weather at NMT 14 Lurup, March 14th, 2023

Figure 6.13.: Weather at NMT 14 Lurup, June 14th, 2023

Figure 6.14.: Weather at NMT 14 Lurup, September 14th, 2022

Figure 6.15.: Weather at NMT 14 Lurup, December 14th, 2022
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Figure 6.16.: NMT 03 Figure 6.17.: NMT 02

Figure 6.18.: Positions of the aircraft at time TLas,max for NMT 03 (6.16) and NMT 02 (6.17)
which are located in the north of the airport. For NMT 02 we see that the aircraft
turns towards the east on this departure route while the aircraft passes NMT 03
on a north-south line.
The position data for this plot is matched exactly to the second to the corre-
sponding noise measurement. The data set is therefore reduced to entries where
we can join the two data sets exactly. Both plots share the same color bar where
the color represents the value of LAS,max.

The depicted departure route AMLUH1G is the main route for the time frame of August
2022 to August 2023. Using the extensive data from 46,604 departures for this specific path
we try to derive the influence of the wind direction parameter on the measured noise at
the two NMTs. Planes on this route usually stay to the north-east of NMT 02 Harkshörn,
Grundschule while they’re located east to NMT 03 Quickborn, Goethe-Schule. With this setup,
we would expect the effect of the wind direction parameter to be directly opposed for the two
measuring points if they would completely adhere to the theory. Therefore we formulate the
null hypothesis that there is no significant effect of the wind direction on LAS,max at the NMTs.
To test this hypothesis we separate the data into groups of 60◦ and again use the Analysis of
Variance method to analyze the difference in means of these groups.

In Figure (6.21) we can see that the NMT 02 is slightly louder overall. If we look at figure
(6.18), we see that the airplanes are much closer to NMT 02 at the time when the sound
pressure level LAS,max occurs, TLas,max, than is the case at NMT 03. In the case of NMT 03, it
was impossible to assign as many time points of noise measurements exactly to the aircraft’s
position, which is why fewer position markers appear here. As the aircraft on the AMLUH1G
route flies a right turn past NMT 03, the markings here are relatively scattered around the
station.
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Figure 6.19.: NMT 02 wind direction boxplot

Figure 6.20.: NMT 03 wind direction boxplot

Figure 6.21.: Boxplot for NMT 02 and NMT 03 grouped by 60◦ wind direction intervals
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Table 6.5.: ANOVA wind direction results for NMT 02 and NMT 03

NMT 02 sum2 df mean2 F-value p-value η2 ω2

C(wind direction) 20.88 5.00 4.18 1.18 0.32 0.01 0.00
Residual 3338.27 942.00 3.54

NMT 03 sum2 df mean2 F-value p-value η2 ω2

C(wind direction) 7.21 5.00 1.44 0.50 0.78 0.02 -0.02
Residual 331.32 114.00 2.91

Table 6.6.: Wind direction statistics for NMT 02 and NMT 03

Variable N Mean SD SE 95% Conf. Interval

NMT 02 value 948.00 66.65 1.88 0.06 66.53 66.77

NMT 03 value 120.00 64.59 1.69 0.15 64.29 64.89

If the wind comes from the direction of the NMT in comparison to the location of the
airplane, i.e. the source is located upwind to the receiver, we expect a reduction in the
measured noise emissions due to refraction [38]. Similarly, we expect an increase in the
measured noise emissions when the wind comes from the direction of the aircraft, i.e. the
source is downwind of the receiver [38]. To test this dependency, we divide the measured
noise levels into groups of 60° intervals. The population p1 contains all measurement in the
interval [0°, 60°), population p2 contains all measurement in the interval [60°, 120°), ..., and p6

includes all measured values in [300°, 360°). We define the first null hypothesis H0 that all
population means are equal:

Hypothesis 1: H0: µ1 = µ2 = µ3 = µ4 = µ5 = µ6

where µn for n ∈ [1, 6] is the mean of the population pn.
Table (6.6) shows the ANOVA table for both NMT 02 and NMT 03. For both NMTs, the

p-value is not significant. Both η2 and ω2 show that the effect sizes are negligible. The ω2

value is negative for NMT 03 in this case because the F-value is less than one. This result,
together with the boxplots where we can see virtually no differences in the mean values
between the wind direction groups, indicates that we cannot prove any dependence of the
value LAS,max on the wind direction for these two measuring stations. One reason for this
could be that the routes during take-off differ much more than is the case during landings.
The distance from the NMT is a decisive factor. However, the variance of this parameter
in the measurement data is very large, which can also be seen in figure (6.18). Another
reason for NMT 02 could also be that the NMT is located in the middle of a curve in the
departure route and the aircraft are therefore in many different directions. The wind direction
as a simple parameter is then no longer sufficient. A consideration of the wind direction
component in the direction of sound propagation for each aircraft would be necessary here.
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Figure 6.22.: NMT 02 wind direction residuals QQ-plot (left), and histogram (right)

Figure 6.23.: NMT 02 wind direction residuals QQ-plot (left), and histogram (right)

When considering weather parameters, it is therefore important to take local conditions such
as topography and departure or approach routes into account.

We perform the Shapiro-Wilk test for normality on the normalized residuals. These equal
the normalized differences between each element and the column mean where the columns
represent the grouped wind direction intervals. The Shapiro-Wilk test results in significant
p-values for both NMTs. Therefore, we reject the null hypothesis that the data is sampled
from data following a normal distribution. However, the residuals for NMT 02 seem normally
distributed with a heavy tail when we visually look at them with a quantile-quantile plot or a
histogram. The residuals for NMT 03 however don’t seem to be normally distributed looking
at the quantile-quantile plot and the histogram. We conclude that the results from parametric
methods such as the ANOVA are not reliable.

To test the homogeneity of variance assumption we perform the Levene test (see chapter 5)
for unequal variances. We test the null hypothesis that the population variances are equal.
Both for NMT 02 and NMT 03 the p-values are well above 0.05 and therefore not significant.
We keep the null hypothesis that the variances between the wind direction intervals are equal.
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Table 6.7.: Levene test for NMT 02 and 03 residuals

Parameter NMT 02 NMT 03

0 Test statistics (W) 0.42 0.56
1 Degrees of freedom (Df) 5.00 5.00
2 p-value 0.83 0.73

Temperature gradients In this paragraph, we want to analyze and compare the influence
of the atmosphere on sound propagation at the NMT 14 Lurup. This NMT is located in the
south-west of the airport. Therefore, planes that either start on runway 23 or land on runway
05 will fly over this station. Again, we only consider the Airbus A320 aircraft type and we’ll
use data from starts and landings of this aircraft separately.
We want to focus on the effect of temperature gradients in the atmosphere but also look at
the influence of the wind again. The equation for the sound speed (3.2) in the atmosphere
shows that a higher temperature will lead to a higher sound speed. If we consider an
inhomogeneous atmosphere we see that the temperature generally decreases with height
until we reach the tropopause at a height of around 15km. However, in the ABL, sometimes
temperature inversions occur as can be seen in the temperature profile plot from the weather
mast in Hamburg (6.25). The temperature gradients lead to vertical sound speed gradients,
where a positive gradient dce f f

dz > 0 leads to downward refraction of the sound waves and a

negative gradient dce f f
dz < 0 leads to upward refraction of the sound waves.

Taking temperature gradients into account when calculating the influence on noise is
difficult because the airport’s NMTs only measure the temperature directly above the ground.
The weather mast at the University of Hamburg measures the temperature at various heights
between 2m and 280m. However, it is located at a distance of approx. 14.5 km from the
airport. Therefore, we must first determine whether and to what extent we can use the
measured values from the weather mast to investigate noise immissions in the vicinity of
NMT 14 Lurup, which is located at a distance of approx. 16.15 km from the weather mast.
The vertical temperature gradient for a given height is the difference of the temperature
measurement above the given height T(hi) minus the temperature measurement below the
given height T(hr) divided by the distance between hi and hr in meters:

dT
dz

=
T(hi)− T(hr)

hi − hr
(6.2)

With equation (6.2) we compute the temperature gradient for all heights [10m, 50m, 70m,
110m, 175m, 250m]. For each of these altitudes, we divide the measured values into three
populations: negative temperature gradient 1, no temperature gradient p2, and positive
temperature gradient p3.

We define the null hypotheses H0 that all population means are equal:

Hypothesis 2: H0: µ1 = µ2 = µ3
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Figure 6.24.: Departure and arrival routes for NMT 14 Lurup

Figure 6.25.: Temperature profiles measured at the Weathermast Hamburg on April 20th,
2023 measured at 2m, 10m, 50m, 70m, 110m, 175m, 250m and 280m. During
the day we observe a negative temperature gradient (orange and green lines),
whereas in the evening and at night we observe positive temperature gradients
(pink and light blue lines).
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Figure 6.26.: Boxplot for NMT 14 Lurup grouped by temperature gradient

where µn for n ∈ [1, 3] is the mean of the population pn.
Figure (6.26) shows the boxplot for each of the three temperature gradient groups for each

altitude for which we can calculate a temperature gradient. In general, we can observe the
trend that the maximum sound level increases when we go from a negative temperature
gradient to a positive temperature gradient. A color represents a certain height of the weather
mast and its temperature gradient. For all heights, we see that the LAS,max values increase
from left to right. The lowest values for all heights are at negative temperature gradients.
The highest values, on the other hand, are for positive temperature gradients at all heights.
According to the theory (3), we expect that with a negative temperature gradient, the sound
is refracted away from the ground and sound shadow zones are created. The boxplot seems
to confirm this based on the measured values.

The sum of squares (sum2 column) for entries where the p-value is > 0.05 is noticeably
larger, is because the value shows the sum of squared differences between the observed
dependent variables and the overall mean. A high p-value indicates that there are no
significant differences between the means of the groups. Therefore, the value tends to be
small when the means of the groups don’t differ significantly.

For each height (except the lowest height of 2m and the highest height of 280m, because
the calculation of a gradient is not possible here) we calculate the p-value and the effect size
in the table (6.8). We observe that the p-value is only significant for the two gradients at 175m
and 250. Also, η2 and ω2 show medium effect sizes of 0.06 in these two cases. Since the
ANOVA does not yet tell us how exactly positive and negative gradients differ, we carry out
a post-hoc test in the next step. Since the p-values for the heights 10m, 50m, 70m, and110m are
not significant, only 175m and 250m are considered. One reason for this could be that the
atmospheric conditions near the ground at the weather mast and the NMT differ more than
is the case above 150m.

At an altitude of 175m, the noise level increases by an average of 2.36 dB between a negative
and positive temperature gradient. With a p-value of 0.01, the statement is meaningful. The
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Table 6.8.: ANOVA Table Resulted from the categorization into temperature gradients where
n = 394 for each group [−2.00, 0.01)

◦C

100m and [0.01, 3.00)
◦C

100m

sum2 df mean2 F-value p-value η2 ω2

C(temp. grad. 10m) 37.02 2.00 18.51 1.17 0.31 0.02 0.00
Residual 2094.42 132.00 15.87

C(temp. grad. 50m) 7.48 2.00 3.74 0.30 0.74 0.00 -0.01
Residual 1633.12 132.00 12.37

C(temp. grad. 70m) 30.45 2.00 15.23 1.09 0.34 0.02 0.00
Residual 1838.25 132.00 13.93

C(temp. grad. 110m) 1.59 2.00 0.79 0.06 0.94 0.00 -0.01
Residual 1835.57 132.00 13.91

C(temp. grad. 175m) 152.37 2.00 76.19 4.78 0.01 0.07 0.05
Residual 2102.79 132.00 15.93

C(temp. grad. 250m) 153.57 2.00 76.78 5.19 0.01 0.07 0.06
Residual 1954.58 132.00 14.81

Table 6.9.: Tukey HSD for temperature gradients at NMT 14

groups mean std t-value p-value 95 % CI[
◦C

100m

]
difference error lower CI upper CI

10m - - - - > 0.05 - -

50m - - - - > 0.05 - -

70m - - - - > 0.05 - -

110m - - - - > 0.05 - -

175m (-0.01, 0.01) : (0.01, 3.00) 2.13 0.60 2.51 0.04 5.50 -1.25
(-3.00, -0.01) : (0.01, 3.00) 2.36 0.57 2.92 0.01 5.73 -1.01

250m (-3.00, -0.01) : (0.01, 3.00) 2.61 0.57 3.26 0.00 5.99 -0.76
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Table 6.10.: Levene test for temperature gradients residuals

Parameter 10m 50m 70m 110m 175m 250m

0 Test statistics (W) 0.05 0.07 0.47 0.01 1.08 0.99
1 Degrees of freedom (Df) 2.00 2.00 2.00 2.00 2.00 2.00
2 p-value 0.95 0.94 0.62 0.99 0.34 0.37

values for 250m are similar. Here it gets louder by 2.61 dB on average with a p-value of 0.00.
The group no gradient - positive gradient is also in the 2 dB range, but with a higher p-value
of 0.04. Overall, we observe that a positive temperature gradient is audibly louder. This result
is in line with theory, as we expect the sound to be refracted towards the colder ground in
this case.

Finally, we examine whether the assumptions of the ANOVA are fulfilled and whether
our results are reliable. In figure (6.33) we see the standardized residuals of the temperature
gradients for each investigated altitude. The quantile-quantile plots for 10m and 175m look
a bit curved, like an S. This could indicate that the tails of the distribution are a bit heavier
than a standard normal distribution but it could also just be a normal distribution skewed by
randomness. However, this should have less impact on mean-referenced analyses.

Finally, the homoscedasticity of the standardized residuals is tested using the Levene test.
We see that for all groups the p-value is greater than 0.05 and therefore not significant. We do
not reject the null hypothesis and stick to the assumption that the variances of the groups are
equal.
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Figure 6.27.: 10m Figure 6.28.: 50m

Figure 6.29.: 70m Figure 6.30.: 110m

Figure 6.31.: 175m Figure 6.32.: 250m

Figure 6.33.: NMT 14 QQ-plots for all measured temperature gradients standardized residuals
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Upwind/Downwind Vertical gradients in the effective sound speed given by equation (3.5)
govern the refraction of sound waves. In this chapter, we’ll focus on the horizontal wind
component Vcos(α) in this equation. We’ll quantify its effect on the mean maximum sound
level in decibels for starts and landings on runway 33/15. The angle α describes the angle
between the wind and the direction of sound propagation in (3.5). We keep the definition
of α from the HARMONOISE project [29]. The wind direction is the direction from which
the wind is blowing. The position of 0◦ is north, 90◦ is east, and so on. Contrary, the sound
direction is the direction to which the sound propagates, again with 0◦ north. We’ll illustrate
the semantics with an example: The observer is looking at the airplane to the west at 270◦. In
this case, the sound propagates to 90◦ east. The wind is blowing from the direction of the
airplane at 270◦ into the face of the observer. For α we get 270◦ − 90◦ = 180◦. In equation
(3.5) we get a positive sign for the horizontal wind component. With a look at table 6.11 we
are in the downwind scenario and would expect more noise from the airplane at the position
of the observer due to refraction.

Methodology To compute the angle α between the wind direction and the direction of
sound propagation γ we need the position of the airplane relative to the microphone at the
NMT. The wind speed and direction are directly measured at NMT 11 Norderstedt, Reitstall
Ohlenhoff some meters above the ground. The position of the aircraft is determined by
the radar from the airport. The time TLASmax where the maximum sound level LASmax is
measured is noted. For each noise measurement at NMT 11, we look up the position in
latitude and longitude at the time TLASmax. For the calculation of the angle between the
airplane and the NMT about 0◦ N it is assumed that the ground is a flat plane. The error
regarding the calculation of the angle introduced by this assumption is negligible because
of the small distances between the aircraft and the NMT. The arctangent function is used to
calculate the angle between the aircraft and the NMT. In Python the function math.atan2(y, x)
calculates the angle in radians between a point (x,y) and the center (0,0) starting from the
x-axis rotating counterclockwise. The NMT is assumed to be at position (0,0) with x being the
longitude and y being the latitude. The difference dx in longitude and latitude dy between
the aircraft and the NMT is used as point (x,y) for atan2(dy, dx).

dx = aircraft.longitude − NMT.longitude

dy = aircraft.latitude − NMT.latitude
(6.3)

To get a distance in meters the coordinate reference system (CRS) is transformed to the WGS
84 Web Mercator projection (EPSG identifier 3857) before making the calculations. The angle
between the x-axis and the point is converted to the angle starting at 0◦ N rotating clockwise.

(90 - math.degrees(math.atan2(dy, dx))) % 360. (6.4)

The result is angle γ in degrees between the aircraft and the NMT with 0◦ in the north as a
point of reference. Therefore, this angle represents the angle from which the sound is coming
from the point of view of the microphone at the NMT. To get the direction to which the sound
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is traveling we add γ
′
= (180◦ + γ) mod 360◦. With the direction of sound propagation

angle α between the wind direction is calculated.

wind class u(z = 10m)
V1 < -10 m/s upwind
V2 -10 ... - 6 m/s
V3 -6 ... - 3 m/s
V4 -3 ... - 1 m/s

V5 -1 ... + 1 m/s crosswind
or no wind

V6 +1 ... +3 m/s downwind
V7 +3 ... +6 m/s
V8 +6 ... +10 m/s
V9 >10 m/s

Table 6.11.: European HARMONOISE project [29] upwind/downwind classes V1 to V9 and
according to wind components u at 10m above ground in the direction of sound
propagation.

Noise measurement and radar data from the time frame 01.08.2022 - 31.08.2023 were
matched with a database-like inner join using the combination of the flight ID and TLASmax

as a common key pair. For class V2 we get 10 flights, for class V3 110 flights, for class V4
375 flights, for class V5 570 flights, for class V6 672 flights, for class V7 358 flights, for class
V8 21 flights and for class V9 98 flights that could be matched with an accuracy of 1s to
position data. LASmax and distance-to-NMT values below the 1 %-quantile and above the 99
%-quantile are removed as outliers. This is done to remove exceptional or incorrect data from
the set, i.e. cases where the microphone measured noise above 100 dB. Such a value could
only be measured if the A320 flew directly over the microphone which is highly irregular
for airliner operations. Measurements from classes V2 and V8 (very strong upwind/ very
strong downwind) are also removed because there are not enough values to make meaningful
conclusions.

Results It is essential for aircraft operations that they start and land against the wind to
increase lift. In figure 6.37 we can see that the wind during a landing typically comes from a
southeast direction directly against the direction of the airplane. From the point of view of
NMT 11 Norderstedt, Reitstall Ohlenhoff the sound mainly comes from the southwest (6.38)
since the station is located to the northeast of the glide path.

Landings and starts of aircraft need to be looked at separately (see chapter 5.3.) because
the measured sound levels differ vastly. The difference in sound levels makes it difficult to
distinguish meteorological influences. For this reason, the data set is separated into landings
on runway 15 and starts on runway 33. Runway 15 and Runway 33 are the same physical
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runway, only the direction of operation differs. Aircraft on runway 15 land in a direction of
150◦ and aircraft on runway 33 start in a direction of 330◦. For the landings, we have 98 values
for both the up- and downwind class that are sampled from the population. All values are
from A320-200 variants, namely the A3202 (without winglets) and the A320A (with winglets)
type. Aircraft on an instrument approach generally follow a 3-degree glide slope toward the
runway. In figure (6.35) we can see that almost all of the positions during time TLASmax are
on this glide slope close to the NMT.

Figure 6.34.: starts Figure 6.35.: landings

Figure 6.36.

We observe that starts in figure (6.34) and landings in figure (6.35) are very distinguishable
from two characteristics. First, the position of the aircraft during starts is much more
distributed in space. This can be explained by the strict procedures that planes have to adhere
to during the approach. Both vertical and horizontal positions are predetermined by the
glide slope given by the instrument landing system. During departure, there is no such
requirement. Depending on the weight and take-off performance the aircraft can make a
relatively quick turn towards either side. The height during departures also vastly varies due
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to aircraft weight even when we only look at Airbus A320 aircraft variants. Not all flights
are fully booked or the aircraft might not be fully loaded with freight. Second, the measured
maximum sound level also vastly differs due to the aforementioned reasons. A difference of
around 5 dB between starts and landings can be measured on average at this NMT, see figure
(6.11)
We aim to filter out the influence of meteorology on the measured noise level at the NMT.
Since measured noise levels and parameters such as aircraft weight, distance to the NMT,
and altitude vary greatly during take-off, this goal is difficult to achieve when we look at
data from take-offs. Meteorology has a comparatively small influence on noise compared
to the other parameters. The analysis of variance for data from departures shows that the
wind classes have no statistically significant influence on the mean values of the maximum
measured sound level of the groups.

Figure 6.37. Figure 6.38.

Figure 6.39.: (6.37) wind direction [◦] and wind speed [m/s] measured at NMT 06 for landings
on runway 15
(6.38) direction from which the sound comes [◦] from the point of view of NMT
11 and measured maximum sound level [dB] at the NMT

We plot the wind rose from wind data measured at NMT 06 Lufthansa Werft. The NMT is
exactly located at 53°37’25.5"N, 9°59’08.4"E next to the Lufthansa Technik base at the airport.
Wind direction and wind speed are measured by NMT 06 and used for this NMT, see NMT
list (4.1). For each wind direction in degrees, the value of the corresponding wind speeds is
drawn in figure (6.37). The length of the bar represents the total number of measurements for
that direction. The colors distinguish the different wind speed intervals. In figure (6.37) we do
the same but for LASmax measurements. Mathematically the direction of sound propagation
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is the direction to which the sound travels. However, this plot shows the sound propagation
from the point of view of the NMT. Therefore, plot (6.38) shows the direction from which the
sound is coming towards the NMT. We expect the sound to increase if the sound and wind
come from the same direction and we expect the sound to decrease if the wind comes from
the opposite direction. If the airplane lands on Runway 33 and we measure an N-E cross
wind we expect the noise to be minimal at the NMT for instance. A series of statistical tests
will be performed to test of hypothesis on measured data.

We define the null hypothesis H0 that we test. All population means of the noise measure-
ments of the up/downwind classes are equal for noise measurements from A320 landings on
runway 15 measured at NMT 11 Reitstall Ohlenhoff. The populations pVn are defined as the
maximum sound level measurements grouped into up/downwind classes.

Hypothesis 3: H0: µV3 = µV4 = µV5 = µV6 = µV7 = µV9

where µVn for n ∈ 3, 4, 5, 6, 7, 9 is the mean of the population pVn.

Figure 6.40.: Boxplot for NMT 11 Norderstedt, Reitstall Ohlenhoff maximum sound levels
[dB] grouped by up/downwind classes V3-V7, V9

The boxplot (6.40) shows the distribution, locality, and outliers for the various upwind and
downwind classes. For the range V4 - to V7, i.e. light upwind to medium downwind, we see
an increase in the noise level. According to theory, we would also expect the immissions at
the receiver to be louder when sound and wind come from the same direction. The boxplot
seems to confirm this for the measured values. Only the groups v3 (medium strong upwind)
and v9 (very strong downwind) break the trend a little. One possible reason for this could be
that there are relatively few measured values for these very high wind speeds. This means
that it is not as easy to obtain representative data from the measurements by sampling since
the number of samples is low.
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Table 6.12.: ANOVA Table Resulted from the categorization into up/downwind classes at
NMT 11

sum2 df mean2 F-value p-value η2 ω2

C(up/downwind class) 111.37 5.00 22.27 12.64 0.00 0.10 0.09
Residual 1025.71 582.00 1.76

In the next step, we run the ANOVA again to test whether there are significant differences
in the mean value of the wind classes. With a p-value of 0.00, there is a statistically significant
difference, therefore we reject the null hypothesis that the group means are the same. The
effect size, indicated by η2 and ω2, is medium to high at 0.09 - 0.10. We now use a posthoc
test to determine which groups and by how many decibels they differ.

Table 6.13.: Tukey HSD for up/downwind classes at NMT 11

pairwise group mean std t-value p-value 95 % confidence interval
comparisons difference error lower CI upper CI

1 V3 : V5 -0.56 0.13 3.00 0.04 -1.10 -0.04
3 V3 : V7 0.71 0.14 3.56 0.00 0.18 1.23
6 V4 : V6 0.65 0.13 3.51 0.00 0.13 1.17
7 V4 : V7 1.22 0.14 6.23 0.00 0.70 1.74
8 V4 : V9 1.22 0.13 4.03 0.00 0.8 1.74
9 V5 : V6 0.69 0.13 3.65 0.00 0.17 1.22
10 V5 : V7 1.26 0.14 6.30 0.00 0.74 1.79
11 V5 : V9 0.77 0.13 4.16 0.00 0.23 1.32

In the table (6.13) the pairwise comparisons of the up/downwind classes for Tukey’s HSD
test (equation 5.13) are shown. Only pairs with a significant p-value (< 0.05) are shown.
Overall, the mean differences are in the range of 0.6 - 1.3 dB. Differences in the sound pressure
level of approx. 1 dB are audible, so the differences are relatively small. However, if we look at
pairs of strong downwind and strong upwind the difference can be particularly pronounced.
For the pair V4-V7 the 95% confidence interval is [0.70, 1.74]. In summary, it can be said
that at least at NMT 11 wind speeds from -3 m/s to 3 m/s have hardly any influence on the
perceived noise. However, the results indicate that strong wind conditions have a noticeable
influence on the noise. It should be added that very little data is available for the extreme
wind classes V1 and V9. This is partly because these wind speeds do not occur so often, but
also due to the bias that flight operations are only possible to a limited extent or not at all at
such high wind speeds, and therefore no noise measurements are available. However, these
cases in particular would be interesting for an investigation concerning noise, as the strongest
effects due to refraction would be expected here.
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6. Statistics of measured Data

Figure 6.41.: QQ-plot comparing standardized LASmax residuals from NMT 11 landing mea-
surements to a theoretical normal distribution

The standardized residuals of the noise measurements grouped by wind class are first
compared in a quantile-quantile plot with a theoretical normal distribution to test the ANOVA
assumptions. We can see that the data are normally distributed. The homogeneity of the
variances is tested using the Levene test on the standardized noise measurement regressions.
With a very clear p-value of 0.99, we don’t reject the null hypothesis that there is equality of
variance. The assumptions of the ANVOA are thus given and the results should therefore be
reliable.

Table 6.14.: Levene test for temperature gradient residuals

Parameter Value

0 Test statistics (W) 0.07
1 Degrees of freedom (Df) 4.00
2 p-value 0.99
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7. Feature Selection for the Prediction of Noise

After we first built a model from the measurement data in the last chapter and performed
statistics according to the model, we now go one step further and make predictions about
LAS,max. We are particularly interested in the importance of meteorological parameters in the
prediction of noise compared to non-meteorological parameters such as distance. We want to
answer the following research questions:

• How can we predict noise measurements of overflights or noise events?

• Which data do we need for that?

• Can we filter out the influence factors of the weather on the measurements with AI
methods?

AI methods such as neural networks are often used for the prediction of time series or
regression and classification. The major disadvantage of these or similar methods is that the
results are no longer reproducible in retrospect. We cannot say exactly which parameters
are related and how, and how the network decided to link the parameters in a certain way.
Our research questions are aimed precisely at these issues. We want to understand exactly
what effect meteorology has. In addition to the prediction of noise, it is also of interest which
weather constellations lead to a prediction no longer being possible, e.g. whether particularly
humid air or rapidly changing wind directions could lead to less accurate predictions.

For these reasons, the random forest model from Breiman et al. [39] is used for this
chapter. A random forest model is an ensemble of decision trees. The target variable LAS,max
is calculated in a regression method. In regression, each decision tree is given a different
sampled subset of the data set. The trees are formed by supervised learning so that we receive
a value from each tree. The prediction is found by averaging the output of the decision trees.
A similar approach was used by Iannace et al. [40] in relation to the noise prediction of wind
turbines.

The data set used for the random forest model is the data set from NMT 11 Norderstedt,
Reitstall Ohlenhoff. In contrast to earlier chapters, the data set here is explicitly not divided
into take-offs and landings. It is important to note, however, that the parameter "Start"
[True/False] is not included in the set of parameters as a categorical variable. As we have
seen in the previous chapters, this parameter is very meaningful. We test if the machine
learning model can identify and use it to make predictions.
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7. Feature Selection for the Prediction of Noise

Figure 7.1.: Impurity-based vs. permutation importances A320 NMT11 measurements

7.1. Impurity-based and permutation importance

The permutation importance is a possible metric to evaluate the influence of a parameter on
the performance of the model. When we calculate the permutation importance for a single
parameter we randomly permutate its values and observe the change of the score of the
model or how much it degrades. By randomly shuffling a parameter. By doing this we can
better observe the relationship of the two. It is important to note that permutation importance
does not reflect the predictive value of a parameter but rather how important it is for a certain
model. The value of the permutation importance can be between -1 and 1. Negative values
indicate that the model would become more accurate if we remove a parameter.

The permutation importance PI for each parameter j in scikit-learn 1 is defined as

PIj = s − 1
K

K

∑
k=1

sk,j (7.1)

where for each repetition K, we randomly shuffle the values of parameter j to generate an
altered version of the data set, on which we compute the score sk,j and subtract it from the
reference score s.

The measurements of meteorological parameters, such as the measurement of temperature
at different altitudes, are highly collinear features. When we consider collinear parameters

1 https://scikit-learn.org/stable/modules/permutation_importance.html#permutation-importance
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7. Feature Selection for the Prediction of Noise

such as the temperature at the heights 175m and 250m and shuffle one of them to calculate
the permutation importance, the models tend to assign little predictive value to either one of
the parameters as it can always get the same information from the other collinear parameter.
In figure (7.1) we see that the permutation-based feature importance evaluation drops the
accuracy by more than 0.02. This contradicts the accuracy on the train set of 0.972 as none of
the parameters would be important for the model even though the model has a high accuracy.

Impurity-based importance can be used as an alternative to permutation-based importance
for tree-based models. For impurity-based parameter importance, it is important to note
that 2

1. they are biased towards high-cardinality parameters, i. e. categorical parameters that
have a lot of different labels;

2. they are computed on the training set and, therefore are not suited to make predictions
that generalize to the test set.

The decision trees in the random forest model are trained with different subsets of the
data. Making a prediction from a group of decision trees works best if the subgroups are not
strongly correlated. Therefore, the random forest can choose the best splitting point among a
random subset of parameters and parameter values. In scikit-learn 3 this is implemented as
follows.
For a training vector xi ∈ Rn, i = 1, ..., n a label vector y ∈ Rl a decision tree recursively
partitions the parameter space. The data at a node m is represented by Qm with nm samples.
For each split θ = (j, tm) for parameter j and threshold tm, the data is partitioned into Qle f t

m (θ)

and Qright
m (θ) where the left partition contains all value-labels pairs lower or equal to the

threshold and the right partition the other values.
Then the impurity function or loss function H is used to determine the split of each

candidate

G(Qm, θ) =
nle f t

m

nm
H(Qle f t

m (θ)) +
nright

m

nm
H(Qright

m (θ)). (7.2)

The parameter that minimizes the impurity is chosen

θ∗ = argminθG(Qm, θ). (7.3)

The location for splits in the regression case is determined by the Mean Squared Error (MSE).
MSE selects the learned mean value ym as the predicted value

ym =
1

nm
∑

y∈Qm

y. (7.4)

The impurity function for the MSE is defined as

H(Qm) =
1

nm
∑

y∈Qm

(y − ym)
2. (7.5)

2https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-glr-
auto-examples-inspection-plot-permutation-importance-py

3https://scikit-learn.org/stable/modules/tree.html#mathematical-formulation
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7.2. Reducing the parameter set

Another way to deal with the collinear parameters is to apply hierarchical clustering to the
Spearman rank-order correlations, pick a threshold, and pick a parameter from each cluster 4.
Figure (7.2) shows Spearman’s rank correlation coefficient in a heatmap of the correlated
features. We manually pick a threshold from the left figure. From each group below the
threshold, one parameter is kept, thus reducing the set of parameters. The accuracy on the
training set was 0.972 while the accuracy on the test set was 0.827. As a threshold, we choose
0.5. With the removed parameters the accuracy on the test set only drops to 0.8.

The correlated features are shown in figure (7.2). The meteorological measurements of
the Hamburg weather mast are strongly correlated. The horizontal profiles are shown as
clusters in the heat map, as we would expect. The temperature and humidity form two
very distinct clusters. The absorption is also located in this part of the heat map as it’s
computed from these two parameters. It can also be seen that the measured values of the
weather mast are strongly correlated with those of the measuring point at the airport. This
finding is important, as in the future it may be possible to supplement the measurements
from the airport with precise and comprehensive measurements from the weather mast. The
wind direction parameter is partly correlated with the distance, altitude, elevation angle, and
start parameters and the information on whether the noise measurement is from a start or a
landing. Because airplanes usually take off and land into the wind, wind direction is a crucial
factor when we look at measurements from a particular runway, in this case, runway 33. The
height profiles of the weather parameters are grouped. For a machine learning model, it is
therefore probably sufficient to look at one altitude per measurement variable.

4https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html#sphx-
glr-auto-examples-inspection-plot-permutation-importance-multicollinear-py
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Figure 7.2.: Spearman’s rank correlation matrix (heatmap) of the correlated parameters for
A320 measurements at NMT 11 Norderstedt, Reitstall Ohlenhoff. Dark blue values
indicate a negative monotonic relation (Spearman’s coefficient < 0.0) between the
parameters while bright yellow values (Spearman’s coefficient > 0.0) indicate a
positive monotonic relationship between the two parameters. No relationship
between a pair of parameters is indicated as a blue color with a value of 0.0.
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Figure 7.3.: Hierarchical Clustering (dendrogram) of the parameters of the A320 measure-
ments at NMT11

Figure (7.3) shows the hierarchical clustering of the parameters. It is important to note
that the y-axis has no label. The height of the cluster or data points can be understood as
a metric of closeness. For example, the elevation angle, the distance, and the altitude are
equally distant from the speed over ground because they join each other before they join the
speed over ground. We chose to set the threshold at 0.5 below which parameters are grouped.
Since the threshold is 0.5 the speed of the aircraft remains a non-grouped parameter due to
its distance from the aforementioned three parameters that could be described as the distance
between aircraft and NMT. The distance, elevation angle, and altitude of the aircraft to the
NMT are grouped as a new "distance" parameter. All wind direction parameters and all
temperature measurements are grouped into their respective groups. The other parameters
are not important to the model as can be seen in figure (7.4) which shows the permutation
importance on the test set. The sklearn method scipy.cluster.hierarchy.dendrogram 5 and the
scipy.stats.spearmanr method 6 have been used to create figure (7.2) and figure (7.3).

5https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Figure 7.4.: Feature importance using the Mean Decrease in Accuracy on multicollinear A320
training data set at NMT11 with the reduced parameter set

7.3. Predicting LAS,max

The new model can now be used to predict values of LAS,max. After fitting the model to the
training data set we predict the values of LAS,max on the test. Table (7.1) shows the results.
The mean absolute error is around 0.89 dB meaning the error of the model is almost not
noticeable by the human ear.

We plot the test values for LAS,max as a histogram and plot the predictions of the model
in the same figure (7.5). The data is comprised of noise measurements from starts and
landings. Therefore, we see two peaks in the data set. The lower peak with the less loud
noise measurements are the landings while the other peak contains all the measurements
from the starts. This division was also visible in the PCA of the same data set (5.1). Overall,
the random forest was able to identify the two distinct groups of measurements even though
the parameter "Start" [True/False] was not included in the training data set and to predict
noise values up to an accuracy that would not be noticeable in practice.

The meteorological parameters make up for 14.85 % of the accuracy in the training data
when we look at the Mean Decrease in Impurity (MDI). The parameters in figure (7.5) are the
parameters that resulted from hierarchical clustering.
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Mean Absolute Error 0.89
Mean Squared Error 1.43

Root Mean Squared Error 1.20
Accuracy 98.81%

Mean decrease in accuracy (MDI) %
Distance [m] 66.70%

Elevation angle [deg] 13.61%
Altitude [ft] 2.05%

Speed over ground [kn] 2.79%
WM Wind speed [m/s] 3.01%

NMT wind direction 2.94%
NMT temperature 1.97%

NMT humidity 0.13%
NMT air pressure [mBar] 2.64%

Precipitation [nm] 2.15%
WM air temperature 2m 2.01%

Table 7.1.: (left) Prediction results with the reduced parameter set random forest model.
(right) Mean decrease in accuracy (MDI) per parameter in the random forest model.
The prefix NMT denotes the measurements at the noise measuring station while
WM denotes measurements at the weather mast.

Figure 7.5.: Prediction results for LAS,max of the random forest model
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8. Conclusion

To be able to take suitable measures to reduce noise, the noise propagation outdoors must
first be quantified and the influencing factors identified. In this work, we have chosen a
data-oriented approach to analyze noise pollution using the example of Hamburg Airport.
This lays the first foundations for predicting noise events in the future. In this way, the
effectiveness of future measures can be better evaluated.

We were able to work out the influencing factors from the measurement data and quantify
the dependence of the noise value LAS,max on the parameters in decibels in chapter (6) which
are the temperature gradient and the wind class. Flight data and noise measurements
from the Airbus A320-200 from one year were combined with weather data. To be able to
draw conclusions about the weather, we looked at various stations in detail. Concerning
aircraft noise in the vicinity of an airport, noise refraction has proven to be an important
meteorological influencing factor. By classifying the wind direction and speed into established
headwind and crosswind classes, we were able to determine a difference of up to 1.2 dB
at a distance of approx. 700 m between the aircraft and the measuring station using the
ANOVA method. While such effects are often neglected in models in practice, we found
that they make an audible difference for people living near the airport. Measuring vertical
temperature gradients requires more complex measuring methods such as weather masts
or radiosondes, which are generally not available at airports. By including data from
the Hamburg weather mast, we were also able to investigate these influencing factors.
Temperature profiles during the day and night differ greatly and influence the direction
in which the sound is refracted. Here we were able to determine a difference of up to 2.6
dB between day and night temperature profiles at a certain station. However, we have also
found that it is not always possible to work out meteorological influences, depending on
the measuring station and the flight routes. Flight routes do not always provide optimal
measurement conditions and the permanent noise measurement on the ground is also
susceptible to interference factors that require a lot of manual work to process such as bird
or car noise. Overall, there is an average difference of around 10 dB in noise exposure
between the quietest and loudest measuring stations in the vicinity of Hamburg Airport.
These differences can mainly be explained by the fact that the aircraft are much closer to the
measuring station shortly after take-off or shortly before landing than is the case at more
distant measuring stations.

Up to now, outdoor sound propagation has mainly been analyzed using numerical simula-
tions. In chapter (5.3) and chapter (7) machine learning approaches were used to filter out
influencing factors. The PCA method was used to identify groups and correlations in the data
set. Take-offs and landings can be identified and should be considered separately for further
analysis. A random forest model is fitted to the noise data at a specific measurement point.
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8. Conclusion

With an accuracy of 98.81 %, the model was able to predict LAS,max values. In addition, we
were able to draw conclusions from the model that the speed and distance to the measuring
station make by far the greatest contribution to the accuracy of the model. The wind direction,
followed by the temperature, turned out to be the most important meteorological parameter.
For a specific NMT with its topographical conditions and a specific aircraft type, a simple
machine-learning model is sufficient to make predictions with an accuracy of 1 dB. Knowing
at which NMT the measurement takes place, the predictions could probably be extended to
the entire area if a model is trained for each NMT, although this would require further work.
The machine learning model could be trained with approx. 14,500 A320-200 measurements
at NMT 11 Norderstedt, Reitstall Ohlenfhoff. Not as much data was available for other
aircraft types, so it was not possible to train a model for other types. Overall, meteorological
parameters were responsible for 14.85 % of the accuracy in the training data when we look at
the Mean Decrease in Impurity (MDI).

In contrast to previous work, we have supplemented the measurement data for wind speed
and direction, temperature, and humidity with vertical profiles. Using these measurement
data, we were able to show that meteorology is not a negligible component of noise models.
Even in best practice models, the inclusion of these parameters makes an audible difference.
Future work can investigate how measurement data from weather masts can further contribute
to making accurate noise predictions. In the long term, a noise forecast can be made similarly
to a weather forecast. Residents living near airports will benefit from better noise protection,
especially if air traffic continues to increase. Planners of noise-reducing measures also benefit
from such forecasts, as this simplifies planning.
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A. Appendix

In the Appendix, PCA is applied to the noise and weather data of each NMT. A reduced set
of parameters is shown for most NMTs so that the names of the parameters are still easy
to read in the plot. For NMT 5 and 14 the complete parameter set is shown. NMT 5 does
not measure any weather data. For NMT 14, in addition to the weather parameters wind,
temperature and relative humidity measured at the station, all measurements of the weather
mast are also shown, i.e. the measurements of these parameters at the heights 2m, 10m,
70m, 110m, 175m, 250m, 280m. For NMT 05, these are supplemented by the NMT without
comparative values. In some plots, e.g. NMT 05, 07, and 11, you can see the division into
two groups. Here there are measurements of both take-offs and landings. The red dots
are individual noise events from take-offs, the purple dots represent measured noise events
from landings. The plot shows how closely the weather measurements of the weather mast
correlate with the measurements of the NMTs. This is interesting if you want to supplement
the airport measurements with height profiles of wind and temperature. The NMTs are
located at different altitudes and the local topographies may differ, so the data, represented
by the principal components, will look different for each NMT, although they may come from
the same overflights if the NMTs are placed one behind the other in relation to flight paths.
Performing a complete PCA analysis with eigenvalues and tabulated loadings for each NMT,
as shown in chapter (5.3), would be too extensive for the work. However, since the data is
available and can provide interesting insights and can be used to compare the NMTs with
each other, the plots appear here in the appendix.

72



A. Appendix

Figure A.1.: PCA NMT 01, only A320 data Figure A.2.: PCA NMT 02, only A320 data

Figure A.3.: PCA NMT 03, only A320 data Figure A.4.: PCA NMT 04, only A320 data
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Figure A.5.: PCA NMT 05, only A320 data
Figure A.6.: PCA NMT 05 complete, only A320

data

Figure A.7.: PCA NMT 07, only A320 data Figure A.8.: PCA NMT 08, only A320 data
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A. Appendix

Figure A.9.: PCA NMT 09, only A320 data Figure A.10.: PCA NMT 11, only A320 data

Figure A.11.: PCA NMT 14, only A320 data
Figure A.12.: PCA NMT 14 complete, only

A320 data
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