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Abstract 

This thesis evaluates the suitability of multispectral PlanetScope SuperDove satellite-data for 

physics-based bathymetry and determination of chlorophyll-a concentrations for a high-altitude 

lake in Peru. A field campaign was conducted in June 2023 to obtain in-situ data for regional 

adaptation of the processing methodology and for validation purposes. The collection and 

analysis of in-situ measurements is presented, accompanied by an analysis of their uncertainties. 

A validation dataset for bathymetry was obtained using two different methods for in-situ water 

depth measurements. From this, a historical data set from a lake bathymetry survey in 2006 was 

adapted, and an up-to-date validation raster was derived (Mean average error was 0.39 m 

between raster pixels and in-situ measurements). Chlorophyll-a concentration was determined 

from water samples by two different laboratories and from inverse modelling of in-situ water 

spectra in the software WASI. A good agreement was found for water depth above 2 m (mean 

average error: 0.8 µg/l). Three SuperDove images from consecutive days during the field 

campaign were investigated regarding image noise, sensitivity to atmospheric correction 

parametrization and consistency in consecutive overpasses. Results are summarized for two 

areas of interest in optically deep and shallow water. Here it was shown that the band specific 

reflectance between images were inconsistent, especially so in optically deep water with up to 

45% difference in the derived remote sensing reflectance. Additionally, initialization in the 

software ACOLITE for atmospheric correction showed high sensitivity to the extent of the 

provided image scene, which impacted estimated parameters for the atmospheric correction. 

Here, errors over 10% were observed for all spectral bands. Reflectance spectra from three 

SuperDove images were compared with in-situ measurements from 21 field stations. Excluding 

the near-infrared band, the coefficient of determination for a linear regression model was 0.73, 

0.91 and 0.91 for the three satellite images. Finally, outcomes from processing SuperDove 

imagery in WASI fell below the desired threshold for a deep water and shallow water model as 

water spectra derived from SuperDove imagery were distorted. As a result of the study, 

SuperDove proved to be unsuitable for determining water depth and chlorophyll-a in Lake 

Junin.



1 

 

1. Introduction 

Integrated Water Resource Management (IWRM) is a holistic approach aimed at sustainable 

and equitable utilization of water resources. It involves the coordinated development and 

management of water, land, and related resources to optimize economic and social welfare 

while preserving ecosystems. IWRM recognizes the interconnectedness of various water uses, 

such as agriculture, industry, and domestic consumption, and seeks to balance competing 

demands through efficient allocation, conservation, and protection of water sources. By 

considering both quantity and quality aspects, this approach promotes community engagement, 

stakeholder collaboration, and adaptive strategies to address challenges like climate change and 

population growth. Ultimately, IWRM strives to ensure the long-term availability and resilience 

of water resources for present and future generations. However, communities that are essential 

to include in IWRM often do not have the necessary resources or institutional support to 

adequately participate in decision making processes (Apostolaki et al., 2019). Ideally, the 

inclusion of farmers and pastoralists, who are directly affected by water quality and water 

availability, plays a central role in the holistic decision making (German et al., 2007; Berkes, 

2010).  

In 2009, the Peruvian government committed to an IWRM approach with their implementation 

of a Water Resource Law (Ley de Recursos Hidricos). As a result, the National Water Authority 

(ANA, Autoridad Nacional de Agua) was founded, and regional and local watershed 

management decisions were operated on a much smaller scale than before. As Peru is a country 

severely affected by climate change, this new delegation of resource management in light of 

changing watersheds was a necessary step towards adaptation and mitigation strategies (Correa 

et al., 2016; Mark et al., 2017; Popovici et al., 2021). For three districts in the Peruvian 

Caylloma Province, it has been shown that community-level management responsibilities are 

often not feasible. Instead, resources should focus on strengthening governmental institutions 

on a regional scale (Popovici et al. 2021).  To support the Peruvian institutions in their 

management and decision making, the ProGIRH project was launched in 2022. This 

multisectoral collaboration funded by the German Development Cooperation (GIZ, Deutsche 

Gesellschaft für internationale Zusammenarbeit) aims to improve the integrated and climate 

sensitive management of water resources in the Mantaro river basin in Peru (Giz, 2023). Within 

this project, the German Aerospace Center (DLR, Deutsches Zentrum für Luft- und Raumfahrt) 

was asked to provide technical guidance and capacity building for the regional project partners 

at the ANA. The overlying objective of this is to establish a self-dependent and locally managed 
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monitoring of water quality and availability.  More precisely, remote sensing of inland water 

bodies and determination of water quality parameters should be improved, validated, and lastly 

taught, so that a long-term monitoring system could eventually be operated independently. 

 

Figure 1: Process chain from Level-1 Data to Level-3 Data. Improvements can be achieved through regional 

parametrization in WASI. Level-2 and Level-3 Data can be validated from field-measurements.  

 

1.1. Thesis Objective and Structure 

The objective of this master's thesis is to evaluate the suitability of PlanetScope SuperDove 

imagery for physics-based bathymetry and determination of water quality parameters. The 

potential for aquatic remote sensing from SuperDoves imagery, promising high temporal and 

spatial resolution, remains largely unexplored. This research thus seeks to establish a 

comprehensive methodology, incorporating this image product in a physics-based model, to 

derive accurate and reliable water depth and chlorophyll-a concentrations. These parameters 

can be validated from in-situ measurement, and systematic collection of in-situ measurements 

at two test sites in Peru were carried out as part of this thesis. Field measurements are 

accompanied by an analysis of their uncertainties with the aim to improve and validate the 

determined parameters from the model. Figure 1 illustrates the process chain to determine water 

depth and chlorophyll-a concentration from satellite imagery: Based on the output parameters 

from satellite derived reflectance, an assessment of the uncertainties between in-situ data and 

determined parameters from the model can be made. However, this step is not included in the 

analysis as SuperDove imagery was rejected as a high-quality image input. This is due to 

anomalous spectral signatures and inconsistency between individual images and high image 

noise. Instead, the challenges that led to the assessment as an unsuitable data product are 

outlined and discussed accordingly. 
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Throughout the assessment, three distinct levels of data are considered and defined as follows: 

 

• Level-1 Data: This comprises calibrated multispectral or hyperspectral satellite 

imagery projected to a coordinate reference system, provided as top of the atmosphere 

(TOA) radiance or reflectance. 

• Level-2 Data: The calibrated image data is further processed to bottom of the 

atmosphere (BOA) reflectance, accounting for atmospheric contributions. Validation is 

performed by comparing the corrected imagery with field observations of water surface 

spectra, ensuring accuracy before subsequent processing steps. 

• Level-3 Data: Parameters, such as water constituent concentrations, lakebed 

composition, and water depth, are derived through inverse modelling of reflectance of 

Level-2 data in the software WASI. The validity of these parameters can be confirmed 

through field observations taken at a corresponding location.  

 

After a short introduction of the test sites in the following subchapter, the thesis is structured as 

follows: Chapter 2 provides an overview of the challenges in aquatic remote sensing. These 

include sensor calibration, atmosphere, sun-glint, spectral ambiguities, and the bottom signal. 

Chapter 3 outlines the material and methods used in this study. Chapter 3.1 describes field 

measurements and their subsequent processing to obtain validation data. These include the 

spectra of the water surface, water depth and chlorophyll-a concentration. A spectral database 

for common bottom types was constructed in a second master thesis written as part of this project 

and associated field campaign (Schmid 2024). Technical details and recent applications of 

SuperDove imagery in aquatic remote sensing are outlined in Chapter 3.2. For atmospheric 

correction, an algorithm implemented in the software ACOLITE is used and described in 

Chapter 3.3. Characteristics based on which the data was evaluate is described in Chapter 3.4. 

Results are presented in Chapter 4 and include validation data and its uncertainties, the image 

noise in a SuperDove scene and consistency of derived reflectance from parametrization for the 

atmospheric correction as well as between consecutive overpasses. Further, challenges for the 

initialization of the physics-based model with SuperDove imagery are presented. These 

challenges ultimately lead to the rejection of the data for the determination of Level-3 

parameters. Chapter 5 then discusses the results and outlines results from successful 

initialization with Sentinel-2B data. 
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1.2. Test sites 

A field campaign was conducted between the 15th and 30th June 2023. Figure 2 shows the two 

sites that were visited by researchers from the DLR, accompanied by partners from the ANA, 

during this time:  

A) Lake Junin (Lago Cuspicocha or Lago Junín)  

B) Lake Lasuntay (Laguna Lasuntay)  

Lake Junin is the second largest lake in Peru, located in a high plateau on the eastern slope of 

the Andes Mountains in central Peru, at 4080 m above sea level. It is surrounded by grassy 

plains used extensively for pastoral agriculture. Lake Lasuntay is located at 4663 m above sea 

level in the central mountain range of the Andes, 200 km east of the capital city Lima. Both 

lakes are within the Mantaro river basin where 35% of Peru´s electricity is generated from 

hydroelectric power stations. The basin is strongly affected by extreme weather, changing 

precipitation trends and an increase in water demand and thus became the project area of 

particular interest within ProGIRH  (Zubieta et al., 2017). 

  

Figure 2: Map of Peru and High-Resolution Images of Test sites.   

A) Lake Junin - B) Lake Lasuntay and the Huaytapallana glacier. Left image is ESRI base map imagery in 

QGIS, right images are RGB composites of surface reflectance from PlanetScope SuperDoves. 
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1.2.1. Lake Junin 

Lake Junin, also known as Lago Chinchaycocha, is a high-altitude lake located in the Junin 

department in central Peru. It is the largest lake entirely within the country and holds cultural 

and ecological significance and is considered a Ramsar Wetland of International Importance  

(Romero-Mariscal et al., 2023). It has an estimated volume of 556 million m³ and an area of 

175 km² for the main water body. Lake Junin is surrounded by a diverse ecosystem, including 

wetlands and high Andean grasslands, providing habitat for various bird species and serving as 

a crucial stopover for migratory birds (Dinesen et al., 2019). The lake also plays a vital role in 

the region's hydrology and is the source of fresh water for the nearby communities and their 

livestock. However, it faces environmental challenges such as pollution and water quality 

issues, highlighting the importance of conservation efforts (Custodio et al., 2019; Rodbell et 

al., 2014).  

Lake Junin is the origin of the Mantaro river which provides water to large agricultural areas in 

the Mantaro Valley, thus having a great impact on agricultural production for Lima. Runoff is 

controlled by the Upamayo dam in the northwest managed by the ANA.  

 

 

Figure 3: Drone shot of Lake Junin in North-West direction towards the village San Pedro de Pari. This 

community provided access to the lake during the field campaign and locals aided in the navigation through the 

extensive reed belts. 
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The main waterbody and the dam are connected through a channel which the main tributaries, 

the Colorado and San Juan rivers, feed into. Depending on water availability, this can create 

the unique situation where the stream flow is reversed and water is flowing into the lake from 

the channel, carrying sediments and water constituents into the main water body. Accessing the 

lake is difficult due to the surrounding wetlands, broad reed belts on the south shore and 

generally limited infrastructure. Figure 3 shows a view of the lake from a drone image acquired 

during the field campaign. The small community of San Pedro de Pari is visible on the shore. 

From there, the local community welcomed and assisted researchers from the DLR and partners 

from the ANA in the field campaign and shared their knowledge and experience with the lake 

and its changing dynamics. Figure 4 shows a picture of one of two boats from which field 

measurements were taken during the campaign, provided by the local communities. 

 

Figure 4: Research boat during the field campaign in the shallow parts of Lake Junin. Researchers from the 

DLR, project partners from ANA and local guides on board. Glacial peak in the background at over 5.700m 
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1.2.2. Lake Lasuntay  

With over 1600km² covered by ice, Peru is the country with the largest area of tropical glaciers  

Since the recession of these glaciers from the 19th century onwards, a large amount of glacial 

lakes have formed between moraines, ice dams and valleys due to the ongoing ice melt (Veettil 

and Kamp, 2019). The newest glacial lake inventory identified over 4550 glacial lakes in Peru, 

373 of those located around the Huaytapallana glacier in the central Andean mountain range 

(Wood et al., 2021). During the field campaign in June 2023, validation data was collected for 

lake Lasuntay, directly south of the Huaytapallana glacier. The lake can be reached from the 

city of Huancayo through a long stretch of mountainous road only with the permission of the 

local communities as the glacier has deep spiritual significance for the indigenous people of 

this area. Huancayo relies on both surface and groundwater sources for its water supply, with 

the Shullcas River, a tributary to the Mantaro river, serving as the primary source for the city's 

human water consumption. The river's average flow during peak times reaches 5 cubic meters 

per second, dropping to 1.5 cubic meters per second during dry periods. The main runoff 

contributions come from Lasuntay and lake Cuspicocha (Loayza Ramos, 2017). The latter is 

only accessible through a long hike, which made accessing it during the field campaign 

impossible due to limited access hours. Figure 5 shows Lake Lasuntay from the south end 

looking toward the glacier and Figure 6 shows the water level on a gauge at the southern end 

of the lake. During the campaign, water levels were high and parts of a road along the western 

shore of the lake were flooded. 

 

Figure 5: View of the Huaytapallana glacier and researchers on a small dinghy. This mobile boat was provided 

by the ANA in Huancayo. Small glacial avalanches occurred numerous times during the field campaign.  
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Figure 6: Lake Lasuntay with view of the Huaytapallana glacier. Water level on a gauge in the foreground. 

Photo taken from a small embankment where runoff to the Shullcas river originates. 



6 

 

2. Challenges of Aquatic Remote Sensing  

Remote sensing is a discipline that entails the acquisition of information about Earth's surface 

and atmosphere using sensors onboard aerial or satellite platforms. Central to its principles is 

the measurement and interpretation of electromagnetic radiation interactions with materials. 

These sensors capture data across distinct spectral bands, enabling the generation of 

multispectral or hyperspectral imagery with band specific information. Fundamental to remote 

sensing is the analysis of this data to extract meaningful information pertaining to land cover, 

environmental dynamics, and human activities  (Astha Gautam and Naina Mehta, 2015; 

Melesse et al., 2007). Figure 7 illustrates the relationship between a sun illuminated water 

surface and the electromagnetic signal that is received by a satellite sensor. 

 

Figure 7: Contributions to the total upwelling radiance above the sea surface. Figure from the Ocean Optics 

Webbook by Mobley (Ocean Optics, 2024)  

A passive sensor system viewing a land surface measures spectral radiance (in watts per square 

meter per steradian W m-² nm-1 sr-1) that includes contributions from the atmosphere and the 

surface. When viewing water, this signal is extended by the contribution of radiance originating 

from within the water column. The top of atmosphere (TOA) signal measured by a satellite 

sensor can therefore be described as: 

𝐿𝑢
𝑇𝑂𝐴 = 𝐿𝑎 + 𝐿𝑟 + (𝐿𝑤 ∗ 𝑡𝐴) 

 

Where 𝐿𝑢
𝑇𝑂𝐴 is the total upwelling radiance at the TOA, 𝐿𝑎 is the atmospheric path radiance, 𝐿𝑟 

is the surface reflected radiance and 𝐿𝑤 is the water leaving radiance after absorption and 
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scattering in the water column and 𝑡𝐴 is the atmospheric transmission.  This originates from the 

radiance that is transmitted through the surface into the water body Lt (see blue arrows in Figure 

7).  𝐿𝑟 can further be divided into components from sky glint, sun glint and reflection from 

whitecaps on the water surface. A sensor cannot distinguish between the individual 

contributions of these components, presenting several challenges for aquatic remote sensing  

(Dörnhöfer and Oppelt, 2016).  

2.1. Sensor Calibration 

Radiometric calibration of a sensor aims to establish a relationship between the digital number 

(DN) that is measured by a satellite sensor and the actual radiance emitted from the Earth´s 

surface and the atmosphere. Some typical methods for radiometric calibration include the 

following: 

1. Laboratory Calibration: Prior to launch, satellite instruments are calibrated in a 

laboratory. This includes relative radiometric calibration where inconsistencies 

in detector responses are corrected and absolute radiometric calibration which 

established a relationship between the DN and physical qualities like spectral 

radiance  (Li et al., 2023). 

2. Onboard-Calibration: Specially designed calibration devices mounted on the 

space-born platform allow for frequent and accurate correction of the calibration 

coefficients  (Song et al., 2022). 

3. Cross-Calibration: This method involves comparing the signal of a satellite 

sensor to that of an established and well-calibrated sensor on a different 

platform. This helps transfer calibration from one sensor to another while 

maintaining consistency between the platforms. However, this is usually limited 

to common spectral bands  (Helder et al., 2020). 

4. Vicarious Calibration: Ground-based spectral measurements of a well-known 

test site are directly used to compare ground-truth data to the satellite to then 

derive correction factors (Czapla-Myers et al., 2015). 

 

No sensors are specifically designed for monitoring inland water bodies. Consequently, their 

radiometric calibration was derived for land applications, potentially leading to uncertainties 

when used for aquatic remote. Accuracy requirements for dark targets such as water are greater 

as the signal originating from the water leaving radiance may be less than 10% of the total 

signal measured by a space-born sensor at the TOA  (Groom et al., 2019). 

 



8 

 

2.2. Atmosphere  

Atmospheric correction in remote sensing is a critical preprocessing step aimed at mitigating 

the impact of atmospheric contributions on measurements from a sensor, with the goal of 

accurate retrieval of surface reflectance or radiance information. Key aspects in atmospheric 

correction include the characterization and removal of atmospheric effects such as the path 

radiance, composed of Rayleigh and aerosol scattering, as well as water vapor and ozone 

absorption. All of this impacts the at sensor signal and introduce distortions in remotely sensed 

data when not accounted for (Ilori et al., 2019). Uncertainties in atmospheric correction arise 

from challenges in accurately approximating these parameters, particularly in regions with 

dynamic atmospheric conditions or limited ancillary data. Additionally, inaccuracies in sensor 

calibration, imprecise knowledge of surface properties, and the presence of clouds may further 

complicate atmospheric correction methods. Addressing these uncertainties is crucial for 

obtaining reliable and meaningful data, necessary for robust subsequent analyses and 

applications (Feng et al., 2018). 

Commonly employed methods for atmospheric correction involve radiative transfer models, 

empirical algorithms, or a combination of both, with the former simulating the interactions 

between electromagnetic radiation and atmospheric components. For aquatic applications, 

adjacency effects from the surrounding land, especially vegetation or bright soil, also effect the 

signal measured for a water pixel at the TOA. Radiance, as a variable directly measured by a 

sensor, is also not directly representative of surface properties as it will always include the 

atmospheric contributions.  For most remote sensing applications, the radiance reflectance is 

preferred, either as the TOA reflectance or as the surface reflectance. The latter is defined as 

the ratio of the radiance leaving a target to the amount of irradiance striking a target (Mobley, 

1999). Disregarding the adjacency effect, the TOA reflectance ρt, can be simplified with the 

wavelength (𝜆)  dependent term:  

 

ρ𝑡(𝜆) = 𝑡 ∗ ρ𝑤 (𝜆) + [ρ𝑟(𝜆) +  ρ𝑎(𝜆) + ρ𝑎𝑟(𝜆)] 

 

Where t is the diffuse transmittance and ρ𝑤 the reflectance at the water surface.  ρ𝑟  is the 

reflectance from scattering by air molecules (Rayleigh scattering) in the absence of aerosols, 

and ρ𝑎  is the reflectance from scattering by aerosols in the absence of air.  ρ𝑎𝑟  is the radiance 

from Rayleigh-aerosol multiple scattering, accounting for the interaction between molecular 

and aerosol scattering (Pahlevan et al., 2021). The three components in brackets can be 

computed together, referred to as the path reflectance. The goal of atmospheric correction is 
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thus to retrieve ρ𝑤 from the equation above by the estimation of the path reflectance and the 

diffuse transmittance. While the Rayleigh scattering could be predicted a priori as it follows a 

generally consistent pattern, aerosols are highly variable and need to be approximated 

accurately (Gordon and Wang, 1994). For absolute correction, where atmospheric parameters 

are estimated for a defined spatial and temporal extent, information on the aerosol 

concentrations are usually obtained from look up tables (LUT) derived from robust and tested 

radiative transfer models like MODTRAN (Moderate resolution atmospheric transmission) or 

6SV (Second Simulation of the Satellite Signal in the Solar Spectrum) (Basith et al., 2019; 

Schläpfer et al., 2018; Berk et al., 2014; Shi and Xiao, 2019, 2019).  

While atmospheric correction methods for application at the open ocean are carried out 

adequately, correction methods for inland water bodies are still subject to large uncertainties, 

limiting the accurate analysis of water quality parameters (IOCCG 2010). As correction 

algorithms specifically developed for water focus on open ocean and less optically complex 

water, remote sensing analyses of inland water bodies have often relied on methods designed 

for land applications  (Wang et al., 2019). For inland waters, it was shown that the performance 

of atmospheric correction methods was a function of the water type and optical properties and 

generally showed large uncertainties across sites and studies  (Pan et al., 2022; Pereira-Sandoval 

et al., 2019; Palmer et al., 2015; Renosh et al., 2020). However, the robustness of atmospheric 

correction is especially important for multi-temporal studies and long term monitoring 

applications as images and derived parameters need to be comparable (Caballero and Stumpf, 

2020). 

 

2.3. Sun Glint 

Often considered as part of the atmospheric correction process, surface reflection at the air-

water interface poses another challenge in aquatic remote sensing and the equation for the TOA 

reflectance may be extended by including sun glint as the reflectance of the direct solar beam 

ρ𝑔  (Gordon and Wang, 1994). Sun glint occurs when the water surface is oriented so that the 

sun is directly reflected towards a sensor, therefore depending on the viewing angle of the 

instrument and the sun and wave position. Radiance measured by a sensor can have a large 

component of specular reflection from sun glint, making the removal of those effects essential 

for the information retrieval of benthic features, water constituents or for bathymetry  (Kay et 

al., 2009; Gabr et al., 2020). The radiance reflectance measured above the water surface is the 

sum of the glint, or surface reflection, and the contribution from the water column. The latter is 

referred to as the remote sensing reflectance (Rrs): 
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𝑅𝑟𝑠 =  
𝐿𝑤(𝜆)

𝐸𝑑(𝜆)
 

With Rrs as the ratio of the water leaving radiance 𝐿𝑤 to the downwelling radiance 𝐸𝑑 at given 

wavelength 𝜆. As Rrs is widely used for water color interpretation the correction of the surface 

reflection is necessary for avoiding large uncertainties  (Mobley, 1999). 

In principle, methods to remove sun glint from a satellite image determine the contribution of 

glint to the total radiance and then subtract that from the at sensor signal. For open ocean, this 

can be done statistically on a large scale through a model of the sea surface that consider wind 

speed, wave state as well as sun and sensor position. Based on this information, the orientation 

of the sea surface and the amount of glint that is received by the sensor can be predicted and 

moderate glint can be corrected  (Wang and Bailey, 2001). For some sensors optimized for 

ocean color (e.g. CZCS, OCTS, SeaWiFS) direct sun glint is largely avoided by pointing the 

sensors viewing direction away from the sun. However, correction methods for residual glint 

still need to be considered  and no such sensors are designed for inland lake monitoring (Curtis 

et al., 2016). 

For a more spatially resolved approach, the assumption of a negligible signal in the near infrared 

(NIR) for an optically deep part of the waterbody is frequently used. It is presumed that any 

signal after atmospheric correction is due to glint at the water surface and the relationship 

between the radiance contribution from glint and the NIR can be applied to the entire scene 

(Hedley et al., 2005). As the reflectance of water exhibits minimal wavelength dependency, the 

intensities of the glint signal at visible and NIR wavelengths will show similar variations. 

Consequently, the NIR signal can serve as an indicator of the level of glint at visible 

wavelengths. It must be noted that his assumption is however not valid for turbid or shallow 

water, where the signal in the NIR relates to benthic properties or constituent concentrations in 

the water column and is therefore often not negligible. 

Contributions to the at sensor radiance under no-glint conditions are largely due to atmospheric 

scattering, while the water leaving radiance remains the same under glint and no glint scenarios. 

When an image is affected by glint, the percentage of the received signal from the water surface 

decreases while the total reflected radiance measured at the sensor increases. Distinguishing the 

water leaving radiance from the atmospheric contribution therefore demands a high signal to 

noise ratio. For severely glint affected scenes, sensor saturation can make the retrieval of the 

water leaving radiance impossible (Kay et al., 2009).  
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2.4. Water constituents and Spectral Ambiguities 

Inherent optical properties (IOP) of water constituents are another challenging variable in 

aquatic remote sensing. IOP are optical properties independent of illumination and are referred 

to as specific IOPS when normalized to a  concentration or a value at a given wavelength (Gege 

and Dekker, 2020).   IOP include scattering, backscattering, and absorption coefficients of 

Phytoplankton, Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP) 

within the water column (Yang et al., 2022). The concentration of these particles directly 

influences the water leaving radiance and, consequently, the measured reflectance from a 

satellite sensor. Further, the different compositions of particles may lead to a similar spectrum 

and reflectance values at the same wavelength. The relationship between IOP and the measured 

reflectance can be approximated as follows: 

𝑅𝑟𝑠 =
𝐿𝑤

𝐸𝑑
= 𝑓

𝑏𝑏𝑡𝑜𝑡

𝑎𝑡𝑜𝑡 + 𝑏𝑏𝑡𝑜𝑡
  

where 𝑏𝑏𝑡𝑜𝑡 is the total backscattering coefficient (in 𝑚−1) for water,  𝑎𝑡𝑜𝑡 is the total absorption 

coefficient (in 𝑚−1) for water, and f is a proportionality factor (𝑠𝑟−1)  (Gordon and Wang, 

1994; Gordon et al., 1975). The total coefficients are a sum of the IOPs of pure water, 

Phytoplankton, CDOM and NAP:  

𝑎𝑡𝑜𝑡 =  𝑎𝑤 +  𝑎𝑝ℎ𝑦 +  𝑎𝐶𝐷𝑂𝑀 + 𝑎𝑁𝐴𝑃 

𝑏𝑏𝑡𝑜𝑡 =  𝑏𝑏𝑤 +  𝑏𝑏𝑝ℎ𝑦 +  𝑏𝑏𝐶𝐷𝑂𝑀 + 𝑏𝑏𝑁𝐴𝑃 

 

For the absorption of phytoplankton 𝑎𝑝ℎ𝑦 another challenge must be noted due to different 

absorption coefficients for naturally occurring species. Thus, only the sum of the species-

specific absorption coefficients and their concentration accurately describes 𝑎𝑝ℎ𝑦 for a 

respective water column. Figure 8 shows the specific absorptions coefficients of phytoplankton 

species that generally provided best results for inverse modelling with WASI for water spectra 

from both in-situ measurements and satellite imagery at Lake Junin. The transmission of light 

under water is greatly altered by the light absorbed by phytoplankton and the specific absorption 

m²/mg essentially indicates the amount of absorbed energy per unit mass and unit area. It 

therefore considers both the geometric cross section and mass of the material. Therefore, the 

composition of total chlorophyll-a in water is dependent on the main type of phytoplankton or 

a function of the composition of different types and their concentration (Brewin et al., 2019). 

However, turbid or CDOM rich waters may also be confused with chlorophyll rich waters as 

both can cause higher reflectance in the visible green wavelength, while potentially decreasing 

reflectance in the blue bands. (Warren et al., 2021).  
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Figure 8: Wavelength dependent specific absorption of different phytoplankton species. Chlorophyll-a 

concentration from all three species can be set as a parameter in WASI  

 

Examples of those spectral ambiguities due to different concentrations of water constituents 

and the accurate knowledge of the IOP from the composition within the water column are 

plentiful. Additionally, while this knowledge is essential for validation and further 

developments of algorithms for remote sensing applications, accurate in-situ measurements are 

a challenge in itself (Leymarie et al., 2010). The study by Defoin-Platel and Chami (2007) 

quantified challenges in watercolor analysis by investigating the ambiguity problem in coastal 

waters. Synthetic data representing real-world conditions was created to study the ambiguity 

issue and their research found a high ambiguity rate of around 90% in Rrs spectra. Further, the 

impact of ambiguities on inverse modeling was explored, revealing that the minimum error is 

related to the dispersion of plausible solutions. To minimize errors in Level-3 parameter 

derivation from satellite imagery with WASI, it is important to minimize unknown parameters 

in inverse modelling. In the example of different absorption coefficients for phytoplankton 

species in Figure 8, this can be done iteratively to first figure out the most likely dominant 

species, and then fitting only this species along other desired parameters like CDOM and NAP 

(Defoin‐Platel and Chami, 2007; Niroumand-Jadidi and Bovolo, 2021).  

 

2.5. Bottom Reflectance  

The ambiguity problem is further amplified in optically shallow waters. Here, the reflectance 

is influenced by the bottom composition of the water body, namely the substrate and the 

benthos. Consequently, the depth and clarity of the water column and the distance the light 

travels until it reaches the bottom surface  likewise impacts the reflectance through attenuation 

and backscattering (Hubert Loisel et al.; Loisel et al., 2013). Figure 9 shows the bottom 

reflectance of three bottom types that were measured at two different sites: Sand and silt from 

the sea floor of the Baltic Sea  (Schnalzger, 2017) and green macrophytes from Lake Constance 
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in Germany (Pinnel 2005). Similarities in the spectral shape between sand and silt can be seen 

with a local minimum at around 700 nm for sand and 680 nm for silt. Much larger adjustments 

must be considered when the lake bottom is overgrown with macrophytes as their albedo is 

more distinct. Errors for water quality estimations would therefore be larger for lakes with 

macrophytes when assuming a constant albedo than for water bodies where sand or silt is the 

common bottom substrate  (Lyzenga et al., 2006). 

 

Figure 9: Reflectance of sand, silt and macrophytes. All three bottom types can be set as a parameter in WASI 

Additionally, measuring bottom reflectance for regional optimization is not straight forward 

either. Figure 10 shows a selection of bottom substrates from Lake Junin collected during the 

field campaign. While their optical properties can be measured accurately with a field 

spectrometer, their composition and layering on the actual lake surface, which ultimately 

contributes to the measured at-sensor signal cannot be completely maintained after extraction. 

Underwater video footage has shown the unmixing of sediment layers during extraction of 

bottom material revealing darker heavier material than the top layer.  

 

Figure 10: Bottom substrate from four in-situ points at Lake Junin. The sediments were extracted with an 

Ekmann-Birge sampler, stored in a wet container, and measured on land with a field spectrometer. 
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3. Materials and Methods 

This chapter outlines the methods and techniques that were employed to create a validation 

dataset for water depth and chlorophyll-a concentration, and to establish a best practice 

workflow for the processing of satellite data. Ultimately, these environmental variables were to 

be determined through inverse modelling of the remote sensing reflectance using the software 

WASI. In addition, the SuperDove imagery from the PlanetScope constellation is outlined and 

recent applications of the data product for aquatic remote sensing are introduced. 

3.1. WASI 

In this study, the software WASI is used for the physics-based determination of Level-3 parameters. 

The software was developed to simulate and analyse spectral measurements above the water surface 

from both in-situ measurements and satellite images (Gege, 2014). Inverse modelling of a 

measurement involves iteratively determining unknown model parameters by calculating a 

simulated spectrum with initial parameter values and comparing it to the measurement using a 

weighted residual. Fit parameters need to be chosen and initialized carefully to ensure 

successful determination of the desired variables. Model initialization can also be adapted for 

specific regional applications by adjusting bottom albedo and IOPs in the database (Manuel et al., 

2020). Both a deep water and a shallow water model are available, with 21 and 28 possible fit 

parameters respectively. When the shallow water model is used, the areal fraction of the bottom 

substrate and the water depth are additionally included. Gege 2014 provides a detailed overview of 

fit parameters and best practices for parameter selection and model initialization. For image data, 

both an artificial intelligence (AI) module (WASI-AI) and the physics-based inversion for each 

pixel (WASI-2D) are implemented in the software. Good results have been achieved with WASI-

2D for the determination of water depth and water constituent concentrations (Niroumand-Jadidi et 

al. 2021, 2020; Manuel et al. 2020; Dörnhöfer et al. 2016). As computation times for high resolution 

images at large water bodies like Lake Junin are substantial, the recently developed WASI-AI was 

chosen to process Level-2 imagery after model initialization. For this, representative spectra within 

an AOI were selected in the image and the model parameters were adjusted to achieve a good initial 

fit between the simulated spectrum and the satellite derived spectrum. Training points are then 

selected in the image or a defined area and processed with the physics-based inversion to train the 

artificial intelligence. Based on this training data, the entire image is processed by predicting the set 

fit parameters and maps for the fitted components are created. Additionally, accuracy statistics for 

the agreement between WASI-AI and WASI-2D for the number of selected validation pixels are 

provided.  
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3.2. Field Measurements 

In-situ data was collected at Lake Lasuntay and Lake Junin to fulfil the validation and 

optimization tasks illustrated in Figure 1. The measurements, either taken from land, boat or in 

shallow waters wearing waders are listed in Table 1. In total, 86 field stations points were 

covered. 25 of those at Lake Lasuntay, with 12 water stations and 13 stations on the shore. At 

Lake Junin, 49 in-situ stations were recorded, with 25 water stations and 24 on the western 

shore in the inundation zones. 

Table 1: Overview of field measurements 

Parameter Equipment Description 

Remote sensing reflectance 

Spectrometer Reflectance spectra of different targets Albedo of wet and dry bottom 

substrates 

Water Depth 

Steel tape 

Measure 

Water depth at fixed stations and along transects Echo Sounder 

Fish finder 

sonar 

Secchi disk depth Secchi Disk Water clarity and turbidity 

Chlorophyll-a concentration Laboratory Chlorophyll-a concentration at fixed stations 

Photo documentation above water 

Camera Photos of targets and measurement set up 

Camera with 

fisheye lens 
Photos of sky and water surface 

Drone High resolution imagery of water surface 

Photo documentation below water Insta 360 Image and video captures of bottom substrate 

GPS location 
Campaign 

Smartphone 
Coordinates of in-situ station 
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3.2.1. Spectrometer measurements 

Field measurements for an object’s reflectance were carried out with a handheld spectrometer 

configured to a 1 nm resolution for a wavelength range from 200 to 1100 nm. This constitutes 

as the validation data of the satellite derived Rrs and for parameter modelling from in-situ data 

with a high spectral resolution. Measurements for a single target (either water, sediment, 

macrophytes or land surface) included a reference measurement of a spectralon panel and the 

target itself under unchanged illumination conditions, as well as a measurement of the dark 

current (see Figure 11). Integration time of the spectrometer was adjusted to the light conditions 

and the reference panel so that the maximum signal had DN values between 30000 and 50000. 

Measurements were quality checked on the spot and if either the signal was too low or was 

saturated the measurement was redone.  

 

Figure 11: Example of measurements for target object (Starget), reference panel (Sreference) and dark current (Sdark). 

Taken from field measurement point JU_21 above optically deep water. 

 

The three individual measurements were assigned to the corresponding field validation point 

and the reflectance 𝜌 was calculated from the three components and the reflective properties of 

the spectralon as follows: 

 

𝜌 =  (𝑆𝑡𝑎𝑟𝑔𝑒𝑡 −  𝑆𝑑𝑎𝑟𝑘) ∗
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑜𝑛 

𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑆𝑑𝑎𝑟𝑘
 

 

The reflectance of the spectralon was previously measured in a lab with a Perkin-Elmer Lambda 

1050 spectrophotometer for wavelengths between 300 and 1000 nm. On the first campaign day, 

only a single spectrum was logged as the average from 30 individual measurements. For 

subsequent days, the 30 individual measurements in rapid succession were saved, and outliers 

were removed based on the median absolute deviation. Then, the average reflectance was 

derived from all valid measurements. For water, Rrs can be derived from 𝜌 by division through 

pi and subtraction of the surface reflection, which was derived in WASI. For this, reflectance 
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spectra were modelled by fitting a simulated spectrum to the in-situ data from which the 

wavelength dependent surface reflection at the air-water interface was calculated (Gege, 2004) 

These are finally subtracted from the original radiance reflectance to retrieve Rrs. Figure 12 

shows an overview of the water reflectance measurements. Higher reflectance is usually 

indicative of shallow water and a corresponding bottom signal, as can be seen for stations  

JU_01 to JU_04 in the plot below: 

   

Figure 12: Remote sensing reflectance during field campaign for Lake Junin. 

 

Sediments at water stations were collected by an Ekmann-Birge grab sampler (see Figure 13) 

and were stored in small plastic containers for measurement on land since measuring time on 

the boat was limited. On two days where no boat was available, measurements of common 

surfaces in the shallow regions at the southern shore were acquired to collect a regional spectral 

data base  (Schmid, 2024). 

 

 

Figure 13: Ekman-Birge sampler and extracted bottom substrate at Lake Junin. Equipment provided by the ANA 

Huancayo 
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3.2.2. Validation Parameters 

The relevant Level-3 parameters that can be derived from the physics based inverse modelling 

in WASI, and for which validation data could be collected, are water depth, chlorophyll-a 

concentration, and the reflective properties of bottom substrate. 

Water depth was measured in one out of three ways:  

(1) Through a steel measuring tape with a heavy weight at the bottom. Depth was 

collected to the best possible efforts of the researcher trying to minimize tape drift and 

depth reading due to the wave state of the water surface.  

(2) Through an echo-sounder with a dual beam sonar with 15-degree swath width, 

directly sending point specific water depth to an application on a smart device. This 

measurement was then logged manually in the field protocol.  

(3) Through a remotely operated boat with an on-board echo-sounder for depth 

measurements and a flight controller for geolocation and navigation. Here after referred 

to as USV (Unmanned Surface Vehicle, see Figure 14). 

 

Figure 14: Unmanned surface vehicle at Lake Lasuntay, Peru.  

 

The USV can be used in different operating modes: Manual remote control, an automatic path 

mode through mission control as well as a route maintaining mode to ensure a course in a 

straight line. Here, the on-board GPS continuously corrects the path for waters current and wind 

drift based on the position. Bathymetry data was collected on all three field campaign days at 

Lasuntay. On the 19th of June and 21st of June, the boat was driving in automatic mode following 

a pre-set pattern of long paths in south to north direction towards the glacier with a 20-meter 

space in between each line. These two days covered most of the lake. On the 22nd of June, the 

USV was controlled manually to precisely measure water depth right up to the water line on 
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the southern part of the lake. Time and safety reasons did not allow similar measurements on 

the north, west or eastern shore as they were too hard to reach due steep side slopes. Given that 

the preprogrammed paths for the automatic mission control were based on google earth satellite 

imagery, an adequate pattern for the high waterline at the point of the field campaign was also 

not available. Ideally, orthorectified drone imagery integrated into the mission control software 

could be used to plan the routes for most efficient and precise data collection. 

 

Figure 15: Drone in starting position at Lake Junin. The drone was retrofitted with a foam frame to allow 

landing in water. 

 

At lake Junin, water depths with the USV were collected opportunistically during measurement 

points on the first day and whenever time allowed on the second day. The main purpose of the 

USV at lake Junin was to log depth along the transects to derive a depth profile of the lake. For 

this, the USV mainly followed the path of the two research boats in the route maintaining mode. 

In total, three long stretches of continuous measurements were recorded, with distances of 1.42 

km, 3.91 km, and 1.33 km respectively. 

Additionally, a historical dataset of water depth from a technical report on bathymetry for Lake 

Junin from the CESEL engineering office was available. Measurements for almost 6000 points 

were available as the total elevation above sea level (Lazaro and Serpa, 2006; Cesel, 2022). 

These however only included points in the main water body and a shallow inundation zone in 

the northwest. The shallow water areas and inundation zones between the main reed belt on the 

southern shore that were accessible were not included in the study. A manual shoreline around 

the reed belts was then digitized based on high resolution satellite imagery. Points were 

interpolated within this delimitation and the water depth was calculated by subtracting the 

reference elevation from the geodetic control stations at the Upamayo dam.  

From the boat, a Secchi Disk attached to the steel tape was lowered into the water. Secchi depth 

is a commonly used method to estimate water clarity and refers to the depth at which the black 

and white circular disk becomes invisible when lowered into the water. The visibility of the 
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disk is influenced by the scattering and absorption of light in the water column. Secchi depth 

serves as an indicator of water transparency, with greater depths indicating clearer water  

(Alikas and Kratzer, 2017). This measurement is helpful for determining areas of the lake with 

optically shallow or deep water and consequently the necessary model selection in WASI. 

Chlorophyll-a concentration was derived from water samples at selected field points, often 

overlapping with established monitoring points from the ANA. Responsibilities for water 

sample collection and transport to two laboratories in Lima was carried out by representatives 

from the ANA in Huancayo. As ANA has previously worked with the Servicios Analiticos 

Generales (SAG) laboratory, their results were compared with a second analysis from the 

Instituto del Mar del Perú (IMARPE). Details regarding their measuring principles and 

experiment setup are not available. Due to the limited capacity of containers and adequate 

cooling and transport logistics, water samples were collected at only 3 points at Lake Lasuntay 

and 16 points at Lake Junin. Chlorophyl-a concentrations were further derived from inverse 

modelling of the in-situ spectrometer measurements in WASI. The spectra were fitted for one 

dominant phytoplankton species (C[1-5]), CDOM (C_X) and its absorption exponent (S), NAP 

(C_Y) and parameters for the fraction of sky radiance (g_dd, g_dsr, g_dsa). Based on the 

derived concentrations from in-situ modelling and laboratory analysis, results from processing 

satellite images after model initialization in WASI could be assessed. 

Finally, rigorous photo documentation ensured good traceability of the measurements and the 

environmental conditions. Each water measurement was accompanied by a photo of the water 

surface, a photo of the sky, a drone overflight (see setup in Figure 15), and an underwater video 

of the lake bottom. Measurements of substrate, vegetation or soil were also documented so that 

each measurement has a corresponding image of the target object. 

 

Figure 16: Measurement of the spectralon reference panel. Photo taken in the shallow water areas at the south-

western shore at Lake Junin.
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3.3. SuperDove Instrument 

As stated in the introduction to this thesis, the proposed workflow from Level-1 satellite data 

to Level-3 information about water constituents and water depth was evaluated with 

PlanetScope SuperDove imagery. This chapter provides an overview of the technical details, 

image availability, calibration, and recent applications of this novel data product. To avoid 

confusion regarding the specific product, the naming conventions are shortly laid out hereafter: 

PlanetLabs is a private Earth imaging company that specializes in providing satellite imagery 

and data. PlanetScope, operated by PlanetLabs, is a constellation of over 430 small satellites 

with three generations of sensors. The newest generation of sensors is referred to as the 

SuperDove Instrument and has the earliest imagery available from March 2020 (PlanetScope 

2024). A study by Niroumand-Jadidi et al. (2020) has shown great potential for bathymetry and 

retrieval of total suspended matter (TSM) through physic-based inversion with WASI-2D from 

a previous generation of instruments in the PlanetScope constellation. This led to the 

assumption that the same workflow could also be applied successfully to SuperDove imagery. 

Consequently, this investigation solely focuses on the newest sensors as the old one generation 

is being systematically replaced by the new SuperDove instrument.  

 

3.3.1. Technical Specifications  

SuperDoves are equipped with an eight-band frame imager with a butcher block optical filter 

and eight spectral bands flying in sun-synchronous orbit at 475km height and a 98° orbit 

inclination. The design is based on the 3U+ CubeSat form factor carrying various processors 

and sensor for in-flight controls as well as communication with the ground stations (Gutierrez 

Ahumada et al., 2021; Poursanidis et al., 2019). Nadir ground sample distance varies between 

3.7 meters to 4.2 meters depending on the altitude of the surface. The added Coastal Blue, 

Green I, Yellow and Red-Edge bands improved spectral resolution and added on to the four 

RGB + NIR bands of previous generations. This also means that they now share central 

wavelength with six Sentinel-2 MSI bands (see Table 2). 
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Table 2: Overview of SuperDove Spectral Bands. The shared bands with Sentinel-2B MSI are shaded in grey. 

Band Number Band Name Central Wavelength (FWHM) 

1 Coastal Blue 443 nm (20) 

2 Blue 490 nm (50) 

3 Green I 531 nm (36) 

4 Green 565 nm (36) 

5 Yellow 610 nm (20) 

6 Red 665 nm (31) 

7 Red Edge 705 nm (15) 

8 NIR 865 nm (40) 

 

Figure 17 shows the relative spectral response function (SRF) of the eight SuperDove bands, 

their central wavelength, and the full width at half maximum (FWHM). Variations in the SRF 

characterize the sensitivity of the spectral bands over a given wavelength range (Trishchenko 

et al., 2002). SuperDove satellites are launched to orbit in groups, referred to as flocks. The 

information on the spectral response is available through PlanetLabs, it is however not specific 

to individual sensors or a specific flock. Despite shared central wavelengths in the six bands, 

different relative sensitivity to the radiation of a certain wavelength and the band width itself 

sensors may introduce biases in the received signal between sensors (Gonsamo and Chen, 

2013). While little information is available for unit specific SRF, Planet Labs states a consistent 

spectral performance across SuperDoves and a good alignment between measured SRF and 

designed SRF  (Kington and Collison, 2022). 

 

Figure 17: Relative spectral response functions for SuperDove. The central wavelengths are marked by dotted 

line and fwhm is shaded around this wavelength. 
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3.3.2. Data Availability and Data Selection 

A major advantage of operating a constellation of small satellites is the temporal resolution of 

the image acquisition. With an image capture capacity of 200 million km² per day this means 

daily global coverage of all land surfaces within the minimum and maximum latitude coverage. 

In comparison, conventional multispectral sensors on board the Landsat or Sentinel platforms 

have significantly longer revisit times, with 16 days for the OLI-2 instrument on Landsat 9 and 

10 days for the MSI instrument onboard Sentinel-2A or Senintel-2B. In regions with frequent 

cloud cover, this may lead to several overpasses without a usable image for the given 

application. In dynamic systems this will ultimately lead to loss of information and greatly 

reduce the operational monitoring potential. 

Data from all PlanetScope generations can be either accessed through the Planet Explorer 

website or through the Planet API (Planet 2023) . As this is a commercial operation, imagery is 

not freely available and requires a registered account and an associated API key to download 

data. Imagery products are available as either a Basic Scene or Ortho Scene. Basic Scenes are 

not orthorectified and not projected to a cartographic projection and specifically designed for 

experienced users. Ortho Scenes are orthorectified and resampled to a three-meter sampling 

interval and are available as either the surface reflectance product or as a TOA radiance product.  

Figure 18 shows an overview of the time overpasses for all available image products from 

January to August 2023 obtained by an API search for a bounding box within Lake Junin. In 

total, 216 scenes from 88 unique SuperDove instrument acquired imagery. The average cloud 

cover was 42% for the entire tile that included the lake. All overpasses occurred between 

09:00am and 10:30am local time (14:00pm to 15:30pm UTC). According to residents, cloud 

cover over the main water body usually dissipates later in the day, so the acquisition time 

severely limits useable scenes even from a constellation with daily revisit times.   

For the analysis at hand, images were downloaded as a composite of multiple strips from one 

SuperDove as an Ortho TOA radiance product. Occasionally, scenes that would cover the 

selected area in the Planet Explorer could be stitched together from multiple SuperDoves from 

the same flock. However, calibration differences between individual satellites or changing light 

or viewing conditions may impact the consistency of the data for the scene and make the 

attribution of uncertainties difficult. While in most cases, where different sensor could be 

stitched together, the overpasses occurred within a few minutes, single sensor data was still 

preferred even if that meant a loss of spatial coverage on a given day.  

For the preliminary suitability assessment of SuperDove imagery, three scenes closest to the 

field measurements were further investigated. These are images from the 24th, 25th and 26th of 

https://developers.planet.com/docs/apps/explorer/
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June 2023, whereas validation data for water spectra were collected on the 26th, 27th and 28th of 

June 2023. Scenes on the same days as the in-situ measurements are available from multiple 

SuperDoves, the heavy cloud cover until early noon unfortunately however made these scenes 

inadequate. Therefore, validation of Rrs around an in-situ point are always subject to errors due 

to changes in the water column and atmosphere. Nonetheless, conditions during the week of 

the available images and the field measurements were stable and therefore still suitable for an 

initial comparison.  

 

Figure 18: Time of SuperDove overpasses over lake Junin derived from the PlanetScope API and image 

metadata.  

 

Figure 19 illustrates the benefit of multiple satellites in a larger constellation for earth 

observation purposes. From August 2022 to August 2023 the highest quality scene from visual 

inspection of the RGB surface reflectance composite for lake Junin is shown for each month. 

These were selected based on cloud coverage, visible glint effects on the water surface and 

noticeable sensor artifacts in the RGB previews from the Planet Explorer. For the winter months 

in the southern hemisphere, high quality images were available for most days. In February 2023, 

only one image was largely free of cloud cover and additionally showed sensor artifacts in the 

scene. However, even without further processing an interesting development in the water body 

can be observed, as a large sediment plume is entering the lake from the channel leading towards 

the dam. This plume is still observable 10 days later, although thinned and dispersed further 

into the lake. 
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Figure 19: Monthly SuperDove Image from August 2022 to August 2023 as surface reflectance RGBs. 

Additionally, scenes from June that are analyzed in this thesis are included in the overview and marked by the 

red border. 
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3.3.3. Calibration 

Calibration, sensor noise, bandwidth and slight differences in spectral response may lead to 

offsets in even the closest temporal matchups between sensos. For most remote sensing 

applications, changes in surface conditions therefore need to be distinguished from those due 

to sensor variations. Comparing imagery from diverse platforms poses challenges due to factors 

like calibration, spectral response function, atmospheric correction, and viewing or sun-zenith 

angle (Tu et al., 2022). Correction methods have been devised and applied to medium-

resolution Landsat and Sentinel-2 data to address these challenges. For instance, through 

calculating temporally resolved calibration coefficients and solar irradiance estimates which are 

used to convert radiance to top-of-atmosphere reflectance, followed by correction for 

atmospheric and Bi-directional Reflectance Distribution Function (BRDF) effects. Lastly, 

spectral response function differences between sensors are compensated and the data from 

different sensors is made comparable. However, implementing these approaches systematically 

and reliably becomes challenging for large satellite constellations, particularly those lacking 

continuous onboard calibration (Huang and Roy, 2021; Helder et al., 2020; Roy et al., 2021; 

Roy et al., 2016). 

According to PlanetLabs, SuperDoves go through a rigorous calibration process on the ground 

and, once in orbit, enter a commission phase where an initial on-orbit calibration is performed 

(Collison et al. 2022). These adjustments are generally small and further calibration is 

performed every six months based on the entire image data acquired during that time. While 

previous generations relied on well-known calibration sites, SuperDoves can directly be cross-

calibrated to Sentinel-2 in the six matching bands for every temporal and spatial crossover. The 

Green I and Yellow band are additionally calibrated based on the TOA reflectance from the two 

closest Sentinel-2 bands. For the six months calibration time, each crossover between Sentinel-

2 and a SuperDove within two hours is systematically retrieved. To combat biases and to 

include a full range of reflectance values this is done globally. All land surfaces are divided into 

a tiled grid where each tile is equally likely to be searched for crossovers. Scenes with a cloud 

cover over ten percent are filtered out and the maximum number of detected crossovers is set 

to 20.000. This dataset is subsequently divided into a group for the calibration update and a 

validation subset. The TOA reflectance for each crossover pair is resampled to a 20-meter grid 

with corresponding pixels from a SuperDove and Sentinel-2. The correction for the calibration 

coefficients is then determined by a linear fit of the joint mode between crossover pairs, since 

it is less sensitive to outliers caused by changing environments within the crossover period 

(Gollison et al. 2022). Figure shows the scatterplots for this method for a SuperDove with ID 
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2408 and the calculated calibration coefficients from the linear model from all Sentinel-2 

matchups.  

 

Figure 20: Comparison between SuperDove 2408 and Sentinel-2. Scatterplots for all match ups found during a 

6-month calibration period (Gollison et al. 2022). 

 

Planet Labs also states absolute radiometric uncertainties for the Blue band (7.5%), Green II 

band (3%), Red band (4.6%) and the NIR band (8%)  (Saunier and Cocevar, 2022). A report on 

the assessment of radiometric calibration investigates these uncertainties via two methods: 

(1) RadCalNet Method 

(2) PICS Method 

In the first method, RadCalNet  (Bouvet et al., 2019) provided TOA reflectance is convoluted 

to the SuperDove spectral band passes, creating a simulated SuperDove reference data set. 

SuperDove imagery over a 30 m RadCalNet site are adjusted to the viewing geometry of the 

test site through the MODIS Albedo / BRDF product (MCD43) to derive corrected TOA 

reflectance from a satellite and the percent difference between the reference data and the 

adjusted SuperDove imagery is calculated. 

The second method uses Sentinel-2 TOA data as a calibration reference over a pseudo-invariant 

calibration site (PICS) by transforming Sentinel-2 spectra to a simulated SuperDove spectra 

and calculating the percent difference as done in the first method. Both methods showed that 

the radiometric calibration error of SuperDove data was in line with the product specifications 

of a reflectance error within 5%, suggesting good consistency across the constellation. 
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3.3.4. State of the art research for aquatic applications 

Remote sensing with traditional sensors onboard the Landsat and Sentinel platforms has been 

the preferred method for inland water bodies due to its consistency, radiometric quality, and 

spatial resolution with well-established calibration and validation and extensive research. While 

older generations from the PlanetScope constellation have been tested and evaluated in a wide 

range of remote sensing applications, literature on SuperDove imagery for aquatic applications 

remains sparse, especially regarding their suitability in a subsequent physics-based modelling 

approach.  

In an empirical study, Sunar et al. (2023) have investigated the accuracy of water constituent 

retrieval with SuperDove and Sentinel-2 imagery using linear and exponential regression 

models for the Gulf of Izmir. For this, band combinations were explored to find the best 

performing model with 11 in-situ measurements for chlorophyll-a, turbidity, TSM and Secchi 

depth. Except for Secchi depth, Sentinel-2 data showed a higher accuracy score for the best fit 

model. Model accuracy was however only tested for five validation samples after thematic 

mapping of the satellite data based on the selected model equation and band combination. The 

thematic maps appeared to be smoother and more spatially resolved for the SuperDove scene, 

yet more prone to errors than the Sentinel-2 maps. The authors note that Sentinel-2 has proven 

to be sufficient for their application, with a higher spectral resolution and more dedicated bands 

for water quality measurements as the main advantage. However, SuperDove data may be more 

suited for the eastern part of the region where higher spatial and temporal resolution may help 

better understand the dynamics of pollutant entry  (Sunar et al., 2023). 

SuperDove bathymetry was explored by Collin et al. (2023) using a neural network and lidar 

data for water depth validation. The best model was determined by investigating the 

performance of either (1) all eight bands, (2) only the RGB + NIR bands identical with previous 

generations, and (3) the RGB + NIR in addition to each novel band. Out of those six total 

combinations, all eight bands as a model input into the neural network showed the best results 

for two of the three test sites, with the RGB + NIR + Yellow band selection being favored for 

the third. Model accuracy was validated with 30 test pixels for each site and the best performing 

model was used to map water depth for the entire scene extent. The accuracy statistics for all 

matchups are shown in Table 3. The greatest model gains from the novel bands were attributed 

to the Coastal Blue and Yellow band, highlighting improvement for bathymetry in clear waters 

through the Coastal Blue band and the improved CDOM information through the Yellow band. 

The authors remark good potential in SuperDove data for bathymetry and expect further 
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improvements through more refined neural networks. The biggest uncertainties were attributed 

to the maximum water depth and the time between satellite and lidar data acquisition. For the 

latter, moving sand banks likely biased results in dynamic water bodies, once again 

emphasizing the need for accurate validation data  (Collin et al., 2023). 

Table 3: Accuracy statistics derived from N in-situ matchups for bathymetry  

(Adapted from Collin et al. 2023) 

Test site Best band combination from NN R² RMSE [m] N 

Bréhat Island All eight bands 0.78 1.19 2998 

Saint Berthélemy Island All eight bands 0.95 1.57 7585 

Teti´aroa Islands RGB + Yellow 0.69 1.58 3540 

 

In a study Niroumand-Jadidi et al. (2022) the authors explore the potential of Landsat-9 for 

river bathymetry retrieval, comparing its depth retrieval capabilities with SuperDove and 

Sentinel-2. This is done through both a neural network and an optimal band ratio analysis 

(OBRA). Additionally, the study examines the influence of enhancing the signal-to-noise ratio 

(SNR) of SuperDove imagery through downsampling data to 15m spatial resolution and 

comparing results with resampled data from the other two sensor at hand. Improvements from 

the novel bands were additionally investigated by modelling bathymetry from SuperDove data 

with and without them. Figure 21 shows the results for a stretch of the Colorado River for both 

downsampling and band emission. Here, reduced noise in the coarser resolution data (right 

column) improved on model results, as did the novel bands (top row). 

 

Figure 21: In-situ matchup validation of bathymetry retrieval with SuperDove imagery. Left: Original 

resolution. Right: 15-m resolution (Adapted from Niroumand-Jadidi et al. 2022). 
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Table 4: Accuracy statistics derived from in-situ matchups for bathymetry (Adapted from Niroumand-Jadidi et 

al. 2022) 

 

Between sensors, the best results were observed with pan-sharpened Landsat-9 images at the 

15-meter spatial resolution. Table 4 shows RMSE, R², MAE and Bias for all data formats. For 

all sensors, the neural network approach significantly outperformed OBRA. The latter is 

therefore excluded in the overview. It is important to note that the authors relied on TOA 

reflectance products, stating a degradation of the results attributable to poor atmospheric 

correction. They emphasize the need for accurate atmospheric correction in studies that apply 

physics-based approaches for bathymetry or water-quality retrieval (Niroumand-Jadidi et al., 

2022).  

Lastly both SuperDove and older generations in the constellation have been shown to be a 

valuable resource for detecting and mapping water bodies, flood inundation or river 

connectivity (Mishra et al., 2020; Paulino et al., 2023; Qayyum et al., 2020) as well as extents 

of benthic habitats in optically shallow water (Wicaksono et al., 2023; Lee et al., 2023; van An 

et al., 2023; Wicaksono and Lazuardi, 2021). 

 

 

 

 

 

 

 

 

 

 

Satellite Sensor R² RMSE [m] MAE [m] Bias [m] 

Landsat-9 (30m) 0.70 1.99 1.19 1.01 

Landsat-9 (15m) 0.80 1.97 1.20 1.03 

Sentinel-2 (10m) 0.69 2.21 1.18 0.99 

Sentinel-2 (15m) 0.68 2.23 1.22 0.99 

SuperDove 8-band (3m) 0.48 2.87 1.24 1.04 

SuperDove 8-band (15m) 0.65 2.36 1.22 1.05 

SuperDove 4-band (3m) 0.44 2.99 1.26 1.04 

SuperDove 8-band (15m) 0.64 2.46 1.21 1.05 
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3.4. Atmospheric Correction of Satellite Data 

The studies outlined in the previous chapter either relied on TOA reflectance or the surface 

reflectance product available for download from PlanetLabs. The atmospheric correction for 

the basic products is done using the 6SV2.1 radiative transfer code, a widely used and validated 

method in the remote-sensing community. Developed to model the solar radiation reflection 

within a coupled atmosphere-surface system, 6SV2.1 accommodates a diverse set of 

atmospheric, spectral, and geometrical scenarios (Shi and Xiao, 2019). Aerosol optical depth, 

water vapor and ozone information are retrieved from MODIS near-real-time data. However, 

initial tests with SuperDove imagery as a Level-2 product directly from PlanetLabs have not 

led to satisfactory results for the subsequent inverse modelling of the high-altitude scenes in the 

Peruvian Andes. For this study, atmospheric correction was done in ACOLITE, a processor 

developed at the Royal Belgian Institute of Natural Sciences (RBINS).  

3.4.1. ACOLITE 

ACOLITE is freely available as either a binary version or as a generic GitHub module and has 

an active community with continuous development. It supports a wide range of sensors and is 

easy and fast to implement with minimal settings. The software uses the dark spectrum fitting 

(DSF) approach in its default processing, which has been applied to turbidity estimations, 

bathymetry and algal bloom monitoring in previous studies (Vanhellemont and Ruddick, 2021). 

The DSF correction inherently uses two assumptions: First, the atmosphere is homogenous over 

the entire scene that is to be processed. The path reflectance ρpath is therefore constant. Second, 

the scene contains pixels where surface reflectance ρs is close to zero in at least one of the 

available bands for ρpath estimation (Vanhellemont, 2019a). 

From the lowest observed TOA reflectance ρt in each band, a dark spectrum ρdark is constructed. 

From the derived ρdark, the best fit band and model combination is selected to estimate ρpath. 

This is done in three steps:  

1) Based on the scene specific illumination and viewing geometry ρpath is calculated with 

6SV for two different aerosol models and the aerosol optical thickness τa at 550 nm. For 

each band, assigned with a band weighted wavelength λ, and each aerosol type from 

LUTs of the aerosol model, the ρdark(λ) is limited by two ρpath (λ) values. These values 

correspond to the steps of τa in the LUT. Then, the final τa is estimated from the bounding 

values by linear interpolation to the ρdark(λ). 

2) For each aerosol model, the band giving the lowest non-zero estimation of τa is selected 

since higher values in other bands will lead to negative values for the dark pixels in the 

lowest band. 
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3) Finally, one aerosol model is selected from the lowest Root Mean Squared Difference 

(RMSD) between the ρdark and ρpath for each band pair with the fitted band from the 

previous step. The aerosol models include either a continental (MOD1) or maritime 

(MOD2) composition of aerosols from 6SV and their respective characteristics. 

 

Finally, having selected the best fitting band and aerosol model, parameters that are required 

for atmospheric correction can be retrieved from the LUT for all bands. These are ρpath, the two-

way total atmospheric transmittance ttot and the spherical albedo of the atmosphere sa. 

Surface reflectance of a pixel can then be calculated as: 

ρ𝑠 =  
ρ𝑝𝑐

𝑡𝑡𝑜𝑡 + 𝑠𝑎 ∗  ρ𝑝𝑐
 

And: 

ρ𝑝𝑐 =  
ρ𝑡

𝑡𝑔𝑎𝑠
−  ρ𝑝𝑎𝑡ℎ −  ρ𝑠𝑘𝑦 

Where ρ𝑡 is the TOA reflectance, ρpc is the path corrected reflectance, 𝑡𝑔𝑎𝑠 the total gas 

transmittance and ρ𝑠𝑘𝑦 is an approximation for the air-water sky interface. For water pixels this 

is determined analytically while land pixels are set to 0. Surface reflectance is retrieved both 

over water and land, assuming the water surface is fully treated (Vanhellemont, 2019a). 

To evaluate the performance of atmospheric correction, satellite derived data needs to be 

compared to in situ measurements, ideally taken with minimal time deviation from the satellite 

overpass, to eliminate changing conditions in irradiance or atmospheric composition. In a study 

by Vanhellemont (2020), PlanetScope data from the older four-band dove generation processed 

with ACOLITE was validated at two different sites in the Belgian coastal zone with matchups 

from an autonomous measuring PANTHYR system. Its performance was then compared to the 

Landsat OLI and Sentinel-2 MSI sensor. For the in-situ measurements, water leaving radiance 

Lw was computed from the average of a series of measurements for upwelling radiance Lu and 

sky radiance Ld in time intervals between one and seven minutes  (Vanhellemont, 2020). Out 

of 88 matchups found between the in-situ PANTHYR measurements and Dove imagery, the 

RMSD error was over 0.01 for the water reflectance, performing worse than Sentinel and 

Landsat. Reflectance in the NIR was systematically overestimated indicating a poor 

performance of the NIR band (Vanhellemont, 2020). Nonetheless, ACOLITE has shown to 

provide good results for aquatic applications across water bodies and satellite sensors  (Maciel 

and Pedocchi, 2022; Pereira-Sandoval et al., 2019; Vanhellemont, 2019b; Braga et al., 2022). 
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3.4.2. Parameter Settings in ACOLITE 

ACOLITE provides the user with a large array of processing options that can be specified in a 

settings file. This file can be directly imported in the GUI or through a command in a suitable 

python environment. Minimal parameter settings can be set in the GUI of the binary version in 

ACOLITE (see Figure 39 in the Appendix). Here, only the input Level-1 data bundles and the 

desired output parameter are necessary for initial processing.  

For this study, individual setting files are written and processed in batch in a dedicated Python 

3 environment for the analysis of the satellite derived spectra. This was done separately for each 

parameter to deduct its effect on the spectrum for water pixels. Results are output across 

individual bands as Rrs, defined in ACOLITE as the surface reflectance for water pixels divided 

by pi. The bands are then stacked together to a multi-band raster in a geographic information 

system (GIS). No pixels are masked in the processing, as this is done later in WASI through 

setting reflectance thresholds when processing the Level-2 image data. The elevation was set 

to the altitude of the lake to account for changes in atmospheric pressure in a high-altitude 

environment. This is achieved even more precisely by providing access to a NASA EarthData 

account which will compute atmospheric pressure from available digital elevation model 

(DEM) data (Vanhellemont, 2020).  

Information on the best practices of user settings, scripting and visualization can be found in 

the ACOLITE manual (latest version from August 2021) or the user forum (ACOLITE, 2024). 

To investigate performance under different parametrization and to define best practices for the 

processing of the Level-1 data from SuperDoves, following settings were tested: 

 

▪ Wavelength limitation for the band selection with lowest ρ𝑡  

▪ Fixed τa at 550nm 

▪ Fixed aerosol model and associated LUT. 

▪ Glint correction with two available models 

▪ Auxiliary data for atmospheric pressure (DEM) and gas transmittance (ozone and water 

vapor concentration) 

▪ ROI size for initialization 

 

As it was later shown, different regions of interest (ROI) that were set during initialization had 

a significant impact on the chosen band and aerosol model and therefore the derived signal. 

Figure 22 shows the four ROIs which were ultimately compared. These polygon envelopes crop 

the raw Level-1 data to the set extent before further processing in ACOLITE. Each region size 
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considered potential use cases that advocate for the given extent: The Fullscene covers the 

entire extent of Lake Junin, including the inaccessible shallow water area in the northwest of 

the lake. The Subset covers all field measurement points and include both the deepest areas of 

the lake and the more pronounced shallow areas, demarcated by the reed belts in the south. The 

area labelled as Common is the largest area that the three scenes from subsequent days shared 

with each other in their respective overpasses. Since the SuperDove unit on the 24th of June did 

not capture the northwestern area of the Fullscene extent, this was included to find the 

maximum area where each sensor had the same available extent. Lastly, the Deep Water ROI 

was included as an area with significantly more water pixels than land pixels, and covering an 

in-situ transect over the deepest area in the lake. Deviations in satellite derived Rrs from 

SuperDove instruments due to different ROI initialization are quantified as the percent 

difference from the mean reflectance between the different settings. 

 

 

Figure 22: Bounding Boxes for ROIs processed in ACOLITE. Fullscene covers the entire lake, Subset all field 

stations points, Deep Water the transect in the deepest part and Common the largest overlap between three 

consecutive images. The Image extent was cropped to the Fullscene. 
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3.5. Assessment of Level-2 Data Quality 

To assess the accuracy of the atmospheric correction, Rrs output from minimal user settings 

were validated with the in-situ measurements from the field campaign. Therefore, no bands 

were excluded, no fixed AOT was set, no glint correction was applied and the default DSF 

algorithm was used in ACOLITE. To combat the noise in the SuperDove images, a 30-by-30-

meter buffer was set around each validation point, and pixel values within that buffer area were 

averaged from the Level-2 image. Consequently, one in-situ measurement was compared to the 

mean of 100 pixels with 3-meter spatial resolution from a SuperDove. To compare the 

performance of atmospheric correction between sensors, a Sentinel-2 scene from the 24th of 

June was also investigated and validated for the same buffer size as the average of nine 10-

meter pixels as this was the set output size for the Sentinel-2B image. As the ground truth data, 

the Rrs from the in-situ water spectra corrected for surface reflection were used. For this, a total 

of 20 points were available:  

 

▪ JU_01 – JU_04 (Collected on the 26th of June) 

▪ JU_12 – JU_16 (Collected on the 27th of June) 

▪ JU_20 – JU_30 (Collected on the 28th of June) 

 

The major challenge for satellite validation is the temporal overlap with the image acquisition 

and the in-situ measurement (Leigh et al., 2023). In-situ data in shallow and deep-water areas 

from the boat were collected on three days and on these three days, only one SuperDove image 

on the 26th of June is available. On the following days clouds covered almost the entire lake 

during the overpass. Here, even the high temporal resolution could unfortunately not guarantee 

a close temporal matchup. A Landsat-9 scene on the 28th was also heavily obstructed by clouds 

and could therefore not be used for additional validation. SuperDove scenes with no clouds 

over the water body and no apparent glint were also available on the 24th and 25th of June. As 

the conditions of both the water body, the weather and the atmosphere were stable, images from 

those days were used to compare in-situ Rrs data and satellite derived Rrs.  

In high spatial-resolution image noise can be large, especially given that the signal over deep 

water is inherently low. Even small noise can make up a large fraction of the total signal 

measured by a sensor. The signal-to-noise ratio (SNR) can be used to assess  image quality and 

to identify potential limitations of further analysis with the data at hand  (Niroumand-Jadidi et 

al., 2022; Jorge et al., 2017).  The SNR can be calculated as the mean signal within an array of 

pixels divided by the standard deviation of the signal within the same extent. 
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𝑆𝑁𝑅 =  
𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
 

While visual interpretation of an image does not depend as strongly on a high SNR, 

uncertainties in image processing for multispectral applications are often strongly affected by 

the noise in remote sensing data.  To inspect the spatial distribution of the noise in both the 

Level-1 TOA radiance data and the atmospherically corrected raster images with Rrs values, 

maps for the SNR in each of the eight bands of a SuperDove image were created. In adaptation 

to the SNR methodology from a report on the quality assessment for SuperDove data, a sliding 

window with a set kernel size computes the local statistics within the window and writes the 

SNR value for the pixel at the pixel position in the iteration  (Saunier and Cocevar, 2022). The 

results are thus images where each pixel represents the SNR value for the set window size 

around it. A water mask based on a threshold value in the NIR band where the TOA reflectance 

ρt was above 0.035 was applied to the image for visualization of only water pixels, as land 

surface showed to have a significantly higher SNR. Based on these images, areas within the 

lake with high homogeneity were identified and subsequently used to define areas of interest 

(AOIs) within the lake to compare Level-2 data between scenes and different processing 

options. The same methodology was applied to the Sentinel-2B scene and SNR improvement 

(SNRI) for an AOI was quantified as follows: 

SNRI = 10 ⋅ 𝑙𝑜𝑔10(
𝑆𝑁𝑅𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙

𝑆𝑁𝑅𝑆𝑢𝑝𝑒𝑟𝐷𝑜𝑣𝑒
) 

The AOIs also defined areas for which model initialization in WASI were carried out. The 

inverse modelling of the representative spectra within these are subsequently indicative of the 

data quality. When a satellite derived spectrum cannot be inversely modelled within realistic 

parameter ranges, the input data is assumed to be unsuited for this application. 

Finally, consistency between consecutive images were compared regarding their spectral shape. 

With daily imaging capacities, it is important that data from the PlanetScope constellations is 

consistent between individual sensors, flocks and ideally generations. The high temporal 

resolution enables comparative analysis of the spectra measured for single pixels or AOIs and 

large differences can be detected simply by visual interpretation of the spectral profiles or 

quantified by differences in band ratios or indices. This must however be done under the 

assumption that differences from the at sensor signal are directly related to the sensor itself and 

not to changing environmental conditions. This can be reliably done for PICS sites where 

temporal stability of the observed surface area is expected to be extremely high, especially so 

when images can be acquired daily (Khadka et al., 2021). In more dynamic aquatic systems, 

attributing changes to either sensor or environment may be challenging. Nonetheless, for the 
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analysis at hand the three consecutive images from the 24th, 25th and 26th of June 2023 are 

compared. This is done for the defined AOIs and deviations between sensors are quantified as 

the percentage difference from the mean signal between them. For the results, four AOIs were 

considered and are henceforth referred to as: 

 

▪ Deep Water Transect 1 

▪ Deep Water Transect 2 

▪ Shallows North 

▪ Shallows South 

 

Band ratios that can be used as proxies for water extent and constituent concentrations are also 

investigated and absolute differences between the ratios from different days are calculated. This 

was done for the Subset extend without masking land to visualize differences in changing signal 

between water and land. Although not optimized to the water body and sensors at hand, 

following band indices or band ratios are included for visualization purposes:  

First, the Normalized Difference Chlorophyll Index (NDCI) developed to use the reflectance 

peak with maximum sensitivity at 700 nm in the Red-Edge band and the strong absorption of 

chlorophyll-a pigments between 665 nm and 675 nm  (Mishra and Mishra, 2012).  

  

𝑁𝐷𝐶𝐼 =  
𝑅𝑟𝑠(705) − 𝑅𝑟𝑠(665)

𝑅𝑟𝑠(705) + 𝑅𝑟𝑠(665)
 

 

Second, the Normalized Difference Water Index (NDWI) used to detect and highlight water 

coverage from satellite imagery using the Green and NIR band for water targets (Yoon and 

Choi, 2018). 

𝑁𝐷𝑊𝐼 =  
𝑅𝑟𝑠(556) − 𝑅𝑟𝑠(865)

𝑅𝑟𝑠(556) + 𝑅𝑟𝑠(865)
 

 

Finally, the same maps were created for all possible combinations of band ratios to provide an 

overview of differences between the consecutive SuperDove images which directly related to 

the band-to-band performance of the individual sensor  (Shybanov et al., 2023). These images 

were created to show the spatial distribution of band-to-band differences between individual 

scenes. While these can be derived from the spectral profiles plotted for a single AOI from all 

sensors, the spatial distribution of differences between band ratios may help identifying areas 

of the water body where calibration differences were more pronounced. 
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4. Results 

Results for this thesis are the collection of validation data for the Level-3 parameters and the 

evaluation of SuperDove images as a suitable data product for the modelling of these 

parameters. The location of the field stations and AOIs are shown in Figure 23 and results for 

all in-situ measurements are provided in Appendix I. These include the water depths from tape 

and sonar measurements, chlorophyll-a concentration from inverse modelling of the in-situ 

water spectra, Secchi depth as well as date of collection and coordinates. Chapter 4.1 

summarizes the chlorophyll-a concentration results from two laboratories in Peru and the 

concentrations derived from field spectrometer data for all water stations. Chapter 4.2 outlines 

the collected validation data for water depth determination and the validation raster data from 

the bathymetry report from 2006. Chapter 4.3 summarizes and visualizes the image noise of 

the SuperDove scene from the 24th of June 2023 and a Sentinel-2B image from the same day. 

The spectral signatures of the AOIs for three consecutive days from SuperDove imagery are 

presented in Chapter 4.3 and Chapter 4.4 and their differences due to ROI initialization and 

day of acquisition are outlined. Satellite derived Rrs validation is shown in Chapter 4.5 for 

SuperDove and Sentinel-2B. Finally, challenges of initializing these reflectance spectra in 

WASI for deep water are summarized in Chapter 4.6. 

 

Figure 23: Overview of AOIs and field-measurement points for water at Lake Junin.  
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4.1. Uncertainty of Chlorophyll-a in-situ Data 

Table 5 shows the chlorophyll-a concentrations that were measured in the two laboratories in 

Lima and the concentration derived from inverse modelling of the field spectrometer data. The 

SAG laboratory in Lima did not provide precise values as every water sample was considered 

below their limit of concentration detection. Concentrations from the ocean institute laboratory 

IMARPE agreed with SAG with values below 3 µg/l for all points and provided precise values 

with an average concentration at 1.08 µg/l. The concentrations derived from WASI were 

significantly higher for points JU_01 to JU_04 where water depth was below two meters. While 

the correspondence between the spectrum fitted for a dominant phytoplankton group, decisive 

for the chlorophyll-a concentration, and the measurement was good (mean residuals of 1.47E-

04), the agreement between the laboratory and WASI is poor. Here, the model overestimates 

chlorophyll concentration. This can likely be attributed to the spectral ambiguities in optically 

shallow water where the bottom signal and other water constituents strongly influence the 

measured reflectance. The MAE between IMARPE and WASI for all stations is 2.76 µg/l, with 

an MAE of 0.8 µg/l when the stations in the water below 2 m are excluded. For each of these 

four shallow points, bottom substrate was also extracted and measured. Their spectral 

characteristics were however not yet included for the results in Table 5 and the inverse 

modelling of the field measurements. The chlorophyll concentration could potentially be 

improved through regional adaptation where the measured albedo of the bottom substrate is 

used in the inverse modelling of the field spectrometer data. Figure 24 shows the 

correspondence between the IMARPE concentrations and WASI. The four points in the shallow 

water are marked in the plot, as well as JU_22 where the largest absolute error measurements 

in deep water was observed. The linear regression and accuracy statistics for the model are 

included after the removal of these outliers. The RMSE here is 0.31 µg/l with an R² of 0.62.  

 

Table 5: Comparison of results for Chl-a concentrations in µg/l from two laboratories in Lima and the inverse 

modelling of field spectrometer data in WASI 

 

 

 JU_01 JU_02 JU_03 JU_04 JU_12 JU_13 JU_15 JU_16 JU_20 JU_22 JU_24 JU_27 JU_29 JU_30 

IMARPE 0.08 0.35 0.27 0.70 1.07 0.61 1.20 1.86 1.02 0.41 2.07 2.24 1.66 1.24 

SAG <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 >3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 

WASI 13.65 4.89 7.27 6.27 0.78 0.65 1.34 1.38 2.06 2.90 2.91 3.24 2.77 1.83 
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Figure 24: Comparison between chlorophyll-a concentration from laboratory analysis by IMARPE and inverse 

modelling with WASI from spectrometer data. Red line: Linear regression. Black line: 1-1 line through origin 

 

4.2. Uncertainty of water depth 

Figure 27 shows the North-South profile of a transect between field station JU_03 to JU_04, as 

well as a transect between field station JU_10 to JU_17. The stations along the transects are 

marked on the graph at the depth corresponding to measurements with the steel tape. In the first 

transect, the distinct increase in depth to over three meters is due to a channel that was dug to 

guarantee a lane of passage for boats. The profile of the second transect shows the general 

deepening of the lake, however, outliers in the data collection from the ping sonar can be seen. 

It is assumed that these points are underwater features that return the echo sounder signal before 

it can reach a point that accurately represents the depth of the lakebed. It is also notable that the 

water depth at each point from the validation measurement with the steel tape measure, except 

for JU_15, is lower than the water depth logged from the ping sonar. This is likely due to the 

deeper penetration depth of the echo sounder in the bottom substrate. Figure 26 compares the 

depth measurements between sonar and tape measurements in the left subplot. The MAE 

between the measurements was 0.28 m, with an RMSE of 0.15 m. Field observations with the 

same USV and steel measure tape at Lake Starnberg in Germany have shown an RMSE of 0.10 

m at 62 field observation points between ping sonar and manual measurements. The error also 

increased with depth due to curvature of the tape, underwater currents, and varying lake beds, 

increasing the offset due to the conic characteristic of the emitted signal.  

Figure 25 shows the interpolated water depth map from 2006 corrected for a 0.78 m offset based 

on the intercept of the linear regression between field measurements and pixels from the 

uncorrected. The area in light green in the northern inundation zone are now dry areas, assuming 
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water level deviations are identical in that area as they are for the entire lake. The MAE between 

the corrected reference raster and depth measurements from the steel tape is 0.39 meters as 

shown in the right subplot in Figure 26. This updated map of water depth is a valuable resource 

for the validation of bathymetry through inverse modelling of satellite data. It was further used 

in model initialization in WASI as a masking band by appending the raster to the satellite image 

in a dedicated band.  

 

 

Figure 25: Water depth map based on interpolated data from a topographic survey. The light green areas are 

assumed to not be inundated. Five-meter contour line to delimit deep water in the middle of the Lake. 
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Figure 26: Comparison between in-situ measurements from steel tape and sonar (Left) and between in-situ tape 

measurement and the depth raster (Right). The MAE is calculated for the true values and therefore larger than 

RMSE on the right subplot. 

 

 

Figure 27: Water depth profiles from USV transects between field stations JU_03 and JU_04 (Left) and between 

field stations JU_10 and JU_17 (Right) 

 

y = 0.39 + 0.98 * x  
y = 0.03 + 1.01 * x  
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4.3. Image Noise  

Figure 28 shows the SNR for water pixels for the Subset extent. Filter size is set to 3, so that 

for every ratio, a total of 9 pixels were averaged. The TOA radiance of the SuperDove from the 

24th of June 2023 shows the highest mean SNR of 107:1 in the second band at 490 nm and the 

lowest SNR of 10:1 in the NIR band at 865 nm. The SNR for the bottom of atmosphere in 

Figure 29 is noticeably lower in all bands and the highest SNR for all water pixels is found in 

the fourth band at 565 nm central wavelength. A reduction in SNR is attributed to a reduction 

in the inherent signal when comparing outputs for the same filter size. This is consequently 

most notable in the shorter wavelength bands that are affected the most by the atmosphere and 

the subtraction of the path radiance. SNR in the NIR is low due to the high noise in deep water 

and low due to the small signal in shallow water. Considering the spatial distribution of the 

SNR, two AOIs stand out: The south-western shallow water area, separated from the main water 

body by a thick reed belt and an optically shallow lagoon in the north of the lake. Especially in 

the shallow southern AOI, the SNR is high compared to the rest of the lake.  

Sensor artefacts along stripes in the individual image frames are visible in all bands and 

generally pause through all further data analysis if no spatial smoothing is applied to the data. 

Identical images have been created for larger filter sizes where generally a lower SNR was 

observed. This was most pronounced in the shallow areas as a larger filter would additionally 

introduce noise from the heterogeneity of the lake bottom and the adjacent vegetation. Spatial 

patterns and SNR were consistent between the three consecutive images in June. 

Figure 30 shows the same method applied to the Sentinel-2B scene from the same day. Output 

was set to 20 m pixel size in ACOLITE, and the first band with 60-meter spatial resolution is 

not included as the down and consequent up sampling would distort the results. A higher SNR 

for Sentinel-2B can be observed in the shared bands from the visual interpretation of the images 

below. For the Sentinel-2B image sensor artifacts in the NIR bands can be observed. Here, large 

areas in the lake along detector orientation showed highly invariable reflectance, saturating the 

scale in the images. 
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Figure 28: SNR for TOA Radiance from SuperDove image on the 24.06.2023 

 

 

Figure 29: SNR for Rrs from SuperDove image on the 24.06.2023 

 

 

Figure 30: SNR for Rrs from Sentinel-2B on the 24.06.2023 
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Table 6 and Table 7 show the mean SNR for each pixel within the two deep water AOIs and 

the optically shallow areas in the north and south of the lake.  For the SuperDove scene from 

the 24th of June, the signal in the Coastal Blue at 443 nm cannot be differentiated from the noise. 

For the deep-water inversion in WASI, model initialization should therefore be carried out 

without fitting for this wavelength. The SNR improvement from Sentinel-2B of the same day 

to the SuperDove image is summarized in Table 8 for the five shared bands. Positive numbers 

indicate higher SNR within the AOI for the Sentinel-2B image. The Sentinel-2B image showed 

higher SNR for both AOIs in the deep water, but lower SNR for the shallow AOIs at ~565 nm. 

The highest SNR deterioration was observed for the shallow AOI in the south with a bright 

bottom for the RGB bands (SNRI: -2.41). 

 

 

Table 6: Band specific SNR for AOIs from a SuperDove image on the 24th of June 2023 

 

 

Table 7: Band specific SNR for AOIs from a Sentinel-2B image on the 24th of June 2023 

 

 

 

Table 8: SNR Improvement (SNRI) from Sentinel-2B to SuperDove in shared bands 

AOI Band 1 

443 nm 

Band 2 

490 nm 

Band 3 

531 nm 

Band 4 

565 nm 

Band 5 

610 nm 

Band 6 

665 nm 

Band 7 

705 nm 

Band 8 

865 nm 

Deep Water Transect 1 1 11 19 20 11 11 6 6 

Deep Water Transect 2 2 13 20 24 14 12 7 6 

Shallow North 3 29 50 62 40 37 15 6 

Shallow South 24 94 133 136 99 101 70 11 

AOI Band 2 

492 nm 

Band 3 

559 nm 

Band 4 

665 nm 

Band 5 

704 nm 

Band 6 

739 nm 

Band 7 

780 nm 

Band 8 

833 nm 

Band 8a 

865 nm 

Deep Water Transect 1 29 39 25 607 98 70 21 15 

Deep Water Transect 2 29 40 30 29 19 16 18 12 

Shallow North 38 51 45 46 >1000 >1000 >1000 >1000 

Shallow South 64 78 88 99 62 61 48 45 

AOI ~490 nm ~565 nm ~665 nm ~705 nm ~865 nm 

Deep Water Transect 1 4.21 2.9 3.6 20.0 4.0 

Deep Water Transect 2 3.48 2.3 4.0 6.2 3 

Shallow North 1.17 -0.8 0.86 4.7 - 

Shallow South -1.67 -2.41 -0.6 1.5 6.1 
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4.4. ACOLITE Initialization 

Figure 31 shows the Rrs spectra as the mean values within selected AOIs and offsets caused by 

the selection of a different ROI size for the initialization in ACOLITE. A change of ROI will 

mainly lead to a change in estimated AOT, but it does not drastically change the shape of the 

spectrum. Instead, it just leads to a shift up or down. The construction of the DSF tends to bias 

the aerosol optical thickness low and the resulting water reflectance high, especially for a noisy 

sensor. For the image acquired on the 26th of June, ROI selection had no effect, implying that 

the DSF algorithm always selected the same fitting band and aerosol model. However, for the 

scenes on the 24th and 25th June, this made a noticeable impact on the magnitude of derived Rrs. 

While the larger ROIs (Common and Fullscene) always led to the same model selection, values 

deviated from those derived by the Subset. Values derived from the Subset are lower on the 

24th, but higher on the 25th.  

From the Deep Water ROI that only covered points along the second transect, a difference in 

reflectance compared to the other ROIs can also be observed. Here, values were slightly lower 

for both days compared to the Subset as a higher AOT was estimated. Table 9 gives an overview 

of the AOT at 550 nm as well as the selected aerosol model and fitting band for minimal settings 

in ACOLITE. Only difference in parametrization is the bounding box within the raw data was 

processed. For best comparability, a fixed AOT should be set for the SuperDove images with 

the aerosol model and AOT estimate. This was tested by processing the Sentinel-2B image with 

minimal settings for the extraction of an AOT that is not biased to an individual SuperDove. 

However, high sensitivity to ROI selection of the DSF was likewise present as shown in the 

table below. 

 

Table 9: Overview of best fit Aerosol Model and Fitting Band from the DSF algorithm. Rows are model 

parameters for SuperDoves on three consecutive days and Sentinel-2B on the 24th. 

 

Date Subset Deepwater Fullscene 

 
AOT 

Aerosol 

Model 

Fitting 

Band 
AOT 

Aerosol 

Model 

Fitting 

Band 
AOT 

Aerosol 

Model 

Fitting 

Band 

SD 24.06 0.0683 MOD1 Blue 0.0287 MOD2 Yellow 0.0793 MOD2 Blue 

SD 25.06 0.0276 MOD2 Yellow 0.0656 MOD2 Red 0.0331 MOD2 Yellow 

SD 26.06. 0.0313 MOD1 Red 0.0313 MOD1 Red 0.0313 MOD1 Red 

S2B 24.06 0.0392 MOD1 8A 0.0016 MOD1 8A 0.0449 MOD1 8A 
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Figure 31: Influence of initial ROI selection for processing in ACOLITE. Columns show spectra for AOIs, rows 

show spectra for each of the images from three consecutive days. Vertical bars show standard deviation of pixel 

values within AOI. 
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Table 10 summarizes the differences in Rrs as the percentage deviation from the mean 

reflectance from the ROI selection during initialization. Highest variability was determined for 

the Coastal Blue band with a 54% increase in Rrs respective to the mean reflectance in the band. 

This further suggests disregarding the band for inverse-modelling. Generally, errors above 10% 

were observed for all bands in the deep water. Since the direction of the percent deviation 

depended on the day, no recommendation can be made for initial ROI selection. Uncertainties 

in the strength of the signal for each band due to different approximation of atmospheric 

parameters need to be considered further. 

 

Table 10: Percent differences of Rrs when ACOLITE was initialized with a different ROI. Rows split for date and 

AOIs 

AOI Day ROI Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Deep 

Water 

Transect 

2 

24.06 

Mean Rrs [sr-1] 0.0016 0.0025 0.0042 0.0045 0.0043 0.0030 0.0028 0.0035 

Fullscene 54.3 29 14.7 12.6 12 16.4 16.5 10 

Subset -29.7 -13.7 -5.5 -3.9 -2.5 2.3 -1.1 2.8 

DeepWater -24.6 -15.4 -9.2 -8.6 -9.5 -14 -15.4 -12.4 

25.06 

Mean Rrs [sr-1] 0.0019 0.004 0.0042 0.0045 0.0027 0.0029 0.0023 0.0027 

Fullscene -29.3 -12.2 -10.5 -9.3 -15.7 -13.4 -17.1 -12.9 

Subset 18 7.5 6.5 5.7 9.7 8.2 10.5 7.9 

DeepWater 11.2 4.7 4.0 3.6 6 5.1 6.6 4.9 

Deep 

Water 

Transect 

1 

24.06 

Mean Rrs [sr-1] 0.0013 0.0024 0.0040 0.0042 0.0038 0.0030 0.0026 0.0035 

Fullscene 53.1 22.6 10.9 9.2 8.5 9.4 9.5 3.6 

Subset -53.1 -22.6 -10.9 -9.2 -8.5 -9.4 -9.5 -3.6 

25.06 

Mean Rrs [sr-1] 0.0020 0.0035 0.0037 0.0039 0.0025 0.0023 0.0022 0.0026 

Fullscene -22.3 -11.2 -9.7 -8.8 -13.6 -13.9 -14.3 -10.7 

Subset 22.3 11.2 9.7 8.8 13.6 13.9 14.3 10.7 

Shallow 

Water 

North 

24.06 

Mean Rrs [sr-1] 0.0020 0.0061 0.0119 0.0147 0.0129 0.0095 0.0069 0.0035 

Fullscene 33.18 7.90 2.62 1.57 1.59 2.10 2.86 3.58 

Subset -33.18 -7.90 -2.62 -1.57 -1.59 -2.10 -2.86 -3.58 

25.06 

Mean Rrs [sr-1] 0.0029 0.0077 0.0118 0.0146 0.0102 0.0089 0.0066 0.0030 

Fullscene -15.40 -4.83 -2.71 -1.98 -2.95 -3.23 -4.43 -9.19 

Subset 15.40 4.83 2.71 1.98 2.95 3.23 4.43 9.19 

Shallow 

Water 

South 

24.06 

Mean Rrs [sr-1] 0.0127 0.0331 0.0417 0.0498 0.0503 0.0414 0.0435 0.0066 

Fullscene 3.6 25.9 -0.3 -0.5 -0.5 -0.4 -0.5 1.5 

Subset -3.6 -25.9 0.3 0.5 0.5 0.4 0.5 -1.5 

25.06 

Mean Rrs [sr-1] 0.0139 0.0276 0.0414 0.0498 0.0426 0.0413 0.424 0.0060 

Fullscene -2.7 -1 -0.4 -0.3 -0.4 -0.4 -0.4 -4.4 

Subset 2.7 1 0.4 0.3 0.4 0.4 0.4 4.4 
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4.5. Consistency between spectral profiles from SuperDove instruments 

Figure 32 shows the mean Rrs spectrum around in-situ point JU_14 for the monthly scenes from 

August 2022 to August 2023. The low general signal is indicative for optical deep water where 

the signal in the NIR is often considered as negligible (Kutser et al., 2009). Nonetheless, 

reflectance in the NIR systematically increase, with the exception for the scenes in February 

and March. Here, the sediment plume entering the lake from the channel tributaries led to a 

more distinct spectrum. This illustrates that composition of the water body and seasonality can 

have a large effect on the spectrum measured by a satellite sensor and the benefit of the spectral 

analysis of the water leaving signal. 

 

Figure 32: Spectral profiles around JU_14 from for each month between August 2022 to August 2023 for a 30 

by 30 m area around the in-situ station. 

 

Figure 33 shows the spectral profiles of the three consecutive days for the four defined AOIs. 

The comparison is carried out under the assumption that differences due to the atmosphere or a 

change in the water body at the time of the image acquisition are negligible. Therefore, 

deviations in the derived Rrs from the satellite data are attributed to calibration or sensitivity of 

the respective instrument on board a SuperDove. While the spectral profiles for a land area and 

a patch of reeds at the western shore follow a similar trajectory, the signatures measured over 

water are more distinct.  
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Figure 33: Spectral Profiles from SuperDove imagery on the 24th, 25th and 36th of June 2023. Vertical bars 

show standard deviation of pixel values within the AOI.  

 

This difference in spectral signatures between images on different days is further illustrated 

through images of the calculated band indices and ratios. Figure 34 shows the NDCI and Figure 

35 the NDWI. Water areas in Lake Junin are clearly distinguished from the surrounding land 

with negative values for the NDCI and positive values for the NDWI. Patterns on the water 

surface due to striping artifacts from the sensors are visible for all three days. The absolute 

difference between each image pairs is also oriented on these patterns over the Lake, while land 

surfaces show very little deviations. The rather flat peak in the spectrum shown in the profiles 

for the individual AOIs becomes even more apparent in Figure 36. Here, the ratio of the Blue 

to the Yellow band visualizes the diverging proportions of the signal between the three scenes. 

On the 24th, the Yellow band shows systematically greater Rrs than in the Blue. Images on the 

following two days show a similar signal in both bands (image from the 26th) or larger 

reflectance in the Blue (image from the 25th), which agrees with the spectra from the individual 

AOIs from Figure 33. These images suggest a more general problem with the consistency 

between images from consecutive overpasses as differences between band ratios are less 

sensitive to a change in atmosphere. While uncertainties are difficult to attribute to a single 
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sensor, it is apparent that the instrument on the SuperDove (Unit ID 2426) from the 24th seems 

to be subject to calibration issues. This was investigated for a PICS site for the salt flats in 

Bonneville, Utah. From five SuperDove overpasses within nine days, unit 2426 also showed 

reflectance peaks in the Yellow band, deviating from the general spectral profile. This supports 

the assumption that the general performance or calibration of that instrument is deteriorated. 

The same analysis for the salt flats was also investigated for Sentinel-2A and Sentinel-2B over 

20 days where the salt flats are assumed to be constant in time. Here, much less variability was 

observed between the four images and the spectral profile seemed to only be impacted by 

atmospheric condition on one day (see Figure 42 and Figure 43 in the Appendix).  

Table 11 summarizes the percent differences between the three scenes from the mean 

reflectance in each band. These uncertainties are indicative of the relative performance for 

satellite derived Rrs at Lake Junin for data that is assumed to be acquired under stable 

environmental conditions between satellite overpasses. The errors do not yet imply calibration 

differences. For this, differences in band ratios are more conclusive as shown in Figure 36 for 

the Blue and Yellow band. 

 

Table 11:  Band wise percentage differences from mean Rrs between days for a respective AOI. 

AOI Date Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

Deep 

Water 1 

Mean Rrs [sr-1] 0.002 0.003 0.004 0.004 0.003 0.003 0.003 0.003 

24.06.23 -71.4 -46.8 -15.1 -15.1 2.4 -11.8 -14.7 -3.0 

25.06.23 18.9 12.0 -3.0 -4.6 -17.4 -13.9 -9.2 -17.1 

26.06.23 52.5 34.8 18.1 19.8 15.0 25.7 23.8 20.0 

Deep 

Water 2 

Mean Rrs [sr-1] 0.002 0.004 0.004 0.005 0.004 0.003 0.003 0.004 

24.06.23 -47.6 -39.0 -7.2 -8.3 14.3 -7.8 -5.0 0.8 

25.06.23 6.7 20.3 4.4 0.9 -21.3 1.1 -13.4 -18.7 

26.06.23 40.9 18.8 2.9 7.4 7.0 6.7 18.4 17.9 

Shallow 

North 

Mean Rrs [sr-1] 0.003 0.007 0.012 0.015 0.012 0.010 0.007 0.004 

24.06.23 -52.4 -25.4 -5.6 -5.5 7.4 -4.3 -6.0 -7.8 

25.06.23 19.7 7.6 -1.5 -2.7 -11.4 -5.6 -3.9 -10.2 

26.06.23 32.7 17.8 7.1 8.3 4.0 9.9 9.9 18.0 

Shallow 

South 

Mean Rrs [sr-1] 0.014 0.027 0.042 0.051 0.047 0.043 0.044 0.007 

24.06.23 -12.1 -9.7 -1.5 -2.4 7.1 -2.3 -1.6 -2.8 

25.06.23 2.8 2.7 -2.1 -2.5 -9.3 -2.6 -4.3 -6.4 

26.06.23 9.3 6.9 3.6 4.9 2.2 4.9 5.9 9.2 
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Figure 34: NDCI and absolute differences of the index between SuperDove images 

 

Figure 35: NDWI and absolute differences of the index between SuperDove images.  

 

Figure 36: Blue to Yellow Band Ratio and absolute differences of the ratio between SuperDove images 
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4.6. Uncertainties of satellite derived Rrs  

Figure 36 shows the scatter plots of satellite derived Rrs after minimal user settings in ACOLITE 

and in-situ measured Rrs after glint correction in WASI. Regression line, R² as the measure of 

the linear regression fit and RMSE are included in the plot, however calculated without the NIR 

band for the SuperDove images. Points are colour coded according to the individual bands. The 

optically shallow points are generally more dispersed and dependent on the bottom reflectance 

and show higher Rrs, while the points along the transects show lower variability in Rrs. Best 

results between in-situ data and satellite derived Rrs were observed for the Sentinel-2B scene 

from the 24th of June with an R² value of 0.96 and a RMSE of 0.00026 sr-1 for all bands. The 

SuperDove image from the same day had high agreement in the Coastal Blue and Blue band, 

but the instrument specific performance errors are highlighted once again. While the scenes on 

the 25th and 26th align well with the in-situ measurements by applying an offset for all bands, 

the distribution of the band specific points on the 24th suggest a better explanation through two 

linear models. This leads to the largest RMSE for the first scene (0.0092 sr-1), with lower errors 

on the following days (around 0.0005 sr-1).  

 

Figure 37: Scatter Plot for all in-situ water spectra. Three consecutive overpasses for PlanetScope with the 

regression line as well as R² and RMSE for points JU_20 - JU_30 and without the NIR band. 
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Accuracy statistics for band specific errors are provided in Table 12. The accuracy for the linear 

regression improves with lower temporal offset between the in-situ measurement and the 

satellite overpass.  

Further, the satellite derived reflectance in the NIR from the SuperDoves were not 

representative of a typical water spectrum in which NIR is absorbed stronger than visible light 

and the signal is approaching zero in optically deep water. While this is accurate for the 

Sentinel-2B image, NIR Rrs for SuperDoves was systematically higher than in the Red-Edge, 

as can be seen in Figure 36. The percentage error in Table 12 between in-situ and satellite 

derived Rrs is therefore also the highest in the NIR band. Given the weak performance of the 

NIR band from all three SuperDove instruments, the fit range in WASI is proposed to be set to 

exclude this band in addition to the Coastal Blue band. 

 

Table 12: Accuracy statistics for the band wise linear regression model between In-situ Rrs and satellite derived 

Rrs. Mean percentage as directional error between measurement and satellite for actual values 

Date Error Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

24.06.23 

RMSE [sr-1] 0.00026 0.00015 0.00022 0.00025 0.00022 0.00024 0.00025 0.00043 

R² 0.53 0.92 0.95 0.97 0.98 0.97 0.96 0.55 

MPE [%] -17 11 44 25 119 144 219 >2000 

25.06.23 

RMSE [sr-1] 0.00027 0.00016 0.00026 0.00027 0.00025 0.00019 0.00025 0.00036 

R² 0.79 0.96 0.96 0.98 0.98 0.98 0.97 0.77 

MPE [%] 112 122 66 40 64 157 220 >2000 

26.06.23 

RMSE [sr-1] 0.00023 0.00035 0.00046 0.00040 0.00028 0.00044 0.00023 0.00044 

R² 0.80 0.85 0.89 0.95 0.97 0.93 0.97 0.58 

MPE [%] 170 135 74 56 119 203 327 >3000 
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4.7. Accuracy of fits for representative spectra from SuperDove 

Processing SuperDove imagery in WASI, both for the deep water and shallow water model, did 

not lead to satisfactory results. During initialization of fit parameters for the deep-water 

inversion, large differences between the measurement and the simulated spectrum could be 

observed: For example, the flat peak composed of the Green I and Green II bands and the 

Yellow band in the deep water AOIs could not be replicated with sensible model initialization. 

Figure 38 shows measurements from a deep water AOI and their respective fits for all bands. 

Additionally, improvements from a fit set for wavelengths between 450 nm and 750 nm, to 

avoid fitting the Coastal Blue and NIR band are shown on the right subplot. The deep-water 

inversion was fitted for CDOM, NAP and chlorophyll-a concentration with green algae as the 

dominant species as well as the fraction of sky radiance due to direct solar radiation. When a 

fit is set for the full wavelength range of a SuperDove sensor, residuals between fit curve and 

measurement were 5.199E-4. Chlorophyll-a concentration was determined at 68 µg/l and 

outside plausible concentrations based on the in-situ measurements. When the fit range was set 

to 450 – 750 nm, the residual between the curves reduced to 2.498E-4 and chlorophyll-a 

concentration was determined at 20 µg/l.  

 

Figure 38: Rrs spectrum from SuperDove and fit curve from WASI for all eight bands (Left) and a wavelength 

range between 450 nm and 750 nm (Right) 

Pre-fit analysis of the deep-water areas at Lake Junin with all three SuperDove images available 

during the field campaign ultimately determined model initialization with the data as inadequate 

for the deep-water inversion. Shallow water spectra could be fitted with satisfactory residuals 

between simulated and satellite derived Rrs for the AOI in the north and the south. However, 

the determination of chlorophyll-a concentration and water depth for the entire image were not 

plausible regardless of a good initial fit and were biased towards the training area. The spectral 

ambiguities could not be resolved accurately, and very heterogeneous shallow water areas 

found at Lake Junin likely require individual model initialization.
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5. Discussion 

Different parametrization in ACOLITE had no significant impact on spectral profiles for 

satellite derived Rrs and accompanying challenges to derive Level-3 parameters at Lake Junin. 

However, the initialization with a different ROI size was shown to possibly alter the derived 

Rrs. Yet no decisive conclusion about the ROI selection can be made, as larger or smaller ROIs 

shifted the signal in different directions for imagery from different SuperDoves or had no 

impact at all. Change in spectral signatures through the use of ancillary data for gas 

transmittance and atmospheric pressure resulted in only minimal differences in reflectance and 

is in accordance with results from studies at other test sites (Vanhellemont, 2023). Images did 

not seem to be strongly affected by glint effects. Tests with both glint correction methods 

implemented in ACOLITE resulted in a worse determination of Rrs with negative values for the 

alternative correction method and slightly higher Rrs for the default glint correction method, 

increasing the error to in-situ spectra. As users are recommended to define minimal settings in 

ACOLITE, results in this thesis were thus presented for settings where only the ROI and the 

elevation was defined. For the latter, it is essential to consider changes in atmospheric pressure 

at high altitude lakes, as both the surface reflectance product from PlanetLabs and atmospheric 

correction with ACOLITE for normal pressure overestimate the path radiance and led to larger 

errors in derived Rrs, 

In this study, differences in satellite derived Rrs from SuperDove instruments assumed a stable 

atmosphere and no change in the composition of the water body that impact the measured 

signal. While this provided a first overview of the uncertainties between them, comparisons 

should always be done with identical atmospheric parameters for all scenes. By visualizing 

differences between band ratios, as was done with the Blue and Yellow ratio, band specific 

performance becomes more apparent. Ultimately, calibration issues for a SuperDove instrument 

are assumed based on the performance from consecutive overpasses both at Lake Junin and a 

PICS site. No method was employed to correct for instrument specific performance and 

uncertainties were quantified as percentage differences from the mean reflectance of only the 

three satellite images. This showed the variation in the signal for each band, but not yet the 

accuracy of the measured Rrs itself. For this, the validation of the satellite derived Rrs with in-

situ measurements was presented. Here, relative performance was best for the image taken on 

the 24th as the reflectance values were closer to the ground-truth data yet deviated more from 
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the assumptions of a linear model. Rrs on the following days showed more linearity to the in-

situ measurements and could be improved by an adequate offset. 

Drawing conclusions based on a small subset of three images is also only partially 

representative of possible applications. Future investigations of SuperDove imagery should 

ideally evaluate the performance systematically across the constellation. For this, time series 

analysis of all sensors and between overpasses of the same satellite could be analysed and 

compared for water bodies with different optical properties. This may further help identifying 

uncertainties and limitations for aquatic remote sensing.  

Finally, the difficulties in simulating deep water spectra from SuperDove imagery led to the 

rejection of the data for the deep-water model implemented in WASI. When water constituents 

and water depth were modelled with the AI module in WASI for shallow water, the resulting 

maps for the fit parameters were within unrealistic ranges, biased to sensor artifacts and training 

area and showed low agreement between the AI module and the physics-based inversion for 

validation pixels. Improvements could be achieved by processing distinct shallow water areas 

with specific model initializations and respective bottom types separately. Individual results 

with the best accuracy to map depth and constituent concentration could then be combined to 

provide a full coverage of Lake Junin.  

Since the four band Dove imagery from the Planet constellation has shown good results for 

water depth and water constituent retrieval in the study by Niroumand-Jadidi et al. (2020), 

another adjustment to the SuperDove imagery could be the exclusion of the novel bands or 

bands that are not directly calibrated with Sentinel-2, as well as the NIR band. This can be 

implemented rather easy since single band raster can be output from ACOLITE in geotiff format 

and then be stacked in the GIS with only the desired bands. A reduction in available bands 

however also demands a reduction in fit parameters to avoid overfitting. A first approach with 

the five shared bands with Sentinel-2, disregarding the NIR band, showed very good agreement 

for representative spectra during the model initialization. However, only within unplausible 

parameter ranges and the determination of water depth and chlorophyll-a concentration based 

on the image data continued to show very low agreement with in-situ data. 

Figure 39 shows results from WASI-AI for water depths above two meters and five meters 

through the inverse modelling of the Sentinel-2B scene. For this, the validation raster for the 

water depth, adjusted for field measurements, was added to the image as a masking band. The 

image was processed with the deep-water module, not accounting for any bottom signal, and 

fit for chlorophyll-a, with phytoplankton as the dominant species, as well as NAP, CDOM and 

sky glint. The parameters derived from the satellite image are compared to the parameters that 
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were derived from the inverse-modelling of the field spectrometer data.  Low agreement in the 

concentration of chlorophyll-a can be observed (RMSE: 2.66 ug/l, RMSE between IMARPE 

and modelled in-situ concentration: 0.31 ug/l). Better agreement is found for the concentrations 

of NAP (C_X) and CDOM (C_Y), with lower RMSE (0.25 mg/l and 0.10 1/m) for both when 

the image is processed for depths with 2 meter and below.  Figure 40 and Figure 41 show the 

results from WASI-AI for the Sentinel-2B image as a thematic map for the areas at Lake Junin 

where water is deeper than 2-meter. Further, regional adaptation through the implementation of 

regional bottom types have been tested by Schmid 2024 for the satellite data and in-situ Rrs 

measurements from the field campaign. Here, first improvements for water depth determination 

with the spectrometer measurements have been demonstrated. However, scaling the 

methodology to the satellite image has not yet been optimized. This once again confirms the 

complexity of the challenges for accurate water depth retrieval, even when including a 

thoroughly developed spectral database for a region.  

 

 

 

Figure 39: Modell comparison between inversion of in-situ measurement and inversion of the satellite image. 

Image best resutls were derived from WASI-AI and empirically set starting parameter and ranges 
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Figure 40: Thematic map of NAP concentration from a Sentinel-2B image. Image results derived from WASI-AI 

 

Figure 41: Thematic map of CDOM concentration from a Sentinel-2B image. Image results derived from WASI-

AI. 
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6. Conclusion 

In this thesis, the suitability of PlanetScope SuperDove satellite data has been explored for 

bathymetry and determination of chlorophyll-a concentration at Lake Junin. For this, the 

collection of validation data from in-situ measurements during a field campaign in June 2023 

is documented and validation datasets for water depth, chlorophyll-a concentration and remote 

sensing reflectance have been obtained. These datasets are essential for assessing the accuracy 

of the reflectance derived from a satellite image and the inversely modelled Level-3 parameters 

in the software WASI. During the field campaign, three cloud-free images from different 

SuperDove satellites from the PlanetScope constellation were available. The imagery was 

assessed based on the band specific signal-to-noise ratio, sensitivity to parametrization in the 

atmospheric correction algorithm implemented in ACOLITE, and the consistency between 

consecutive overpasses. Despite the promising features of high temporal and spatial resolution, 

challenges outlined in this thesis made reliable image results in WASI difficult to obtain. Above 

all, these difficulties are attributed to the strong distortion of water spectra when these were 

derived from a SuperDove image. Additionally, inconsistencies in measured reflectance 

between SuperDove sensors showed low comparability between the satellite data and accuracy 

of the derived Rrs was lower than for a Sentinel-2B scene from the same day. Here, a database 

of unit-specific issues from the providers would be of great benefit to the scientific community. 

If available, this would allow researchers to either only consider well calibrated instruments for 

their applications or develop correction methods for potential calibration issues. Ultimately, 

SuperDove imagery has been rated as inadequate for bathymetry and the determination of 

chlorophyll-a concentration with the methodology proposed in this analysis. To further assess 

the potential of SuperDove imagery for aquatic remote sensing, future research should 

investigate the suitability of the presented methodology over brighter waters with a 

homogenous bottom. Regional adaptation in WASI through the inclusion of a spectral database 

for common bottom types showed promising results for field spectrometer measurements and 

should be maintained for all further analysis. The analysis highlights the complexity of the 

signal originating from a water surface and the variability that must be considered for the 

retrieval of specific parameters.  
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Appendix 

 

Table 13: Overview of all In-situ measurements at Lake Junin 

Date Station 
Latitude 

[deg°] 

Longitude 

[deg°] 

Chl-a 

IMARPE 

[ug/l] 

Sediment 

Sample 

Depth 

Tape [m] 

Depth 

 Sonar [m] 

Secchi 

depth 

[m] 

Cloud 

Cover 

26.06.2023 JU_01 -10.9719 -76.2167 0.8 Yes 1.3 1.1 > depth 1 

26.06.2023 JU_02 -10.9797 -76.2028 0.4 Yes 1.1 - > depth 1 

26.06.2023 JU_03 -10.9860 -76.1914 0.3 Yes 1.2 1.5 > depth 1 

26.06.2023 JU_04 -10.9950 -76.1974 0.7 Yes 1.4 1.7 > depth 1 

27.06.2023 JU_10 -11.0185 -76.173 1.9 Yes 0.6 0.8 > depth 4 

27.06.2023 JU_11 -11.0180 -76.1730 1.9 Yes 1.6 2.2 > depth 0 

27.06.2023 JU_12 -11.0124 -76.170 1.2 No 2.6 3.3 > depth 0 

27.06.2023 JU_13 -11.0078 -76.1678 - Yes 4.3 4.7 > depth 0 

27.06.2023 JU_14 -10.9991 -76.1641 - No 5.3 5.9 > depth 0 

27.06.2023 JU_15 -10.9876 -76.1592 0.9 Yes 5.3 5.7 > depth 0 

27.06.2023 JU_16 -10.9818 -76.157 - No 2.8 3.2 > depth 0 

27.06.2023 JU_17 -10.9773 -76.1563 0.6 No 1.8 2.4 > depth 0 

27.06.2023 JU_18 -10.9809 -76.1738 0.9 No 1.7 - > depth 0 

27.06.2023 JU_19 -10.9647 -76.2276 1.0 Yes - 2.5 1.4 2 

28.06.2023 JU_20 -10.9944 -76.110 1.0 No 6.7 6.9 4.0 7 

28.06.2023 JU_21 -10.9987 -76.1117 - No 7.5 7.7 4.6 4 

28.06.2023 JU_22 -11.0038 -76.1135 2.0 No 8.1 8.3 4.1 3 

28.06.2023 JU_23 -11.0088 -76.1157 - No 9.1 9.2 4.2 3 

28.06.2023 JU_24 -11.0134 -76.117 2.2 No 9.1 9.2 4 1 

28.06.2023 JU_25 -11.0174 -76.1183 - No 10.7 10.9 4.4 1 

28.06.2023 JU_26 -11.0216 -76.1198 - No 8.3 8.5 4.4 1 

28.06.2023 JU_27 -11.0261 -76.1216 1.6 No 8 8.1 4.4 1 

28.06.2023 JU_28 -11.0306 -76.1234 - No 7.7 7.9 3.9 0 

28.06.2023 JU_29 -11.0350 -76.1250 1.2 No 6.8 7.2 3.7 0 

28.06.2023 JU_30 -11.0304 -76.1384 0.4 No 5.1 5.3 4.6 0 
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Figure 42: GUI of WASI with forward simulation of a spectra in optically shallow water convoluted to 

SuperDove central wavelength. 

 

 

Figure 43: GUI of ACOLITE with a selected ROI in the Polygon tab and remote sensing reflectance selected as 

a mappable output. 
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Figure 44: Comparison of spectral profiles from SuperDove overpasses over salt flats 

 

 

Figure 45: Comparison of spectral profiles from Sentinel-2 overpasses over salt flats 
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