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Zusammenfassung

Ziel dieser wissenschaftlichen Arbeit ist es Transferwissen aus dem Cloud Com-
puting Bereich auf die Avionik anzuwenden und dazu zu einem heterogeneren
Forschungsbild beizutragen. Im Fokus der Arbeit liegt insbesondere der Weg
der Avionik Architekturen von einem föderierten System hin zu einem inte-
grierten System, sowie dessen zukünftige Weiterentwicklung. Dabei sollen die
Herausforderungen und Lösungen von bekannten Architekturen analysiert und
mit neuen Errungenschaften aus dem Cloud Computing Bereich verglichen wer-
den. Insbesondere der Service Orientierted Architecture (SOA) Ansatz spielt in
diesem Vergleich eine Rolle, sowie dessen zuverlässige, sichere und kostengün-
stige Einsatzmöglichkeiten in Flugzeugen, Drohnen oder Raumschiffen. Die
Masterarbeit ist wie folgt gegliedert: In der Einleitung wird die Einordnung der
Arbeit wiederholt und in einen Zusammenhang mit der Gegenwart gestellt. Im
Zweiten Kapitel wird dann der Weg von einer föderierten Avionik Architektur zu
einem integrierten System beleuchtet und dessen Probleme, Herausforderungen
und Ideen isoliert. Diese gewonnenen Informationen werden nachfolgend ak-
tuellen Cloud-Native Technologien gegenüber gestellt und potentielle Lösungen
vorgeschlagen.
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Abstract

The goal of this scientific work is to apply transfer knowledge from the cloud
computing area to avionics and to contribute to a more heterogeneous research
picture. The focus of this work lies in particular in the transformation of avion-
ics architectures from a federated system to an integrated system, as well as
its future development. The challenges and solutions of known architectures
will be analyzed and compared with new achievements in cloud computing. In
particular the Service Orientated Architecture (SOA) approach plays a role in
this comparison, as well as its reliable, secure and cost-effective deployment in
airplanes, drones or spaceships. The master thesis is structured as follows: In
the introduction, the classification of the thesis is repeated and put in context
with the current state of the art. Then, in the second chapter, the path from
a federated avionics architecture to an integrated system will be shown and its
problems, challenges and ideas will get isolated. This gained information is sub-
sequently being compared with current Cloud-Native technologies and potential
solutions for these subjects will be proposed.

vii



Contents

1 Introduction 1

2 Related Work 3
2.1 Federated Avionics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Integrated Modular Avionics . . . . . . . . . . . . . . . . . . . . . 5
2.3 Distributed Integrated Modular Avionics . . . . . . . . . . . . . . 7
2.4 Workload Partitioning Strategies . . . . . . . . . . . . . . . . . . 9
2.5 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . 14

3 Cloud-Native 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Open Container Initiative . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Container Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Introduction and History . . . . . . . . . . . . . . . . . . 27
3.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Application Programming Interface (API) Overview . . . 30
3.5.4 Pods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.5 Namespaces, LimitRanges and ResourceQuotas . . . . . . 37
3.5.6 Deployments, Statefulsets and Daemonsets . . . . . . . . 38
3.5.7 Configmaps and Secrets . . . . . . . . . . . . . . . . . . . 40
3.5.8 Services, Ingresses and NetworkPolicies . . . . . . . . . . 42

3.6 Secure Software Supply Chains . . . . . . . . . . . . . . . . . . . 44

4 Cloud-Native and Aviation 48
4.1 Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Real-time capabilities in Linux . . . . . . . . . . . . . . . . . . . 52
4.3 Containers and Separation Kernels . . . . . . . . . . . . . . . . . 56

5 Test Scenarios 60
5.1 Introduction to the test environment . . . . . . . . . . . . . . . . 60
5.2 Deploying the first pod . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Testing CPU and RAM allocation . . . . . . . . . . . . . . . . . 63

viii



5.4 Testing the CPU manager . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Testing network isolation . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 71
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



Chapter 1

Introduction

The number of performed flights by global airline industries increased from 23.8
million flights (2004) to 38.9 million flights (2019)[95]. This growing number
of performed flights puts an enormous pressure on the global aviation industry
as a whole. The permanent price pressure lead to demands of cheaper, lighter
and smaller flight components[111]. Every inch and every gramm counts in
the global business of civil aviation, because every inch less means one possible
paying customer more on the plane and every gramm less means less expen-
sive fuel demands for the flight. But it is not only the underlying architecture
and the corresponding hardware that plays a big role in the aviation business.
The software forming these architectures and running on these devices plays an
equal important role in the aviation industry. The development of software is
difficult, error-prone, tedious and expensive. This leads to the question why the
aviation industry is not exploiting resources and development processes from
other industry branches. The open source software movement provides a stag-
gering amount of different technologies for solving problems that are not too
different to the problems from the aviation industry. Reasons for this devel-
opment paralysis are regulation and certification. The civil aviation sector is
strictly regulated, thus experimenting with alternatives is expensive and diffi-
cult. Furthermore, the existing certification companies are not known for their
disruptive technology announcements. Nevertheless this thesis tries to explore
a few of these alternatives and tries to suggest topics that might be interesting
for further research. Hopefully, it will help justifying further research in this
area and incite changes in the inflexible regulation and certification chain. The
United States (US) military sector and the US space industry seem to be more
willing to experiment with new or existing open source software. For example,
the private US space company SpaceX had tremendous success with Linux as
operating system on their Dragon spacecraft[52] and Linux is not only being
used by SpaceX[77]. Of course this success is only possible, because the space
industry is much more isolated and kept secret than the civil aviation industry
with their international standards and guidelines. One of these standards is
the DO-178B certification and its successor DO-178C from the Radio Technical
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Commission for Aeronautics (RTCA). This certification has strict requirements
on flight operating systems. A few of these requirements are real-time capabil-
ities and a transparent and documented development process with design deci-
sions and other documents. While real-time capabilities can be easily added via
soft patches (SpaceX is exactly doing this with their Dragon spacecraft[52]), the
documentation and development process seems to be an invincible obstacle for
a successful certification process. Another prominent example of open source
adoption is the operation of the Cloud Native container orchestration engine
Kubernetes in military fighter planes, like the US military plane U-2 [139]. Un-
fortunately there is no research on that topic. This thesis tries to change this as
well and tries to connect existing research in both areas for creating synergies
between them, but for connecting these two areas we need to understand both
of these areas first. Therefore, the next chapter will give an introduction to the
history of software architectures on planes and will highlight the most important
challenges.
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Chapter 2

Related Work

2.1 Federated Avionics
To understand the background of this thesis better it is recommended to un-
derstand the journey of flight system architectures. Around the 1970’s avionics
systems evolved from traditional point-to-point wiring to a standard data bus
with a federated system architecture[156]. This federated system has been im-
plemented as distributed collection of dedicated computing resources consisting
of Line-Replaceable Units (LRUs) or Line-Replaceable Modules (LRMs)[150].
LRUs and LRMs are modular components that are specifically designed for pre-
determined tasks, such as interacting with certain flight sensors/effectors[76].
Sensors are reading data and effectors are executing certain actions, for example
moving the flight gears. The main advantages of LRUs are their atomic behav-
ior and their strict and easily certifiable system design. Each LRU or LRM
contains one specific avionic workload and its required computing resources
(processors, input and output (I/O) modules, main memory, hard disks and
network cards). Figure 2.1 shows a simplified model of the federated architec-
ture with distributed LRUs, sensors, effectors, and a global data bus connecting
the components. It visualizes the enormous effort and the huge amount of ca-
bles. Duplicating the systems achieves service redundancy and ensures system
reliability[111], for the price of duplicating the LRU as a whole. This does not
only mean a duplicated hosted function (the actually functionality of the LRU),
it also means double as much cables, processors, main memory, network cards
and connectors. Weight and complexity disadvantages are not the only prob-
lems with the federated architecture approach. Having a dedicated hardware
stack for each LRU means not fully saturated potential. Due to safety reasons
the LRU will very unlikely use all of its resources. This means there will be al-
ways a spare amount of main memory, hard disk or network saturation. Added
up over the whole federation architecture this means a huge amount of unused
resource potential and unnecessary energy consumption that could be used for
other functionality. The task-specific development of LRUs leads to problems
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LRU 
Data
Bus

Sensor/EffectorDirect I/O connection

Figure 2.1: Simplified visualization of the federated avionics architecture, show-
ing LRU, sensors, effectors, and the global data bus

with functionality extensions, meaning that LRUs are not easily upgradable or
extendable and therefore adjustable to new tasks or functionality. Moreover,
in the past, the development of federated architecture components has been
closed source and very vendor specific. Specifications for federated architecture
components were mostly hidden behind a paywall or non disclosure agreements
leading to a decreased developer efficiency and less market competition due to
monopolism. LRUs are not easily exchangable between vendors. Figure 2.2
displays the internal structure of the LRU and its interaction with other LRU.
Each LRU provides its own hardware stack and hosts exactly one avionic func-
tion. It is possible for one LRU to speak with multiple sensors or effectors,
but this does not change their core purpose of hosting exactly one function. In
section 2.2 this thesis will investigate the next step in the evolution of flight
system architectures and how the disadvantages of federated architectures can
be fixed.
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Figure 2.2: Internal system architecture and interaction between LRUs

2.2 Integrated Modular Avionics
Integrated Modular Avionics (IMA) is the direct successor of the federated
avionics architecture. The idea behind Integrated Modular Avionics (IMA) is
to consolidate the distributed hardware in one central flight cabinet. A Flight
cabinet is very similar to a rack in a datacenter. They can host multiple pro-
cessing units, each comes with its own hardware stack consisting of a Central
Processing Unit (CPU), Random Access Memory (RAM), disk space and con-
nectors for input and output[111]. These servers are then plugged into the flight
cabinet. Each server can host more than one avionic function and each function
is allocated on partitions. Partitions can be created on different ways and has
been standardized in ARINC 653 standard[144]. The most common approach
is the use of a hypervisor (how this is implemented is being discussed in sec-
tion 2.4). The flight cabinet provides power and required network connection to
the plane’s global data bus as described in ARINC 629 standard[59] or ARINC
429 standard[48]. ARINC 629 is the successor of the data bus ARINC 429. Ef-
fectors and sensors communicate with the flight cabinet over ARINC 629[111].
Sensors or effectors that are incompatible with ARINC 629 may communicate
over remote data concentrators. Remote data concentrators are gathering data
from sensors or sending data to effectors over traditional I/O connections. The
gathered data or the received actions are communicated via ARINC 629 or AR-
INC 429. Therefore, remote data concentrators act as bridges between such
devices and the data bus. Using a central flight cabinet cannot replace all LRUs
in the plane[150]. These LRUs needs to be either integrated into the flight
cabinet or connected to the global data bus, for example via remote data con-
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Figure 2.3: Simplified visualization of the integrated modular avionics architec-
ture, showing sensors, effectors, cabinets and the data bus LRUs

centrators. Figure 2.3 depicts a simplified view on integrated modular avionics
architecture in a plane. The number of LRUs has been reduced and one central
flight cabinet has been introduced. Remote data concentrators are working as
bridges between sensors and effectors incompatible with the data bus standard
and the hosted functions in the flight cabinet. Figure 2.4 shows the modules
inside of such a flight cabinet. The flight cabinet possesses multiple processing
units. Each processing unit is comparable to a dedicated computer with its own
hardware and operating system. These processing units are being connected via
a network layer and each processing unit hosts one or more hosted functions.
Hosted functions are isolated from each other and have a fixed predetermined
set of resources and execution time.

This system architecture has numerous advantages over the federated avion-
ics architecture. Due to the more centralized approach IMA is able to reduce
weight via better cable management and less distributed processing units. Com-
puting resources can be used more efficiently via hosting multiple avionics func-
tions on one processing unit. This leads to a higher system saturation. A
positive side effect is less energy consumption and a smaller ecological foot-
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Figure 2.4: View into a flight cabinet

print. The reduced weight creates more space for cargo, fuel or passengers.
Hardware consolidation leads to a consolidation of development efforts, which
achieves cost and time savings[150]. The common processor allows the developer
to focus on the hosted avionic function, enabling a better development experi-
ence and less error-prone flight software. Separating software and hardware is
a benefit during the certification process, because the certifying authority can
certify software and hardware separately. This has just another huge impact on
cost and time savings. Additionally, upgrading the hosted function becomes a
lot easier, because of the hardware and software separation and less expensive
hardware, due to standardized and more common processing units. Another
important benefit can be achieved via adopting the idea of open, software and
hardware. An open system architecture with open standards can lead to a more
competitive market due to industry-wide participation and exchangeability be-
tween hardware or software applications. This way development and hardware
costs can be reduced, because development cost gets distributed among all con-
tributing companies and mass production of standardized and open hardware
shrinks marginal costs[6]. Moreover, the decoupling between hardware and soft-
ware can have a positive effect on new emerging companies, considering the
lower costs[150]. Software virtualization makes it easier to develop the software,
without buying expensive physical development kits. The software is being vir-
tualized, tested and can be much later evaluated on real hardware, speeding up
the development process and time to market.

2.3 Distributed Integrated Modular Avionics
While IMA introduced a central architecture via consolidating computing re-
sources into one central flight cabinet Distributed Integrated Modular Avionics
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(DIMA) takes a different approach. IMA has shown that it is able to success-
fully reduce the number of components in the plane with increasing number of
hosted functions, because of its shared hosting infrastructure[49]. Although this
had positive effects on weight and cost management, there is room to improve
in form of cable management. Due to the centralized architecture it is necessary
to connect every sensor and effector in the plane with the central flight cabinet
in the fuselage[83]. This possible increase of cable length can be prevented via
using ideas from the federated avionics and IMA. DIMA suggests a distribu-
tion of processing units, while taking into account the advantages of a central
flight cabinet. Instead of one central flight cabinet it is possible to redistribute
the avionics functions over multiple flight cabinets distributed in the plane’s
fuselage (see also Figure 2.5). This way it is possible to successfully exploit
the advantages of the integrated architecture, while achieving further improve-
ments in the cable management[78]. Cable management is not the only possible
adjustment for improvement. The commercial cloud computing industry expe-
rienced a huge success over the last couple of years and these achievements can
be used for creating synergies between these two areas and applying cloud com-
puting ideas in DIMA. According to the National Institute of Standards and
Technology (NIST) cloud computing is defined as:

“Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”[84]

Although not all aspects of cloud computing are applicable on aviation, some of
these aspects are. One of these aspects is the separation into different service
layers:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

SaaS is handling all applications. PaaS is responsible for the platform, where
these applications are running on (for example a hypervisor or services like
webserver or databases). IaaS is the underlying infrastructure (server, storages,
networking). These three layers can be mirrored on the aviation world as follows:

• SaaS: Hosted functions

• PaaS: The virtualized processing units or separation kernels

• IaaS: flight cabinets, remote data concentrators, the plane’s data bus

Via separating each of these layers the aviation industry gains stronger stan-
dardization, more reliability and more effective development workflows. Instead
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Figure 2.5: Visualization of distributed flight cabinets

of selling one big monolithic system, separation makes it possible to develop
products for specific layers and interconnect them with the other layer via stan-
dards. These standards can be, as shown in section 2.2, drivers for competition
and exchangeability. Another aspect of cloud computing is the free and con-
figurable allocation of applications[78]. Dedicated storage, processor or sensor
clusters would allow on-demand access from applications. Nevertheless it is a
challenge to make this access reliable and safe. Furthermore, using standardized
software may allow interconnection between the plane and ground units (for ex-
ample: real-time weather data transmitted from the ground to the plane). This
is partly comparable to the tactical data link of military units that get real-time
radar data on their Horizontal Situation Display (HSD).

2.4 Workload Partitioning Strategies
Planes are composed of complex distributed systems with different tasks, re-
quirements and environmental influences. Every system has its own set of risks
and possible impacts. These different risks are known as Design Assurance Level
(DAL) or Item Development Assurance Level (IDAL) and have been defined in
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the Aerospace Recommended Practice (ARP) 4754 as follows[3]:

A Catastrophic system failures

B Hazardous system failures

C Major system failures

D Minor system failures

E No safety effect

Due to these different risk levels it becomes important to isolate systems
from each other. A system with a low risk level should never have direct nor
indirect impact on another system. In conclusion, the following measures are
necessary to satisfy the safety and security requirements in planes:

• Reserved CPU time

• Reserved memory

• Reserved disk space

• Quality of Service (QoS)

• Network isolation

• Process isolation

• Privilege dropping

Reserved CPU time means that every task has a strict time partition to
work with. Normally, CPU time is being shared on single processor systems.
The operating systems simulates parallelism via fast context switches. Multiple
tasks are being executed consecutively. This creates the impression that the
system behaves parallel, but in reality it does not. On multi processor systems
real parallelism is possible. Reserved memory refers to a fixed memory partition
in the RAM. Reserved disk space refers to guaranteed space on a hard disk for
storing persistent data. Network isolation and Process isolation ensures a noise
free and secure runtime environment. Processes should not be disturbed by
other processes either on process or network level. Furthermore, each process
has to drop privileges. Dropping privileges increases the safety and security
of a service, because it is less likely to interfere with other processes if the
process has no privileges to do so. QoS gives certain processes with higher
importance or risk level a higher priority. For example, a system that controls
the radar should have a higher priority than a system that just controls the
ambient lights in the passenger cabin. Many of the above mentioned measures
reveal other measures as direct dependencies. For example, it is not possible
to do proper QoS without an observable system that gets properly monitored.
Another example is the importance of security. On the first view, security might
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be untangled of safety, but in reality safety and security have a direct effect on
each other. If the system is insecure it cannot be safe and reliable, because every
possible security incident could undermine all reliability promises. The same
applies to safety. An unsafe and unstable system cannot be considered secure,
because these weak points in the reliability might weaken the security. Just
imagine a system that controls permissions or security related functions. The
system itself may be secure, but if it is unreliable it may has a direct effect on the
security of other systems that depend on this particular system. Additionally,
planes have further constraints and requirements on software. One of these
requirements is a guarantee on response. Certain software systems in planes
must respond before a given deadline. This is called real-time communication.
Real-time communication breaks down into the following types[155]:

Hard The system has to satisfy all constraints. Responses are always on time.
If a response would come too late it would inflict damage.

Firm Executed tasks are worthless when their response does not satisfy the
time constraint. No damage happens.

Soft There are time constraints for requests and responses, but a tolerance
exist. Delays are acceptable (as long as they fit in a specific time frame).

With all of these requirements it is obvious that there need to be techni-
cal implementations to satisfy all constraints. The real-time constraints can be
satisified via implementing real-time capabilities on operating system or ker-
nel level. Prominent examples are VxWorks’ real-time operating system[149],
FreeRTOS[114] or the real-time patches for the linux kernel[137]. All other
requirements are being solved either via virtualization or via containerization.
There are two types of virtualization: Full virtualization and paravirtualization.
While full virtualization creates an almost full virtualized hardware including
virtualized memory or I/O devices, the paravirtualization does only virtualize
the software layer. The hardware stack will not be virtualized. Although this
approach increases performance it is considered as less secure. With virtualiza-
tion it is possible to successfully isolate processes from each other and provide
a dedicated workload partition for a specific software with its own RAM and
CPU. The key element in this approach is the hypervisor. The hypervisor is
the abstraction layer between the hardware, the software and their virtualized
counterpart. Type 1 hypervisors run directly on the hardware, while type 2
hypervisors are running on a dedicated host OS. Both hypervisors can usually
virtualize a finite number of guests (finite, because the hardware resources are
finite). Guests can be either applications or whole operating systems. Many
hardware provide direct support for virtualization, such as special instruction
sets for Central Processing Units. Containerization uses operating system or
kernel level features to isolate processes or resources. In the Linux kernel this
usually works via making use of namespaces, kernel capabilities, control groups,
union file systems and additional kernel features such like the Extended Berke-
ley Packet Filter (eBPF). Linux namespaces have been heavily influenced by
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namespaces in Plan 9 (an alternative operating system by Bell Labs) and zones
in Solaris. Contrary to traditional virtualization, namespaces do not need a
hypervisor layer, instead the kernel offers a single system call called setns()[82].
The Linux namespace Application Programming Interface (API) consists of six
dedicated namespaces, each responsible for a different isolation environment[91]:

mnt responsible for filesystem mount points

pid responsible for processes

net responsible for the network stack

ipc responsible for Inter-Process Communication (IPC)

uts responsible for Unix Time Sharing (UTS) and setting hostname information

user responsible for User IDs (UIDs)

cgroup responsible for control groups (cgroups)

time responsible for time

The first namespace mnt specifies the filesystem hierarchy for the isolated pro-
cess or a group of processes. With this namespace it is possible to mount only
a specific directory structure into the isolated environment. This ensures that a
process from environment A cannot access files on the host system or in another
environment. The mnt namespace has become especially useful in combination
with union file systems. Union file systems are layered filesystems and allow to
mount multiple directory structures over each other. Docker uses this technol-
ogy for combining different layers to a full Docker container image. The second
namespace pid gives the system the opportunity to run multiple processes with
the same Process IDs (PIDs) on the host system. Running multiple processes
with the same PID on one system fulfills different purposes. On one hand this
provides reliability across different hosts. Via this approach it is possible to
run a process with the same PID in different environments on different phys-
ical hosts. On the other hand it provides isolation. The process can only see
other processes contained in the same namespace[92]. The net namespace is re-
sponsible for everything network related. It provides the isolated environment
with Internet Protocol (IP) addresses, ports, routing tables and virtual network
devices. net is mostly being used for isolating network connections from each
other. For example a namespace A could provide its own ports and internal
IP addresses, while a namespace B could provide the same port. The ports
can be forwarded to the host via port-forwarding. The ipc namespace handles
everything Inter-Process Communication (IPC) related (message queues, Linux
signals like sigkill for killing processes etc). For dealing with different hostnames
in different namespaces the uts namespace is being used. The last three names-
paces implemented by Linux are the user, cgroup and time namespaces. user
is responsible for User IDs (UIDs) and Group IDs (GIDs). With the names-
pace user it is possible to differentiate users or groups with the same UIDs or
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GIDs in different environment. For example, having the root user (the admin-
istrator account on Linux systems) in different isolated environments. The user
root is identified by the UID 0 and the Group ID (GID) 0. Different times in
isolated environments are provided by the time namespace. The last names-
pace, the cgroup namespace, is responsible for the control groups (cgroups). A
cgroup enables the system to limit and monitor resources inside of a namespace
via providing a pseudo-filesystem called cgroupfs[80]. Each cgroup consists of
one or more processes and each process is being modified by a subsystem (also
known as resource controller). Subsystems work as modifiers for these pro-
cesses. Via these modifiers it is possible to set specific limits or monitor the
processes. For example, limiting the available CPU time or memory for a pro-
cess, increasing the priority for network traffic, limiting access to I/O devices or
monitoring events created by a process[80]. The last two missing building blocks
for secure containers are kernel capabilities and the Extended Berkeley Packet
Filter (eBPF). Kernel capabilities provide a more granular access to kernel fea-
tures such like mounting or creating ports[104]. Common kernel capabilities are
CAP_CHOWN (changing the owner and group of a file), CAP_NET_BIND_-
SERVICE (allow the binding of ports under 1024), CAP_SYS_ADMIN (allow
system administrator access), CAP_NET_ADMIN (allow network administra-
tor access, a complete list can be found in the corresponding man page for kernel
capabilities[81]). The Extended Berkeley Packet Filter (eBPF) is the successor
of the Berkeley Packet Filter (BPF). The Berkeley Packet Filter (BPF) is well
known for its human readable filtering language that allows filtering, monitoring
and analyzing packets in computer networks. Core of the BPF is a just-in-time
(JIT) compiler that translates the human readable BPF language into machine
readable byte code. Contrary to its predecessor, eBPF is not limited to network
packets. With Linux version 3.18, eBPF has been embedded into the Linux
kernel as virtual machine and allows filtering for any sort of Inter-Process Com-
munication (IPC), such like socket connections, system calls (syscalls) or kernel
permission delegations. Figure 2.6 gives an overview over different workload
partitioning and deployment techniques. On the far left is the traditional setup
with the hardware, an operating system running on the hardware, the applica-
tions and their shared libraries. The second pillar shows a type 2 hypervisor
with a hardware, an operating system, shared libraries on the operating sys-
tem, a hypervisor and virtual machines. Each virtual machine comes with their
own operating system, shared libraries and the actual payload (the application
with the workload). The type 1 hypervisor simplifies this setup with running
a hypervisor directly on the hardware. In this case, the hypervisor is hypervi-
sor and operating system at once. The container deployment comes with the
hardware, an operating system and its shared libraries and a container runtime.
Each container can consist of different parts. A container can consist of only
one static built executable or, an application and its shared libraries. Shared
libraries minimize the size of software via sharing common methods, for instance
a library for Remote Procedure Calls (RPC) or Domain Name System (DNS)
lookups. When the executable has been linked dynamically, the executable can
dynamically look up these common methods. Contrary to dynamic linking is
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Figure 2.6: Overview over different workload partitioning and deployment tech-
niques

static linking, where a software is being compiled with all its dependencies into
one executable. Although all deployment techniques may look similar at a first
glimpse, they are indeed completely different. A virtual machine allows stricter
isolation compared to running all applications without virtualization and a con-
tainer can consist of a single binary.

2.5 Challenges and Opportunities
Prior, this thesis has explored past, present and future avionic system archi-
tectures. On the next pages it is going to examine challenges in these avionic
system architecture designs and possible enhancements in the avionic domain
in general. This document is explicitly ignoring the certification process of soft-
ware. It is known that a certification process in the avionic domain can be
slowly and very costly, due to its high risk to passengers, flight personnel and
civilians on the ground. Enhancing this certification process via altering the
certification itself, while matching the right balance between safety and devel-
opment speed or costs, is explicitly not topic of this research. Instead, this
document tries to focus on few main questions. The first identified challenge is
the increase of development speed in the avionic domain. Pushing innovations
and new technologies fast is a major success factor. Maintaining a hardware and
software stack for a traditional avionic system architecture, like the federated
architecture, is a huge cost and time disadvantage. The developer cannot use
the standard development tools and needs to adapt to the new environment.
Moreover, buying the necessary equipment and constantly adjusting the soft-
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ware to this equipment are toilsome and complicated. Every hour of additional
work is a cost factor that leads to higher unit prices, smaller profit margins
and less time for more features. Costs directly lead to the next challenge: De-
creasing development costs and increasing feature output. Considering the tight
entanglement of soft- and hardware in federated systems these stacks become
very cost intensive. Also, the feature output is limited to the required hard-
and software, hence limiting possible performance or functionality gains. Per-
formance is another challenge. As a result of heavy use of virtual machines
the performance gains are not as high as they could be. The hard- and soft-
ware limitations make the system less extensible and less adjustable. Another
challenge is the proprietary avionic system development environment. Propri-
etary standards, hardware- and software have devastating effects on innovation,
safety, security, costs and technological development. Innovation is affected neg-
atively, because of less communication between companies. Open architectures,
software or hardware, increase communication and share knowledge between all
development entities. This shared knowledge and improved communication is
known for increasing security of software[54]. Restricting access to the source
code may help restricting the attacker’s knowledge for executing attacks, but
it is shown that “keeping the source code closed appears to be difficult”[85].
Furthermore, patches for open source software are released twice as fast as for
closed source software[154]. The increased pace of patching the software under-
lines the increased development speed and its connected benefits. Many of the
highlighted challenges are not new for the tech industry. The cloud industry
has solved several of these challenges successfully.

15



Chapter 3

Cloud-Native

3.1 Introduction
Containers are not a new concept. The idea behind them goes back to systems
like Solaris, FreeBSD or Linux. FreeBSD has released their first container-alike
isolation environment, called jails, in 2000[55]. Jails are heavily being influenced
by the chroot system call on Unix systems. The chroot system call has been
introduced with Version 7 Unix in 1979[13]. The concept has been there all the
time so what was missing? Although containers were in use by system admin-
istrators the workflow was not developer friendly enough. Big companies like
Google realized the potential of containers early and started to heavily use them
in their own infrastructure, but the overall success came with open source tech-
nologies like Docker or Kubernetes. It turned out that opening up the develop-
ment process of these technologies has been the perfect foundation for creating a
community that spans over several companies and industry branches. This com-
munity is under supervision of the Linux Foundation and is called Cloud Native
Computing Foundation (CNCF)[94]. The Cloud Native Computing Foundation
(CNCF) built an enormous ecosystem for running and orchestrating containers.
Figure 3.1 visualizes the scale of the CNCF related projects[22]. Considering
that that the CNCF was founded in 2015 this is clearly a huge success for the
containerization of applications in different industry branches, especially for the
cloud computing industry. Looking at the landscape it can be seen that the
CNCF covers different areas and expands wide beyond containerization. Just
to name a few different areas and their sub areas on the landscape:

App Definition and Development databases, streaming and messaging, ap-
plication definition and image build, continuous integration and delivery

Orchestration and Management scheduling and orchestration, coordination
and service discovery, remote procedure call, service proxy, api gateway,
service mesh

Runtime Cloud-Native storage, container runtime, Cloud-Native network
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Provisioning automation and configuration, container registry, security and
compliance, key management

Observability monitoring, logging, tracing, chaos engineering

While some of the above areas play only a minor role in the aviation industry
some areas are usable or will play a bigger role in the future. Especially, areas
like scheduling and orchestration or container runtime are of interests for the
aviation industry, because these areas provide related functionality compared
to current solutions in actual use within the aviation industry.

Figure 3.1: Cloud-Native Computing Foundation Landscape

3.2 Docker
Docker (released in 2013[43]) has revolutionized the way containers are being
used. Before Docker, the primary users of containers have been sysadmins, who
used containerization to isolate environments from each other. With Docker
this workflow has changed. Docker has introduced a unique file format, called
Dockerfile, for describing a container consisting of different layers. These layers
are stacked on each other, with the help of union file systems, for a final Docker
image. This process has a few advantages. Each layer can be cached separately,
leading to less disk usage and faster container build times. Layers do not need
to be from the same author. In Docker it is very common to re-use common
Docker images as a base layer and add additional payload to them via adding
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layers on top of the base layer. The base layer is often called the base image
and the most popular base image is the scratch image. Scratch is just an empty
Docker layer. All other base images use the scratch image as start point for
the build process. Base images can be whole Linux distributions like Debian,
proprietary operating systems of the industry or just a directory structure. For
example, Google provides a distroless Docker image that just contains time
zone data and the global certificate chain[33]. The distroless image is mainly in
use for shipping static binaries inside of Docker. This is common practice for
languages like Rust or Go. Shipping just the binary leads to a much smaller
attack surface. Having no shell inside of the image makes it impossible for an
attacker to gain shell access to such a container and missing additional executa-
bles make it difficult to exploit additional executables for building an attack
chain (for example via using network utilities for opening a reverse shell into
the container). Listing 3.1 shows an example multi-stage Dockerfile with differ-
ent layers. Each line in the file is a separate layer in the final image and each
FROM statement defines a different stage in the Docker image build process.
In the first stage of the Dockerfile a small hello world program will be written in
the programming language Go (often referred to as Golang) and compiled. In
the second stage, the executable from the first stage will be copied to the new
second stage, placing it into a distroless image for reducing the possible attack
surface and making the executable available for further distribution as Docker
image. The first stage starts with the statement FROM docker.io/golang:1.17
AS GO_BUILD, setting the base image to golang with version 1.17 from the
Docker registry docker.io and naming this stage GO_BUILD. A Docker reg-
istry is a public or private repository for Docker images. The second statement
WORKDIR /go/src/app sets the working directory for the build process. It
is comparable to moving to a folder in a Windows system or changing the di-
rectory in a Linux system via the command line command cd. The next three
statements starting with ENV are setting environment variables. Environment
variables are an operating system feature for setting variables outside of pro-
grams for configuration purposes. GOOS sets the target operating system to
Linux, GOARCH sets the architecture to amd64 and CGO_ENABLED dis-
ables the libc support for the Go build process. Disabling the libc support
is equal to disabling linking to shared libraries, resulting to a static compiled
binary that can be moved on different systems as long as the target operating
system and architecture stays the same. With the next three RUN statements it
is possible to execute commands in the base image docker.io/golang:1.17 (this
also means that our base image is actually based on Linux). The echo com-
mand prints our Go hello world code and pipes it into a file called main.go.
Using go mod init app initializes the Go build and dependency system with a
name for the app. Running go build -o /out/app . will build the main.go file
in the current directory and move the created executable app to the directory
/out/. Using the next FROM gcr.io/distroless/base statement a new stage will
be build with a new base image for the final image holding the executable and
reducing possible attack surface by utilizing Google’s distroless images. The
COPY statement will copy the built executable from the first stage into the

18



new second stage and the ENTRYPOINT statement will set the path of the
application as entrypoint for the container startup. It is important to differ
between images and containers. Containers are running instances of images.
The entrypoint is the start point from each container and be compared to the
main function of most C-alike programming languages or the init system of a
modern operating system. Listing 3.2 shows the output of building the Docker
image. Each step is equal to one layer of the final image and each layer has a
unique Secure Hash Algorithm 2 (SHA256) checksum over the binary content
of the layer for ensuring integrity and reproducibility. This minor information
has a unique impact on supply chain security, developer experience and costs,
because with each layer cryptographically identified it is much more difficult to
tamper with the build process, allowing secure access to cached layers and lead-
ing to faster development speed and lower costs. The final image can be run as
container via executing docker run leading to the promised Hello World! line.

Listing 3.1: A multi stage Dockerfile with different layers

1 FROM docker . i o / golang : 1 . 1 7 AS GO_BUILD
2 WORKDIR /go/ s r c /app
3 ENV GOOS=l inux
4 ENV GOARCH=amd64
5 ENV CGO_ENABLED=0
6 RUN echo "package main\nimport \" fmt\"\ nfunc main ( ) { fmt

. Pr in t ln (\" He l lo world ! \ " ) }" > main . go
7 RUN go mod i n i t app
8 RUN go bu i ld −o /out/app .
9

10 FROM gcr . i o / d i s t r o l e s s / base
11 COPY −−from=GO_BUILD /out/app .
12 ENTRYPOINT [ " . / app " ]

19



Listing 3.2: Output of a docker build run with shortened SHA256 checksums

1 STEP 1 : FROM docker . i o / golang : 1 . 1 7 AS GO_BUILD
2 STEP 2 : WORKDIR /go/ s r c /app
3 −−> Using cache baa3b5061ca
4 −−> baa3b5061ca
5 STEP 3 : ENV GOOS=l inux
6 −−> Using cache fe142d360ee
7 −−> fe142d360ee
8 STEP 4 : ENV GOARCH=amd64
9 −−> Using cache 49771 a6a4a6

10 −−> 49771 a6a4a6
11 STEP 5 : ENV CGO_ENABLED=0
12 −−> Using cache edf307d8374
13 −−> edf307d8374
14 STEP 6 : RUN echo "package main\nimport \" fmt\"\ nfunc main

( ) { fmt . Pr in t ln (\" He l lo world ! \ " ) }" > main . go
15 −−> Using cache ca435b8adf9
16 −−> ca435b8adf9
17 STEP 7 : RUN go mod i n i t app
18 −−> Using cache 19 b7a23f24d
19 −−> 19b7a23f24d
20 STEP 8 : RUN go bu i ld −o /out/app .
21 −−> Using cache baeee09e19 f
22 −−> baeee09e19 f
23 STEP 9 : FROM gcr . i o / d i s t r o l e s s / base
24 STEP 10 : COPY −−from=GO_BUILD /out/app .
25 −−> Using cache 5 ab01 f9ac f7
26 −−> 5 ab01 f9ac f7
27 STEP 11 : ENTRYPOINT [ " . / app " ]
28 −−> Using cache 288 ac81c34b
29 −−> 288 ac81c34b

3.3 Open Container Initiative
In June 2015 leading container projects, such like Docker and CoreOS (a minimal
Linux distribution for running containers), launched the Open Container Ini-
tiative (OCI) under auspices of the Linux Foundation[2]. The OCI’s purpose is
the standardization of Docker’s container image specification (image-spec[102]),
container runtime (runtime-spec[103]) and content distribution (distribution-
spec[96]). These three specifications address everything from building a con-
tainer image, distributing the image over a container registry, and running the
container. Standardization enables interchangeability of all three implementa-
tions and increases possibilities for their production usage. In the following,
this thesis will have a short glimpse on each of the specifications. A full writeup
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would break the constraints of this thesis. It is recommended to read the orig-
inal specification, if more information is needed. The image specification has
five essential components:

manifest provides a set of layers and a configuration for a specific image
runnable on a specific architecture and operating system

image index provides a set of manifests with different architectures and oper-
ating systems

image layout provides a file system layout (the contents of the image)

filesystem layers provides information about merging different layers to one
image

configuration provides the configuration of the image, provided by the Dock-
erfile (environment variables, entrypoints, etc)

Listing 3.3 depicts a very simplified example image manifest. The SHA256
checksums have been shortened for saving space in this document. The mani-
fest shows the schema version, a configuration, multiple layers and annotations.
The configurations and layers have media types, a field for the size and a digest
(a checksum) of the addressable content. Annotations provide further infor-
mation for the image. The OCI manifest specification defines a few predefined
annotations, but at last these are just customizable strings. Annotations allow
additional metadata for images, thus providing information for various other
use cases, like easier search in an OCI compatible registry or information about
its maintainers. With the manifest it is possible to address the content via its
offset and to provide integrity via digests [101]. One or more image manifests
can form an image index. An image index is a set of different image manifests
for different operating systems and architectures [99]. Listing 3.4 illustrates such
an image index with support for two platforms. The first addressed manifest
links to a manifest for MacOS with M1 chipset. The second addressed manifest
refers to a manifest for Linux with amd64 chipset. Furthermore, it is possible
to add additional annotations to the image index definition. As mentioned ear-
lier, an OCI image consists of different layers. These layers are defined in the
image layout and the filesystem layers specifications. One or more compressed
layers are applied on top of each other to create the entire root filesystem of the
image[97]. The filesystem layers specification can handle additions, modifica-
tions and removals of various file types, such like directories, sockets, symbolic
links, block devices, or regular files[97]. All of these layers are described as an
image layout. Each layer is stored in the image layout as Binary Large Ob-
ject (BLOB) and addressable via its SHA256 digest. An OCI image layout is
comparable to a directory in a filesystem. A BLOB directory stores all layers,
an index.json file provides platform interoperability via establishing the rela-
tionship between each layer and their target platform [100]. OCI layout files
work as marker and version identifier of the OCI layout. While the prior men-
tioned specifications define the structure of the OCI image, the configuration
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specifies the environments, entrypoints, volumes, working directory, commands
that should be executed and other configuration parameters. The docker image
inspect <docker image> command prints a full OCI image configuration for a
given image. Listing 3.5 shows the output of this command for the prior men-
tioned OCI image, built from Listing 3.1. The output has been cut down to the
most important parts. Clearly visible is the environment in form of environ-
ment variables, the command, the working directory, an entrypoint, the Docker
version, a build date and the root file system layers. If compared with List-
ing 3.1 the similarities are obvious. This image configuration works as interface
for the runtime specification. The Container Runtime Interface (CRI) provides
an interface for running OCI compatible images. Common implementations of
the CRI are Docker, Containerd[25] or cri-o[30]. Containers are encoded as
filesystem bundles. A filesystem bundle consists of the container configuration
as specified in the OCI image specification and the container’s root filesystem
(referenced in the image configuration)[41]. These filesystem bundles are exe-
cuted by the container runtime. The container runtime manages the state and
the lifecycle of the container. Every container runtime implementation must
fulfil the CRI specification’s lifecycle operations and commands for basic run-
time interaction (create, start, stop, kill, etc). Distributing a container image
is described by the OCI distribution specification. The distribution specifica-
tion defines all necessary components of an OCI image compatible registry and
its basic operations. Described are the pull of an image (the act of download-
ing BLOBs and manifests from the registry), the push of an image (the act of
uploading BLOBs and manifests to the registry), and the registry itself.
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Listing 3.3: An OCI image manifest with two layers, shortened sha256 check-
sums and two annotations

1 {
2 " schemaVersion " : 2 ,
3 " c on f i g " : {
4 "mediaType " : " app l i c a t i o n /vnd . o c i . image . c on f i g . v1

+j son " ,
5 " s i z e " : 8652 ,
6 " d i g e s t " : " sha256 : b5bb9d8014a0f . . . "
7 } ,
8 " l a y e r s " : [
9 {

10 "mediaType " : " app l i c a t i o n /vnd . o c i . image . l a y e r
. v1 . ta r+gz ip " ,

11 " s i z e " : 40270 ,
12 " d i g e s t " : " sha256 : c739918a22764 . . . "
13 } ,
14 {
15 "mediaType " : " app l i c a t i o n /vnd . o c i . image . l a y e r

. v1 . ta r+gz ip " ,
16 " s i z e " : 14743 ,
17 " d i g e s t " : " sha256 : 9 f767b0b078d2 . . . "
18 }
19 ] ,
20 " annotat ions " : {
21 " org . openconta iner s . image . authors " : " Chr i s t i an

Rebischke " ,
22 " org . openconta iner s . image . t i t l e " : "A very easy

mani f e s t example"
23 }
24 }
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Listing 3.4: An OCI image index with multiple manifests, shortened sha256
checksums and platform specifications

1 {
2 " schemaVersion " : 2 ,
3 " man i f e s t s " : [
4 {
5 "mediaType " : " app l i c a t i o n /vnd . o c i . image .

mani f e s t . v1+j son " ,
6 " s i z e " : 9783 ,
7 " d i g e s t " : " sha256 :6650 b51fab815ad7fc331 f . . . " ,
8 " plat form " : {
9 " a r c h i t e c t u r e " : "arm64" ,

10 " os " : "darwin"
11 }
12 } ,
13 {
14 "mediaType " : " app l i c a t i o n /vnd . o c i . image .

mani f e s t . v1+j son " ,
15 " s i z e " : 9543 ,
16 " d i g e s t " : " sha256 : ed22e9fb1310c f6c2decab . . . " ,
17 " plat form " : {
18 " a r c h i t e c t u r e " : "amd64" ,
19 " os " : " l i nux "
20 }
21 }
22 ] ,
23 " annotat ions " : {
24 " org . openconta iner s . image . c r ea ted " : "2021−12−19

T16 :39 :57 −08:00" ,
25 }
26 }

24



Listing 3.5: An OCI image configuration created via docker image inspect
(shortened)

1 {
2 "RepoTags " : [
3 " he l l o −world : l a t e s t "
4 ] ,
5 "Created " : "2021−12−19T07 :47 : 29 . 318765235Z" ,
6 "ContainerConf ig " : {
7 "Hostname " : "motoko . shibumi . dev " ,
8 "User " : "0" ,
9 "AttachStdin " : f a l s e ,

10 "AttachStdout " : f a l s e ,
11 "AttachStderr " : f a l s e ,
12 "Tty " : f a l s e ,
13 "Env" : [
14 "PATH=/usr / l o c a l / sb in : / usr / l o c a l / bin : / usr / sb in : /

usr /bin : / sb in : / bin " ,
15 "SSL_CERT_FILE=/etc / s s l / c e r t s /ca−c e r t i f i c a t e s . c r t

"
16 ] ,
17 "Cmd" : [
18 "/ bin / sh " ,
19 "−c " ,
20 "#(nop ) " ,
21 "ENTRYPOINT [ \ " . / app \" ]"
22 ] ,
23 "Image " : " sha256 : bc721b69a6af4bb . . . " ,
24 "WorkingDir " : "/" ,
25 "Entrypoint " : [
26 " ./ app"
27 ] ,
28 "DockerVersion " : "20 . 10 . 12" ,
29 " Arch i t e c tu r e " : "amd64" ,
30 "Os" : " l i nux " ,
31 " S i z e " : 22013044 ,
32 " V i r t ua l S i z e " : 22013044 ,
33 "RootFS " : {
34 "Type " : " l a y e r s " ,
35 "Layers " : [
36 " sha256 : c0d270ab7e0db0 . . . " ,
37 " sha256 : e3d24823466584 . . . " ,
38 " sha256 :589 f2bcc f144b2 . . . "
39 ]
40 } ,
41 }
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3.4 Container Interfaces
With the rise of the Open Container Initiative (OCI), more and more container
management systems and orchestration services have been developed. While
the implementations of the Container Runtime Interface (CRI) provides basic
runtime functionality for executing containers, it became clear that an inter-
face for running containers is not enough. The usecases for containers became
more complex and orchestration services became distributed over large network
topologies. This distribution lead to the necessity of standardized networking
and storage interfaces. These interfaces are called Container Network Interface
(CNI) and Container Storage Interface (CSI). This section summarizes both in-
terfaces and gives a good introduction. However, this section is not meant as
complete guide for implementing these interfaces. CSIs provide an interface for
new storage providers. A storage provider is the vendor of the plugin imple-
mentation[24]. Storage providers can be providers for local or remote storage.
Every local storage differs and there are different ways on a system to provide
storage for an application. Local Storage can be offered via device mappers,
the Logical Volume Manager (LVM), raw block devices, volume groups or many
other operating system and hardware dependent systems. Remote storage is
equally complicated due to additional network capabilities and protocols, such
like Network File System (NFS) or ceph (the distributed, fault-tolerant storage
platform). Each of these storage providers have a different API and differ-
ent ways to read and write data on them. Container orchestrators implement
the Container Storage Interface (CSI). Communication between the CSI plugin
and the container orchestrator happens over Remote Procedure Calls (RPC).
The most common RPC protocol in the cloud-native environment is Google
Remote Procedure Calls (gRPC). gRPC (invented in 2016 by Google) has the
huge advantage that it is language independent, supports a very simple service
definition via Protocol Buffers and bi-directional streaming with several secu-
rity features, for instance authentication[51]. Protocol Buffers is an Interface
Definition Language (IDL). IDLs offer a, for the developer, convenient way to
describe an RPC interface in a language independent and human-readable way.
gRPC and Protocol Buffers are the tools of choice for the CSI. The CSI presents
basic functionality for dynamic provisioning of volumes (on-demand provision-
ing), attaching or detaching volumes, mounting or unmounting volumes from
an orchestration node, creating or deleting snapshots or provisioning new vol-
umes[24]. Snapshots are one-time states of a volume with data, they are not
equal to backups. Snapshots allow the storage provider to go back in time and
restore data for a given time frame. For this operation the storage provider re-
quires necessary metadata and a running service. This is what distances them
from a backup. A backup offers a reliable way to restore a full dataset in case
of a disaster (for instance a hardware outage). A snapshot does not offer this
reliability and may fail if the underlying system is damaged. Usually, a storage
provider implements an Application Programming Interface (API) that is CSI
compatible or a third-party implements a service that interprets the APIs of the
storage provider plugin and translates it, to be CSI compliant. When container
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orchestrators like Docker became distributed over multiple nodes the network
became more relevant. The Container Network Interface (CNI) specification
addresses this problem and proposes a standard interface for enhanced network
capabilities for future container runtime and container orchestration solutions.
Equally to the CSI specification, the Container Network Interface (CNI) spec-
ification is language agnostic, but the reference implementation is written in
Go[23]. As of writing this thesis, there are already over 20 CNI compatible
plugins from various cloud providers, hardware vendors or third-parties. These
plugin differ significantly, because they address different use cases, problems or
network environments. The CNI specification abstracts these differences and
provides a common interface for all of them. CNI plugins are not bound to one
specific layer of the Open Systems Interconnection model (OSI). For instance,
the CNI plugin flannel focuses on OSI layer 3 only, hence providing every con-
tainer with its own unique routable IP address via spanning an IPv4 network
over all container orchestration nodes in a cluster (a cluster is a group of mul-
tiple orchestration nodes, responsible for running containers or managing the
cluster)[44]. Other CNI plugins such like cilium or calico offer support for more
OSI layers and more features, such like traffic encryption, traffic monitoring,
network policies or more graduated network and routing capabilities.

3.5 Kubernetes

3.5.1 Introduction and History
Although Docker has been released in 2013, Google has been using Containers
for a much longer period of time. According to Google engineers, they are man-
aging Linux containers at scale since at least 2006[12]. This long history of Linux
container management lead to several internal container orchestration platforms
within Google, such like Borg[146], Omega[121] or Kubernetes[74]. While Borg
and Omega are internal projects and therefore proprietary, Kubernetes is open
source and freely available on GitHub[69]. Since the Kubernetes release in
2014[68], Kubernetes has started a chain reaction in the industry. More and
more projects have been founded around Kubernetes as distributed container
orchestrator. The Cloud Native Computing Foundation (CNCF) landscape lists
a plethora of different projects and project domains around Kubernetes, such
like continuous integration and continuous delivery frameworks, service proxies,
service meshes, Kubernetes compatible container runtimes, Container Network
Interface (CNI) or Container Storage Interface (CSI) plugins or security addons
for Kubernetes. This extensibility is one of Kubernetes’ many success drivers.
Kubernetes offers everything necessary for running OCI compatible containers
distributed on one or more Linux hosts, called nodes. These OCI compatible
containers do not even need to be containers in the traditional sense. It is possi-
ble, with a little bit of effort and the KubeVirt project[117], to run small virtual
machines with Kubernetes. Such virtualized containers are called microVMs.
However, on default Kubernetes focuses on running containers as abstracted

27



by namespaces, cgroups and other Linux kernel features. Kubernetes does this
slightly differently to other container orchestrators. The smallest manageable
unit in the Kubernetes world is being called a pod. A pod consists of one or
more containers and possesses a few additional properties to enhance container
management and orchestration. These differences will be explained in more
detail in the following sections.

3.5.2 Architecture
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Control Node Control Node Control Node
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Figure 3.2: Overview over a Kubernetes cluster with three control nodes and
three worker nodes

In this section, this thesis explores the architecture of Kubernetes. Figure 3.2
depicts a Kubernetes cluster with three control nodes and three worker nodes.
Many control nodes form a control plane. Control nodes are responsible for
managing the cluster, while worker nodes are carrying the actual application
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payload. In case of an airplane the worker nodes could, for example, carry
applications for controlling the cabin temperature, lights or the entertainment
system. Each node is connected to each other via a reliable and highly available
network plane (symbolized by a switch in the middle). All nodes consist of an
operating system (Linux), a container runtime, a KubeProxy and a Kubelet.
The operating system is very often a highly specialized Linux distribution, for
instance Flatcar Linux[45] or Fedora’s CoreOS[39]. Specialized Linux distri-
butions have the huge advantage of being very minimal, high secure and low
maintenancy requirements. They accomplish this via only shipping the Linux
kernel, an init and service daemon like systemd[133] and a very small read-only
base system. System upgrades are conducted through ostree image updates.
The ostree is the operating system tree containing the base system. Contrary
to other traditional Linux distributions like Debian, these specialized Linux
container operating systems do not update software independently. Instead,
the system upgrade is conducted via upgrading the whole base system at once.
This procedure allows a very high testability, reliability and a lower maintenance
compared to traditional Linux distributions. On top of the operating system
is the container runtime, popular container runtimes are Containerd[25] or cri-
o[30]. Docker was another famous container runtime for Kubernetes clusters,
but it got recently deprecated in favor of Containerd[67]. Other components of
every cluster are the KubeProxy and the Kubelet. The Kubeproxy is responsi-
ble for network connections between each node and establishes connections to
each pod[65]. Kubelets are Kubernetes agents and are managing containers in
each pod. Additional components of a control node are an etcd[36] instance, a
Kube-Controller, a Kube-Scheduler and a KubeAPI instance. Etcd, is a highly
available, reliable and distributed key-value store. Kubernetes uses etcd as its
database for storing its actual and desired state. Every change on the Kuber-
netes cluster will be stored in the etcd cluster running distributed on all control
nodes. Concensus is achieved via Raft, an advanced concensus algorithm pro-
posed by the Stanford University[106][105]. Raft, that stands for replicant and
fault-tolerant, implements consistency and partition tolerance as defined by Eric
Brewer’s CAP-theorem[8]. Eric Brewer’s CAP theorem states that a distributed
system can only implement two of three properties of the CAP theorem. These
three properties are consistency, availability and partition tolerance. Consis-
tency is when each node has the newest data, availability is when all read and
write requests are always successful and partition tolerance means that the dis-
tributed cluster continues to operate even when not all nodes are available[5].
Raft guarantees consistency and partition tolerance, but it cannot guarantee
availability due to unknown factors like network outages. Instead of using time,
Raft uses election terms and roles for each node. Everytime an election is held,
Raft will increment the term counter. On initialization all nodes have the role
follower and the term counter on each node is zero. The first election term be-
gins with one follower nominating itself as candidate and advertising this nomi-
nation to all other nodes. The other nodes will react with an acknowledgement
and the candidate node will be promoted to a leader. The leader node sends
heartbeats to every other node in the cluster. When a cluster node receives such
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a heartbeat the node’s timeout will be reset. As long as the leader stays healthy
nothing happens and the cluster works as usual. As soon as the leader dies
the other nodes will stop receiving heartbeats. The missing heartbeart will lead
to a timeout expiration. When this happens the expired node will increment
the election term counter and nominate itself for a new leader and the process
starts from new. This process ensures the partition tolerance as defined by Eric
Brewer’s CAP theorem. Data can be added to the key-value store only through
the leader node and all followers will forward write requests to the leader node.
The message is considered committed as soon as the majority of nodes acknowl-
edged the write operation. Read operations can be done on every node. This
is equal to Eric Brewer’s consistency property of the CAP theorem. Further
control node components are the Kube-Controller, the Kube-Scheduler and the
KubeAPI. The KubeAPI provides an Application Programming Interface (API)
endpoint for the cluster and external clients, for instance an admin who triggers
changes on the cluster. If a pod gets created the Kube-Scheduler will schedule
the pod on a free node. Kubernetes supports different scheduling and rollout
strategies for deployments. Finally, the Kube-Controller implements different
processes for controlling the cluster. For example, the Kube-Controller popu-
lates endpoints, takes care of service accounts, creates jobs or notices a node
failure and responds accordingly[65].

3.5.3 Application Programming Interface (API) Overview
One of Kubernetes’ biggest success factors is its extensibility. Kubernetes pro-
vides a good maintained Application Programming Interface (API) and im-
plements necessary interfaces for extending Kubernetes with functionality. In
this section, this thesis will highlight the most common API resources in the
Kubernetes API, their purpose and their capabilities. For exploring the Kuber-
netes API this thesis uses a single node cluster bootstrapped via Minikube[89].
Minikube, written in Go, is a wrapper for bootstrapping a Kubernetes Cluster
inside of one or more virtual machines. It allows a fast setup for local de-
velopment and testing purposes, ideally for this thesis. Installing Minikube is
rather easy: One just have has to download Minikube from its official website
and run the following command: minikube start –cpus 4 –memory 4096 –vm.
For running this command virtualbox is required as hypervisor. The command
will download a slim virtual machine, provision it with 4 CPU cores and 4096
megabytes of RAM. The –vm flag will choose the virtual machine backend type.
Minikube is able to provision a Kubernetes cluster directly on Docker, but this
does not work on every operating system and is therefore Linux only. Running
the start command of Minikube will setup a single-node cluster with its own
control plane. The node will work as control node and worker node at the same
time. Listing 3.6 shows the bootstrapping process of a single node Kubernetes
cluster via Minikube. With the running cluster it is possible to automatically
download and install the Kubernetes client tool kubectl and list all Kubernetes
API resources via the command: minikubectl kubectl api-resources – -o name.
Listing 3.7 lists the most important Kubernetes API resources. Pods consist
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of one or more containers. Configmaps store configuration data. Limitranges
allow configuring resource constraints for deployments. Namespaces group re-
sources and allow isolation between these groups. Nodes represent the node
configuration. Storageclasses are classes for persistent storage, for example SSD
hard disk storage or a network storage. Persistentvolumes hold information
about persistent storage volumes for a given storage class. Persistentvolume-
claims represent the relationship between a container and a persistent volume.
Podtemplates are re-usable templates for pods. Resourcequotas define a hard
limit for resource consumption for a namespace. Secrets provide secret infor-
mation, for instance secret configuration data. Services expose pods to the
cluster-internal or external network. Daemonsets deploy pods on every clus-
ter worker node. Deployments are a generic form of deploying pods, heavily
modifiable. Replicasets are a mirror of the current state of replicas of a pod in
the cluster. Statefulsets ensure that pods are deployed in a specific order and
with a fixed set of volumes. Horizontalpodautoscalers provide the ability to up-
or downscale pods dynamically depending on resource consumption. Cronjobs
provide the ability to run pods on a fixed datetime. Jobs provide the ability
to run pods just once. Ingresses are entrypoints for internal or external ser-
vices, typically via HTTP/HTTPS. Networkpolicies provide isolation between
pods on network layer. Poddisruptionbudgets manage budgets for pod failure or
planned pod movements between nodes. Serviceaccounts manage access to API
resources via a Role-Based Access Control (RBAC) model. Clusterrolebindings
are bindings for roles on cluster level and service accounts. Clusterroles are roles
on cluster level specifying the permissions for a service account via verbs: read,
write, etc. Rolebindings are bindings for roles on namespace level, establishing
the relationship between a role and a service account. Roles work on namespace
level and provide permissions for a service account via verbs. The following
sections will explain some of the prior mentioned API resources in more detail.
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Listing 3.6: Running the minikube start command
1 $ minikube s t a r t −−cpus 4 −−memory 4096 −−vm
2 minikube v1 . 2 4 . 0 on Arch r o l l i n g
3 > KUBECONFIG=/home/ c h r i s / . kube/ con f i g :
4 Automatica l ly s e l e c t e d the v i r tua lbox d r i v e r
5 Downloading VM boot image
6 > minikube−v1 . 2 4 . 0 . i s o . sha256 : 65 B / 65 B [−−−−−−−−−−−−−]

100.00% ? p/ s 0 s
7 > minikube−v1 . 2 4 . 0 . i s o : 225 .58 MiB / 225.58 MiB 100.00% 25.23

MiB p/ s 9 .1 s
8 S ta r t i ng con t r o l plane node minikube in c l u s t e r minikube
9 Creat ing v i r tua lbox VM (CPUs=4, Memory=4096MB, Disk=20000MB)

10 Prepar ing Kubernetes v1 . 2 2 . 3 on Docker 20 . 1 0 . 8
11 > Generating c e r t i f i c a t e s and keys
12 > Booting up con t r o l plane
13 > Conf igur ing RBAC ru l e s
14 > Using image gcr . i o /k8s−minikube/ storage−p r ov i s i o n e r : v5
15 Ver i f y i ng Kubernetes components
16 Enabled addons : de fau l t −s t o r a g e c l a s s , s torage−p r ov i s i o n e r
17 Done ! kubect l i s now con f i gu r ed to use "minikube" c l u s t e r and

" de f au l t " namespace by de f au l t
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Listing 3.7: Listing api resources in a Kubernetes Cluster (shortened)

1 $ minikube kubect l api−r e s ou r c e s −− −o name
2 configmaps
3 l im i t r ang e s
4 namespaces
5 nodes
6 pe r s i s t en tvo lumec l a ims
7 pe r s i s t en tvo lumes
8 pods
9 podtemplates

10 re sourcequota s
11 s e c r e t s
12 s e r v i c e a c c oun t s
13 s e r v i c e s
14 daemonsets . apps
15 deployments . apps
16 r e p l i c a s e t s . apps
17 s t a t e f u l s e t s . apps
18 ho r i z on t a l podau to s c a l e r s . au t o s c a l i n g
19 cron jobs . batch
20 jobs . batch
21 i n g r e s s e s . networking . k8s . i o
22 ne two rkpo l i c i e s . networking . k8s . i o
23 poddi s rupt ionbudgets . p o l i c y
24 c l u s t e r r o l e b i n d i n g s . rbac . au tho r i z a t i on . k8s . i o
25 c l u s t e r r o l e s . rbac . au tho r i z a t i on . k8s . i o
26 r o l e b i nd i n g s . rbac . au tho r i z a t i on . k8s . i o
27 r o l e s . rbac . au tho r i z a t i on . k8s . i o
28 s t o r a g e c l a s s e s . s t o rage . k8s . i o
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3.5.4 Pods
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Figure 3.3: Comparing a Docker container to a pod[145]

Pods are the smallest manageable unit in a Kubernetes cluster and consist of
one or more containers. Containers heavily rely on Linux kernel features such
like namespaces, control groups (cgroups), kernel capabilities or the Extended
Berkeley Packet Filter (eBPF). Figure 3.3 compares a Docker container with a
Kubernetes pod and highlights the different namespace arrangements in each
unit. The Docker container visualization on the left shows a Docker container
with the kernel namespaces, its cgroup and the process running in the container.
On the right the figure depicts a Kubernetes pod consisting of one sandbox con-
tainer and two workload containers with one or more processes in each of them.
The sandbox container works as initializer. It setups the net, uts and ipc names-
paces as environment for all containers in the pod and creates an idle process.
The pause process in the sandbox container does nothing[64] and the container
acts only as initialization point for the pod itself. Environments do not need
to be kernel namespaces. In theory, a sandbox Container Runtime Interface
(CRI) operation could also start a virtual machine and setup a virtual machine
environment[57]. The CRI allows full abstraction. For simplicity reasons, this
thesis continues with containers only. The namespaces net, uts and ipc are re-
sponsible for setting up a network for all containers within the Kubernetes pod
(net namespace), setting a host and domain name for the pod (uts namespace)
and establishing Inter-Process Communication (IPC) between the containers.
Sharing IPC capabilities between containers will be interesting in future chap-
ters for avionics and reliability constraints. Workload containers implement the
actual application payload. Figure 3.3 shows two workload containers with one
or more processes in each of them. To mimic the same setup with Docker, there
would be two containers in Docker with one or more processes in each of them.
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Each container in the Kubernetes pod has its own mnt and pid namespaces for
isolated mount tables and process isolation. This means that each container
can mount its own additional external volumes and only sees the processes in
the container, processes in other containers in the same pod or even on the
host system are hidden for the processes in the container. Another major dif-
ference between the Docker container and the Kubernetes pod is the cgroups
layout. The Docker container has just one cgroup. The cgroup is responsible
for resource limiting, prioritization, accounting and controlling. Resources can
be anything from CPU or RAM usage or even file system cache[125]. Priori-
tization means that processes in the container can be prioritized. Accounting
refers to consumption logging and controlling means to trigger actions if certain
thresholds get exceeded, for instance killing a process that consumes too much
RAM. A Kubernetes pod has one cgroup per container and one root cgroup
for the whole Kubernetes pod. This root cgroup makes it possible to control
all container cgroups via one pod cgroup and to introduce outer limits for pod
itself. Deploying a new static Kubernetes pod to a Kubernetes cluster requires
a running Kubernetes (for instance via Minikube) and the Kubernetes client
software kubectl. Pod API resources can be described either in JavaScript Ob-
ject Notation (JSON) or Yet Another Markup Language (YAML). JSON and
YAML are both data interchange formats. These data formats are passed to the
Kubernetes API via Kubernetes’ Representational State Transfer (REST) API.
Representational State Transfer (REST) allows to contact the Kubernetes API
over Hypertext Transfer Protocol Secure (HTTPS). Access to the Kubernetes
REST API is protected via X.509 certificates and API objects can be added,
modified or deleted via basic Hypertext Transfer Protocol (HTTP) methods,
such like GET, PUT and DELETE. Listing 3.8 presents a YAML deployment
file for a Kubernetes pod. Line 1-7 specify the API version, the API resource
kind (pod) and additional metadata, like the name, target namespace and addi-
tional labels for easier selection and identification of the running pod. With line
8 the actual Kubernetes pod definition starts with a list of containers (line 9).
The showed pod definition has only one container called web with the Docker
image docker.io/nginx:1.12.5. Notice how the sandbox container is not listed
in the pod definition. Sandbox containers are added to the pod automatically.
Line 12 exposes the nginx webserver in the container via port 80 and Trans-
mission Control Protocol (TCP) (a stateful network protocol for sending and
receiving data). Line 16 specifies resource limits and requests for the container.
The container can use up to 100 milli CPU (one CPU consists of 1000 milli
CPU units) and 100 megabytes of RAM. Milli CPU allows to partition CPU
consumption in reserved units. The limit limits the container CPU usage and
the requests field tells the Kube-Scheduler how much the container needs. If
the limits and request matches each other, the Kubernetes pod is sorted into
the Quality of Service (QoS) class Guaranteed [71]. QoS classes are used for
scheduling containers on the cluster. Kubernetes supports the following QoS
classes: Guaranteed states that the container will have a guaranteed resource
consumption. If a cluster node is overprovisioned, other less important contain-
ers will be re-scheduled on a different node or stopped in favor of guaranteed
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containers. Burstable states that a container is scheduled on a cluster with a
fixed request value, but the container is allowed to create resource consumption
bursts. This is, for instance, the case when a container, suddenly, gets a very
high load due to higher usage. An example in the aviation domain could be a
container responsible for flight entertainment in the passenger cabin. The flight
entertainment may have times of higher and lower usage depending on the flight
length (sleeping passengers etc.). A container is sorted into the Burstable class,
when the container has at least one requests value for memory or CPU. The
BestEffort QoS class is used for all containers without a limit or request value,
these containers are scheduled on the cluster node per best effort and may be
stopped or re-scheduled on a different node every time. If a container uses more
than the specified RAM the cgroup will notice this and kill the process in the
container. This behavior is different to reaching the CPU limit. When the CPU
limit is reached the container will be throttled. Throttling a CPU is, when a
process gets less CPU time from the operating system. Many processes are not
being executed in parallel by a single CPU core, instead the CPU schedules
execution time for each process with different queueing methods. Listing 3.8
shows only very small set of configuration options. The full Kubernetes pod
API consists of more than 1000 possible configuration options reaching from
liveness and readiness probes, to security modifications, mounting volumes and
devices from the host system, more advanced network configuration and many
other possible configurations that are useful for running containers in a big scale
in production (retrieved via running the command: minikube kubectl explain –
-recursive | wc -l).
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Listing 3.8: An example pod definition in YAML

1 apiVers ion : v1
2 kind : Pod
3 metadata :
4 name : example−pod
5 namespace : d e f au l t
6 l a b e l s :
7 app : example−pod−app l i c a t i o n
8 spec :
9 c on ta i n e r s :

10 − name : web
11 image : docker . i o /nginx : 1 . 2 1 . 5
12 por t s :
13 − name : web
14 conta ine rPort : 80
15 p ro to co l : TCP
16 r e s ou r c e s :
17 l im i t s :
18 cpu : 100m
19 memory : 100M
20 r eque s t s :
21 cpu : 100m
22 memory : 100M

3.5.5 Namespaces, LimitRanges and ResourceQuotas
A namespace groups resources logically for better filtering, selecting and op-
erating on Kubernetes API resources. Most Kubernetes API resources can be
namespaced (placed into a namespace). On their own, namespaces provide no
network isolation. For strict network isolation a Container Network Interface
(CNI) plugin is necessary and the definition of network policies via the net-
workPolicy API resource. Listing 3.9 depicts a definition of one namespace
called entertainment, a limitRange and resourceQuota. The namespace works
as environment for other API resources, like deployments or pods. The limi-
tRange API resource allows to set limits and requests for each created container
in the selected namespace. ResourceQuotas are responsible for setting hard
limits for the namespace as a whole. The resourceQuota in Listing 3.9 specifies
a maximum limit of 10 pods in the entertainment namespace. Furthermore,
it sets a limit and request value for the CPU and RAM for the entertainment
namespace to one CPU and one gigabyte. Thus, the Kubernetes-Scheduler en-
forces these limits, making it impossible to schedule more than 10 pods in the
entertainment namespace and constantly monitores the resource consumption.
If a pod exceeds its limits, the pod will be either throttled (in case of CPU
bursts) or the process in the pod container will be killed in case of too high
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RAM consumption. These three API resources enforce a very tight control over
resources and enhances the reliability of applications running in the cluster.

Listing 3.9: Namespace definition for a namespace called entertainment with
limitRange and ResourceQuota

1 ap iVers ion : v1
2 kind : Namespace
3 metadata :
4 name : enterta inment
5 −−−
6 apiVers ion : v1
7 kind : LimitRange
8 metadata :
9 name : entertainment−l im i t r ange

10 namespace : enterta inment
11 spec :
12 l im i t s :
13 − de f au l t :
14 cpu : 100m
15 memory : 100M
16 de fau l tReques t :
17 cpu : 100m
18 memory : 100M
19 type : Container
20 −−−
21 apiVers ion : v1
22 kind : ResourceQuota
23 metadata :
24 name : entertainment−rq
25 namespace : enterta inment
26 spec :
27 hard :
28 pods : "10"
29 r eque s t s . cpu : "1"
30 r eque s t s . memory : 1G
31 l im i t s . cpu : "1"
32 l im i t s . memory : 1G

3.5.6 Deployments, Statefulsets and Daemonsets
Multiple instances of the same Kubernetes pod are called a replicaset. A deploy-
ment manages pods and replicasets. With deployments it is possible to define a
desired state of an application. Kubernetes tries to match this desired state via
spinning up the pods and replicas of these pods, as defined in the deployment’s
definition. Listing 3.10 demonstrates a Kubernetes deployment representation
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in YAML. Line 18 to 31 are similar to the pod definition in Listing 3.8. The
most important parts of the deployment definition are from Line 9 to Line 16.
These lines specify the replica count, a label selector and the begin of the pod
template definition. The replica count in line 9 sets the number of replicas. This
means that Kubernetes tries to schedule three pods of a replicaset, running the
same containers. The label selector in line 10 selects the pod definitions that
should be scheduled by label. Line 16 shows the matched labels. Statefulsets
and daemonsets are very similar to deployments. The major differences between
deployments and statefulsets ensure that all pods are scheduled in a persistent
order and pods get a number suffix instead of a random string suffix when
scheduled on the cluster[73]. A persistent order and pod uniqueness is notably
important for stateful applications with storage or sticky network sessions. A
daemonset schedules the pod on every node. This behavior is especially useful
for logging or storage management daemons running on every node[66].
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Listing 3.10: An example deployment with three replicas

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : example−deployment
5 namespace : d e f au l t
6 l a b e l s :
7 app : example−pod−app l i c a t i o n
8 spec :
9 r e p l i c a s : 3

10 s e l e c t o r :
11 matchLabels :
12 app : example−pod−app l i c a t i o n
13 template :
14 metadata :
15 l a b e l s :
16 app : example−pod−app l i c a t i o n
17 spec :
18 con ta i n e r s :
19 − name : web
20 image : docker . i o /nginx : 1 . 2 1 . 5
21 por t s :
22 − name : web
23 conta inerPort : 80
24 pro to co l : TCP
25 r e s ou r c e s :
26 l im i t s :
27 cpu : 100m
28 memory : 100M
29 r eque s t s :
30 cpu : 100m
31 memory : 100M

3.5.7 Configmaps and Secrets
Applications require configuration. Either the configuration has been embedded
into the application or the configuration happens via an external source, for in-
stance a configuration file or a configuration service that offers a configuration
via network. Kubernetes does support both methods. With OCI containers
it is possible to embed a default configuration directly in the container image.
However, this approach is very unflexible and static, because it does not allow
dynamic reconfiguration. Dynamic reconfiguration can be achieved via setting
new configuration via the network or via swapping the configuration files. The
first option requires more development work, because a dynamic reconfiguration
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over, for example a web interface, has to be embedded into the application. The
second option only requires to read a file. This file read can be either triggered
through a file change (file watcher) or via an application restart. It also means,
that the container runtime must implement methods to swap configuration files.
One way to solve this in Docker, is via attaching volumes and placing files on the
host system. These files are then mounted into the running container. Another
option is to inject environment variables into the container. Kubernetes is not
so different to Docker and solves the problem with the same methods. Nonethe-
less, Kubernetes adds a few security features that are missing in Docker. Simi-
lar to Docker, Kubernetes offers multiple ways to inject configuration data into
containers. The first common approach is injecting the data via environment
variables directly in the pod or deployment configuration. These environment
variables can either be loaded from the API resource definition itself or dynam-
ically from another API resource, such like configmaps or secrets. Configmaps
and secrets store container configuration in the Kubernetes cluster itself. To
be more precisely, the configuration data is being stored in the highly available
key-value store called etcd. The main difference between configmaps and secrets
lies in the way how Kubernetes stores the data. Configmaps are stored in plain-
text and secrets are stored as base64. Data encoding via the base64 algorithm
have been introduced in RFC4647[60]. A Request For Comments (RFC) is a
publication in a series of technlogical documents from the Internet Engineering
Task Force (IETF)[115]. Base64 is a data encoding algorithm for submitting
data in a compact form. It does not implement encryption and base64 encoded
data can always be decoded. Kubernetes uses base64 as placeholder algorithm,
suggesting that platform administrators have to provide their own secret man-
agement service for better security. Nevertheless, Kubernetes secrets are better
protected by the Kubernetes API than configmaps and adding or reading se-
crets require more permissions in Kubernetes’ API. Listing 3.11 is a copy from
Listing 3.8 with one little change. Listing 3.11 introduces a set of two configu-
ration variables to the pod via importing them into the container’s environment
through a configmap.
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Listing 3.11: Embedding configuration data via a configmap in a pod

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : example−pod
5 namespace : d e f au l t
6 l a b e l s :
7 app : example−pod−app l i c a t i o n
8 spec :
9 c on ta i n e r s :

10 − name : web
11 image : docker . i o /nginx : 1 . 2 1 . 5
12 envFrom :
13 − configMapRef :
14 name : example−configmap
15 por t s :
16 − name : web
17 conta ine rPort : 80
18 p ro to co l : TCP
19 r e s ou r c e s :
20 l im i t s :
21 cpu : 100m
22 memory : 100M
23 r eque s t s :
24 cpu : 100m
25 memory : 100M
26 −−−
27 apiVers ion : v1
28 data :
29 c on f i g . yaml : |
30 NGINX_HOST: example . com
31 NGINX_PORT: 80
32 kind : ConfigMap
33 metadata :
34 name : example−con f i g
35 namespace : d e f au l t

3.5.8 Services, Ingresses and NetworkPolicies
Network plays a huge role in a distributed container orchestrator. Hence, it
is not a surprise that Kubernetes offers advanced network functionality. For
this, Kubernetes has several API resource types. In this subection, this the-
sis will give a short overview over the most used network related Kubernetes
API resources: Services, Ingresses and NetworkPolicies. Services provide an
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abstract way to expose deployed containers to the internal cluster network or
any external network. A service can be one of four service types: clusterIP,
nodePort, loadBalancer and externalName. ClusterIP services expose the de-
ployments to the cluster-internal network[72] via acquiring an internal cluster
IP for the service and routing all traffic through the KubeProxy to the pods
behind the service. The nodePort service type exposes the deployment behind
the service to external networks via one of 65535 ports on the Linux node. A
deployment can then be reached via the node’s IP address and the opened node
port. LoadBalancer services are able to use loadbalancers from cloud providers
(if Kubernetes is running in the cloud) or from deployed load balancing services
in the cluster. Projects like KubeVip[75] or Metallb[88] provide this function-
ality via constructing Address Resolution Protocol (ARP) or Border Gateway
Protocol (BGP) based routing on-premise. Address Resolution Protocol (ARP)
helps with discovering the hardware address (Media Access Control (MAC)
address) for an IPv4 address and has been defined in RFC826[109]. Metallb
implements ARP via deploying, so called speaker pods, to every node. These
speakers announce a load balancer IP address through an ARP announcement.
A gateway catches these ARP announcements and routes the traffic to the
announced IP address via their Media Access Control (MAC) address. This
behavior of Metallb, is also called layer 2 mode. If the leader node dies, the
floating IP address will be moved to a different node[87]. In Border Gateway
Protocol (BGP) mode the Metallb speakers will establish BGP peering sessions
between each cluster node and the network router. These peering sessions are
then used to advertise the IP addresses[86] The KubeProxies are responsible for
load balancing the incoming traffic to all pods behind the Kubernetes service.
The last Kubernetes service type is the externalName. ExternalName services
are enabling Kubernetes services to forward to cluster-external Fully Qualified
Domain Names (FQDNs). The next important Kubernetes API resource is the
ingress. An ingress is comparable to a service. The ingress handles incoming
traffic and forwards it to a service backend. During this process the ingress
is able to act like a middleware. A middleware allows filtering, restricting or
modifying the incoming traffic. Most common usecases for ingresses are adding
basic authorization for HTTPS endpoints or playing the HTTPS endpoint for
a HTTP backend. In the field of aviation an ingress is not that important.
NetworkPolicies are important. NetworkPolicies allow isolating namespaces or
pods from each other on a network level. Isolation is important for security
and reliability reasons. For instance, a flight entertainment system should be
isolated from a system to control the lights in the passenger cabin. In case
of a security breach of the entertainment system, this would prevent the at-
tacker from gaining access to other systems. Or in case of a misbehaving sys-
tem, without an actual attacker, the isolated namespace would prevent the
system from doing harm to other services on the cluster, for example bombard-
ing them with network traffic and leading to performance regressions. List-
ing 3.12 presents a Kubernetes networkPolicy for rejecting all incoming and
outgoing traffic within the namespace default, except for DNS traffic. The net-
workPolicy matches all namespaces, but selects only pods with the label value
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kube-dns and the port 53 with protocol User Datagram Protocol (UDP) in use.

Listing 3.12: Example networkPolicy that rejects all traffic in a namespace
except for DNS requests

1 ap iVers ion : networking . k8s . i o /v1
2 kind : NetworkPolicy
3 metadata :
4 name : r e j e c t −a l l −t r a f f i c −except−dns
5 namespace : d e f au l t
6 spec :
7 podSe l ec to r : {}
8 pol icyTypes :
9 − Ing r e s s

10 − Egress
11 i n g r e s s : [ ]
12 e g r e s s :
13 − to :
14 − namespaceSe lector : {}
15 podSe l e c to r :
16 matchLabels :
17 k8s−app : kube−dns
18 por t s :
19 − port : 53
20 p ro to co l : UDP

3.6 Secure Software Supply Chains
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Figure 3.4: Supply chain overview with all possible attack points (A-H)[58]

Over the last 10 years software supply chain incidents had such an impact on
the IT industry, that US president Joe Biden proclaimed an executive order for
software supply chains security[37]. Incidents, like the SolarWinds software sup-
ply chain infiltration, had a direct impact on over 18,000 customers world wide
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and multiple US government agencies. Nowadays, software is everywhere and
although planes are not directly connected to the internet, their software supply
chains are vulnerable. Software and Hardware supply chains are not very dif-
ferent. While a hardware supply chain consists of all steps from harvesting the
necessary resources, to production, assembly, and distribution, a software supply
chain consists of one or more developers writing source code, embedding other
software as dependencies, testing, pushing, packaging, and distributing it. Each
of these steps can reveal a possible weak spot for attackers. Especially, the wide
direct or indirect use of open source software, can be a challenge for companies.
Recently, the National Aeronautics and Space Administration (NASA) had to
announce, that their Mars helicopter Ingenuity is not vulnerable to a security
vulnerability in an open source Java logging library[93]. It is not uncommon for
aviation companies to either use open source software during their development
process or even in flight systems. For instance, in 2007 Airbus announced an
open source toolkit for mission critical applications[46]. Figure 3.4 visualizes
each step of a supply chain and all vulnerable spots (A-H). The software supply
chain starts with one or more developers writing the source code. Modern soft-
ware development involves pushing code differences (commits) to a Source Code
Management (SCM) system (A in Figure 3.4). Possible vulnerabilities involve
an attacker in the company’s network with access to the SCM system (for exam-
ple Git, SVN or CVS), a stolen laptop with the developer’s SCM credentials or
code from a malicious code contributor (more common in open source software).
In May 2021 researchers of the University of Minnoesota managed to contribute
vulnerable code to the Linux kernel SCM[35][58]. B in Figure 3.4 involves a
direct access to the SCM system. Contrary to A, where access to the SCM is
achieved through a developer, B involves exploiting the SCM system directly
and altering the content of the code in the SCM. Another famous example for
such an incident is the corruption of the PHP development team’s SCM sys-
tem in 2021[17][58]. PHP is one of the core languages behind the World Wide
Web (WWW) and had a market share of 79.2%[140]. There is no imagination
needed for what could have happened, if this malicious code would have been
distributed to all PHP systems world wide via a new version release. The same
can happen with any other programming language the aviation industry relies
on (C, Ada, C++[130]). During the next step in the software supply chain the
code gets build, either via the developer or, the more common approach, via a
build system. In this step, multiple attacks can happen. First of all, the code
that should be build could get replaced during the build process. One occassion
of such a scenario was, when Webmin’s build system got feeded with malicious
code, thus building a vulnerable Webmin release (C in Figure 3.4)[151][58]. Web-
min is a web-based interface for server administration, hence it is very critical
infrastructure, because it allows direct access on the server with admin privi-
leges. Some other scenario is a direct corruption of the build system, accepting
correct code, but altering it directly on the build server or injecting additional
malware into the normally harmless build. This scenario happened in the big
SolarWinds hack mentioned earlier[131][58]. Vulnerability E in Figure 3.4 de-
scribes the addition of malicious software dependencies. The project’s software
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supply chain is secure, but software dependencies have been added, that are
either poorly maintained or that got victim of a software supply chain attack
themselves. Some attackers, inject vulnerable dependencies via contributing to
the software via a harmless patch with a new dependency and then after a few
weeks they add a vulnerability to the dependency and they hope that the victim
will update their dependencies without double-checking the updated dependen-
cies. Event-Stream has been a victim of this kind of attack[120][58]. F to H in
Figure 3.4 refer to the distribution stage of a software supply chain. In this step,
the compiled software gets distributed to users or deployed to a target system.
In April 2021 the company Codecov announced that their Google cloud storage
account got breached into via stolen credentials[110][58]. Attackers used the
stolen credentials to upload malicious files to the software distribution system
(F in Figure 3.4). G in Figure 3.4 refers to a compromised package repository.
Researchers of the university of Arizona successfully attacked package managers
via hosting malicious package mirrors[15][58]. The last possible weak point is
the user. An attacker is able to exploit that a human user or developer might
make mistakes. One of these mistakes can be spelling a software name wrong.
Attackers can use this knowledge and upload malicious software with similar
written names and hope that a developer makes a mistake while adding de-
pendencies or the user makes a mistake while downloading the software. The
name of this method is called typosquatting and a good example for this is,
is one incident with the widely used Javascript package manager npm[124][58].
All these incidents lead to one final question: How to protect software supply
chains? Due to the increased appearance of software supply chain compro-
mises and the increasing pressure of the US government the Linux foundation
came up with a new standard called Supply chain Levels for Software Artifacts
(SLSA)[127]. SLSA proposes four different levels for measuring and classifying
software supply chain security. These levels are considered as milestones leading
to full software supply chain protection with SLSA level four. The first SLSA
level states that the software must be build scripted and the supply chain must
attach provenance. Provenance is metadata about dependencies, the software
itself and the build process[126]. Scripted means that the supply chain must
be automated. Automation protects against human errors and is a foundation
for all other SLSA levels. Attaching provenance or a Software Bill of Materials
(SBOM) has several advantages. First, it allows to store metadata about the
dependencies and the software itself. With the help of this additional metadata
it is possible to search for security vulnerabilities in the product via version
numbers and other software identifiers[108]. Second, it gives a complete list of
contents. This allows identifying missing content and unwanted content (for
instance malicious dependencies that got injected through a hacked build pro-
cess). Third, it gives an overview over all used licenses. With the wide usage
of open source software it is necessary to gain information about the software
licenses of dependencies to avoid license infringements (for example using an
open source license that prohibits the use in proprietary software)[147]. A Soft-
ware Bill of Materials (SBOM) must be machine readable for automation and
must evaluate the gained data automatically. Level two of SLSA requires the
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use of SCM and a hosted build process with authenticated provenance[126].
Through SCM it is possible to track every step of work on the source code in
a commit log. Some SCM like git even allow cryptographically signing each
commit and thus authenticating every commit in the SCM. Signing commits
offers additional security for verifying that the code has been submitted by a
list of allowed developers. Having the build process hosted, secures the build
process and isolates it to a single host. A single host is a lot easier to protect
and harden than a higher number of developer workstations or laptops. The
last requirement for SLSA level two is authenticated provenance. Authenticated
provenance means that the provenance has to be signed cryptographically. This
enables other systems to validate the provenance’s integrity and origin. SLSA
level three dictates further enhancement to the security of the build process and
build host. Additional enhancements of the build environment suggest an iso-
lation between build processes and the use of an ephemeral environment. The
first ensures that a build process cannot be interfered with via another build
process. The second protects the build process from accidentally using persis-
tent artifacts from a past build process. Moreover, level three recommends to
have the build pipeline configuration in source control[128]. Storing the build
pipeline in source control via SCM implements a change log for it. This allows
to understand changes. Lastly, SLSA level four has the most requirements and
is most difficult to achieve from all levels. Artifacts in SLSA level four must
be reproducible, hence the software must compile deterministically to the same
executable[128]. This can be tested with calculating the cryptographical check-
sum of two separately compiled binaries (Being reproducible comes very handy
in aviation, because DO-178B requires deterministic software and a comprehen-
sive test suite). Additionally, builds have to be parameterless and hermetic.
Parameterless means that the build process must be only affected by the build
script in the source control and by nothing else. Being hermetic means that
the build environment has no network access and that the full build process
has been declared up front via immutable references[128]. Other requirements
for level four can be find in the security domain: All changes should be two
person reviewed, the system must underwent continuous vulnerability and se-
curity checks, physical and network access must be protected and logged and
only super users should be able to modify any of these security constraints[128].
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Chapter 4

Cloud-Native and Aviation

4.1 Related Projects
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Figure 4.1: Direct Comparison of the Real-Time Case Engine by Mar-
cello Cinque and Gianmaria De Tommasi (University of Naples, Italy) with
Wind River’s VxWorks 653 platform and the proposed Kubernetes Plat-
form[20][153][148]

This chapter fulfils the purpose of connecting the presented aviation system
designs, challenges and opportunities from chapter 2 with the first step into
the Cloud-Native world in chapter 3. The big question of this part of the
thesis is how a future aviation system design could look like and how emerging
technologies from the Cloud-Native iniative could be beneficial for aviation.
Software development in aviation is expensive, complex, must follow certain
requirements and is splitted into two domains: Airborn software and ground-
based software. Airborne software certification guidance is defined in DO-178C
(the successor of DO-178B). Ground-based software is defined in DO-278A.
These two certification guidances are being supported by a various number of
additional documents, such like:

DO-330 Software Tool Qualification Considerations
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DO-331 Model-Based Development and Verification

DO-332 Object-Oriented Technology and Related Techniques

DO-333 Formal Methods

According to DO-178C and DO-278A software is categorized in different De-
sign Assurance Level (DAL), also known as Item Development Assurance Level
(IDAL) (a complete list can be found in chapter 2). A is the most important
software level, critical to human life, and software level E is the least impor-
tant software level with no harmful incidents. DO-178C specifies for each DAL
tracing requirements. Tracing refers to the strict requirement of traceable code.
Every code snippet must be traceable to a required feature and test case[10].
One famous example for an existing feature in documentation, but missing fea-
ture in the code base, is the Ariane 5 disaster in 1996[31]. Modern software
development paradigms like Test Driven Development (TDD) can encourage
software developers to increase the test coverage and implement only necessary
features[107]. Another important requirement in DO-178C is the presence of de-
terministic build and execution behavior. Software builds and execution must
be deterministic. Undeterministic behavior could lead to catastrophic events
in aviation. One modern key concept supporting this requirement is binary re-
producibility. Binary reproducibility states that there must be correspondence
between the application and the source code[113]. This means that the build
process must be deterministic and must produce the same binary bit by bit.
Avation may profit from reproducible builds for their DO-178C and DO-278A
certification processes. Reproducible builds is an important factor in the SLSA
specification for secure supply chains as well. Containers help with achieving
reproducible builds via providing an isolated and ephemeral build environment.
Interestingly, Cloud-Native containers are not that popular in the aviation in-
dustry. This is astonishing, because containers have, like previous chapters have
showed, many potential features that can help with many challenges from the
aviation industry. The analysis of the different aviation system designs clearly
shows a demand for cost reduction, lower development to production time, and
Total Cost of Ownership (TCO) reductions. These challenges are very similar
to the challenges from the cloud computing industry with the slight difference
that aviation software must satisfy software reliability constraints as defined in
DO-178C. Existing solutions like the Wind River VxWorks 653 platform pro-
vide an answer for some of the prior stated challenges. VxWorks 653 runs
already on more than 90 aircrafts, including the Airbus A400M or the Boeing
787 Dreamliner[153]. The platform is DO-178C compliant, supports an unmod-
ified Linux guest operating system, real-time capabilities, a multi-core scheduler
with hardware virtualization assistance and a unique IMA design layout[148].
IMA design is being achieved via running a central proprietary module operat-
ing system in the flight cabinet. This operating system supports Aeronautical
Radio Incorporated (ARINC) ports, ARINC health management and support
for ARINC configuration via Extensible Markup Language (XML). Each phys-
ical CPU core manages one dedicated virtual machine with different operating
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system workloads, depending on the application’s DO-178C compatible soft-
ware level. This allows running multiple applications in parallel on different
CPU cores on the same physical host system with a maximum of safety and re-
liability, but it also leads to a possible target for improvement. Running virtual
machines is very costly and inefficient. Multiple studies have proven that virtual
machines are significantly less performant than containers or bare-metal sys-
tems[122][40]. Other papers even actively suggest using real-time containers for
large-scale mixed-criticality systems[20]. A mixed-criticality design comes very
close to the VxWorks 653 platform as the VxWorks 653 platform is capable to
run different workloads in different virtual machines with different certifications
for different DO-178C software levels[153]. Figure 4.1 presents a direct com-
parison between Wind River’s VxWorks 653 platform (middle), the proposed
Kubernetes platform of this thesis (right) and previous work from Marcello
Cinque and Gianmaria De Tommasi (university of Naples, Italy) with their
proposed real-time Linux container engine RT-CASE (left). Mixed-criticality
systems have in common that they allow running multiple workloads with dif-
ferent criticality levels on the same hardware. The main goal of these sys-
tems is to reduce costs, space and power consumption, while meeting stringent
non functional requirements[20]. Wind River’s VxWorks 653 platform manages
this balancing act with a traditional IMA approach and a proprietary hypervi-
sor. Application payload is deployed on operating system partitions, scheduled
by the VxWorks module operating system, each partition only executes when
their allocated time slice is active (standard ARINC time-preemptive schedul-
ing)[152]. The VxWorks module operating system executes on kernel level and
the partitions with different criticality payloads operate in user mode. Different
scheduling algorithms are supported: The standard ARINC time-preemptive
scheduling, a mode-based scheduling algorithm and a scheduling mode called
ARINC plus priority-preemptive scheduling (APPS)[152]. In time-preemptive
scheduling mode partitions execute until their time slice expires[152]. Time is
prioritized and every process gets exactly the amount of time as it has been or-
chestrated. This behavior is different to APPS, where a priority-based schedul-
ing mode is being used. APPS allocates a priority level to every process and
processes with a higher priority are preferred. If a process with higher priority
needs CPU time, the lower-prioritized process must wait. During mode-based
scheduling the partition schedules can get configured statically and selectively
enabled dynamically on-demand[152].

The left structure in Figure 4.1 shows a diagram of the RT-CASE con-
tainer engine for running real-time containers in a mixed-criticality system.
The RT-CASE engine is a prototype for a multi-criticality system based on
a patched real-time Linux kernel with additional libraries for scheduling LXC
Linux containers for different criticality levels[20]. All containers run in unpriv-
ileged cgroups on a patched real-time Linux kernel. The core component of
the real-time container engine is the Real Time Application Interface (RTAI),
an hardware abstraction layer for the Linux kernel for running real-time tasks,
by the Department of Aerospace Sciences and Technologies Milan, Italy[116].
RTAI is under active development and consists mainly of two parts: A real-
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time patch for the Linux kernel with hardware abstraction layer and a “broad
variety of services which make real-time programmers’ lifes easier”[1]. An early
implementation of the RT-CASE engine involves patching RTAI core libraries
for providing container isolation for different priority levels[19]. This type of
isolation for priority classes is necessary for running the containers via a pre-
emptive fixed-priority First-In, First Out (FIFO) scheduler on Kernel level[19].
Isolation is being established via remapping each real-time task onto separated
time intervals. Remapping allows the preemptive fixed-priority FIFO scheduler
to run each task in a specific order (First In, First Out). Tasks with a higher
priority level are preferred. A real-time task with high priority level can inter-
rupt any task beneath them. This approach also allows priority inheritance,
similar to virtual machines[19]. In 2019, Marcello Cinque conducted final tests
with the RT-CASE engine. Different experiments were performed. In these
experiments tasks with different priority levels were executed on machines with
different CPU utilization. Each task were tested for overtime and overrun sit-
uations. If a task exceeds their Worst-Case Execution Time (WCET) this is
known as overtime. Overrun refers to a missed deadline. The paper shows that
three high criticality tasks met all overtime and overrun constraints and seven
medium criticality tasks violated the overtime constraint (with one exception
violating the overrun constraint, this has been a task with the lowest prior-
ity)[21]. This result definitely matches this thesis expectation that containers
are a feasible solution for avionics. Interestingly, Marcello Cinque and Gian-
maria De Dommasi mention in their article Kubernetes as solution for mapping
task names, containers and configuration[20]. Kubernetes as possible solution
is illustrated on the right of Figure 4.1. The concept of using Kubernetes as
distributed container orchestration platform is not so different to the RT-CASE
engine with real-time containers. Most research regarding real-time containers
on Linux form a good entrypoint for further research, because implementing a
runtime engine for real-time containers, choosing the right scheduler, and estab-
lishing isolation is not enough for a system, that must fit real world challenges.
In reality, a system should be easy to use, easy to maintain, secure, and cost-
effective if it aims to get attention outside of the academic world. Kubernetes
has this attention already in the cloud computing industry. What is missing is
the missing link and potential in other industries like the automation industry,
in particular in fog- and edge-computing, or in the aviation industry. The com-
bination of real-time containers and Kubernetes has been already topic of many
researchers[47][129][42][61]. This thesis tries to focus on the orchestration and
reliability aspects with Kubernetes and tries to discover potential benefits for
the aviation industry in the Kubernetes API. In the previous chapters, this the-
sis has explored various resource types of the Kubernetes API. These resource
types show a huge potential for aviation systems. One of the main questions
is, if container systems can provide the same reliability safeguards than virtual
machines. Reliability safeguards are implemented through the backbones of
containerization in Linux: Namespaces and cgroups. Additionally, Kubernetes
provides different QoS classes. Listing 3.10 depicts a deployment with three
replicas and guaranteed CPU and RAM allocations. Replicas can be deployed
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on different nodes through anti affinity rules, matching one pod (set of contain-
ers) per worker node. Through a Kubernetes service resource it is possible to
loadbalance the traffic over all three replicas. If a replica fails, Kubernetes’s
kube-scheduler automatically tries to restart the pod. Failing pods can be de-
tected either via a process exiting with a return code unequal to zero, or via a
failing readiness or liveness probe or via custom monitoring.

4.2 Real-time capabilities in Linux
The Linux operating system itself is not real-time capable, hence various projects
emerged to provide the Linux kernel with necessary patches for enhanced real-
time capabilities. The most prominent example for such a patch set is the Linux
Foundation’s PREEMPT_RT project. Projects like the RTAI project from the
Department of Aerospace Sciences and Technologies in Milan are extending the
existing PREEMPT_RT project with additional libraries or smaller changes in
the real-time Linux kernel patch set. According to the Linux Foundation an
real-time operating system is a system that is able to run one or more real-time
tasks, before a certain deadline[135]. Other requirements for a real-time op-
erating system are a fast execution speed, low latencies and most importantly
deterministic behavior. These real-time tasks should be preemptive, this means
that the task is running with a higher priority than any other task and should
not be disrupted by tasks with a lower priority. The real-time Linux kernel
achieves this with a set of features, that are missing in the mainline Linux ker-
nel. The mainline Linux kernel comes with just 40 priority levels, or so called
nice levels, and implements a system call to set the level for a process[134].
System calls are the fundamental interface to the Linux kernel[132]. The level
with the highest priority has the value -20, the lowest priority is +19 and the
default value is 0. PREEMPT_RT extends the nice levels with 100 real-time
priority levels reaching from 0 to 99, while 0 is the lowest and 99 is the high-
est priority level. Real-time priority levels are preferred over the traditional
nice levels and are protected via the system call mlock [4]. Mlock allows locking
the used memory in the RAM, thus the process cannot swap memory on the
hard disk (leading to a decreasing execution time)[141]. Critical sections are
preemtable through special real-time mutexes, this does include preemptable
interrupt handlers. An interrupt disrupts an executing process. This is bad
in real-time systems, because of two reasons. First, a real-time task should
be able to interrupt an interrupt and execute code in the necessary time and
second a high priority real-time task should not get interrupted by a task with
a lower priority. This makes process scheduling very important on a real-time
operating system. Therefore, it is not a surprise that a real-time operating sys-
tem comes with a new set of schedulers. A scheduler determines time slices for
process for their execution. The nice system call is part of the scheduler and
the mainline Linux kernel has a small set of non-real-time capable scheduling
policies: SCHED_OTHER, SCHED_IDLE and SCHED_BATCH. On default
the mainline kernel uses the Completely Fair Scheduler (CFS)[118]. The CFS
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aims to maximize CPU utilization through scheduling process fairly on the avail-
able processors, respecting the different scheduling policies. SCHED_OTHER
is the default scheduler for all processes, SCHED_BATCH is designed for a
higher throughput and SCHED_IDLE is a scheduling policy for processes with
a lower priority than the weakest nice level[119]. These scheduler policies are
not suitable for a real-time operating system, hence other scheduler policies have
been introduced via the PREEMPT_RT patch set. Three scheduler policies are
capable of real-time scheduling: SCHED_FIFO, SCHED_RR and SCHED_-
DEADLINE. Figure 4.2 visualizes the different scheduling policies and their
mechanisms. The first time slice shows what happens if all tasks on the right
have been scheduled via the SCHED_FIFO policy. On the right of the first
task slice is a table with the tasks A, B and C with different lengths and real-
time priorities. During the SCHED_FIFO policy the tasks are scheduled with
respect to their real-time priority level. Task A is scheduled at first, because
task A has the highest real-time priority. After scheduling task A there are
two tasks with the same real-time priority left. In this case, the task which
comes first will be served first (in this case task C before task B). The second
time slice shows the same scenario with all tasks running under the SCHED_-
RR policy. SCHED_RR defines a fixed time slice for each task. Although the
scheduler sets the fixed time slice for each task to one, task A is served first
again, because task A has the highest priority over all over tasks. When task A
has finished, the other tasks are being run according to the fixed time slice in
a round-robin cycle. The last time slice in Figure 4.2 shows a mixed scheduler
scenario. Linux allows setting different scheduler policies for different processes,
hence it is absolutely common to run processes with different scheduling mecha-
nisms. Running processes with different schedulers makes the real-time patched
Linux kernel to a mixed-criticality system. On the right of the bottom time
slice there are now four tasks. Task A is being scheduled with the SCHED_-
FIFO policy, task B and task D run through the SCHED_RR policy and task
C is managed by the SCHED_DEADLINE policy. Attentive readers will see
that task C has no real-time priority. A real-time priority is in case of task C
not necessary, because SCHED_DEADLINE is being implemented through the
Global Earliest Deadline First (GEDF) scheduling algorithm. Contrary to the
other scheduling policies which are fixed-priority based, the GEDF algorithm
schedules tasks with the global earliest deadline first. Global refers to all pro-
cessor cores in a system, the word clustered would refer to a subset, partitioned
would mean that each scheduler manages a single CPU and arbitrary means
any other CPU set[9]. The time slice on the right of the bottom table shows
the schedule times for each task. Task C is run first, because task C is managed
via the SCHED_DEADLINE policy. SCHED_DEADLINE can preempt every
other task and runs the tasks in this priority class with their earliest deadline
first. There is just one task in this priority class, thus task C runs first. When
task C has finished, task A is being scheduled, because task A runs through the
fixed-priority based SCHED_FIFO policy and has a higher priority class than
the tasks B and D. The tasks B and C run in a round-robin cycle, because they
share the same scheduling policy and the same real-time priority.
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A
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A 3 3
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C 3 2
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C: SCHED_DEADLINE                           D: SCHED_RR

C A B D B D

Figure 4.2: Different real-time scenarios with different real-time schedulers

Out of all real-time schedulers, the SCHED_DEADLINE policy is the pre-
ferred one nowadays, because fixed-priority schedulers are affected by the pri-
ority inversion problem[134]. The priority inversion problem occurs, when a
low-priority task is blocking a resource, for instance via a semaphore or a mu-
tex. If a high-priority task tries to access the resource, the high-priority task
must wait due to the semaphore or mutex. The situation gets more problematic
when a medium-priority task with access to a different resource gets scheduled,
because now the medium-priority task has a higher priority than the low-priority
task, hence leading to an execution of the medium-priority task. The high pri-
ority task will not get scheduled at all. There are two different solutions for this
problem. The first solution is called priority ceiling. Priority ceiling protects
a resource with a priority-gate. This means that any resource access must get
through this priority-gate, where the gate checks if the resource-requesting task
has a higher priority. If the task has higher priority than the resource-blocking
task, the task will be set free for the requesting task. Another solution is priority
inheritance. During priority inheritance the low-priority and resource-blocking
task will inherit the priority from the high-priority and resource-requesting task.
This behavior makes it impossible for the medium-priority task to interrupt the
schedule and to steal the high-priority task’s time slice. Figure 4.3 gives a good
visual representation of the problem. On the top, the graphic shows the priority
inversion problem. At the bottom is the solution for the problem: priority in-
heritance. The line in the upper right corner symbolizes the exclusive resource
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access by the task at the bottom with priority level 1. Between time slice 2
and 3 a task with higher priority tries to access the resource, but gets denied
(visualized by a line crossing from the bottom left to the top right corner). At
time slice 5 a task with the priority level 2 gets scheduled. The priority level is
higher than priority of the resource-blocking task, hence the resource-blocking
task is interrupt. The high-priority task still waits for execution and has to wait
until time slice 12. With priority inheritance (on the bottom) the task with pri-
ority 1 will inherit the priority from the resource-requesting high-priority task.
Due to this behavior the resource blocking task has a higher priority than the
medium-priority task, thus the former low-priority task can set the resource free
as fast as possible and the high-priority task can execute in time slice 7, leading
to a faster execution time for the high-priority task. The medium-priority task
gets executed after the high-priority task, instead of before like in the upper
part of the picture.
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Priority Inversion

Priority Inheritance

Figure 4.3: Priority inversion problem and its solution: Priority inheritance[4]

Choosing the right scheduling mechanism solves a few of the problems with
real-time operating systems. Additionally, other work is needed. The underlying
hardware has to meet the right requirements for power management, preemtable
hardware interrupts or latency improvements. This is why the real-time patched
Linux kernel disables slower CPU instruction sets[4].
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4.3 Containers and Separation Kernels
Achieving all requirements for real-time operating systems is not easy. The
most prominent tool in the aviation industry for satisfying the high standards
is the separation kernel. Separation kernels are a combination of hardware and
software for running multiple applications with real-time capabilities and more
importantly without interference[29]. Interference protection can be summa-
rized in the following three isolation practices[7]:

Fault Isolation a fault in one application should not infect other applications.

Spatial Isolation when applications are loaded into the RAM, these applica-
tions must execute within independent address spaces.

Temporal Isolation an application’s real-time behavior should be correct and
not be interfered by other applications.

Fault Isolation can be prevented fairly easy via Linux namespaces. Linux
namespaces can isolate containers from each other. The pid namespace can be
used to isolate processes from each other. Using this namespace will prevent
managing processes outside of the container. Network access can be controlled
through the net namespace, allowing an isolation of network layer through ker-
nel network filters, for instance the Extended Berkeley Packet Filter (eBPF).
The ipc namespace gives the opportunity to isolate inter-process communica-
tion. Users in containers can be controlled with the user namespace. Via the
user namespace it is possible to map the user IDs in the container to a higher
layer onto the host system. For example, a container could be given the full
user ID set of 65535 user IDs including the root (the administrator user), but
this set would then be remapped onto an extended area of user IDs on the
host, such as 100000-165535. The same happens with the process IDs in the pid
namespace. The mnt namespace is used for controlling mount points inside the
container, perfect for data sharing, and the uts namespace allows setting differ-
ent host names for each container. Namespaces are not the only instrument for
satisfying the isolation requirements of aviation. cgroups provide a hierarchi-
cal isolation and grouping of containers. A cgroup allows to allocate, prioritize
and limit memory and processor resources. However, cgroups are not capable
of isolating applications in different memory pages or different processor cores.
Also, spatial isolation through RAM may be not enough, it would be useful to
provide CPU pinning, too. CPU pinning allows giving a process isolated ac-
cess to a CPU core. This way it is possible to run applications with different
priority or criticality levels on different processor cores, enabling stricter spatial
isolation. The result is a mixed-criticality system with isolated CPU access.
Interestingly, there are solutions for both, RAM and CPU pinning. Kubernetes
supports guaranteed memory allocation for pods in its Guaranteed QoS class.
Sadly, this solution does not provide real memory isolation, it mostly serves al-
location purposes on Non-Uniform Memory Access (NUMA) architectures[142].
NUMA refers to a computing architecture, where each CPU has its own local
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memory for faster memory access. The counterpart for this computing archi-
tecture is called Uniform Memory Access (UMA), where multiple CPU cores
access the same memory. Due to the NUMA architecture it is possible that
processes are scheduled on CPU cores and remote memory, instead of the faster
local memory. The Kubernetes memory manager addresses this problem by
pinning the process on the local memory of the scheduled CPU. Another fea-
ture of the memory manager of Kubernetes is the support for huge memory
pages (hugepages). Memory pages are chunks of data allocated by the CPU,
usually in 4 kilobyte chunks, because this is the limit that all CPU vendors
can handle. Hugepages provide a bigger chunk size and therefore faster mem-
ory access for Central Processing Units supporting hugepages[56]. Kubernetes
solves the memory allocation problem for NUMA architectures, but what about
the memory isolation problem? The Linux kernel supports memory isolation on
memory page layer since version 5.14 via the new memfd_secret system call[79].
memfd_secret has its origin in research by the International Business Machines
Corporation (IBM)[112][26]. According to IBM, the idea’s core concept is the
utilization of the hardware Memory Management Unit (MMU) for restricting
access to specific memory pages. The MMU is responsible for translating vir-
tual memmory addresses to physical memory addresses via dividing them into
these memory pages[143]. Figure 4.4 depicts different memory pages. Processes
running in user mode have a restricted permission set. The user page table on
the left in Figure 4.4 depicts this scenario. Kernel space is not accessible on
a user page table. Every interaction between a process in user mode and the
kernel space have to go through the kernel entry area. The kernel entry area
provides entrypoints for system calls into the Linux kernel. The right graphic
shows a kernel page table with permitted access to the kernel space. With the
new memfd_secret system call it is now possible to store memory directly in
kernel space and therefore hidden for other processes running in user mode.

Kernel entryKernel entry

Kernel space Kernel space

User space User space

User Page 

Table

Kernel Page
Table

Figure 4.4: Exlusive memory mapping in the Linux kernel with Kernel version
5.14 upwards[112]
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The above solution allows isolating process memory from each other, but
what about CPU pinning for running processes exclusively on a dedicated CPU
isolated from other processes? Pinning a process to a single CPU has multiple
advantages for time-sensitive systems. First of all, if a process is not sched-
uled to a dedicated CPU the normal kernel scheduler takes over and schedules
the process for best multi CPU utilization and multi-tasking. This behavior
is non-deterministic, violates the constraints for real-time systems and is com-
pletely unsuitable for latency-sensitive workloads. Scheduling a time-sensitive
process on a dedicated CPU fixes this problem. The container orchestration
engine Kubernetes tries to address this problem with its CPU manager, based
on research at Intel[38]. Linux distributions have three kinds of CPU resource
control: shares, quotas and CPU affinity. Shares refers to the share of CPU
time on a system (handled by the requests statement in Kubernetes) and quo-
tas enable the system to set a hard cap of CPU time over a period (handled
by the limits statement in Kubernetes)[38]. CPU affinity pins proccesses to a
given set of Central Processing Units. The requirement for CPU pinning is the
use of whole CPU core numbers, for instance 1000m for 1 CPU core. Listing 3.8
from an earlier chapter shows an example pod definition in Kubernetes with the
QoS class Guaranteed, but a CPU share and quota of 100m. 100m is not a full
CPU core, thus this pod is scheduled on a random CPU with low utilization for
archieving better overall performance. With setting the value 100m to 1000m
Kubernetes would change the pod’s policy to static and would place the pod
on its own CPU core. If another payload is already running on this CPU, the
payload will be re-scheduled on a different CPU. Hardware-unawareness is one
known limitation of the CPU manager, because Kubernetes does not know the
exact CPU layout. This could lead to situations, where a pod gets scheduled on
a CPU that is far more away from a time-sensitive hardware device (for example
a sensor) than another free CPU. Figure 4.5 shows two Kubernetes clusters with
one node each and four CPU cores. On the left cluster it is clearly visible that
the scheduled pod runs processes on all four Central Processing Units. The right
graphic shows the same cluster, but with with the cpu manager policy set to
static. All processes inside of the pod run in the same CPU core (visualized by
the green color). The pictures were created with the cpuset-visualizer project
by Connor Doyle, one of the Intel researchers responsible for the cpu manager
at Kubernetes[28]. Figure 4.5 proves that allocating processes on one CPU core
is possible, but what about true isolation? For true isolation the Linux kernel
offers a boot parameter called isolcpus. The boot parameter isolcpus prevents
the Linux kernel from automatically scheduling processes on a set of Central
Processing Units. With this boot parameter it is possible to deterministically
isolate a CPU and prevent accidentally scheduling processes on it. This feature
is not yet supported in the vanilla Kubernetes orchestration engine. Intel is
actively working on a new CPU manager that makes use of the isolcpus kernel
parameter. Intel states in their report, that the new CPU manager boosts the
performance significantly in noisy neighbor scenarios and achieves a consistent
performance in terms of throughput and latency[11]. Noisy neighbor scenar-
ios occur when a neighbor CPU core has a very high utilization, leading to a
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performance regression of other cores.

Figure 4.5: Two Kubernetes clusters with one node each and four Central Pro-
cessing Units. The right node has its CPU manager policy set to static

Temporal isolation can be achieved by the real-time capabilities explained
prior.
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Chapter 5

Test Scenarios

5.1 Introduction to the test environment
In this part of the thesis, we are going to setup a minimal test environment for
evaluating the capabilities of the Kubernetes orchestration engine. As first step,
we have to download Minikube. Minikube is a program written in Go for cre-
ating local test environments with Kubernetes[89]. Kubernetes installations via
Minikube have been designed for testing purposes or local development only. For
installing Kubernetes on the edge, in production environments, a Kubernetes
distribution such like KubeEdge[63] is the better choice. Furthermore, this test
scenario will not cover the Linux real-time kernel capabilities, due to space and
time constraints of this thesis. There is plenty of research suggesting that the
Linux real-time kernel is capable of running time-sensitive workloads with con-
tainers[116][19][47][129][42][135][20][21]. Instead, this chapter of the thesis will
focus on the two main isolation criterias fault isolation and spatial isolation[7].
As first step it is necessary to install Minikube. The Minikube website pro-
vides an installation guide for Minikube on different operating systems (Linux,
MacOS, Windows) and different architectures (x86-64, arm64, armv7, ppc64,
s390x)[90]. Depending on the operating system a hypervisor is needed, because
some operating systems like Windows or MacOS are lacking native container
support. Throughout this thesis we will always use the virtual machine hyper-
visor, because it let us modify the Central Processing Units and RAM. Using
the virtual machine does not mean that the following scenario is not possible on
hardware directly. Every step in this chapter can execute on every Kubernetes
installation. This is one of the core advantages of Kubernetes. Kubernetes
provides an abstraction layer that makes it very convenient for production and
development environments. If Minikube has been installed successfully, it is pos-
sible to invoke Minikube via the command line. The command minikube –help
offers a first overview over Minikube’s commands. Help for the subcommands
will appear with the minikube <subcommand> –help command, for instance
minikube start –help. Minikube provides an internal installer for the Kubectl
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command line tool via minikube kubectl. Kubectl is the native Kubernetes client
for interacting with the Kubernetes cluster. Minikube only installs the cluster
and manages it infrastructure. The official Kubernetes documentation main-
tains a Kubectl cheat sheet[62]. Figure 5.1 depicts the test environment setup
with a single Kubernete cluster. The single cluster is worker and master/control
node at the same time.

Host Machine

Minikube
Command Line

Tool

Kubectl
Command Line

Tool

Hypervisor (Virtualbox)

Custom Linux OS

Docker Container
Runtime

Etcd

Kubelet

KubeProxy

KubeController

KubeScheduler

KubeAPI

Minikube manages the Hypervisor and the
Linux OS running the Kubernetes components

Kubectl interacts with the Kubernetes cluster
through the REST API exposed via KubeAPI
Gateway

Figure 5.1: Overview over the test environment with a host system, Minikube
and Kubectl command line tools and the hypervisor running a custom Linux
operating system with Kubernetes

5.2 Deploying the first pod
In this section of the thesis we will deploy our first Kubernetes pod. A pod
consists of one container with a pause process for managing the pod and any
additional payload. The Figure 3.3 in an earlier chapter compares a pod and a
container. First of all we need to start the Minikube instance via the Minikube
command line tool. The following command requires a host system with more
than 4 CPU and more than 4GB of RAM: minikube start –cpus 4 –memory
4096 –vm. Additional flags modify the virtual machine for the Kubernetes test
environment: –vm sets up a virtual machine with the Virtualbox hypervisor.
Listing 5.1 shows a few Kubectl commands and their output. The command
minikube kubectl get nodes gives an overview over the nodes in the cluster and
shows a single node cluster with one host called minikube its status Ready and
the roles control-plane and master. These two roles mean that the node is a con-
trol plane node and a worker node. For testing and local development purposes
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this is fine, but should not be used in production, because for a high-availability
setup a cluster needs at least three dedicated control nodes and three dedicated
worker nodes. The VERSION key also shows that Minikube has installed a
Kubernetes cluster with version v1.23.1. Line 4 shows a command for listing
all namespaces. The kube-system namespace consists of internal Kubernetes
components and the default namespace is currently empty as shown in Line 11.
Line 12 creates our first Kubernetes deployment with the OCI container image
cpuset-visualizer. In Line 15 we verify that the pod starts and after maximum
one minute the pod should be ready as stated by the READY 1/1 statement
in lines 20 and 21. Line 22 exposes the deployment via a Kubernetes service of
type NodePort. NodePorts exposes a Kubernetes service on a free port of one
of the nodes. The process in the container is listening on port 80, hence we are
exposing this port via a node port to the host system. Line 27 shows that the
NodePort 31525 has been used. With Line 28 it is possible to automatically
open a browser on localhost and port 31525. Figure 5.2 shows the graphic as
seen in the web browser through the command minikube service hello-world.
Figure 5.2 shows the hostname of our pod hello-world-646d4b4bf7-fj9ff and
that the processes in the pod are using all four CPU cores, because no CPU
manager has been enabled yet.

Figure 5.2: Graphical output of our first hello-world deployment with cpu-
visualizer software from Intel
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Listing 5.1: First steps with Minikube (the output has been slightly modified
to fit on the page)

1 $ minikube kubect l get nodes
2 NAME STATUS ROLES VERSION
3 minikube Ready contro l−plane , master v1 . 2 3 . 1
4
5 $ minikube kubect l get namespaces
6 NAME STATUS AGE
7 de f au l t Act ive 65m
8 kube−node−l e a s e Act ive 65m
9 kube−pub l i c Act ive 65m

10 kube−system Active 65m
11
12 $ minikube kubect l get pods
13 No r e s ou r c e s found in d e f au l t namespace .
14 $ minikube kubect l c r e a t e deploy he l l o −world −− \
15 −−image="quay . i o / connordoyle / cpuset−v i s u a l i z e r "
16 deployment . apps/ he l l o −world c reated
17
18 $ minikube kubect l get pods
19 NAME READY
20 pod/ he l l o −world −646d4b4bf7−f j 9 f f 0/1
21
22 $ # wait a l i t t l e
23 $ minikube kubect l get pods
24 NAME READY
25 pod/ he l l o −world −646d4b4bf7−f j 9 f f 1/1
26 $ minikube kubect l expose deploy he l l o −world −− \
27 −−type=NodePort −−port=80
28 s e r v i c e / he l l o −world exposed
29
30 $ minikube kubect l get s e r v i c e
31 NAME TYPE CLUSTER−IP PORT(S)
32 he l l o −world NodePort 10 . 98 . 232 . 251 80:31525/TCP
33
34 $ minikube s e r v i c e he l l o −world

5.3 Testing CPU and RAM allocation
Prior, we have deployed only one pod without CPU or RAM allocations. This
means that our last pod has been scheduled with the Kubernetes QoS class
BestEffort. In this section, we want to have a closer look on the resource man-
agement with cgroups. As first step, we are deleting our last deployments via
minikube kubectl delete service hello-world and minikube kubectl delete deploy
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hello-world. The command minikube kubectl get pods should now show the sta-
tus Terminating and the pod should be gone a few seconds later. Now, that we
have a clean state we can download the kubernetes-avionics-playground reposi-
tory from Github located at: https://github.com/shibumi/kubernetes-avionics-
playground. The repository’s README.md file gives an overview over the
project and the different test scenarios. For this section, we are interested in
the second test scenario located in the directory scenario2. Furthermore, we
need to install a Minikube addon that offers us resource monitoring via the fol-
lowing command: minikube addons enable metrics-server. With the command
minikube kubectl get deploy – -n kube-system we can verify if the metrics-server
is up and running (we have to look for the READY 1/1 state). The directory
scenario2 holds a file called limit_test.yaml. This is the file we are looking for,
for running our first test. In the first test, we want to verify, if the cgroup
RAM management satisfies our expectations. Listing 5.2 shows a snippet of
the limit_test.yaml file. Line 3 specifies the container image (a Linux Debian
with release codename buster). Line 6 states that the container should just idle
and execute a sleep command. Line 8-10 specify CPU and RAM limitations.
Note that we are missing the requests section in this snippet. Kubernetes will
automatically set the requests value to the same values, hence the container will
have the Kubernetes QoS class Guaranteed. Guaranteed means that the pod
will be scheduled on the cluster with CPU and RAM limitation and guaranteed
resource allocation. Also note, that the usual pause container is hidden from us,
because it is a Kubernetes internal container that gets deployed into every pod
for management purposes. In this scenario, we will start the pod as defined in
the definition limit_test.yaml on the cluster, then invoke a fork bomb to pro-
voke an out-of-memory situation and then monitor what happens. A fork bomb
is a parent process that creates an infinite number of child processes. Every
additional child process consumes a minor amount of RAM and after a certain
number of child processes the process exceeds its memory. On a physical host
system a fork bomb has a devastating effect, because the host will run into a bad
state (although modern defensive mechanism exist to prevent such situations).
The purpose of this scenario is to test if the container will be killed before it
exceeds its memory limit of 500MB. First, we are going to start the deployment
via minikube kubectl apply – -f limit_test.yaml. Then, we will open a second
terminal. In the first terminal, we are going to monitor the pod CPU and RAM
consumption for the default namespace via while true; do sleep 1; minikube
kubectl top pods; done (this command may only work on a Linux system. On a
Windows host execute minikube kubectl top pods manually every second). In the
second terminal, we start the forkbomb via jumping into the container’s shell
(minikube kubectl exec deploy/hello-world – -it – /bin/bash) and executing the
fork bomb via: :(){ :|: & };:. In the first terminal, we should now be able
to see that the memory consumption of the pod is climbing from 1MB memory
consumption to over 480MB until it gets killed. Kubernetes will automatically
kill the container and start a new fresh container within milliseconds. The new
container will idle on 1MB memory consumption again. It is possible that all of
this happens so fast, that the metrics-server does not show the increasing mem-
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ory consumption, because the metrics-server is polling the monitoring API only
every second. The out-of-memory situation can occur within the polling, but
the second terminal should report that the container got killed via the following
message: command terminated with exit code 137. If we lookup the Linux exit
code 137, we will discover that the exit code 137 gets thrown by the out-of-
memory killer on Linux. Kubernetes did indeed kill our process. The memory
limitation works! Another way to verify if the Linux out-of-memory killer works,
is via the command minikube kubectl describe pod/<pod name>. The output of
this command will show the last state of Kubernetes pod as shown in Listing 5.3.

Listing 5.2: Snippet of our limit_test.yaml file with a Debian Linux container
running a sleep command in a while loop and an active limit of 1 CPU and
500MB memory)

1 . . .
2 c on ta i n e r s :
3 − image : debian : buste r
4 name : he l l o −world
5 command : [ "/ bin / sh " ]
6 args : ["−c " , " whi l e t rue ; do s l e e p 10 ; done " ]
7 r e s ou r c e s :
8 l im i t s :
9 cpu : 1000m

10 memory : 500M

Listing 5.3: Snippet of the command minikube kubectl describe pod/<pod
name>)

1 . . .
2 State : Running
3 Started : Sun , 20 Feb 2022 21 : 40 : 20 +0100
4 Last State : Terminated
5 Reason : OOMKilled
6 Exit Code : 137
7 Started : Sun , 20 Feb 2022 21 : 33 : 48 +0100
8 Fin i shed : Sun , 20 Feb 2022 21 : 40 : 05 +0100
9 Ready : True

10 Restart Count : 10
11 Limits :
12 cpu : 1
13 memory : 500M
14 . . .

Next, we are going to test the CPU limitation. Contrary to the RAM limita-
tions, Linux will not kill the container if it exceeds its CPU shares and quotas.
Instead, Linux will just throttle the container and de-prioritize it. We need
two terminals again. This time we are jumping in both terminals into the con-
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tainer via the following command: minikube kubectl exec deploy/hello-world –
-it – /bin/bash. Then, we will install two tools in the container (apt update; apt
install stress htop). stress is a tool for CPU stress tests and htop is a process
viewer running in the terminal. htop will provide us more data than just the
CPU consumption. With htop we are able to see which CPU cores are busy.
As next step, we will invoke htop via the htop command on one of the termi-
nals. In the other terminal, we are going to execute the stress test with CPU
load tests only: stress –cpu 4. The parameter –cpu 4 may seem odd at first,
because the container has a limit of one CPU core, but we are doing this on
purpose. The goal of this stress test is to verify if the container will exceed
its CPU allocation and use more than 100% CPU. Figure 5.3 is a copy of the
output of htop. The first important observation is that containers see all four
virtual cores of the virtual machine, although the container has a CPU quota of
one core. The next important observation is that, although the container has
access to all four cores it cannot consume all four cores completely. Figure 5.3
shows clearly not all four cores are running on high load. The load statistic in
the middle even shows an average load of 1.02, but this still throws up another
question: We see four times a CPU load of 30%. Should not this be more than
one virtual core? The short answer is no and there is a way to prove this.
It is possible to jump on the virtual machine via the command minikube ssh.
When inside of the SSH session (Secure Shell (SSH) is a remote administration
protocol) we can invoke two commands to verify how much CPU the container
consumes: systemd-cgls(Figure 5.4) and systemd-cgtop(Figure 5.5). The output
of systemd-cgls tells us the cgroup slice name of the pod kubepods-pod75a6.. and
all 8 running processes inside of it. The output of systemd-cgtop on the other
hand, shows us the number of processes (9, because 8 + 1 init process) and
the CPU consumption that lies under the 100% threshold. The container gets
indeed throttled.

Figure 5.3: htop output in one container with a fixed CPU and RAM limit
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Figure 5.4: Output of systemd-cgls showing our cgroup slice with the running
processes in the container

Figure 5.5: Output of systemd-cgtop showing the real CPU consumption of the
container that is under the threshold of 100%

As last test for this section, we try to deploy another payload on our cluster.
This time, the CPU and RAM limits will be much higher than the remaining re-
sources. One deployment with QoS class Guaranteed runs already on the cluster.
What will happen if we try to schedule another deployment with 4 Central Pro-
cessing Units and 8000MB memory? The kubernetes-avionics-playground has
another deployment file named too_much.yaml. When deploying it (minikube
kubectl apply – -f too_much.yaml) and verify the deployment (minikube kubectl
get pods) it becomes visible that the status is on Pending and 0/1 containers
are ready. minikube kubectl get events reports that scheduling failed, because of
insufficient CPU and insufficient memory. It did work! Kubernetes prevented
the deployment, because of insufficient resources.

5.4 Testing the CPU manager
Prior this chapter had a look on spatial isolation with a high focus on resource
allocation. In this section, we will investigate the spatial isolation with focus
on CPU isolation. For this scenario, we have to delete the minikube instance
(minikube delete) and restart it with the following parameters:
minikube start –cpus 4 –memory 4096 –vm
–extra-config=kubelet.cpu-manager-policy=static
–extra-config=kubelet.kube-reserved=cpu=1
–extra-config=kubelet.system-reserved=cpu=1.
There are three new flags behind the command. These flags are configuration
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flags for the Kubelet, the Kubelet is the Kubernetes agent running on every Ku-
bernetes control and worker node. With the first flag we set the CPU manager
policy to static. The other two remaining flags are needed, because when the
CPU manager’s policy is set to static we have to configure a guaranteed set of
CPU and memory for the Kubernetes components. Now, we replay the com-
mands from the previous section. First, we deploy the limit_test.yaml, then we
install the stress testing tool and htop again. Second, we invoke the stress test-
ing tool and htop. Additionally, we will deploy the cpu-visualizer from the first
section of this chapter: minikube kubectl – -f cpu_visualizer.yaml. Figure 5.6
and Figure 5.7 show the results of the third scenario. This time, htop shows
100% consumption on only one CPU core with a stress test over 4 cores. The
CPU visualizer confirms the htop output.

Figure 5.6: htop output with CPU manager policy set to static

Figure 5.7: CPU visualizer output showing only one CPU is in use by the
container

5.5 Testing network isolation
This short section will cover network isolation. Network isolation helps with
fault isolation, because it prevents other services from affecting services over the
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network, for example accidentally creating too much network traffic. The direc-
tory scenario4 covers this section in the kubernetes-avionics-playground repos-
itory. First, we have to delete the current minikube instance again minikube
delete and re-create it with a custom Container Network Interface (CNI) plugin
called calico: minikube start –cpus 4 –memory 4096 –vm –cni=calico. Calico is
needed, because the default KubeProxy components provide no network isola-
tion in form of network policies. With the new cluster up and running we can
deploy one test server container running the web server Nginx and one client
container running the HTTP tool cURL. cURL allows us to invoke HTTP re-
quests on the command line. minikube kubectl apply – -f deployments.yaml
starts both deployments. Next, we verify that the client container can reach
the server container via executing cURL: minikube kubectl exec deploy/client –
– curl -I –silent 10.244.120.67 (the server container’s IP address is different on
every cluster. The command minikube kubectl get pods – -o wide prints the IP
addresses for all pods). Listing 5.4 depicts our success. The HTTP request has
been sent successfully and the server container answered it, hence there is no
network isolation in place yet. In the next step, we activate a network policy
as described in Listing 5.6. Line 6 has an empty pod selector, this means that
the network policy will apply to all pods. Line 7-9 describes the policy types:
ingress and egress. Line 10 sets the ingress policy to an empty list, blocking
all incoming traffic. Lines 11-19 defines an egress rule for all namespaces to
the pod that matches the labels k8s-app: kube-dns on port 53 and protocol
UDP, allowing only DNS traffic. Listing 5.5 reports the result of the same
command with network policies enabled, showing that the command fails, be-
cause the connection is running into a timeout. The network isolation works.

Listing 5.4: Snippet of the command minikube kubectl exec deploy/client – –
curl -I –silent 10.244.120.67 with network policies disabled

1 HTTP/1 .1 200 OK
2 Server : nginx /1 . 2 1 . 6
3 Date : Sun , 20 Feb 2022 23 : 21 : 44 GMT
4 Content−Type : t ex t /html
5 Content−Length : 615
6 Last−Modif ied : Tue , 25 Jan 2022 15 : 03 : 52 GMT
7 Connection : keep−a l i v e
8 ETag : "61 f01158 −267"
9 Accept−Ranges : bytes

Listing 5.5: Snippet of the command minikube kubectl exec deploy/client – –
curl -I –silent 10.244.120.67 with network policies enabled

1 cu r l : ( 7 ) Fa i l ed connect to 1 0 . 2 4 4 . 1 2 0 . 6 7 : 8 0
2 Connection timed out
3 command terminated with e x i t code 7
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Listing 5.6: Kubernetes network policy that only allows DNS traffic

1 ap iVers ion : networking . k8s . i o /v1
2 kind : NetworkPolicy
3 metadata :
4 name : prevent−a l l −t r a f f i c −except−dns
5 spec :
6 podSe l ec to r : {}
7 pol icyTypes :
8 − Ing r e s s
9 − Egress

10 i n g r e s s : [ ]
11 e g r e s s :
12 − to :
13 − namespaceSe lector : {}
14 podSe l ec to r :
15 matchLabels :
16 k8s−app : kube−dns
17 por t s :
18 − port : 53
19 p ro to co l : UDP
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Chapter 6

Conclusion

6.1 Summary
This thesis has started with the question if it is possible to apply state of the art
practices from the Cloud-Native ecosystem to the aviation industry. chapter 2
gave a detailed introduction to the requirements of software systems running in
the aviation industry. It started with an introduction to federated avionics and
its problems with increasing cable lengths and energy consumption. Although,
federation avionics has been proposed as possible solution for the problems of
federated avionics, some problems remain and there is still room for further im-
provement through new technologies. Heavy virtual machine payloads turned
out to be a good solution for isolation, but they require hardware virtualization
and unnecessary layers of complexity. chapter 3 brought the necessary overview
over modern containers, their orchestration, their standards, and software sup-
ply chain security. It provides a detailed view on the Cloud-Native ecosystem
and highlights various Kubernetes API functionalities. Furthermore, it offers
an introduction to container interfaces and standards such as OCI. chapter 4
connected both domains with each other, featured important projects in the real-
time Linux domain, and proposed solutions for separation kernel implementa-
tions through containers. Intensive research and digging through many research
papers, brought papers to attention that offer high value for the aviation indus-
try, because they tackle current problems of the industry and suggests working
and implementable solutions. The section containers and seperation kernels ad-
dressed the requirements of separation kernels and their isolation practices and
connects them with container technologies that are up to date and either work
in progress or finished just a few months ago. chapter 5 demonstrated Cloud-
Native solutions for certain scenarios with focus on spatial and fault isolation.
Sadly, this chapter provided no more detailed work in real-time containers and
modern Linux kernel features like memfd_secret or the new CPU manager by
Intel. Altogether, this thesis provides the foundation for future research in this
area and a good entrypoint for the search for more connection points between
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Cloud-Native and avionics.

6.2 Limitations
Even though this thesis provides a detailed overview over Kubernetes, avionics
and modern container technologies. This thesis has a few weak spots. First
of all, this thesis is far away from presenting a full overview to Kubernetes.
Kubernetes is much larger than introduced in this thesis and grows rapidly
due to massive contributions by big global players like Google, Intel, IBM,
Microsoft or Amazon. Kubernetes offers much more API functionality than
described in this thesis and has numerous sub projects extending Kubernetes or
extending the Cloud-Native ecosystem in general. Figure 3.1 gives a feeling for
the countless number of services and software projects related to this technology.
It is possible that this thesis will not be up to date in the next years, due to
Kubernetes’ fast development cycles. Secondly, this thesis is missing depth in
certain areas. Providing the necessary depth would have smashed the time and
place constraints of this thesis, but this also means that there is plenty of more
research possible and more to discover and learn. Especially interesting are
the real-time capabilities of the Linux kernel in combination with containers.
Companies like Intel seem to have an increasing interest in this area and are
addressing similar problems to the isolation problems in the avionic industry.

6.3 Implications
The implications of this work can be summarized as follows. There is indeed
an overlapping between avionics and the cloud computing industry. Containers
have proven to be a good next step for running payloads in clouds and beyond.
Although virtual machines are superior in isolation, kernel features in modern
operating systems are catching up. Many of the discussed kernel features in
this thesis have been under the radar for years and many other features are so
new that the aviation industry may not discover them for the next few years.
This thesis wants to change this with providing a good foundation for further
research, development and entrypoints to a fully new ecosystem. The Wind
River company understands this challenges and chances and seem to act aggres-
sively in this market. Other companies have to follow this trend and have to
evaluate containers for their time-sensitive application areas. Containers may
be not the ideal solution for all DO-178C IDAL levels, but they can play a big
part in future avionics.
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Glossary

API Application Programming Interface. 12, 26, 30, 31, 35–38, 41–43, 51, 65,
71, 72

APPS ARINC plus priority-preemptive scheduling. 50

ARINC Aeronautical Radio Incorporated. 49, 50

ARINC 429 ARINC standard for a global data bus in aviation. 5

ARINC 629 ARINC standard for a global computer bus in aviation. 5

ARINC 653 ARINC standard for space and time partitioning. 5

ARP Address Resolution Protocol. 43

ARP4754 Guideline for the development of aircraft systems by SAE Interna-
tional. 10

BGP Border Gateway Protocol. 43

BLOB Binary Large Object. 21, 22

BPF Berkeley Packet Filter. 13

CFS Completely Fair Scheduler. 52

cgroup Linux control groups. 12, 13, 34–36, 50, 51, 56, 63

CNCF Cloud Native Computing Foundation. 16, 27

CNI Container Network Interface. 26, 27, 37, 69

CPU The CPU consists of registers for fast computation and an Algorithmic
Logic Unit (ALU). 5, 10, 11, 13, 30, 35–37, 49–51, 53, 55–68, 71, 74

CRI Container Runtime Interface. 22, 26, 34

CSI Container Storage Interface. 26, 27

DAL Design Assurance Level. 9, 49
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DIMA Distributed computer network airborne system. 7, 8

DNS The Domain Name System (DNS) connects every IP address with a
unique fully qualified domain name. 13, 43, 69

DO-178B Certification for safety-critical software by the RTCA. 1, 47, 48

DO-178C Certification for safety-critical software by the RTCA (replaces DO-
178B). 1, 48–50, 72

DO-278A Ground-Based Software Certification Guidance. 48, 49

DO-330 Software Tool Qualification Considerations. 48

DO-331 Model-Based Development and Verification Supplement to DO-178C
and DO-278A. 49

DO-332 Object-Oriented Technology and Related Techniques Supplement to
DO-178C and DO-278A. 49

DO-333 Formal Methods Supplement to DO-178C and DO-278A. 49

eBPF Extended Berkeley Packet Filter. 11, 13, 34, 56

FIFO First In, First Out. 51

FQDN Fully Qualified Domain Name. 43

GEDF Global Earliest Deadline First. 53

GID Group ID. 12, 13

gRPC Google Remote Procedure Calls. 26

HSD Horizontal Situation Display. 9

HTTP Hypertext Transfer Protocol. 35, 43, 69

HTTPS Hypertext Transfer Protocol Secure. 35, 43

I/O input and output. 3, 5, 11, 13

IaaS Infrastructure as a Service. 8

IDAL Item Development Assurance Level. 9, 49, 72

IDL Interface Definition Language. 26

IETF Internet Engineering Task Force. 41

IMA Computer network airborne system. 5–8, 49, 50
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IP Internet Protocol. 12, 27, 43, 69

IPC Inter-Process Communication. 12, 13, 34

JIT just-in-time. 13

JSON JavaScript Object Notation. 35

LRM Line-Replaceable Module. 3

LRU Line-Replaceable Unit. 3–6, 74

LVM Logical Volume Manager. 26

MAC Media Access Control. 43

MMU Memory Management Unit. 57

NASA National Aeronautics and Space Administration. 45

NFS Network File System. 26

NIST United States institute for promoting innovation and industrial compet-
itiveness. 8

NUMA Non-Uniform Memory Access. 56, 57

OCI Open Container Initiative. 20–22, 26, 27, 40, 62, 71

OSI Open Systems Interconnection model. 27

PaaS Platform as a Service. 8

PID Process ID. 12

QoS Quality of Service. 10, 35, 36, 51, 56, 58, 63, 64, 67

RAM RAM is very fast memory for temporary storing data. 5, 10, 11, 30,
35–38, 51, 52, 56, 60, 61, 63–65, 67

RBAC Role-Based Access Control. 31

REST Representational State Transfer. 35

RFC Request For Comments. 41

RPC Remote Procedure Calls. 13, 26

RTAI Real Time Application Interface. 50–52
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RTCA Radio Technical Commission for Aeronautics (RTCA). 1

SaaS Software as a Service. 8

SBOM Software Bill of Materials. 46

SCM Source Code Management. 45, 47

SHA256 Secure Hash Algorithm 2. 19, 21

SLSA Supply chain Levels for Software Artifacts. 46, 47, 49

TCO Total Cost of Ownership. 49

TCP Transmission Control Protocol. 35

TTD Test Driven Development. 49

UDP User Datagram Protocol. 44, 69

UID User ID. 12, 13

UMA Uniform Memory Access. 57

US United States of America. Short: United States. 1, 2

UTS Unix Time Sharing. 12

WCET Worst-Case Execution Time. 51

WWW World Wide Web. 45

XML Extensible Markup Language. 49

YAML Yet Another Markup Language. 35, 39
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