

Hyperspectral EnMAP Data Processing for Aquatic Science and Applications

<u>Nicole Pinnel^{1,*}</u>, Max Langheinrich², Mariana A. Soppa⁴, Avotramalala N. Randrianalisoa⁴, Leonardo Alvarado⁴, Peter Gege², Raquel de los Reyes², Thomas Heege³, Astrid Bracher^{4,5}, Miguel Pato², Martin Habermeyer¹, Emiliano Carmona²

13th EARSeL Workshop on Imaging Spectroscopy València, Spain, 17.04.2024

¹ German Aerospace Center (DLR), German Remote Sensing Data Center, Oberpfaffenhofen, Germany

- ² German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany
- ³ EOMAP GmbH, Seefeld, Germany
- ⁴ Alfred Wegener Institute (AWI), Helmholz Center for Polar and Marine Research, Bremerhaven, Germany
- ⁵ University Bremen (UB), Institute of Environmental Physics, Bremen, Germany

Federal Ministry for Economic Affairs and Climate Action

EnMAP Mission

EnMAP specification	VNIR	SWIR	
Spectral range	420 – 1000 nm	900 – 2445 nm	
Number of spectral bands	91	133	
Spectral sampling distance	6.5 nm	10 nm	
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm	
Spectral accuracy	0.5 nm	1 nm	
Signal-to-noise ratio	>500 (at 495 nm)	>150 (at 2200 nm)	
Radiometric accuracy	<5%		
Radiometric stability	<2.5%		
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96°		
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days		
Local time descending node	11:00 h ± 18 min		
Revisit time	4 days (±30° off-nadir tilt) 27 days (±5° off-nadir tilt)		
Ground sampling distance	30 m (at nadir; sea level)		
Swath width	30 km (2.63° across track)		
Swath length	1000 km / orbit; 5000 km / day		
Product size / type	30 km x 30 km / L1B, L1C, L2A		

EnMAP Mission

EnMAP specification	VNIR	SWIR	
Spectral range	420 – 1000 nm	900 – 2445 nm	
Number of spectral bands	91	133	
Spectral sampling distance	6.5 nm	10 nm	
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm	
Spectral accuracy	0.5 nm	1 nm	
Signal-to-noise ratio	>500 (at 495 nm)	>150 (at 2200 nm)	
Radiometric accuracy	<5%		
Radiometric stability	<2.5%		
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96°		
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days		
Local time descending node	11:00 h ± 18 min		
Revisit time	4 days (±30° off-nadir tilt) 27 days (±5° off-nadir tilt)		
Ground sampling distance	30 m (at nadir; sea level)		
Swath width	30 km (2.63° across track)		
Swath length	1000 km / orbit; 5000 km / day		
Product size / type	30 km x 30 km / L1B, L1C, L2A		

Hyperspectral Aquatic Remote Sensing

Nicole Pinnel et al., 13th EARSeL Workshop on Imaging Spectroscopy, 18.04.2024

Modified from Dierssen et al., 2020 and 2021

EnMAP Data Products

- Level 1 B
 - top-of-atmosphere radiance
- Level 1C
 - geometrically corrected (orthorectified) and re-sampled to a specified grid

Level 2 A

- Converts Level 1C products to surface reflectances separately for land and water applications.
- This split procedure is quite unique in data processing
- Calibration of the instrument during operations
- Quality control of the products.
- Official EnMAP products fullfil strict mission requirements that are validated extensively

L2A Products

EnMAP L2A Water-related Ground Segment Processor

Modular Inversion Processor (MIP)

Fully physics-based processor for EnMAP AC correction over water, includes coupled AC-water retrieval L2A User Parameters:

- Correction_Type (Combined, Land, Water)
- Terrain_Correction (Automatic, Yes, No)
- Band_Interpolation (Yes, No)
- Cirrus_Haze_Removal (No, Cirrus, Cirrus/Haze)
- Ozone_Column (Automatic, Custom Value)
- Season

•

•

- (Automatic, Summer, Winter)
- Water_Type (Clear, Turbid, Highly Turbid)
- Water_Reflectance_Product
 - (Normalized_Rrs, Subsurface_RE)

vertical profiles of optical properties Cirrus corection **Global and regional** Adjacency correction Sensor Land-water database & AOT retrieval parameters Atmospheric correction **Optical models** SIOP's of water, sea floor, land Aerosol Water pixel Quality optical depth reflectance Mask

Modular Inversion Processor (MIP)

Fully physics-based processor for EnMAP AC correction over water, includes coupled AC-water retrieval

Sunglint avoidance algorithm

Maximum coverage of areas affected by sunglint will be considered during acquisition planning

L2A Water Spectra

Adjacency correction was re-activated in processor version V01.04.00 (Sep 2023)

Bay of Venice, 2023-03-16, adjacency radiance for band 10 at 463nm

L2A Water Spectra

Spectral noise below 500 nm fixed in processor version V01.04.02 (Mar 2024)

Users may simply re-order their products to benefit from improvements

Bay of Venice, 2022-07-16

Validation of EnMAP L2A Water Product

in-situ hyper- and multispectral radiometry

Soppa et al. in review (Optics Express) Also Talk on Thursday on 11:45 (Session 3.4)

Nicole Pinnel et al., 13th EARSeL Workshop on Imaging Spectroscopy, 17.04.2024

Validation of EnMAP L2A Water Product

in-situ hyper- and multispectral radiometry

Soppa et al. in review (Optics Express) Also Talk on Thursday 11:45 (Session 3.4)

Research Council of Italy

Funding: 50 EE 2401C and 50 EE 1923

Intercomparison of EnMAP and S2

Water Quality Retrievals from EnMAP and Sentinel 2 at Lucinda Jetty Coastal Observatory (LJCO)

- Validation of [ρ_w]_N: EnMAP-MIP, EnMAP-Polymer, S2-C2RCC and S2-Polymer;
- Intercomparison of [ρ_w]_N and water quality retrievals (Chl-a, CDOM, TSM) between EnMAP-MIP and S2-C2RCC using WASI.

Source: Randrianalisoa et al (2024), (in prep.)

CENTRE OF EXCELLENCE IN OBSERVATIONAL OCEANOGRAPHY

Intercomparison of EnMAP and S2

	N	Slope	\mathbb{R}^2	MdAPE	MdPE	RMSE
S2-C2RCC	8	0.83	0.897	19.39%	-11.01%	0.0066
S2-Polymer	8	0.761	0.89	32.14%	-11.52%	0.0099
EnMAP-MIP	8	0.68	0.82	15.71%	-1.57%	0.0055
EnMAP-Polymer	8	0.69	0.71	44.73%	-13.41%	0.0052

Source: Randrianalisoa et al (2024), (in prep.)

Intercomparison of EnMAP and S2

In situ data from 2014 to 2022

Parameters		Min	Max	Median
Chl-a	In-situ	0.04	6.35	0.78
	EnMAP	0.04	3.80	0.94
	Sentinel-2	0.17	1.07	0.57
a _{CDOM}	In-situ	0.01	1.44	0.10
	EnMAP	0.02	0.40	0.13
	Sentinel-2	0.29	0.71	0.56
TSM	In-situ	1.17	35.71	4.47
	EnMAP	1.01	9.92	2.49
	Sentinel-2	0.06	0.99	0.45

Source: Randrianalisoa et al (2024), (in prep.)

CENTRE OF EXCELLENCE IN OBSERVATIONAL OCEANOGRAPHY

Water Quality

Water quality monitoring at Stettiner Haff (Oder), Germany Bio-opitical model using WASI-2D (Gege, 2014)

80

100

Ω

2.0

6.0

4.0

8.0

10

20

10

60

0.40

0.60

0.80

1.0

0.20

B

DLR

Conclusion and Outlook

- The split L2A procedure is quite unique in data processing and should give the user the possibility to select the best result according to the area of interest (land or water or combined).
- User feedback about data quality is always welcome
- After two years in orbit first results of L2-water products show reliable results
- Improved acquisition strategy to get more match-ups with field data and other sensors (Prisma, DESIS, EMIT, S-2...)

Acknowledgement

Many thanks for highly valuable contributions and feed-back !

- Dagmar Müller (Brockmann Consult)
- Martin Hieronymi (Hereon)
- Touria Bajouk (ifremer)
- Claudia Giardino (CNR)
- Mariano Bresciani (CNR)
- Alice Fabbretto (CNR)
- Thomas Schröder (CSIRO/IMOS)
- Daniel Scheffler (EnPT)
- EnMAP-Box Team

EnM

Getting Information and News: www.enmap.org

Home

Data & Access Mission Science & Applications Tools

Events & Education

www.enmap.org

Dr Nicole Pinnel

www.DLR.de

Email: nicole.pinnel@dlr.de

Funded by

Contact:

Federal Ministry for Economic Affairs and Climate Action

Data Access Portal

SCREENCASTS

How to register and assign to user roles

How to submit a data proposal C

How to plan and request future observations

How to search and download data from the archive

OHB

21

Data & Access

Important User Information:

https://www.enmap.org/data_access/ Screen Casts <u>https://www.enmap.org/mission/</u> EnMAP Ground Tracks https://planning.enmap.org/usermanual.pdf https://planning.enmap.org/EnMAP_FAQ.pdf Email : enmap_application_sp@dlr.de

Thank you for your attention !

Contact: Dr Nicole Pinnel Email: nicole.pinnel@dlr.de <u>www.DLR.de</u>

www.enmap.org

Funded by

F fi a

Federal Ministry for Economic Affairs and Climate Action

