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Abstract

Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the
climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain.
In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments
with high contrail energy forcing. We find that skill is greater than climatological predictions alone,
even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty
due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for
Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and
correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of i situ
humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated
using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in
identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due
to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters
drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are
averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%,
while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown)
contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential
contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail
avoidance.

1. Introduction

When aircraft fly in the upper troposphere and lower stratosphere, they form condensation trails (contrails),
line-shaped clouds made up of ice particles [ 1]. Under ice-supersaturated conditions, contrails may persist for
several hours and, over this time, shear, spread and merge, transitioning to contrail-cirrus [2]. These persistent
contrails make up a significant fraction of aviation’s contribution to climate change [3], and have been
highlighted as a potentially promising climate impact mitigation opportunity [4].

Contrail reduction efforts are complicated by uncertainties in the radiative forcing of contrails at different
times, locations, and seasons. Contrail modeling studies report uncertainty from multiple sources, including the
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use of parameterized approximations to physical processes, such as contrail evolution [5], optical properties

[6, 7], and radiative transfer [8]. These approximations are used to reduce the computational burden of both
microphysical models [9, 10] and global climate simulations [11]. Reducing the uncertainty of contrail forcing is
an area of active research [12-16].

When using a microphysics model to estimate the forcing caused by contrails, there are two main sources of
uncertainty: the relative humidity of a potential contrail location is not perfectly known, and the model reflects
an incomplete representation of ice microphysics, plume evolution and radiative transfer. Uncertainty in
relative humidity can be reduced by averaging over many samples of a weather distribution (i.e., the uncertainty
is aleatoric). In contrast, the model uncertainty is epistemic: while we can average the outputs of a model over
many Monte Carlo simulations with different parameter settings, we have no assurance that the average will
converge to the true physical model.

There are two broad approaches to estimating the forcing of contrails with a microphysics model:
climatological estimates (e.g. seasonal) or short-term estimates (e.g. per flight). For climatological estimates, the
effects of humidity uncertainty are reduced, because we average over many instances of weather states that are
drawn from a seasonal or annual average. However, the climatological averaging has an inherent limitation: it
ignores the effect of current local weather on contrail forcing. Conversely, the short-term or per-flight
predictions have much more weather uncertainty, but can exploit knowledge of current local weather. Previous
work was pessimistic that per-flight predictions could ever have high skill, due to the high uncertainty in relative
humidity [17].

This paper explores a potential way that short-term predictions could have higher skill than climatological
approaches, based on two observations. First, most of the energy forcing from contrails comes from a small
number of ‘big hit’ contrails [ 18]. This implies that targeting a limited fraction of flight distance for contrail
avoidance maneuvers can reduce the majority of contrail energy forcing as long as these can indeed be predicted.
The possibility of high skill on a small fraction of flight distance motivates the current work. Second, relative
humidity predictions by weather models tend to be poorly correlated with in situ measurements [17, 19]. The
current study therefore introduces the use of a non-parametric quantile mapping technique [20] to correct
biases in humidity predictions, and also corrects for the under-dispersion that occurs in the output of numerical
weather humidity prediction [21].

There are multiple studies that have established that most contrail forcing is caused by a small fraction of
flight distance. Explorations into the observed distributions of contrail lifespan using an automated contrail
tracking algorithm [22] have estimated that a small fraction of contrails had the longest lifespans [5]. Similarly,
reports of distributions of contrail energy forcing (EF) based on reanalysis weather data and parameterized
radiative transfer calculations indicate a small fraction of contrails are responsible for a large fraction of forcing
[5,23].In 2020, Teoh, et al [15] found 2.2% of flights contributed 80% of the EF in a study of Japanese airspace. A
recent global study [24] finds again roughly 2% of all air traffic is responsible for 80% of the annual global
contrail EF between 2019 and 2021. While these studies have explored uncertainty in global contrail EF due to
humidity and model uncertainties, they did not evaluate how these uncertainties would affect short-term
predictions.

Several studies have reported that numerical weather products, including the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) ensemble [25], have biases and can under-represent
the variance of weather properties when compared to reality [26, 27]. In particular, the humidity fields provided
by ERA5 are generally under-saturated [28]. The current study shows that using quantile mapping and under-
dispersion correction can make ERA5 humidity statistics more aligned with in situ measurements. We then
apply a Lagrangian contrail model, the Contrail Cirrus Prediction model (CoCiP) [10], to each instance of the 10
ensemble members of ERAS5, to make both climatological and short-term predictions of contrail forcing.

This paper demonstrates a method with potentially high skill in predicting ‘big hit’ contrails per flight, but
with a number of limitations:

+ Most importantly, we do not know the true energy forcing caused by each contrail, so we cannot definitively
state that our method has high skill. Instead, we use a proxy for the true energy forcing. We run CoCiP 100
times on every flight, each time choosing one of the 10 ensemble members as the weather. We select one of the
ensemble members to approximate the truth. When CoCiP is run on that ensemble member, we treat that as a
proxy to the ground truth forcing of the flight’s contrails, rather than as a prediction. We then estimate skill by
comparing the CoCiP predictions averaged over 9 ensemble members compared to the CoCiP prediction run
on the proxy.

+ Second, we limit this study to predicting EF per contrail meter (EFpcm), assuming that a contrail has already
formed. This study thus does not consider uncertainties in predicting contrail formation, which we leave to
future work.
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Figure 1. A flow diagram to determine the performance curves for short-term and climatological contrail EF prediction.

+ Third, this study uses reanalysis weather, rather than a true forecast such as the ECMWF Integrated Forecast
System (IFS). Reanalysis may be more accurate than a forecast product. We limit our analysis here to the 10
ensemble members of ERAS5 due to data availability and because the skill of predicting forcing even from
reanalysis data has been called into question [17, 29].

+ Fourth, this paper only considers the short-term EF caused by contrails. Due to feedback effects in the
atmosphere, ocean and surface, the actual impact of contrails on the climate has additional factors. Converting
the instantaneous radiative forcing to the effective radiative forcing (ERF) introduces further uncertainty
which we do not study here as it requires running a climate model [3]. In the Supplementary Material, we use
the Monte Carlo CoCiP simulation to generate distributions over contrail cross-section and ice crystal radius,
to facilitate further research into long-term climate impact of contrails.

2. Methods and materials

The goal of the experiment in this paper is to estimate the skill of predicting ‘big hit’ contrails, including both
weather and physical parameter uncertainty, and using a proxy for the ground truth. We estimate this skill for
both short-term and climatological predictions.

To estimate the skill of predicting ‘big hit’ contrails, we create a performance curve, analogous to a Receiver
Operating Characteristic curve [30]. The performance curve for a contrail predictor shows the trade-off between
the fraction of contrail-generating flight distance selected by a predictor and the fraction of total contrail EF
contained in that distance (section 2.6, figure 5). The more accurate the prediction, the more forcing is
concentrated in less distance. A random predictor would produce a diagonal line as the performance curve.

The workflow to produce these performance curves is shown in figure 1.

We first take ERA5 ensemble weather data and make them match the relative humidity observed by in-flight
instruments, via unbiasing and correcting under-dispersion (described in section 2.1). We then run CoCiP
(described in section 2.2) in two different ways. We apply CoCiP along known flight paths to create short-term
EFpcm predictions (described in section 2.4). We also apply CoCiP on a four-dimensional grid to create
climatological EFpcm predictions (described in section 2.3). For both of these cases, we perform Monte Carlo
simulations of CoCiP that incorporate our lack of certainty of the physical parameters in CoCiP (described in
section 2.5).

We create the climatological EFpcm predictions by averaging the grid values produced by CoCiP across
three months (as described in section 2.3). We create the short-term EFpcm predictions by averaging the values
produced by CoCiP for a waypoint, using the climatological EFpcm values as prior knowledge (as described in
section 2.4).

Finally, we compute the short-term and climatological prediction performance curve by using the CoCiP
predictions from one ERAS5 ensemble member as a proxy for the ground truth. The ERAS5 ensemble component
consists of one ‘control’ member and nine ‘perturbed’ members; this unperturbed control member is the one
selected as the proxy for ground truth, and is not used in any prediction computation. The ground truth proxy is
sorted by the predicted EFpcm value and the performance curves are produced (as described in section 2.6).
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2.1. Unbiasing and removing under-dispersion in ERA5

The first step to compute the performance curve is to correct the ERA5 ensemble member estimates of relative
humidity with respect to ice (RHi). Like many numerical weather models, the ERA5 ensemble [25] has biases
and can under-represent the variance of weather properties when compared to reality [26]. We address these
issues by calibrating the ERA5 humidity against in situ humidity measurements from the European research
infrastructure In-service Aircraft for a Global Observing System (IAGOS) [31, 32]. We choose to calibrate RHi
because that is the most sensitive parameter for persistent contrail formation and EF, according to recent
analysis that investigated the sensitivity of EF with respect to several CoCiP parameters [33]. We obtained the 10-
member Ensemble of Data Assimilations ERA5 data from the ECMWF Copernicus Climate Data Store [34].

First, building on the methodology developed by Teoh, Maraun, and others [15, 33, 35], we match the
cumulative distribution function of the ERA5 RHi values to the RHi values from the worldwide IAGOS RHi
observations from 2019. This matching is done via quantile mapping, where each ERA5 RHi value is mapped to
an RHi value that has the identical quantile in the global IAGOS dataset from the year 2019 (using linear
interpolation between quantiles) [20]. We calculate RHi values from interpolated ERA5 temperature, pressure,
and specific humidity, where the temperature and pressure are interpolated quadrilinearly and the specific
humidity is interpolated via a monotonic cubic spline that is fit to the averaged ERA5 specific humidity lapse rate
(interpolation_g method="cubic-spline" of[36]). We found it necessary to apply a non-linear
interpolation of specific humidity because vertical changes in specific humidity are frequently non-linear and a
linear interpolation of specific humidity biased the resulting RHi values to be too high. Every ERA5 ensemble
member has a distinct quantile map onto the IAGOS 2019 quantiles, spanning 0% to 165% RHi [36], and we use
801 quantiles: the smallest sufficient number that qualitatively avoids discretization artifacts in the quantile-
mapped humidity values.

Second, weather ensemble members are frequently under-dispersed relative to weather observations [37].
We apply the ‘shift and stretch’ transformation proposed by Eckel et al [21] to ensure that the inter-ensemble-
member variance of ERA5 RHi values (the denominator in (2)) matches the variance between the ERA5
ensemble mean and the IAGOS RHi values (the numerator in (2)), averaged over all IAGOS samples. Using the
notation of [26], the bias (shift) coefficient a is given by

a=13q - ), 5
ni—

where %, is the (histogram-matched) ERA5 ensemble mean RHi interpolated at a waypoint t (out of n
waypoints), and the IAGOS RHi measurement is y; . The scaling (stretch) coefficient c is computed as

Lzﬂz (& — y)2
c— (m+ DHn“—1t=1 t , Q)

—1 7. )2
(m— 1),12:‘:1221:1()%,1( - xt)

1/2

where x; ; is the (histogram-matched) RHi at waypoint ¢t from ERA5 ensemble member k (out of m total
members, 1 = 10). The fitted ‘shift’ and ‘stretch’ coefficients a and care —6.26 x 10~ and 2.684 respectively
(when RHi is a percentage ranging 0 to 165); the post-processed RHi used by CoCiP (y, ;) at a waypoint ¢ is then
given by:

Yix = K¢ + 0.000 062 6 + 2.684(x,k — %) 3)

We can see that applying histogram-matching already has led to a negligible ‘shift’ coefficient a as expected. The
‘stretch’ coefficient c being larger than 1 indicates the ERA5 ensemble members were under-dispersed prior to
this transformation; without this preprocessing the uncertainty due to RHi in subsequent Monte Carlo analysis
could have been under-estimated by a factor of 2.684.

Once the RHi of the ERAS5 ensemble has been unbiased and stretched so that its distribution matches the
distribution of IAGOS, we can use the inter-ensemble-member uncertainty as a proxy to our uncertainty of the
actual weather state. Section 3.1 shows the results of the distribution matching.

2.2. CoCiP contrail model

Once the ERA5 RHi values are corrected, we can feed them to the CoCiP Lagrangian model of contrail energy
forcing [10, 38]. We use an implementation of CoCiP published in the open-source pycontrails repository
(v0.42.0) [36] that can also evaluate arbitrary grid waypoints independently and in parallel 39, 40].

For each input flight segment to CoCiP, we estimate fuel consumption, overall propulsion efficiency, and
non-volatile particulate emissions (nvPM) using the same methods as Global Aviation Emissions Inventory
(GAIA) described in [41]. Briefly, GAIA uses BADA 3.15 and 4.2 [42, 43] with regional passenger load factors to
estimate aircraft mass, fuel consumption, and overall propulsion efficiency. GAIA uses the ICAO Aircraft Engine
Emissions Databank (EDB) [44] to estimate engine nvPM emissions.

4
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CoCiP considers a contrail generated at a segment to be persistent if ice particles nucleated in the exhaust
stream survive the initial wake vortex phase. CoCiP evolves contrail points in time using a second-order two-
step Runge-Kutta integration scheme [10], here using a time step of 10 minutes until their end of life, which is
defined as when the ice number concentration is lower than the background ice nuclei (<10’ m ™), contrail
optical depth (Tcongrait) is less than 10 ¢, or when the contrail lifetime exceeds 10 hours [24, 33]. Other CoCiP
implementations set longer maximum contrail lifetime limits (12 hours [24, 33], 24 hours [10, 15]); here we
select 10 hours to reduce computation time, which clips only a few (=0.01%) of the highest forcing contrail
segments [24].

To execute the CoCiP model, we use quadrilinear interpolation to estimate all required ERA5 weather
variables (except specific humidity) within the 0.25° x 0.25° latitude longitude grid at pressure levels [350, 300,
250, 225,200, 175, 150] hPa provided by ECMWEF. As we do when calibrating against the IAGOS data, the
specific humidity is interpolated with quadrilinear interpolation in latitude, longitude, time, and via
monotonic cubic spline fit to the averaged ERA5 specific humidity lapse rate in pressure levels
(interpolation_g method="cubic-spline" of[36]).

2.3. Climatological energy forcing prediction
We run the CoCiP model in two different ways: in grid mode to compute the climatological predictions, and in
per-flight mode to compute the short-term predictions. This subsection describes grid mode.

To create climatological EFpcm predictions, we need a consistent space-time basis to average local weather.
We create a four-dimensional grid of latitude/longitude (0.5 degree spacing, from 80°S to 80°N latitude),
altitude (3 pressure levels: 200, 250, and 300 hPa), and time (every 3 hours UTC). Averaging over a box on this
grid produces a climatological EFpcm prediction that is independent of flight density. In this flight-independent
model, each waypoint represents a flight segment of one meter length placed at the center of the grid cell. The
contrail produced by this nominal flight segment evolves according to the dynamics of CoCiP, independent of
other grid waypoints. We run the simulation for all time coordinates of the ERA5 EDA data for every fifth day of
2019 (January 3, January 8, January 13...), which produces approximately 405 million grid samples. Each sample
was run through CoCiP a total of 100 times, each time with a randomly selected member of the ERA5 EDA.

The aircraft type is set to the default B737 for climatological EF predictions. We select B737 as the single
representative aircraft type for climatological predictions because it is the most common aircraft family (B73X)
in the individual trajectory dataset. We use BADA 3.15 and 4.2 [42, 43] to estimate nominal aircraft performance
conditions at cruise and estimate the emissions profile for the meteorological conditions in each grid cell. The
details of the performance and emissions modeling can be found in (Teoh, ef al, 2023) [24]. Nominal emissions
profiles are used to initialize the CoCiP simulation in each grid cell. The sensitivity of climatological predictions
to aircraft type is an important area of future research, but is out of scope of the current study.

To make any EF prediction, we desire an EF per contrail-generating flight meter, so any averaging operation
in the prediction must only take into account segments that have a non-zero EF. To compute EFpcm (energy
forcing per contrail-generating flight meter), we compute

> EF;

EFpem = ———
2 Lil(|EE| > 0)

4)
where EF;is the energy forcing from the ith segment, L;is the length of the ith segment, and 1 is an indicator
function that s 1 if its argument is true, 0 otherwise.

To compute the climatological EF, first we convert longitude and UTC time to alocal time via (UTC hour +
longitude/15) mod 24, averaging together points with the same latitude and local time. We then average all
points across 3 month periods (Feb/Mar/Apr, May/Jun/Jul, Aug/Sep/Oct, Nov/Dec/Jan), average across 9
weather ensemble members, and average across all altitude levels. We then run a box filter: for every point, we
average all points within +1.5 hours of local time and 10 degrees of latitude. We choose the 3 hour window
because ERA5 is only available every 3 hours: any smaller window will not average all longitudes equally. We
chose 10 degrees of latitude to compensate for the limited number of days of data available: fine zonal details
likely reflect weather sampling rather than climatology. In the end, this averaging produces a map of EFpcm that
shows the average contrail forcing for 2019, rather than daily weather. The result can be seen in figure 3.

2.4. Short-term energy forcing prediction
To estimate EFpcm for a particular flight, we execute CoCiP on ERA5 weather along the trajectory for that flight,
in per-flight mode. This emulates a day-of-flight prediction system, though a real prediction system would rely
on a forecast product rather than a reanalysis like ERA5.

We use flight trajectories provided by the 2019 GAIA dataset derived from Automatic Dependent
Surveillance—Broadcast (ADS-B) signals that are provided by Spire Aviation [41]. The flight trajectory ADS-B
data includes ICAO aircraft type and 4D positions (longitude, latitude, barometric altitude, and time) recorded

5
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Table 1. Nominal values, spread, and uncertainty distribution for CoCiP model parameters.

Parameter Purpose Nominal Spread Distribution

Initial wake vortex depth Scales the max contrail downward displacement after the wake 0.5 [0.3,0.7] Triangular
vortex phase to set initial contrail depth. Denoted by Cpy in
equation (14) of [10].

Wind shear enhancement Scales the magnitude of the shear at contrail scale to account for 0.5 [0,1] Triangular
exponent subgrid velocity fluctuations. Denoted by n in equation
(39)[10].
Sedimentation impact Tunable parameter to scale the terminal fall velocity and effective 0.5 c=0.1 Normal
factor vertical diffusivity. Denoted by f;in equation (35) of [ 10].

Nominal values previously reported in [10] as 0.1, but now
taken as 0.5 [15].

nominally every 5 minutes. We then resample waypoints to a uniform 1 minute resolution using a great circle
interpolation in latitude / longitude and implement a linear vertical interpolation [41].

The CoCiP simulation is performed analogously to the climatological energy forcing prediction, except that
the actual aircraft and engine type are used. If the engine type is unknown, the nvPM emissions index is set to a
constant value of 10'° kg71 asin (Schumann, et al., 2015) [45] and (Teoh, et al., 2020) [15]. For short-term EF
prediction, we define a flight segment as the vector between two waypoints. Contrail segments are initialized
when two adjacent waypoints satisfy the Schmidt-Appleman Criterion (SAC) [1, 46, 47].

We simulate a representative sample of flight segments by running Monte Carlo experiments on 1,000
randomly selected flights every third day of 2019 (January 1, January 4, January 7, ...). The 18,220,520 flight
segments are run through CoCiP a total of 100 times, with each simulation using a random choice of one of the
10 ERA5 EDA ensemble members.

For each flight segment in the dataset, we averaged the EF predictions by CoCiP run on nine ERAS5 ensemble
members to form a per-segment EFpcm prediction. In addition to the nine ensemble members, a tenth value
was provided to the average: the value for the waypoint from the climatological prediction described
in section 2.3. The EFpcm is computed analogously to (4):

B V 4 S EE
~ L( + XI(EE| > 0))

EFpcm )

where EF; is the energy forcing predicted by CoCiP on the ith ensemble member, V'is the climatological
prediction evaluated on the segment, and L is the length of the segment. This averaging reduces the variance of
the per-segment prediction, and also provides a value if none of the ensembles produce a non-zero EF, which
happens around 2% of the time.

2.5.Incorporating model uncertainty

Recall the goal is to estimate the skill of ‘big hit’ contrail prediction, given both humidity and model uncertainty.
The humidity uncertainty is captured by the methods described in section 2.3 and section 2.4, but we also want
to capture our uncertainty due to CoCiP model parameters. While CoCiP has been applied in several
publications and compared to measurements and other model results [48], CoCiP is a highly parameterized
model with inherent epistemic limitations. We aim to emulate prediction uncertainty by capturing the
uncertainty range in CoCiP model parameters. To do so, every run of CoCiP has model parameters drawn from
an uncertainty distribution.

CoCiP includes three critical model parameters with nominal values supported by physical and empirical
evidence [10, 15, 33]. Table 1 presents model parameters with a short description of each parameter function
and reference to the original publication variable [10, 15]. For each model parameter, we define a range and
distribution of possible input values based on observations [48] and prior studies of model uncertainty
[15,33,49]. We set the center of initial wake vortex depth, wind shear enhancement exponent, and
sedimentation impact factor distributions based on the nominal values [10, 15]. The wind shear enhancement
exponent is bounded by 0 for stably stratified flows and estimated as 2 /3 for isotropic turbulence [10]. We allow
the value to exceed 2/3 but place a hard limit at 1. The initial wake vortex depth has hard limits at 0 (since the
vortex must be below the plane) and 1 (since it cant exceed the maximum depth). We limit the value to between
0.3 and 0.7 based on figure 7 in [ 10] and discussion with U. Schumann. Figure S5 and table S1 in the supplement
show how parameter values correlate with the mean EF from all Monte Carlo samples run with a specific
parameter vector.
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Table 2. Nominal values, spread, and uncertainty distribution for additional scaling parameters.

Parameter Purpose Nominal Spread Distribution

RFsyy scale factor Scales shortwave radiative forcing (RFsy) to account for the error 1 o =0.106 Normal
in model fit. Based on table 2 from [38].

RFpyy scale factor Scales longwave radiative forcing (RF; ) to account for the error in 1 o =0.071 Normal
model fit. Based on table 2 from [38].

Habit weight Accounts for the uncertainty in habit weight mixtures defined as a G; a; = 0.5 + 96G; Dirichlet
mixtures function of volumetric mean radius [10]. Modifies default values
provided in table 2 of [10]

nvPM EI,, scale Scales flight nvPM emissions to account for uncertainty in 1 0=0.15 Log-normal
factor modeling.

In addition to the standard CoCiP parameters defined in [10], we define four additional scaling parameters
to capture uncertainty in other model parameterizations. Table 2 presents these additional model parameters
with a short description of the parameter function and reference to the original publication [15, 38, 50]. We set
the distribution of parameters values to be triangular when the range of potential values has clear limits and
normal when the range is less well defined. The non-volatile particulate matter emissions index number (nvPM
El,,) scale factor is defined with a log-normal distribution to account for uncertainties in the nvPM
emissions [33,51].

The scaling parameters for RFsy and RFpyy capture the fit errors in the parametric contrail RF model
described in table 1, figure 5 of [38]. The parametric RF model presumes a linear superposition of ice particle
habits with habit mixtures defined as a discrete function of volumetric mean radius (,,;) when calculating the
local contrail RF, the instantaneous change in energy flux per contrail area [10, 52].

While uncertainty in input . (and hence r.¢) is captured by the dispersion-corrected ERA5 ensemble
members, in previous literature the habit mixtures in bands of | are point estimates (see figure 14, [10]). We
need to add variance to the point estimates to reflect our uncertainty about the habit mixtures. Statisticians use a
Dirichlet distribution to model uncertainty in mixture weights [53]. Samples from a Dirichlet distribution are a
vector of non-negative weights that always sum to 1. A Dirichlet distribution has a mean vector of weights, and
some spread around that mean. The parameters of the Dirichlet distribution are a;, one for each member of the
mixture. The mean of the Dirichlet is

Q;

= >
Ziai

while the variance decreases as Y ; ; increases. To set cv;, we thus need to set the mean from the G;, the original
habit fraction from [10], and choose a scaling factor for the «; to control how much noise to add to the mean. We
set

p; (6)

;= 0.5 + 96Gi, (7)

where 96 was chosen to add approximately +10% noise to the dominant habit mixture weights.

For both the short-term and climatological prediction, the CoCiP model is run a total of 100 times for each
flight or grid. For each simulation, we randomly select one model parameter vector from a collection of 500 pre-
constructed model parameter vectors. This sampling is in addition to the random selection of ERA5 ensemble
member. We assume that uncertainties in the CoCiP model parameters are independent. We construct the
parameter vector collection ahead of time by randomly sampling the parameter distributions. The CoCiP
outputs with the additional parameter variation flow through the prediction system as shown in figure 1.
Performing all the CoCiP simulations from sections 2.3-2.4 with the different model parameter vectors used
5,408 CPU hours. Halving the number of CoCiP simulations by reducing the number of flights or the number of
parameter vectors changes our results by much less than the error bars reported in this work, suggesting that
further increasing the number of CoCiP simulations would not lead to a meaningful change in these results.

2.6. Testing the predictions
Once we have short-term and climatological predictions that incorporate both humidity and model
uncertainties, we can estimate their respective skills. To estimate the skill of a prediction, we first need to create a
performance curve which can vary between no skill and perfect skill.

To create such a curve, we first sort flight segments in descending order based on their predicted EFpcm. We
start at 0 contrail kilometers and 0 contrail forcing avoided, with an avoidance threshold of positive infinity. For
each segment, if we lower the avoidance threshold just below the predicted EFpcm, we have to avoid the segment
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lengths worth of flight, but we also get to avoid the EF. The performance curve would then go to the right by the
segment length and up (or down) by the EF of the segment. We loop through all segments, moving right and up/
down, until we reach the end of the sorted segments. The result is a performance curve that shows the
performance for all possible avoidance thresholds of EFpcm, which can be seen in figure 5. Algorithm 1 presents
the pseudocode to generate such a curve.

Algorithm 1. Pseudocode for generating performance curves

SortedKeys < ArgumentSort (PredictedForcing, order = descending)

SortedForcing < []

SortedLength « []

for Key in SortedKeys do
SortedForcing.append (ProxyForcing[Key])
SortedLength.append (ContrailLength[Key])

CumulativeForcing «[0]

for Forcing in SortedForcing do
CumulativeForcing.append(CumulativeForcing[len(CumulativeForcing) - 1]
+ Forcing)

CumulativeLength «[0]

for Length in SortedLength do
CumulativeLength.append (CumulativeLength[len(CumulativeLength)- 1]+
Length)

Plot (x = CumulativeLength/CumulativeLength [len(CumulativeLength)- 1],

y = CumulativeForcing/CumulativeForcing [len(CumulativeForcing) - 1])

We must establish ‘no skill’ and ‘perfect skill’ performance curves in order to compute a skill quantity. If we
feed random values into PredictedForcing for algorithm 1, on average it will produce a curve that is a diagonal
line with a slope of 1, because the fraction of forcing avoided would equal the fraction of distance avoided. If we
set PredictedForcing to be ProxyForcing in algorithm 1, it will be a perfect predictor whose skill cannot be
exceeded, since it has perfect knowledge.

We thus define the skill of a predictor to be the area under the performance curve, scaled so that the diagonal
line has 0% skill and the perfect knowledge curve has 100% skill:

skill — Area under performance curve — 0.5

8)

Area under perfect knowledge curve — 0.5

3. Results

We now present results of the experiments: tests of how well we can calibrate the ERA5 humidities versus
TAGOS, maps illustrating the climatological prediction, and performance curves for both short-term and
climatological predictions.

3.1. Intra-ensemble dispersion of ERA5 relative humidity
The goal of calibrating ERA5 is to make the unperturbed ERA5 ensemble member RHi be a good proxy for the
IAGOS RHi, which is only known on a sparse set of points. This section performs three tests on proxy quality.

The first test is the Kolmogorov-Smirnov (KS) test comparing the distribution of the unperturbed ERA5 RHi
to the IAGOS RHi. The KS test measures the maximum gap between two cumulative distribution functions
(cdfs), which is 0.0203. That is, the cdf of the unperturbed ERA5 RHi and the IAGOS RHi differ by no more
than 2.03%.

The second test is to show that the joint probability density p(Unperturbed ERA5 RHi, Perturbed ERA5 RHi)
is similar to p(IAGOS RHi, Perturbed ERA5 RHi). This test can be performed qualitatively by creating a density
plot of both of these joints, as can be seen in figure 2. Each point in the density plot reflects one sample from the
RHi ensemble of nine versus a corresponding ground truth (IAGOS) or proxy ground truth (ERAS5 unperturbed
member).

The joint densities appear qualitatively different at low relative humidity, but are better matching at high
relative humidity. Given that we compute EF per contrail meter and assume that we know whether a contrail is
persistent, our analysis is only sensitive to calibration at relative humidity above 100%. Table 3 shows a
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Figure 2. Scatter plots between predictions and ground truth. Intra-ensemble scatter for ERA5 is shown on the left and ERA5/IAGOS
scatter is shown on the right. Ice super-saturation region (ISSR) misprediction quadrants are outlined with red boxes.

Table 3. Comparison of predicting ice supersaturation in IAGOS and in the ERA5 unperturbed member. To serve as a proxy for
TAGOS, the ERA5 prediction should have a similar equitable threat score (ETS) and similar error rates.

Preprocessing Assumed truth True negatives False negatives False positives True positives ETS
None TAGOS 88.3% 7.3% 2.0% 2.5% 0.179
None ERA5 93.3% 2.2% 1.5% 3.0% 0.425
Unbias only IAGOS 85.5% 4.8% 4.8% 4.9% 0.291
Unbias only ERA5 88.2% 2.1% 2.1% 7.6% 0.609
Unbias + stretch TAGOS 84.0% 5.1% 6.3% 4.7% 0.241
Unbias + stretch ERA5 84.8% 4.3% 4.9% 6.0% 0.346

quantitative analysis of the two joint densities. We assess the error rates of using an ensemble member RHiata
space-time point to predict whether a proxy (ERA5 unperturbed) and the ground truth IAGOS) are ice-
supersaturated. There are four possible outcomes to this prediction, which corresponds to the four quadrants of
adensity plotin figure 2. The lower left is a true negative, the upper right is a true positive, the upper left is a false
negative, and the lower right is a false positive. We can compute these four rates by integrating the density in each
of the four quadrants. Following [17], we also compute the equitable threat score (ETS) for the ice-
supersaturation prediction.

When we do not use any calibration of ERA5, or only use quantile-mapping calibration, ERA5 ensemble
members predict the ice supersaturation of the unperturbed ERA5 member with much higher skill than IAGOS,
which implies that the weather uncertainty is not yet captured. The ETS without calibration is 0.179, which is
comparable to the values reported by [17]. When we use the stretching transformation of (3), the ETS gap
between predicting unperturbed ERAS5 and predicting IAGOS drops to 0.105, and the largest gap in the rates is
only 1.4% in the false positive rates. The matching of the rates and ETS gives us confidence that using the
unbiased and stretched ERA5 is a reasonable proxy for predicting the true weather. Even though our intra-ERA5
ETS has alow value of 0.346, we show in the next two sections that the outputs of CoCiP can adequately find ‘big
hit’ contrails with highly-positive EFpcm.

The third test of the proxy is to compute calibration curves for the RHi distribution around the proxy. These
calibration curves are shown in the Supplementary Material. We find that the P-P plots of the calibration
improve when both unbiasing and (3) are used.

3.2. Climatological predictions of energy forcing.

Figure 3 shows the EFpcm as a function oflocal time of day, latitude, and season. The mean EFpcm in our
individual simulation is 309 &+ 38 MJ/contrail meter, which overlaps the estimate of 331 MJ/contrail meter
from [41]. There is significant variation in EFpcm over space and time. Roughly speaking, we find that contrails
that form between 3 hours before sunset to 3 hours before sunrise have on average large positive EF, usually
>400 MJ/m, while contrails at other times are usually <100 MJ/m. The ‘local time’ axis of figure 3 refers to the
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Figure 3. Mean EFpcm calculated for each 10 degrees of latitude, 3 hours of time of day, three months out of the year, all of the flight
levels and all of the parameter samples. Error bars are available in the Supplemental material.

time the aircraft created the contrail. Since contrails last several hours the boundary between the strongly forcing
and less forcing contrails happens a few hours before sunset/sunrise.

By using a large amount of averaging, we can make a low-variance estimate of contrail forcing. Note however
that the values in figure 3 are averages, and an individual flight may deviate from the average value. For all the
contrails in our dataset, the root mean squared difference (RMSD) between the proxy contrail forcing
(computed from unperturbed ERAS5 data) and the values in figure 3 was 598 MJ/m. While this RMSD is almost
twice the average EFpcm, in the section below we show that the climatological predictions still have skill in
predicting the ‘big hit’ contrails.

3.3. Short-term predictions

In the previous section, we computed EFpcm for different latitudes, times of day, and seasons by averaging over
ERAS5 ensemble members and days. Because of the large variation in the EFpcm of individual flights, we examine
whether predicting a short-term EFpcm is a better method of finding ‘big hit’ contrails instead of simply relying
on climatological EFpcm. The RMSD between the nominal contrail forcing and the resulting short-term EFpcm
prediction is 425 MJ/m, 29% lower than the climatological prediction value from the previous subsection (598
M]J/m). This is because the short-term prediction can use the daily weather to predict almost all of the ‘big hit’
contrails (as we will see in figure 5).

We now investigate how short-term EF predictions can still have skill despite the remaining uncertainty. We
start by imagining an intervention with the goal of preventing as much forcing as possible while avoiding 20% of
the contrail distance. If we knew the true weather, we could do this by finding the 20% of contrails with largest EF
and only avoiding those. In figure 4, we represent this intervention by the ‘Perfect knowledge’ curve, which
shows how we avoid no contrails below some threshold and every contrail above it. In the dataset studied in this
work, these 20% contrails with largest EF account for 90% of all contrail forcing.

We can also see in figure 4 the impact of having less than perfect knowledge. If we instead choose the 20% of
flights with the largest predicted EFpcm, we get a less effective intervention because some flights predicted to
have a large forcing actually do not (and vice versa). For example, using our short-term predictions would avoid
the 20% of contrails with a predicted EFpcm of >595 MJ/m (the orange dot in the figure). Because our
predictions are imperfect, we wind up failing to avoid some contrails whose proxy EFpcm is above this
threshold, and we also end up avoiding some contrails whose proxy EFpcm is below this threshold, even though
we might have preferred to avoid more strongly forcing contrails instead. Note, however, that the fraction of
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Figure 4. Contrails avoided if we try to avoid the top 20% of contrail distance. With perfect knowledge, we would avoid all contrails
above a certain threshold and none of the ones below it. With imperfect knowledge we avoid all contrails whose predicted forcing is
above some threshold (indicated by dots in the figure), but the proxy forcing may be smaller. We can see that even with this imperfect
knowledge, using short-term predictions we end up avoiding almost all contrails with high EFpcm, and few of the contrails we avoid
have a small EFpcm. Each point in the figure represents an average of all the contrails with proxy EFpcm within 60 MJ/m of that point.

highly-forcing contrails avoided (proxy EFpcm >2000 MJ/m) is still quite high. These contrails have so much
forcing that even our imperfect short-term prediction is usually correct about whether to avoid them. Similarly,
the fraction of contrails with negative forcing (<0 MJ/m) that we avoid is very small. We find that the contrails
avoided by an intervention using short-term predictions account for 75% of the total contrail forcing. Though
this is not as good as the 90% of forcing avoided with perfect knowledge, if we had no knowledge of which
contrails were the contrails with the largest EF we could only avoid 20% of the forcing by avoiding 20% of the
contrails. Our short-term predictions enable us to do much better than that.

The climatological prediction is less skillful. Compared to the short term predictions, it avoids less highly-
forcing contrails and more slightly-forcing contrails, though it also almost never avoids cooling contrails. The
contrails avoided account for 40% of all contrail forcing, which is much less than what we would get with perfect
knowledge but still twice as much forcing as we would have prevented with no knowledge.

Wejust described in detail an intervention to avoid 20% of contrails, but of course other interventions are
also possible. We can describe how our different prediction methods handle different interventions using the
performance curves described in section 2.6. We show such a curve in figure 5. The case where the fraction of
contrail distance=0.2 represents the intervention described above, but the curve also maps out all other possible
fractions of avoided contrails.

For the perfect knowledge curve, we see that the fraction of contrail forcing avoided initially rises quickly,
reflecting the small number of ‘big hit’ contrails that contribute a large amount of forcing. In contrast, if we had
no knowledge of the EF of each contrail, the fraction of contrail forcing avoided would be equal to the fraction of
contrails avoided (see dashed line in figure 5). Note that these results are roughly consistent with previous work
[15,24, 33] if we account for the fact that around 5% of the total flight distance makes contrails, although since
the results are for different locations and times they cannot be directly compared. We also show the skill of the
short-term and climatological predictions in figure 5. If a prediction curve matches the perfect knowledge curve,
it would have 100% skill. If a prediction curve matches the no knowledge curve, it would have 0% skill.

In particular, we can see that the short-term prediction has high skill in predicting the proxy, which implies
that most of the forcing we could avoid with perfect knowledge can also be avoided using short-term
predictions. Note that the perfect knowledge curve also assumes perfect knowledge of the CoCiP parameters,
while the short-term prediction and climatological prediction curves include uncertainty in the CoCiP
parameters.

The perfect knowledge and short-term prediction curves in figure 5 indicate that certain operating points
can avoid more than 100% of the net contrail EF, because there are some contrails that have negative EF. These
operating points occur when the slopes of the curves are negative. If the contrails that have negative EF are
predicted correctly, they get sorted to the right side of the curve and move the curve downwards. In theory, with
short-term prediction, 100% of the net forcing from contrails can be avoided by route changes for the 42%
contrail kilometers with the highest positive forcing.

Finally, we can compute the skill in predicting the proxy by integrating the area under the short-term or
climatological curves and comparing them to the ‘no knowledge’ curve (0% skill) and the ‘perfect knowledge’
curve (100% skill). This yields a short-term skill of 84% and a climatological skill of 44%.
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Figure 5. Performance curves showing trade-offs between contrail distance avoided vs contrail forcing avoided for different
predictions. The Perfect knowledge curve shows how this tradeoff could work if one knew the weather exactly. The other curves show
how the tradeoff would work using short-term and climatological predictions.

4. Discussion

Despite high intra-weather-ensemble variance of EF estimates, when averaged over nine reanalysis ensemble
members, the mean EFpcm produced by CoCiP has skill in predicting ‘big hit’” contrail conditions, using a proxy
to the ground truth. This suggests EFpcm could be useful in a contrail prediction system, by combining it with a
persistent contrail forecast to create maps of zones which are likely to generate highly-forcing contrails. Flight
planners and pilots could then leverage these maps to maximize the amount of contrail forcing avoided while
minimizing the cost of contrail avoidance maneuvers. Figure 5 gives guidance for how a per-flight contrail
prediction system could work in practice. The results show that the uncertainty in EF across ERAS5 ensemble
members would not prevent predictions of EF from being useful when deciding how to target mitigation efforts
inside these simulations. Imagine one has a goal of mitigating 65% of contrail EF. Without EF predictions, one
would need to avoid creating approximately 65% of contrails to achieve this goal. With EF prediction in these
simulations, even though the predictions are imperfect, one can achieve the same goal by avoiding only ~15% of
contrails, an improvement of more than 4x. Figure 5 does not specifically inform trade-offs, including added fuel
burn and operational considerations, when implementing contrail avoidance in practice. One might decide to
try to target 80% of contrail forcing, or try to target the most highly-forcing 10% of contrails. But in all cases in
these simulations both the short-term and climatological predictions allow the fraction of forcing prevented to
be much larger than the fraction of contrails avoided. Alternatively, the distance of contrail avoidance can be
substantially reduced, e.g. if 75% forcing reduction is targeted, then per-flight prediction requires avoidance of
only 20% of the contrail distance, rather than 40% from climatological prediction. If this result holds in
operational contrail avoidance systems, it would reduce operational burdens and potentially accelerate contrail
avoidance as a climate mitigation strategy. Figure 5 also does not cover details that are important to contrail
avoidance in practice. The figure only considers a threshold on contrail EF, and does not include uncertainty in
predicting whether a persistent contrail will form, nor does it cover other factors such as limitations on contrail
avoidance due to air traffic congestion. ‘Big hit’ contrails may be a small fraction of contrails avoided in practice.
If there is any reason that ‘big hit’ contrails are systematically ignored by an avoidance process, then the fraction
of EF avoided will decrease.

The climatological estimates can be applied beyond the current study to improve baseline contrail forcing
estimates when missing specific meteorological conditions or observations. For example, current guidance for
company reporting of aviation non-CO, emissions suggests multiplying total CO, emissions by a factor of 1.9
[54] regardless of time and location of flight. The climatological estimates could form the foundation of a basic
algorithm to account for average contrail forcing based on origin-destination pair and time of departure. The
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same system could be used as a fallback option for monitoring, reporting, and verification systems while higher
fidelity mechanisms are in development and implementation.

This study is one step towards an end-to-end live contrail management system. More research is needed to
create a production system:

+ Though we used ERA5 ensemble members for both prediction and a proxy to ground truth, a more realistic
setup would be to use a forecast product (such as ECMWF IES) to make predictions. An interesting future
research direction would be to evaluate how the prediction uncertainties increase with the lead time of the
short-term forecasts.

+ Usinga CoCiP calculation on one ERA5 ensemble member as a proxy for ground truth as in this analysis may
result in mis-estimating the true performance curve, to the degree that CoCiP failing to accurately model
contrail phenomena substantially changes the ordering of which flight segments actually caused the largest
contrail energy forcing. In particular, CoCiP does not take into account long-term climate feedback effects
like a climate simulation can.

+ Predicting contrail formation is currently a difficult problem if based purely on the humidity fields provided
by numerical weather predictions [17, 19]. Improvements by incorporating other data, such as contrail
detections [55, 56] or other numerical weather fields [57] into the predictions using machine learning may be
possible.

+ Validating the properties of contrails after the fact is useful for both scientific and regulatory purposes. It is
currently often possible to observationally validate whether a given flight has made a persistent contrail
[58, 59], however the total EF produced by a contrail is difficult to estimate from observations.

+ Observations could be used to measure a ground truth of energy forcing in future work. Current work in
observational estimation of EF has high uncertainties for multiple reasons, among them contrail cirrus
morphology being very similar to natural cirrus, and small sample sizes relative to the total population [60].

This paper probes the uncertainty of the EF of contrails using CoCiP that arise from humidity and model
parameter uncertainties. The paper does not assess the uncertainty of the CoCiP model itself: given the
uncertainties in, e.g. ice habit distribution, future work may improve upon CoCiP, reduce its uncertainties, or
even replace it with a different model. Previous work in estimating effective radiative forcing (ERF) from RF uses
global flight patterns [61-63]. More research is required to understand the ERF impact of mitigating only ‘big
hit’ contrails.

5. Conclusions

We have shown that when calibrating the RHi predictions of the ERA5 ensemble members, the resulting
ensemble predictions for short-term contrail energy forcing obtained by use of CoCiP — while accounting for
uncertainty in model parameters — are more skillful than climatological predictions alone, under the
assumption that one of the ensemble CoCiP predictions corresponds to the ground truth. To our knowledge,
this is the first exploration of global Monte Carlo contrail simulations propagating both extensive parameter
uncertainty and uncertainty from (bias- and dispersion-corrected) relative humidity meteorological inputs.
We measure the skill of the predictions against the proxy by constructing a performance curve of fraction of
total contrail forcing versus fraction of contrail kilometers for all possible decision thresholds. Skill is the area
under the performance curve, scaled so that random decisions are 0% and perfect performance is 100%. Under
this setup, the skill of the climatological predictions is 44% while the skill of the per-flight predictions is 84%.
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