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Alcalá de Henares, Spain

adrian.baissero@uah.es

Felix Bachofer
German Remote Sensing Data Center

German Aerospace Center (DLR)
82234 Wessling, Germany

felix.bachofer@dlr.de

Abstract—Unlike hard classification from medium-resolution
sensors, spectral unmixing at sub-pixel level offers improved
accuracy in estimating the total surface occupied by a material
of interest within a given area. While in ideal cases imaging
spectrometer data should be utilized for this purpose, we propose
to use a limited number of fixed classes in order to perform
spectral unmixing from multispectral data to address the specific
challenge of estimating the surface area covered by floating
plastic debris in inland waters. In that context, working with
multispectral data is motivated by extended opportunities to
identify and monitor narrow water channels for variable plastic
appearances, in terms of extended coverage, spatial and temporal
resolution.

Index Terms—Plastic debris, inland water, spectral unmixing,
Earth observation

I. INTRODUCTION

The Mediterranean Sea is an accumulation zone of plastic
debris with a mass of up to 3000 tons of floating material
estimated in 2015 [1]. Plastic debris is the origin of micro-
plastic, decomposed e.g. by sun radiation and mechanical
force. The Nile river belongs to the most polluted rivers
draining into the Mediterranean Sea [2]. Monitoring plastic
debris thereby enables to estimate the volume of accumulated
plastic and plastic washed away by flood waters. On a global
level, Lebreton et al. [3] simulated a discharge ranging from
1.15 to 2.41 million metric tons of plastic entering the oceans
from rivers and thereby underscored the importance of fluvial
systems as transport medium. Hence, gathering further infor-
mation on the areas affected by accumulation of plastic debris
is valuable for enabling cleaning activities before entering
the sea or being decomposed into microplastics. Research
on plastic debris using remote sensing data, particularly for
sea and inland water surfaces, gained prominence in 2019,
primarily focusing on floating plastic detection from single
optical images [4]. Notably, only a few studies address inland
waters, relying on airborne and UAV data [5]. Free-access
Copernicus Sentinel missions provide a basis for this research.
For rivers, studies have demonstrated the feasibility of using
Sentinel-1 and Sentinel-2 images for detecting floating macro

plastic on clear water surfaces. Those studies applied indices
such as the floating debris index (FDI) introduced in [6]; in
some cases additionally in combination with other indices such
as the normalized difference vegetation index (NDVI). The
area affected by plastic debris can then be estimated as the total
surface of pixels detected as plastic in the scene. Nevertheless,
there is a relevant limitation: the accuracy in the estimation of
the total area of detected pixels in Sentinel-2 data is limited
by their pixel size, covering 100 m2 if only bands at 10 m
resolution are considered, and 400 m2 if the full spectrum is
used, including the short wave infrared bands. In the case of
inland waters, in particular narrow water channels, affected
pixels are often only partially covered by plastic debris. In
such scenarios, even if plastic is correctly detected, the total
surface may be largely overestimated. For example, a study in
[7] reports an overestimation of more than 100% for the area
covered by correctly detected solar panels in a region with
highly mixed image elements. In the cited paper, an almost
perfect estimation is achieved when using instead spectral
unmixing techniques, yielding the percentage of each pixel
which is covered by the material of interest.

So far, spectral unmixing has been used in most cases in the
frame of imaging spectrometer data analysis, as the number
of available spectral bands should exceed, ideally by far, the
number of target materials on ground (with associated spectra
usually known as endmembers) in order to have reliable
results. As the endmembers matrix must be inverted in the
unmixing process, linearly dependent endmembers make the
process mathematically unstable. In this paper, we propose
to use a limited number of fixed classes in order to perform
spectral unmixing from multispectral data for the specific
problem of estimating floating plastic debris surface in inland
waters. As for inland waters a ground sampling distance (GSD)
of 10 meters is of great advantage, we propose the use of
the four bands at this GSD only in Sentinel-2. We restrict
the number of materials to the ones usually found in inland
waters, considering water, plastic, vegetation, and soil/urban.
As the related endmembers exhibit spectra which are assumed



to be linearly independent, the number of endmembers does
not exceed the number of available spectral bands and the
spectral unmixing process can be carried out.

II. SPECTRAL UNMIXING

The process of spectral unmixing (SU) decomposes the
spectrum associated with a pixel in an image as a combination
of spectra belonging to pure materials, usually known as
endmembers. The fraction of a given endmember within the
image element is its abundance [8]. In this paper we use linear
spectral unmixing, in which the aforementioned combination
is assumed to be linear, and the portion of a pixel (amount
of surface) belonging to a given material to be directly
proportional to its abundance.

The spectrum of a pixel p with b bands is then ex-
pressed as the linear combination of n reference spectra
S = [s1, s2, . . . , sn] ∈ Rb×n, weighted by n scalar fractional
abundances x = [x1, x2, . . . , xn]

T ∈ Rn×1, plus a residual
vector r ∈ Rb×1;

p =

n∑
i=1

xisi + r = Sx+ r (1)

Here, r represents the portion of the signal which cannot
be represented using the spectral library S composed by the
selected endmembers, due to the library being incomplete,
noise, and other sources of error. The problem in Eq. 1
may be solved through a set of linear equations using least
squares approaches [8], usually enforcing at least the non-
negativity constraint in order to avoid having meaningless
negative abundances for some material.

Spectral unmixing usually needs three steps: estimation of
the number of materials present in the scene, creation of the
spectral library, and abundance estimation. In the end, the sum
of the abundances for an endmember related to a material of
interest in an image subset can be easily converted to the total
surface occupied by that material. For our purposes, our main
interest lies in estimating the abundance of the plastic material
in sensitive areas.

While multispectral sensing from medium-resolution sen-
sors has largely succeeded at classifying entire pixels, spectral
unmixing at sub-pixel level may offer improved accuracy in
estimating the total surface occupied by floating plastic debris.
For example, relying on the detection of plastic from Sentinel-
2 images would limit the approximation of the total surface
to the size of the single detected pixels, which cover 100 m2

on ground if only bands at 10 m resolution are considered, or
400 m2 if also bands at 20 m are included in the analysis. For
small water channels, such approximation could yield a large
overestimation of the surface occupied by floating plastic.

Spectral unmixing is usually carried out using imaging
spectrometer data, as its applicability is limited by spectral
resolution of the sensor, as the number of endmembers n
should not to be larger than the number of available spectral
bands m: the matrix S should be orthogonal, as it needs to be
inverted in order to mathematically solve Eq. 1, and therefore
the problem becomes overdetermined if n > m.

Nevertheless, it would be desirable to study plastic accumu-
lations with high temporal and spatial resolution, as dynamics
of plastic accumulation phenomena are rapidly changing, and
small water channels may be considerably smaller than the
GSD of typical spaceborne hyperspectral sensors (usually in
the order of 30 m).

As stated, it is anyway difficult to apply spectral unmixing
to multispectral data. Such hindrance is more severe at a GSD
of 10m, for which only 4 bands are available for Sentinel-2,
as accumulations of debris rarely span a full pixel if bands
at 20m are employed. For the same reason, data-driven semi-
automatic endmember extraction algorithms trying to identify
pure pixels are hard to apply in our case. The mentioned
restrictions would not apply to data having both high spectral
and spatial resolution, such as airborne imaging spectrometer
data, which are not available in our case.

In order to tackle this problem, we force the spectral library
to be composed by a limited number of relevant macro-classes,
including the plastic endmember. The selected endmembers
must be easily separable according to their spectral features:
as mentioned, if these are highly correlated the endmembers
matrix would become non-orthogonal, the inversion needed
unstable, and the estimated fractions x highly sensitive to
random error [9]. Therefore, in practice our library is com-
posed by the spectra of pre-selected classes containing water,
vegetation, and bare soil / urban structures, in addition to
plastic, pushing the process to its very limits and requiring
an assessment of the stability of its results.

III. RESULTS

We assume in this section to have a binary mask identi-
fying the plastic in the scene at the same resolution of the
sensor, which can be obtained with one of the aforementioned
methods, e.g. by thresholding the FDI in a sensitive area. In
our case, we use an automatic multitemporal-based method
which will be described in a paper currently under preparation.
The most straight-forward analysis estimates then the total
number of pixels covered by new accumulation of plastic, and
considering the total surface as the total area of these pixels.

The plastic endmember is selected as the average of the
highest reflectance pixels within the plastic mask. The training
area collection step for the other classes (water, vegetation,
and soil/urban) can be either manual or automatic. In the case
of manual selection, the process is relatively inexpensive to
carry out, as all the mentioned classes are easy to identify in
a true color or false color representation of the acquired scenes
at 10 m GSD. An alternative is an automatic endmember
selection step, which uses instead the maximum values in
the same scene subset of NDVI to select a representative
pixel for vegetation, and does the same for water (highest
NDWI) and soil/urban (highest band ratio of red over green
outside of detected plastic). Thus, the number of classes is
not larger than the available Sentinel-2 spectral bands, and
the spectra are not linearly dependent, making the unmixing
process mathematically feasible.



Fig. 1. Spectral unmixing quantification of floating debris for a tributary of the Nile river. From left to right: plastic-free true color composite of Sentinel-2
image from the 17th of July 2020; water channel exhibiting accumulation of plastic debris acquired few days earlier (true color composite of Sentinel-2 image
from the 12th of July 2020); same image with overlaid mask for detected plastic; results of spectral unmixing applied on the image acquired on the 12th of
July 2020, with manual and automatic endmember selection, respectively. For unmixing results, only the abundance of three materials is represented: plastic
in red, vegetation in green, urban in blue.

TABLE I
PLASTIC SURFACE ESTIMATED THROUGH HARD CLASSIFICATION AND

SPECTRAL UNMIXING (SU) WITH MANUAL AND AUTOMATIC SELECTION
OF THE ENDMEMBERS (MANUAL AND AUTO), RESPECTIVELY.

Classification SU (manual) SU (auto)
m2 8410 5669 4929

Fig. 1 reports a case of study on a small tributary of the river
Nile, in Egypt, for an image acquired on the 12th of July 2020.
The reported Sentinel-2 subsets show how accumulated plastic
debris is released downstream and disappears from the scene.
Additionally, the available mask for pixels containing plastic
debris is reported. As mentioned, estimating the area by simply
summing the area defined by the mask can lead to a large
overestimation. For spectral unmixing results, a composite
of three abundance maps only is reported, quantifying the
percentage of each pixel covered respectively by plastic (red),
urban (blue), and vegetation (green). In this case there is
no validation data, but the unmixing results reported show
how the concentration of plastic is found to be higher in the
center of the river and mixed with soil/road and vegetation on
the border of the river, which we consider to be a realistic
arrangement. The estimated area of plastic is 8410 m2 if the
full plastic mask is considered, and is then reduced to 5669 m2

for the spectral unmixing results. The case of spectral unmix-
ing using automatically extracted endmembers yields results
where plastic is sometimes confused with soil/urban, with the
red area appearing therefore less bright in the figure. In this
case, the estimated area of 4929 m2 could therefore be an
underestimation of the affected area. Results are summarized
in Table I. The images were processed in a Google Earth
Engine environment [10], using the built-in unmix function
for abundance quantification given a spectral library, and
enforcing the non-negativity constraint in the associated least-
squares-based solver.

IV. CONCLUSIONS

Spectral unmixing demonstrated to be useful for estimating
the area covered by a material of interest in a scenario
presenting a relevant degree of mixture in the image elements.

In order to achieve unmixing for multispectral data, the
endmembers must be carefully selected in order to be as few as
possible, not linearly dependent, and be able to represent the
main materials found in the area of interest. Results presented
on plastic surface quantification on a tributary of the river
Nile in Egypt suggest that more accurate surface estimation
can be obtained with respect to a hard classification of the area
occupied by pixels in which plastic was detected. The analysis
results in an assessment of the extent of the floating plastic
debris, which could be refined with local sample measurements
for estimating the plastic debris volume.
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[1] A. Cózar, M. Sanz-Martı́n, E. Martı́, J. I. González-Gordillo, B. Ubeda,
J. Gálvez, X. Irigoien, and C. M. Duarte, “Plastic accumulation in the
mediterranean sea,” PLOS ONE, vol. 10, no. 4, pp. 1–12, 04 2015.
[Online]. Available: https://doi.org/10.1371/journal.pone.0121762

[2] S. Shabaka, M. Moawad, M. Ibrahim, A. El-Sayed, M. Ghobashy,
A. Hamouda, M. El-Alfy, D. Darwish, and N. Youssef,
“Prevalence and risk assessment of microplastics in the nile
delta estuaries: “the plastic nile” revisited,” Science of The Total
Environment, vol. 852, p. 158446, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0048969722055450)

[3] L. C. M. Lebreton, J. van der Zwet, J. W. Damsteeg, B. Slat,
A. Andrady, and J. Reisser, “River plastic emissions to the world’s
oceans,” Nat Commun, vol. 8, p. 15611, 2017. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/28589961

[4] V. Martı́nez-Vicente, J. R. Clark, P. Corradi, S. Aliani, M. Arias,
M. Bochow, G. Bonnery, M. Cole, A. Cózar, R. Donnelly, F. Echevarrı́a,
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