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Abstract
Previouswork has shown that while the net effect of aircraft condensation trails (contrails) on the
climate is warming, the exactmagnitude of the energy forcing permeter of contrail remains uncertain.
In this paper, we explore the skill of a Lagrangian contrailmodel (CoCiP) in identifying flight segments
with high contrail energy forcing.We find that skill is greater than climatological predictions alone,
even accounting for uncertainty inweatherfields andmodel parameters.We estimate the uncertainty
due to humidity by using the ensemble ERA5weather reanalysis from the EuropeanCentre for
Medium-RangeWeather Forecasts (ECMWF) asMonte Carlo inputs toCoCiP.We unbias and
correct under-dispersion on the ERA5 humidity data by forcing amatch to the distribution of in situ
humiditymeasurements taken at cruising altitude.We take CoCiP energy forcing estimates calculated
using one of the ensemblemembers as a proxy for ground truth, and report the skill of CoCiP in
identifying segments with large positive proxy energy forcing.We further estimate the uncertainty due
tomodel parameters inCoCiP by performingMonte Carlo simulationswith CoCiPmodel parameters
drawn fromuncertainty distributions consistent with the literature.WhenCoCiP outputs are
averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%,
while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown)
contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential
contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail
avoidance.

1. Introduction

When aircraft fly in the upper troposphere and lower stratosphere, they form condensation trails (contrails),
line-shaped cloudsmade up of ice particles [1]. Under ice-supersaturated conditions, contrailsmay persist for
several hours and, over this time, shear, spread andmerge, transitioning to contrail-cirrus [2]. These persistent
contrailsmake up a significant fraction of aviation’s contribution to climate change [3], and have been
highlighted as a potentially promising climate impactmitigation opportunity [4].

Contrail reduction efforts are complicated by uncertainties in the radiative forcing of contrails at different
times, locations, and seasons. Contrailmodeling studies report uncertainty frommultiple sources, including the
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use of parameterized approximations to physical processes, such as contrail evolution [5], optical properties
[6, 7], and radiative transfer [8]. These approximations are used to reduce the computational burden of both
microphysicalmodels [9, 10] and global climate simulations [11]. Reducing the uncertainty of contrail forcing is
an area of active research [12–16].

When using amicrophysicsmodel to estimate the forcing caused by contrails, there are twomain sources of
uncertainty: the relative humidity of a potential contrail location is not perfectly known, and themodel reflects
an incomplete representation of icemicrophysics, plume evolution and radiative transfer. Uncertainty in
relative humidity can be reduced by averaging overmany samples of aweather distribution (i.e., the uncertainty
is aleatoric). In contrast, themodel uncertainty is epistemic: while we can average the outputs of amodel over
manyMonteCarlo simulationswith different parameter settings, we have no assurance that the average will
converge to the true physicalmodel.

There are two broad approaches to estimating the forcing of contrails with amicrophysicsmodel:
climatological estimates (e.g. seasonal) or short-term estimates (e.g. per flight). For climatological estimates, the
effects of humidity uncertainty are reduced, becausewe average overmany instances of weather states that are
drawn froma seasonal or annual average.However, the climatological averaging has an inherent limitation: it
ignores the effect of current local weather on contrail forcing. Conversely, the short-term or per-flight
predictions havemuchmoreweather uncertainty, but can exploit knowledge of current local weather. Previous
workwas pessimistic that per-flight predictions could ever have high skill, due to the high uncertainty in relative
humidity [17].

This paper explores a potential way that short-termpredictions could have higher skill than climatological
approaches, based on two observations. First, most of the energy forcing from contrails comes from a small
number of ‘big hit’ contrails [18]. This implies that targeting a limited fraction of flight distance for contrail
avoidancemaneuvers can reduce themajority of contrail energy forcing as long as these can indeed be predicted.
The possibility of high skill on a small fraction offlight distancemotivates the current work. Second, relative
humidity predictions byweathermodels tend to be poorly correlatedwith in situmeasurements [17, 19]. The
current study therefore introduces the use of a non-parametric quantilemapping technique [20] to correct
biases in humidity predictions, and also corrects for the under-dispersion that occurs in the output of numerical
weather humidity prediction [21].

There aremultiple studies that have established thatmost contrail forcing is caused by a small fraction of
flight distance. Explorations into the observed distributions of contrail lifespan using an automated contrail
tracking algorithm [22]have estimated that a small fraction of contrails had the longest lifespans [5]. Similarly,
reports of distributions of contrail energy forcing (EF) based on reanalysis weather data and parameterized
radiative transfer calculations indicate a small fraction of contrails are responsible for a large fraction of forcing
[5, 23]. In 2020, Teoh, et al [15] found 2.2%offlights contributed 80%of the EF in a study of Japanese airspace. A
recent global study [24]finds again roughly 2%of all air traffic is responsible for 80%of the annual global
contrail EF between 2019 and 2021.While these studies have explored uncertainty in global contrail EF due to
humidity andmodel uncertainties, they did not evaluate how these uncertainties would affect short-term
predictions.

Several studies have reported that numerical weather products, including the EuropeanCentre forMedium-
RangeWeather Forecasts (ECMWF)Reanalysis v5 (ERA5) ensemble [25], have biases and can under-represent
the variance of weather properties when compared to reality [26, 27]. In particular, the humidity fields provided
by ERA5 are generally under-saturated [28]. The current study shows that using quantilemapping and under-
dispersion correction canmake ERA5 humidity statisticsmore alignedwith in situmeasurements.We then
apply a Lagrangian contrailmodel, theContrail Cirrus Predictionmodel (CoCiP) [10], to each instance of the 10
ensemblemembers of ERA5, tomake both climatological and short-termpredictions of contrail forcing.

This paper demonstrates amethodwith potentially high skill in predicting ‘big hit’ contrails per flight, but
with a number of limitations:

• Most importantly, we do not know the true energy forcing caused by each contrail, sowe cannot definitively
state that ourmethod has high skill. Instead, we use a proxy for the true energy forcing.We runCoCiP 100
times on everyflight, each time choosing one of the 10 ensemblemembers as theweather.We select one of the
ensemblemembers to approximate the truth.WhenCoCiP is run on that ensemblemember, we treat that as a
proxy to the ground truth forcing of the flight’s contrails, rather than as a prediction.We then estimate skill by
comparing theCoCiP predictions averaged over 9 ensemblemembers compared to theCoCiP prediction run
on the proxy.

• Second, we limit this study to predicting EF per contrailmeter (EFpcm), assuming that a contrail has already
formed. This study thus does not consider uncertainties in predicting contrail formation, whichwe leave to
future work.
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• Third, this study uses reanalysis weather, rather than a true forecast such as the ECMWF Integrated Forecast
System (IFS). Reanalysismay bemore accurate than a forecast product.We limit our analysis here to the 10
ensemblemembers of ERA5 due to data availability and because the skill of predicting forcing even from
reanalysis data has been called into question [17, 29].

• Fourth, this paper only considers the short-termEF caused by contrails. Due to feedback effects in the
atmosphere, ocean and surface, the actual impact of contrails on the climate has additional factors. Converting
the instantaneous radiative forcing to the effective radiative forcing (ERF) introduces further uncertainty
whichwe do not study here as it requires running a climatemodel [3]. In the SupplementaryMaterial, we use
theMonte CarloCoCiP simulation to generate distributions over contrail cross-section and ice crystal radius,
to facilitate further research into long-term climate impact of contrails.

2.Methods andmaterials

The goal of the experiment in this paper is to estimate the skill of predicting ‘big hit’ contrails, including both
weather and physical parameter uncertainty, and using a proxy for the ground truth.We estimate this skill for
both short-term and climatological predictions.

To estimate the skill of predicting ‘big hit’ contrails, we create a performance curve, analogous to a Receiver
OperatingCharacteristic curve [30]. The performance curve for a contrail predictor shows the trade-off between
the fraction of contrail-generating flight distance selected by a predictor and the fraction of total contrail EF
contained in that distance (section 2.6,figure 5). Themore accurate the prediction, themore forcing is
concentrated in less distance. A randompredictor would produce a diagonal line as the performance curve.

Theworkflow to produce these performance curves is shown infigure 1.
Wefirst take ERA5 ensembleweather data andmake themmatch the relative humidity observed by in-flight

instruments, via unbiasing and correcting under-dispersion (described in section 2.1).We then runCoCiP
(described in section 2.2) in two different ways.We apply CoCiP along knownflight paths to create short-term
EFpcmpredictions (described in section 2.4).We also apply CoCiP on a four-dimensional grid to create
climatological EFpcmpredictions (described in section 2.3). For both of these cases, we performMonteCarlo
simulations of CoCiP that incorporate our lack of certainty of the physical parameters inCoCiP (described in
section 2.5).

We create the climatological EFpcmpredictions by averaging the grid values produced byCoCiP across
threemonths (as described in section 2.3).We create the short-termEFpcmpredictions by averaging the values
produced byCoCiP for awaypoint, using the climatological EFpcmvalues as prior knowledge (as described in
section 2.4).

Finally, we compute the short-term and climatological prediction performance curve by using theCoCiP
predictions fromone ERA5 ensemblemember as a proxy for the ground truth. The ERA5 ensemble component
consists of one ‘control’member andnine ‘perturbed’members; this unperturbed controlmember is the one
selected as the proxy for ground truth, and is not used in any prediction computation. The ground truth proxy is
sorted by the predicted EFpcm value and the performance curves are produced (as described in section 2.6).

Figure 1.Aflowdiagram to determine the performance curves for short-term and climatological contrail EF prediction.
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2.1. Unbiasing and removing under-dispersion in ERA5
Thefirst step to compute the performance curve is to correct the ERA5 ensemblemember estimates of relative
humidity with respect to ice (RHi). Likemany numerical weathermodels, the ERA5 ensemble [25] has biases
and can under-represent the variance of weather properties when compared to reality [26].We address these
issues by calibrating the ERA5 humidity against in situ humiditymeasurements from the European research
infrastructure In-service Aircraft for aGlobalObserving System (IAGOS) [31, 32].We choose to calibrate RHi
because that is themost sensitive parameter for persistent contrail formation and EF, according to recent
analysis that investigated the sensitivity of EFwith respect to several CoCiP parameters [33].We obtained the 10-
member Ensemble ofData Assimilations ERA5 data from the ECMWFCopernicus ClimateData Store [34].

First, building on themethodology developed by Teoh,Maraun, and others [15, 33, 35], wematch the
cumulative distribution function of the ERA5RHi values to the RHi values from theworldwide IAGOSRHi
observations from2019. Thismatching is done via quantilemapping, where each ERA5RHi value ismapped to
anRHi value that has the identical quantile in the global IAGOS dataset from the year 2019 (using linear
interpolation between quantiles) [20].We calculate RHi values from interpolated ERA5 temperature, pressure,
and specific humidity, where the temperature and pressure are interpolated quadrilinearly and the specific
humidity is interpolated via amonotonic cubic spline that isfit to the averaged ERA5 specific humidity lapse rate
(interpolation_q_method="cubic-spline" of [36]).We found it necessary to apply a non-linear
interpolation of specific humidity because vertical changes in specific humidity are frequently non-linear and a
linear interpolation of specific humidity biased the resulting RHi values to be too high. Every ERA5 ensemble
member has a distinct quantilemap onto the IAGOS 2019 quantiles, spanning 0% to 165%RHi [36], andwe use
801 quantiles: the smallest sufficient number that qualitatively avoids discretization artifacts in the quantile-
mapped humidity values.

Second, weather ensemblemembers are frequently under-dispersed relative toweather observations [37].
We apply the ‘shift and stretch’ transformation proposed by Eckel et al [21] to ensure that the inter-ensemble-
member variance of ERA5RHi values (the denominator in (2))matches the variance between the ERA5
ensemblemean and the IAGOSRHi values (the numerator in (2)), averaged over all IAGOS samples. Using the
notation of [26], the bias (shift) coefficient a is given by
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where xt,k is the (histogram-matched)RHi at waypoint t fromERA5 ensemblemember k (out ofm total
members,m= 10). Thefitted ‘shift’ and ‘stretch’ coefficients a and c are−6.26× 10−5 and 2.684 respectively
(whenRHi is a percentage ranging 0 to 165); the post-processed RHi used byCoCiP (yt,k) at awaypoint t is then
given by:

y x x x0.000 062 6 2.684 . 3t k t t k t, ,¯ ( ¯ ) ( )= + + -

Wecan see that applying histogram-matching already has led to a negligible ‘shift’ coefficient a as expected. The
‘stretch’ coefficient c being larger than 1 indicates the ERA5 ensemblemembers were under-dispersed prior to
this transformation; without this preprocessing the uncertainty due toRHi in subsequentMonte Carlo analysis
could have been under-estimated by a factor of 2.684.

Once the RHi of the ERA5 ensemble has been unbiased and stretched so that its distributionmatches the
distribution of IAGOS, we can use the inter-ensemble-member uncertainty as a proxy to our uncertainty of the
actual weather state. Section 3.1 shows the results of the distributionmatching.

2.2. CoCiP contrailmodel
Once the ERA5RHi values are corrected, we can feed them to theCoCiP Lagrangianmodel of contrail energy
forcing [10, 38].We use an implementation of CoCiP published in the open-source pycontrails repository
(v0.42.0) [36] that can also evaluate arbitrary gridwaypoints independently and in parallel [39, 40].

For each inputflight segment toCoCiP, we estimate fuel consumption, overall propulsion efficiency, and
non-volatile particulate emissions (nvPM) using the samemethods as Global Aviation Emissions Inventory
(GAIA) described in [41]. Briefly, GAIA uses BADA3.15 and 4.2 [42, 43]with regional passenger load factors to
estimate aircraftmass, fuel consumption, and overall propulsion efficiency. GAIA uses the ICAOAircraft Engine
EmissionsDatabank (EDB) [44] to estimate engine nvPMemissions.
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CoCiP considers a contrail generated at a segment to be persistent if ice particles nucleated in the exhaust
stream survive the initial wake vortex phase. CoCiP evolves contrail points in time using a second-order two-
step Runge-Kutta integration scheme [10], here using a time step of 10minutes until their end of life, which is
defined aswhen the ice number concentration is lower than the background ice nuclei (<103 m−3), contrail
optical depth (τcontrail) is less than 10

−6, or when the contrail lifetime exceeds 10 hours [24, 33]. OtherCoCiP
implementations set longermaximumcontrail lifetime limits (12 hours [24, 33], 24 hours [10, 15]); here we
select 10 hours to reduce computation time, which clips only a few (≈0.01%) of the highest forcing contrail
segments [24].

To execute theCoCiPmodel, we use quadrilinear interpolation to estimate all required ERA5weather
variables (except specific humidity)within the 0.25°× 0.25° latitude longitude grid at pressure levels [350, 300,
250, 225, 200, 175, 150] hPa provided by ECMWF. Aswe dowhen calibrating against the IAGOSdata, the
specific humidity is interpolatedwith quadrilinear interpolation in latitude, longitude, time, and via
monotonic cubic spline fit to the averaged ERA5 specific humidity lapse rate in pressure levels
(interpolation_q_method="cubic-spline" of [36]).

2.3. Climatological energy forcing prediction
We run theCoCiPmodel in two different ways: in gridmode to compute the climatological predictions, and in
per-flightmode to compute the short-termpredictions. This subsection describes gridmode.

To create climatological EFpcmpredictions, we need a consistent space-time basis to average local weather.
We create a four-dimensional grid of latitude/longitude (0.5 degree spacing, from80°S to 80°N latitude),
altitude (3 pressure levels: 200, 250, and 300 hPa), and time (every 3 hoursUTC). Averaging over a box on this
grid produces a climatological EFpcmprediction that is independent offlight density. In this flight-independent
model, eachwaypoint represents a flight segment of onemeter length placed at the center of the grid cell. The
contrail produced by this nominal flight segment evolves according to the dynamics of CoCiP, independent of
other gridwaypoints.We run the simulation for all time coordinates of the ERA5EDAdata for every fifth day of
2019 (January 3, January 8, January 13...), which produces approximately 405million grid samples. Each sample
was run throughCoCiP a total of 100 times, each timewith a randomly selectedmember of the ERA5EDA.

The aircraft type is set to the default B737 for climatological EF predictions.We select B737 as the single
representative aircraft type for climatological predictions because it is themost common aircraft family (B73X)
in the individual trajectory dataset.We use BADA3.15 and 4.2 [42, 43] to estimate nominal aircraft performance
conditions at cruise and estimate the emissions profile for themeteorological conditions in each grid cell. The
details of the performance and emissionsmodeling can be found in (Teoh, et al, 2023) [24]. Nominal emissions
profiles are used to initialize theCoCiP simulation in each grid cell. The sensitivity of climatological predictions
to aircraft type is an important area of future research, but is out of scope of the current study.

Tomake any EF prediction, we desire an EF per contrail-generating flightmeter, so any averaging operation
in the predictionmust only take into account segments that have a non-zero EF. To compute EFpcm (energy
forcing per contrail-generating flightmeter), we compute

L
EFpcm

EF

EF 0
4i i

i i i(∣ ∣ )
( )=

å
å >

where EFi is the energy forcing from the ith segment, Li is the length of the ith segment, and  is an indicator
function that is 1 if its argument is true, 0 otherwise.

To compute the climatological EF,first we convert longitude andUTC time to a local time via (UTChour+
longitude/15)mod 24, averaging together points with the same latitude and local time.We then average all
points across 3month periods (Feb/Mar/Apr,May/Jun/Jul, Aug/Sep/Oct, Nov/Dec/Jan), average across 9
weather ensemblemembers, and average across all altitude levels.We then run a box filter: for every point, we
average all points within±1.5 hours of local time and±10 degrees of latitude.We choose the 3 hourwindow
because ERA5 is only available every 3 hours: any smaller windowwill not average all longitudes equally.We
chose 10 degrees of latitude to compensate for the limited number of days of data available:fine zonal details
likely reflect weather sampling rather than climatology. In the end, this averaging produces amap of EFpcm that
shows the average contrail forcing for 2019, rather than daily weather. The result can be seen infigure 3.

2.4. Short-term energy forcing prediction
To estimate EFpcm for a particularflight, we execute CoCiP on ERA5weather along the trajectory for thatflight,
in per-flightmode. This emulates a day-of-flight prediction system, though a real prediction systemwould rely
on a forecast product rather than a reanalysis like ERA5.

We useflight trajectories provided by the 2019GAIA dataset derived fromAutomaticDependent
Surveillance—Broadcast (ADS-B) signals that are provided by Spire Aviation [41]. Theflight trajectory ADS-B
data includes ICAO aircraft type and 4Dpositions (longitude, latitude, barometric altitude, and time) recorded
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nominally every 5minutes.We then resample waypoints to a uniform 1minute resolution using a great circle
interpolation in latitude / longitude and implement a linear vertical interpolation [41].

TheCoCiP simulation is performed analogously to the climatological energy forcing prediction, except that
the actual aircraft and engine type are used. If the engine type is unknown, the nvPMemissions index is set to a
constant value of 1015 kg−1 as in (Schumann, et al., 2015) [45] and (Teoh, et al., 2020) [15]. For short-termEF
prediction, we define aflight segment as the vector between twowaypoints. Contrail segments are initialized
when two adjacent waypoints satisfy the Schmidt-ApplemanCriterion (SAC) [1, 46, 47].

We simulate a representative sample offlight segments by runningMonteCarlo experiments on 1,000
randomly selected flights every third day of 2019 (January 1, January 4, January 7, ...). The 18,220,520 flight
segments are run throughCoCiP a total of 100 times, with each simulation using a random choice of one of the
10 ERA5EDA ensemblemembers.

For eachflight segment in the dataset, we averaged the EF predictions byCoCiP run on nine ERA5 ensemble
members to form a per-segment EFpcmprediction. In addition to the nine ensemblemembers, a tenth value
was provided to the average: the value for thewaypoint from the climatological prediction described
in section 2.3. The EFpcm is computed analogously to (4):

V

L
EFpcm

EF

1 EF 0
5i i

i i( (∣ ∣ ))
( )=

+ å
+ å >

where EFi is the energy forcing predicted byCoCiP on the ith ensemblemember,V is the climatological
prediction evaluated on the segment, and L is the length of the segment. This averaging reduces the variance of
the per-segment prediction, and also provides a value if none of the ensembles produce a non-zero EF, which
happens around 2%of the time.

2.5. Incorporatingmodel uncertainty
Recall the goal is to estimate the skill of ‘big hit’ contrail prediction, given both humidity andmodel uncertainty.
The humidity uncertainty is captured by themethods described in section 2.3 and section 2.4, butwe alsowant
to capture our uncertainty due toCoCiPmodel parameters.While CoCiP has been applied in several
publications and compared tomeasurements and othermodel results [48], CoCiP is a highly parameterized
model with inherent epistemic limitations.We aim to emulate prediction uncertainty by capturing the
uncertainty range inCoCiPmodel parameters. To do so, every run of CoCiP hasmodel parameters drawn from
anuncertainty distribution.

CoCiP includes three criticalmodel parameters with nominal values supported by physical and empirical
evidence [10, 15, 33]. Table 1 presentsmodel parameters with a short description of each parameter function
and reference to the original publication variable [10, 15]. For eachmodel parameter, we define a range and
distribution of possible input values based on observations [48] and prior studies ofmodel uncertainty
[15, 33, 49].We set the center of initial wake vortex depth, wind shear enhancement exponent, and
sedimentation impact factor distributions based on the nominal values [10, 15]. Thewind shear enhancement
exponent is bounded by 0 for stably stratifiedflows and estimated as 2/3 for isotropic turbulence [10].We allow
the value to exceed 2/3 but place a hard limit at 1. The initial wake vortex depth has hard limits at 0 (since the
vortexmust be below the plane) and 1 (since it cant exceed themaximumdepth).We limit the value to between
0.3 and 0.7 based onfigure 7 in [10] and discussionwithU. Schumann. Figure S5 and table S1 in the supplement
showhowparameter values correlate with themean EF fromallMonte Carlo samples runwith a specific
parameter vector.

Table 1.Nominal values, spread, and uncertainty distribution forCoCiPmodel parameters.

Parameter Purpose Nominal Spread Distribution

Initial wake vortex depth Scales themax contrail downward displacement after thewake

vortex phase to set initial contrail depth. Denoted byCD0 in

equation (14) of [10].

0.5 [0.3, 0.7] Triangular

Wind shear enhancement

exponent

Scales themagnitude of the shear at contrail scale to account for

subgrid velocity fluctuations. Denoted by n in equation

(39) [10].

0.5 [0, 1] Triangular

Sedimentation impact

factor

Tunable parameter to scale the terminal fall velocity and effective

vertical diffusivity. Denoted by ft in equation (35) of [10].
Nominal values previously reported in [10] as 0.1, but now
taken as 0.5 [15].

0.5 σ = 0.1 Normal
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In addition to the standardCoCiP parameters defined in [10], we define four additional scaling parameters
to capture uncertainty in othermodel parameterizations. Table 2 presents these additionalmodel parameters
with a short description of the parameter function and reference to the original publication [15, 38, 50].We set
the distribution of parameters values to be triangular when the range of potential values has clear limits and
normalwhen the range is less well defined. The non-volatile particulatematter emissions index number (nvPM
EIn) scale factor is definedwith a log-normal distribution to account for uncertainties in the nvPM
emissions [33, 51].

The scaling parameters for RFSW andRFLW capture thefit errors in the parametric contrail RFmodel
described in table 1,figure 5 of [38]. The parametric RFmodel presumes a linear superposition of ice particle
habits with habitmixtures defined as a discrete function of volumetricmean radius (rvol)when calculating the
local contrail RF, the instantaneous change in energyflux per contrail area [10, 52].

While uncertainty in input rvol (and hence reff) is captured by the dispersion-corrected ERA5 ensemble
members, in previous literature the habitmixtures in bands of rvol are point estimates (see figure 14, [10]).We
need to add variance to the point estimates to reflect our uncertainty about the habitmixtures. Statisticians use a
Dirichlet distribution tomodel uncertainty inmixture weights [53]. Samples from aDirichlet distribution are a
vector of non-negative weights that always sum to 1. ADirichlet distribution has amean vector of weights, and
some spread around thatmean. The parameters of theDirichlet distribution areαi , one for eachmember of the
mixture. Themean of theDirichlet is

p , 6i
i

i i

( )a
a

=
å

while the variance decreases as∑iαi increases. To setαi, we thus need to set themean from theGi , the original
habit fraction from [10], and choose a scaling factor for theαi to control howmuch noise to add to themean.We
set

G0.5 96 , 7i i ( )a = +

where 96was chosen to add approximately±10%noise to the dominant habitmixture weights.
For both the short-term and climatological prediction, the CoCiPmodel is run a total of 100 times for each

flight or grid. For each simulation, we randomly select onemodel parameter vector from a collection of 500 pre-
constructedmodel parameter vectors. This sampling is in addition to the random selection of ERA5 ensemble
member.We assume that uncertainties in theCoCiPmodel parameters are independent.We construct the
parameter vector collection ahead of time by randomly sampling the parameter distributions. TheCoCiP
outputs with the additional parameter variationflow through the prediction system as shown infigure 1.
Performing all the CoCiP simulations from sections 2.3-2.4with the differentmodel parameter vectors used
5,408CPUhours.Halving the number of CoCiP simulations by reducing the number offlights or the number of
parameter vectors changes our results bymuch less than the error bars reported in this work, suggesting that
further increasing the number of CoCiP simulationswould not lead to ameaningful change in these results.

2.6. Testing the predictions
Oncewe have short-term and climatological predictions that incorporate both humidity andmodel
uncertainties, we can estimate their respective skills. To estimate the skill of a prediction, wefirst need to create a
performance curvewhich can vary between no skill and perfect skill.

To create such a curve, wefirst sortflight segments in descending order based on their predicted EFpcm.We
start at 0 contrail kilometers and 0 contrail forcing avoided, with an avoidance threshold of positive infinity. For
each segment, if we lower the avoidance threshold just below the predicted EFpcm,we have to avoid the segment

Table 2.Nominal values, spread, and uncertainty distribution for additional scaling parameters.

Parameter Purpose Nominal Spread Distribution

RFSW scale factor Scales shortwave radiative forcing (RFSW) to account for the error
inmodel fit. Based on table 2 from [38].

1 σ = 0.106 Normal

RFLW scale factor Scales longwave radiative forcing (RFLW) to account for the error in
model fit. Based on table 2 from [38].

1 σ = 0.071 Normal

Habit weight

mixtures

Accounts for the uncertainty in habit weightmixtures defined as a

function of volumetricmean radius [10].Modifies default values

provided in table 2 of [10]

Gi αi = 0.5 + 96Gi Dirichlet

nvPMEIn scale

factor

Scalesflight nvPMemissions to account for uncertainty in

modeling.

1 σ = 0.15 Log-normal
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lengths worth offlight, but we also get to avoid the EF. The performance curvewould then go to the right by the
segment length and up (or down) by the EF of the segment.We loop through all segments,moving right and up/
down, until we reach the end of the sorted segments. The result is a performance curve that shows the
performance for all possible avoidance thresholds of EFpcm,which can be seen infigure 5. Algorithm1presents
the pseudocode to generate such a curve.

Algorithm1.Pseudocode for generating performance curves

SortedKeys ← ArgumentSort (PredictedForcing, order = descending)
SortedForcing← []
SortedLength← []
forKey inSortedKeys do

SortedForcing.append (ProxyForcing[Key])
SortedLength.append (ContrailLength[Key])

CumulativeForcing←[0]
forForcing inSortedForcing do

CumulativeForcing.append(CumulativeForcing[len(CumulativeForcing) - 1 ]
+Forcing)

CumulativeLength←[0]
forLength inSortedLength do

CumulativeLength.append (CumulativeLength[len(CumulativeLength) - 1 ]+
Length)

Plot (x=CumulativeLength/CumulativeLength [len(CumulativeLength) - 1 ],
y=CumulativeForcing/CumulativeForcing [len(CumulativeForcing) - 1 ])

Wemust establish ‘no skill’ and ‘perfect skill’ performance curves in order to compute a skill quantity. If we
feed randomvalues intoPredictedForcing for algorithm1, on average it will produce a curve that is a diagonal
linewith a slope of 1, because the fraction of forcing avoidedwould equal the fraction of distance avoided. If we
setPredictedForcing to beProxyForcing in algorithm1, it will be a perfect predictor whose skill cannot be
exceeded, since it has perfect knowledge.

We thus define the skill of a predictor to be the area under the performance curve, scaled so that the diagonal
line has 0% skill and the perfect knowledge curve has 100% skill:

skill
Area under performance curve 0.5

Area under perfect knowledge curve 0.5
8( )=

-
-

3. Results

Wenowpresent results of the experiments: tests of howwell we can calibrate the ERA5 humidities versus
IAGOS,maps illustrating the climatological prediction, and performance curves for both short-term and
climatological predictions.

3.1. Intra-ensemble dispersion of ERA5 relative humidity
The goal of calibrating ERA5 is tomake the unperturbed ERA5 ensemblemember RHi be a good proxy for the
IAGOSRHi, which is only known on a sparse set of points. This section performs three tests on proxy quality.

Thefirst test is the Kolmogorov-Smirnov (KS) test comparing the distribution of the unperturbed ERA5RHi
to the IAGOSRHi. TheKS testmeasures themaximumgap between two cumulative distribution functions
(cdfs), which is 0.0203. That is, the cdf of the unperturbed ERA5RHi and the IAGOSRHi differ by nomore
than 2.03%.

The second test is to show that the joint probability density p(Unperturbed ERA5RHi, Perturbed ERA5RHi)
is similar to p(IAGOSRHi, Perturbed ERA5RHi). This test can be performed qualitatively by creating a density
plot of both of these joints, as can be seen infigure 2. Each point in the density plot reflects one sample from the
RHi ensemble of nine versus a corresponding ground truth (IAGOS) or proxy ground truth (ERA5unperturbed
member).

The joint densities appear qualitatively different at low relative humidity, but are bettermatching at high
relative humidity. Given that we compute EF per contrailmeter and assume that we knowwhether a contrail is
persistent, our analysis is only sensitive to calibration at relative humidity above 100%. Table 3 shows a
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quantitative analysis of the two joint densities.We assess the error rates of using an ensemblemember RHi at a
space-time point to predict whether a proxy (ERA5unperturbed) and the ground truth (IAGOS) are ice-
supersaturated. There are four possible outcomes to this prediction, which corresponds to the four quadrants of
a density plot infigure 2. The lower left is a true negative, the upper right is a true positive, the upper left is a false
negative, and the lower right is a false positive.We can compute these four rates by integrating the density in each
of the four quadrants. Following [17], we also compute the equitable threat score (ETS) for the ice-
supersaturation prediction.

Whenwe do not use any calibration of ERA5, or only use quantile-mapping calibration, ERA5 ensemble
members predict the ice supersaturation of the unperturbed ERA5memberwithmuch higher skill than IAGOS,
which implies that theweather uncertainty is not yet captured. The ETSwithout calibration is 0.179, which is
comparable to the values reported by [17].Whenwe use the stretching transformation of (3), the ETS gap
between predicting unperturbed ERA5 and predicting IAGOSdrops to 0.105, and the largest gap in the rates is
only 1.4% in the false positive rates. Thematching of the rates and ETS gives us confidence that using the
unbiased and stretched ERA5 is a reasonable proxy for predicting the trueweather. Even though our intra-ERA5
ETShas a low value of 0.346, we show in the next two sections that the outputs of CoCiP can adequately find ‘big
hit’ contrails with highly-positive EFpcm.

The third test of the proxy is to compute calibration curves for the RHi distribution around the proxy. These
calibration curves are shown in the SupplementaryMaterial.Wefind that the P-P plots of the calibration
improvewhen both unbiasing and (3) are used.

3.2. Climatological predictions of energy forcing.
Figure 3 shows the EFpcm as a function of local time of day, latitude, and season. Themean EFpcm in our
individual simulation is 309± 38MJ/contrail meter, which overlaps the estimate of 331MJ/contrailmeter
from [41]. There is significant variation in EFpcmover space and time. Roughly speaking, wefind that contrails
that formbetween 3 hours before sunset to 3 hours before sunrise have on average large positive EF, usually
>400MJ/m,while contrails at other times are usually<100MJ/m.The ‘local time’ axis of figure 3 refers to the

Figure 2. Scatter plots between predictions and ground truth. Intra-ensemble scatter for ERA5 is shown on the left and ERA5/IAGOS
scatter is shown on the right. Ice super-saturation region (ISSR)misprediction quadrants are outlinedwith red boxes.

Table 3.Comparison of predicting ice supersaturation in IAGOS and in the ERA5unperturbedmember. To serve as a proxy for
IAGOS, the ERA5 prediction should have a similar equitable threat score (ETS) and similar error rates.

Preprocessing Assumed truth True negatives False negatives False positives True positives ETS

None IAGOS 88.3% 7.3% 2.0% 2.5% 0.179

None ERA5 93.3% 2.2% 1.5% 3.0% 0.425

Unbias only IAGOS 85.5% 4.8% 4.8% 4.9% 0.291

Unbias only ERA5 88.2% 2.1% 2.1% 7.6% 0.609

Unbias+ stretch IAGOS 84.0% 5.1% 6.3% 4.7% 0.241

Unbias+ stretch ERA5 84.8% 4.3% 4.9% 6.0% 0.346
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time the aircraft created the contrail. Since contrails last several hours the boundary between the strongly forcing
and less forcing contrails happens a few hours before sunset/sunrise.

By using a large amount of averaging, we canmake a low-variance estimate of contrail forcing. Note however
that the values in figure 3 are averages, and an individual flightmay deviate from the average value. For all the
contrails in our dataset, the rootmean squared difference (RMSD) between the proxy contrail forcing
(computed fromunperturbed ERA5 data) and the values in figure 3was 598MJ/m.While this RMSD is almost
twice the average EFpcm, in the section belowwe show that the climatological predictions still have skill in
predicting the ‘big hit’ contrails.

3.3. Short-termpredictions
In the previous section, we computed EFpcm for different latitudes, times of day, and seasons by averaging over
ERA5 ensemblemembers and days. Because of the large variation in the EFpcmof individual flights, we examine
whether predicting a short-termEFpcm is a bettermethod offinding ‘big hit’ contrails instead of simply relying
on climatological EFpcm. TheRMSDbetween the nominal contrail forcing and the resulting short-termEFpcm
prediction is 425MJ/m, 29% lower than the climatological prediction value from the previous subsection (598
MJ/m). This is because the short-termprediction can use the daily weather to predict almost all of the ‘big hit’
contrails (aswewill see infigure 5).

We now investigate how short-termEF predictions can still have skill despite the remaining uncertainty.We
start by imagining an interventionwith the goal of preventing asmuch forcing as possible while avoiding 20%of
the contrail distance. If we knew the trueweather, we could do this by finding the 20%of contrails with largest EF
and only avoiding those. In figure 4, we represent this intervention by the ‘Perfect knowledge’ curve, which
shows howwe avoid no contrails below some threshold and every contrail above it. In the dataset studied in this
work, these 20% contrails with largest EF account for 90%of all contrail forcing.

We can also see in figure 4 the impact of having less than perfect knowledge. If we instead choose the 20%of
flights with the largest predicted EFpcm,we get a less effective intervention because some flights predicted to
have a large forcing actually do not (and vice versa). For example, using our short-termpredictions would avoid
the 20%of contrails with a predicted EFpcmof>595MJ/m (the orange dot in thefigure). Because our
predictions are imperfect, wewind up failing to avoid some contrails whose proxy EFpcm is above this
threshold, andwe also end up avoiding some contrails whose proxy EFpcm is below this threshold, even though
wemight have preferred to avoidmore strongly forcing contrails instead.Note, however, that the fraction of

Figure 3.MeanEFpcm calculated for each 10 degrees of latitude, 3 hours of time of day, threemonths out of the year, all of theflight
levels and all of the parameter samples. Error bars are available in the Supplementalmaterial.
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highly-forcing contrails avoided (proxy EFpcm>2000MJ/m) is still quite high. These contrails have somuch
forcing that even our imperfect short-termprediction is usually correct aboutwhether to avoid them. Similarly,
the fraction of contrails with negative forcing (<0MJ/m) that we avoid is very small.Wefind that the contrails
avoided by an intervention using short-termpredictions account for 75%of the total contrail forcing. Though
this is not as good as the 90%of forcing avoidedwith perfect knowledge, if we had no knowledge of which
contrails were the contrails with the largest EFwe could only avoid 20%of the forcing by avoiding 20%of the
contrails. Our short-termpredictions enable us to domuch better than that.

The climatological prediction is less skillful. Compared to the short termpredictions, it avoids less highly-
forcing contrails andmore slightly-forcing contrails, though it also almost never avoids cooling contrails. The
contrails avoided account for 40%of all contrail forcing, which ismuch less thanwhat wewould get with perfect
knowledge but still twice asmuch forcing as wewould have preventedwith no knowledge.

We just described in detail an intervention to avoid 20%of contrails, but of course other interventions are
also possible.We can describe howour different predictionmethods handle different interventions using the
performance curves described in section 2.6.We show such a curve infigure 5. The case where the fraction of
contrail distance=0.2 represents the intervention described above, but the curve alsomaps out all other possible
fractions of avoided contrails.

For the perfect knowledge curve, we see that the fraction of contrail forcing avoided initially rises quickly,
reflecting the small number of ‘big hit’ contrails that contribute a large amount of forcing. In contrast, if we had
no knowledge of the EF of each contrail, the fraction of contrail forcing avoidedwould be equal to the fraction of
contrails avoided (see dashed line in figure 5). Note that these results are roughly consistent with previouswork
[15, 24, 33] if we account for the fact that around 5%of the totalflight distancemakes contrails, although since
the results are for different locations and times they cannot be directly compared.We also show the skill of the
short-term and climatological predictions infigure 5. If a prediction curvematches the perfect knowledge curve,
it would have 100% skill. If a prediction curvematches the no knowledge curve, it would have 0% skill.

In particular, we can see that the short-termprediction has high skill in predicting the proxy, which implies
thatmost of the forcingwe could avoidwith perfect knowledge can also be avoided using short-term
predictions. Note that the perfect knowledge curve also assumes perfect knowledge of theCoCiP parameters,
while the short-termprediction and climatological prediction curves include uncertainty in theCoCiP
parameters.

The perfect knowledge and short-termprediction curves in figure 5 indicate that certain operating points
can avoidmore than 100%of the net contrail EF, because there are some contrails that have negative EF. These
operating points occurwhen the slopes of the curves are negative. If the contrails that have negative EF are
predicted correctly, they get sorted to the right side of the curve andmove the curve downwards. In theory, with
short-termprediction, 100%of the net forcing from contrails can be avoided by route changes for the 42%
contrail kilometers with the highest positive forcing.

Finally, we can compute the skill in predicting the proxy by integrating the area under the short-term or
climatological curves and comparing them to the ‘no knowledge’ curve (0% skill) and the ‘perfect knowledge’
curve (100% skill). This yields a short-term skill of 84% and a climatological skill of 44%.

Figure 4.Contrails avoided if we try to avoid the top 20%of contrail distance.With perfect knowledge, wewould avoid all contrails
above a certain threshold and none of the ones below it.With imperfect knowledgewe avoid all contrails whose predicted forcing is
above some threshold (indicated by dots in the figure), but the proxy forcingmay be smaller.We can see that evenwith this imperfect
knowledge, using short-termpredictions we end up avoiding almost all contrails with high EFpcm, and few of the contrails we avoid
have a small EFpcm. Each point in the figure represents an average of all the contrails with proxy EFpcmwithin 60MJ/mof that point.
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4.Discussion

Despite high intra-weather-ensemble variance of EF estimates, when averaged over nine reanalysis ensemble
members, themean EFpcmproduced byCoCiP has skill in predicting ‘big hit’ contrail conditions, using a proxy
to the ground truth. This suggests EFpcm could be useful in a contrail prediction system, by combining it with a
persistent contrail forecast to createmaps of zones which are likely to generate highly-forcing contrails. Flight
planners and pilots could then leverage thesemaps tomaximize the amount of contrail forcing avoidedwhile
minimizing the cost of contrail avoidancemaneuvers. Figure 5 gives guidance for how a per-flight contrail
prediction system couldwork in practice. The results show that the uncertainty in EF across ERA5 ensemble
members would not prevent predictions of EF frombeing useful when deciding how to targetmitigation efforts
inside these simulations. Imagine one has a goal ofmitigating 65%of contrail EF.Without EF predictions, one
would need to avoid creating approximately 65%of contrails to achieve this goal.With EF prediction in these
simulations, even though the predictions are imperfect, one can achieve the same goal by avoiding only≈15%of
contrails, an improvement ofmore than 4x. Figure 5 does not specifically inform trade-offs, including added fuel
burn and operational considerations, when implementing contrail avoidance in practice. Onemight decide to
try to target 80%of contrail forcing, or try to target themost highly-forcing 10%of contrails. But in all cases in
these simulations both the short-term and climatological predictions allow the fraction of forcing prevented to
bemuch larger than the fraction of contrails avoided. Alternatively, the distance of contrail avoidance can be
substantially reduced, e.g. if 75% forcing reduction is targeted, then per-flight prediction requires avoidance of
only 20%of the contrail distance, rather than 40% from climatological prediction. If this result holds in
operational contrail avoidance systems, it would reduce operational burdens and potentially accelerate contrail
avoidance as a climatemitigation strategy. Figure 5 also does not cover details that are important to contrail
avoidance in practice. Thefigure only considers a threshold on contrail EF, and does not include uncertainty in
predictingwhether a persistent contrail will form, nor does it cover other factors such as limitations on contrail
avoidance due to air traffic congestion. ‘Big hit’ contrailsmay be a small fraction of contrails avoided in practice.
If there is any reason that ‘big hit’ contrails are systematically ignored by an avoidance process, then the fraction
of EF avoidedwill decrease.

The climatological estimates can be applied beyond the current study to improve baseline contrail forcing
estimates whenmissing specificmeteorological conditions or observations. For example, current guidance for
company reporting of aviation non-CO2 emissions suggestsmultiplying total CO2 emissions by a factor of 1.9
[54] regardless of time and location offlight. The climatological estimates could form the foundation of a basic
algorithm to account for average contrail forcing based on origin-destination pair and time of departure. The

Figure 5.Performance curves showing trade-offs between contrail distance avoided vs contrail forcing avoided for different
predictions. The Perfect knowledge curve shows how this tradeoff couldwork if one knew theweather exactly. The other curves show
how the tradeoff wouldwork using short-term and climatological predictions.
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same system could be used as a fallback option formonitoring, reporting, and verification systemswhile higher
fidelitymechanisms are in development and implementation.

This study is one step towards an end-to-end live contrail management system.More research is needed to
create a production system:

• Thoughwe used ERA5 ensemblemembers for both prediction and a proxy to ground truth, amore realistic
setupwould be to use a forecast product (such as ECMWF IFS) tomake predictions. An interesting future
research directionwould be to evaluate how the prediction uncertainties increase with the lead time of the
short-term forecasts.

• Using aCoCiP calculation on one ERA5 ensemblemember as a proxy for ground truth as in this analysismay
result inmis-estimating the true performance curve, to the degree that CoCiP failing to accuratelymodel
contrail phenomena substantially changes the ordering of which flight segments actually caused the largest
contrail energy forcing. In particular, CoCiP does not take into account long-term climate feedback effects
like a climate simulation can.

• Predicting contrail formation is currently a difficult problem if based purely on the humidity fields provided
by numerical weather predictions [17, 19]. Improvements by incorporating other data, such as contrail
detections [55, 56] or other numerical weatherfields [57] into the predictions usingmachine learningmay be
possible.

• Validating the properties of contrails after the fact is useful for both scientific and regulatory purposes. It is
currently often possible to observationally validate whether a givenflight hasmade a persistent contrail
[58, 59], however the total EF produced by a contrail is difficult to estimate fromobservations.

• Observations could be used tomeasure a ground truth of energy forcing in futurework. Current work in
observational estimation of EF has high uncertainties formultiple reasons, among them contrail cirrus
morphology being very similar to natural cirrus, and small sample sizes relative to the total population [60].

This paper probes the uncertainty of the EF of contrails usingCoCiP that arise fromhumidity andmodel
parameter uncertainties. The paper does not assess the uncertainty of the CoCiPmodel itself: given the
uncertainties in, e.g. ice habit distribution, futureworkmay improve uponCoCiP, reduce its uncertainties, or
even replace it with a differentmodel. Previouswork in estimating effective radiative forcing (ERF) fromRFuses
globalflight patterns [61–63].More research is required to understand the ERF impact ofmitigating only ‘big
hit’ contrails.

5. Conclusions

Wehave shown that when calibrating the RHi predictions of the ERA5 ensemblemembers, the resulting
ensemble predictions for short-term contrail energy forcing obtained by use of CoCiP—while accounting for
uncertainty inmodel parameters— aremore skillful than climatological predictions alone, under the
assumption that one of the ensemble CoCiP predictions corresponds to the ground truth. To our knowledge,
this is thefirst exploration of globalMonte Carlo contrail simulations propagating both extensive parameter
uncertainty and uncertainty from (bias- and dispersion-corrected) relative humiditymeteorological inputs.

Wemeasure the skill of the predictions against the proxy by constructing a performance curve of fraction of
total contrail forcing versus fraction of contrail kilometers for all possible decision thresholds. Skill is the area
under the performance curve, scaled so that randomdecisions are 0%and perfect performance is 100%.Under
this setup, the skill of the climatological predictions is 44%while the skill of the per-flight predictions is 84%.

Acknowledgments

Thisworkwas entirely performedwith no external funding.
Flight-level andmap-level experimental data are available onZenodo at https://doi.org/10.5281/zenodo.

12746362. This includes the 500 randomparameter vectors used in theMonte Carlo simulation, and the 500
samples of ice crystal sizes and contrail cross-sectional area (described in the SupplementaryMaterial), to enable
further contrail climatemodeling.Author contributions: JCP,MLS, ZE designed and performed experiments
andwrote the paper. KM, SG contributed algorithms,made figures, and edited the paper. TS did experiments.
MEJS, RT,US contributed ideas and edited the paper. SR contributed data to the experiments. EB andCVA
organized thework and gave feedback on the paper.

13

Environ. Res. Commun. 6 (2024) 095015 J CPlatt et al

https://doi.org/10.5281/zenodo.12746362
https://doi.org/10.5281/zenodo.12746362


Data availability statement

The data that support thefindings of this study are openly available at the followingURL/DOI: https://doi.org/
10.5281/zenodo.12746362.

ORCID iDs

JohnCPlatt https://orcid.org/0000-0002-5652-5303
Marc L Shapiro https://orcid.org/0000-0003-0864-6394
KevinMcCloskey https://orcid.org/0000-0001-9967-4117
Scott Geraedts https://orcid.org/0009-0001-6496-0153
Tharun Sankar https://orcid.org/0000-0002-0557-0972
Marc E J Stettler https://orcid.org/0000-0002-2066-9380
Ulrich Schumann https://orcid.org/0000-0001-5255-6869
SusanneRohs https://orcid.org/0000-0001-5473-2934
Erica Brand https://orcid.org/0009-0003-8173-9914
Christopher VanArsdale https://orcid.org/0000-0001-8473-6725

References

[1] SchumannU1996On conditions for contrail formation from aircraft exhaustsMeteorol. Z. 4–23
[2] Haywood JM, AllanRP, Bornemann J, Forster PM, Francis PN,Milton S, Rädel G, RapA, ShineKP andThorpe R 2009A case study

of the radiative forcing of persistent contrails evolving into contrail-induced cirrus J. Geophys. Res. D: Atmos. 114D24201
[3] LeeDS et al 2021The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018Atmos. Environ. 244 117834
[4] Caldeira K andMcKay I 2021Contrails: tweaking flight altitude could be a climatewinNature 593 341
[5] GierensKMandVazquez-NavarroM2018 Statistical analysis of contrail lifetimes from a satellite perspectiveMeteorol. Z.
[6] Markowicz KMandWitekM2011 Sensitivity study of global contrail radiative forcing due to particle shape Journal of Geophysical

Research: Atmospheres 116D23203
[7] MyhreG and Stordal F 2001On the tradeoff of the solar and thermal infrared radiative impact of contrailsGeophys. Res. Lett. 28

3119–22
[8] MyhreG et al 2009 Intercomparison of radiative forcing calculations of stratospheric water vapour and contrailsMeteorol. Z. 18
[9] Fritz TM, EasthamSD, SpethR L andBarrett S R 2020The role of plume-scale processes in long-term impacts of aircraft emissions

Atmos. Chem. Phys. 20 5697–727
[10] SchumannU2012A contrail cirrus predictionmodelGeoscientificModelDevelopment 5 543–80
[11] Kärcher B 2018 Formation and radiative forcing of contrail cirrusNat. Commun. 9 1–17
[12] Bräuer T et al 2021Reduced ice number concentrations in contrails from low aromatic biofuel blendsAtmos. Chem. Phys. (https://doi.

org/10.5194/acp-21-16817-2021)
[13] Märkl R S et al 2023 Powering aircraft with 100% sustainable aviation fuel reduces ice crystals in contrailsAtmospheric Chemistry and

Physics 24 3813–37
[14] Sridhar B,NgHK andChenNY2012Aircraft trajectory optimization and contrails avoidance in the presence of winds J. Guid.

Control Dyn.
[15] TeohR, SchumannU,Majumdar A and StettlerME J 2020Mitigating the climate forcing of aircraft contrails by small-scale diversions

and technology adoptionEnviron. Sci. Technol. 54 2941–50
[16] Voigt C et al 2021Cleaner burning aviation fuels can reduce contrail cloudinessCommunications Earth&Environment 2 1–10
[17] GierensK,Matthes S andRohs S 2020Howwell can persistent contrails be predicted?Aerospace 7 169
[18] Royal Aeronautical Society. Greener by design; annual report 2018–2019. Technical report, London,UK, 2019. (https://aerosociety.

com/media/12007/greener-by-design-report-2018-2019.pdf)
[19] Agarwal A,Meijer VR, EasthamSD, SpethR L andBarrett S RH2022Reanalysis-driven simulationsmay overestimate persistent

contrail formation by 100%–250%Environ. Res. Lett. 17 014045
[20] PanofskyHA andBrier GW1968 Some applications of statistics tometeorology Earth andMineral Sciences Continuing Education,

College of Earth andMineral Sciences
[21] Eckel FA, AllenMS and SittelMC2012 Estimation of ambiguity in ensemble forecastsWeather Forecast. 27 50–69
[22] Vazquez-NavarroM,MannsteinH andMayer B 2010An automatic contrail tracking algorithm. AtmosphericMeas. Tech. 3 1089–101
[23] WilhelmL,Gierens K andRohs S 2022Meteorological conditions that promote persistent contrailsNATOAdv. Sci. Inst. Ser. E Appl.

Sci. 12 4450
[24] TeohR, Engberg Z, SchumannU,Voigt C, ShapiroM, Rohs S and StettlerM2023Global aviation contrail climate effects from2019 to

2021EGUsphere 2023 1–32
[25] HersbachH et al 2020The ERA5 global reanalysisQuart. J. Roy.Meteor. Soc. 146 1999–2049
[26] WilksD S 2018Univariate ensemble postprocessing Statistical Postprocessing of Ensemble Forecasts (Elsevier) pp 49–89
[27] Wolf K, BellouinN, BoucherO, Rohs S and Li Y 2023Correction of temperature and relative humidity biases in ERA5 by bivariate

quantilemapping: Implications for contrail classification (https://doi.org/10.5194/egusphere-2023-2356)
[28] Reutter P,Neis P, Rohs S and Sauvage B 2020 Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with

IAGOS in situwater vapourmeasurementsAtmos. Chem. Phys. 20 787–804
[29] Hofer S, GierensK andRohs S 2024Howwell can persistent contrails be predicted? an updateAtmos. Chem. Phys. 24 7911–25
[30] MarzbanC 2004TheROC curve and the area under it as performancemeasuresWeather and Forecasting 19 1106–14
[31] BoulangerD, Blot R, BundkeU, GerbigC,HermannM,Nédélec P, Rohs S andZiereisH 2018 IAGOSfinal quality controlled

observational data L2—time series (https://iagos.aeris-data.fr/landing-page/?uuid=575882c0-64ce-4648-bb19-00030d5d63af)

14

Environ. Res. Commun. 6 (2024) 095015 J CPlatt et al

https://doi.org/10.5281/zenodo.12746362
https://doi.org/10.5281/zenodo.12746362
https://orcid.org/0000-0002-5652-5303
https://orcid.org/0000-0002-5652-5303
https://orcid.org/0000-0002-5652-5303
https://orcid.org/0000-0002-5652-5303
https://orcid.org/0000-0003-0864-6394
https://orcid.org/0000-0003-0864-6394
https://orcid.org/0000-0003-0864-6394
https://orcid.org/0000-0003-0864-6394
https://orcid.org/0000-0001-9967-4117
https://orcid.org/0000-0001-9967-4117
https://orcid.org/0000-0001-9967-4117
https://orcid.org/0000-0001-9967-4117
https://orcid.org/0009-0001-6496-0153
https://orcid.org/0009-0001-6496-0153
https://orcid.org/0009-0001-6496-0153
https://orcid.org/0009-0001-6496-0153
https://orcid.org/0000-0002-0557-0972
https://orcid.org/0000-0002-0557-0972
https://orcid.org/0000-0002-0557-0972
https://orcid.org/0000-0002-0557-0972
https://orcid.org/0000-0002-2066-9380
https://orcid.org/0000-0002-2066-9380
https://orcid.org/0000-0002-2066-9380
https://orcid.org/0000-0002-2066-9380
https://orcid.org/0000-0001-5255-6869
https://orcid.org/0000-0001-5255-6869
https://orcid.org/0000-0001-5255-6869
https://orcid.org/0000-0001-5255-6869
https://orcid.org/0000-0001-5473-2934
https://orcid.org/0000-0001-5473-2934
https://orcid.org/0000-0001-5473-2934
https://orcid.org/0000-0001-5473-2934
https://orcid.org/0009-0003-8173-9914
https://orcid.org/0009-0003-8173-9914
https://orcid.org/0009-0003-8173-9914
https://orcid.org/0009-0003-8173-9914
https://orcid.org/0000-0001-8473-6725
https://orcid.org/0000-0001-8473-6725
https://orcid.org/0000-0001-8473-6725
https://orcid.org/0000-0001-8473-6725
https://doi.org/10.1127/metz/5/1996/4
https://doi.org/10.1127/metz/5/1996/4
https://doi.org/10.1127/metz/5/1996/4
https://doi.org/10.1029/2009JD012650
https://doi.org/10.1016/j.atmosenv.2020.117834
https://doi.org/10.1038/d41586-021-01339-7
https://doi.org/10.1029/2011JD016345
https://doi.org/10.1029/2001GL013193
https://doi.org/10.1029/2001GL013193
https://doi.org/10.1029/2001GL013193
https://doi.org/10.1029/2001GL013193
https://doi.org/10.1127/0941-2948/2009/0411
https://doi.org/10.5194/acp-20-5697-2020
https://doi.org/10.5194/acp-20-5697-2020
https://doi.org/10.5194/acp-20-5697-2020
https://doi.org/10.5194/gmd-5-543-2012
https://doi.org/10.5194/gmd-5-543-2012
https://doi.org/10.5194/gmd-5-543-2012
https://doi.org/10.1038/s41467-018-04068-0
https://doi.org/10.1038/s41467-018-04068-0
https://doi.org/10.1038/s41467-018-04068-0
https://doi.org/10.5194/acp-21-16817-2021
https://doi.org/10.5194/acp-21-16817-2021
https://doi.org/10.5194/acp-24-3813-2024
https://doi.org/10.5194/acp-24-3813-2024
https://doi.org/10.5194/acp-24-3813-2024
https://doi.org/10.1021/acs.est.9b05608
https://doi.org/10.1021/acs.est.9b05608
https://doi.org/10.1021/acs.est.9b05608
https://doi.org/10.1038/s43247-021-00174-y
https://doi.org/10.1038/s43247-021-00174-y
https://doi.org/10.1038/s43247-021-00174-y
https://doi.org/10.3390/aerospace7120169
https://aerosociety.com/media/12007/greener-by-design-report-2018-2019.pdf
https://aerosociety.com/media/12007/greener-by-design-report-2018-2019.pdf
https://doi.org/10.1088/1748-9326/ac38d9
https://doi.org/10.1175/WAF-D-11-00015.1
https://doi.org/10.1175/WAF-D-11-00015.1
https://doi.org/10.1175/WAF-D-11-00015.1
https://doi.org/10.5194/amt-3-1089-2010
https://doi.org/10.5194/amt-3-1089-2010
https://doi.org/10.5194/amt-3-1089-2010
https://doi.org/10.3390/app12094450
https://doi.org/10.5194/egusphere-2023-1859
https://doi.org/10.5194/egusphere-2023-1859
https://doi.org/10.5194/egusphere-2023-1859
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/egusphere-2023-2356
https://doi.org/10.5194/acp-20-787-2020
https://doi.org/10.5194/acp-20-787-2020
https://doi.org/10.5194/acp-20-787-2020
https://doi.org/10.5194/acp-24-7911-2024
https://doi.org/10.5194/acp-24-7911-2024
https://doi.org/10.5194/acp-24-7911-2024
https://doi.org/10.1175/825.1
https://doi.org/10.1175/825.1
https://doi.org/10.1175/825.1
https://iagos.aeris-data.fr/landing-page/?uuid=575882c0-64ce-4648-bb19-00030d5d63af


[32] PetzoldA et al 2020 Ice-supersaturated airmasses in the northernmid-latitudes from regular in situ observations by passenger aircraft:
vertical distribution, seasonality and troposphericfingerprintAtmos. Chem. Phys. 20 8157–79

[33] TeohR, SchumannU,Gryspeerdt E, ShapiroM,Molloy J, Koudis G, Voigt C and StettlerME J 2022Aviation contrail climate effects in
theNorth Atlantic from2016 to 2021Atmos. Chem. Phys. 22 10919–35

[34] ECMWF.Copernicus climate data store. https://cds.climate.copernicus.eu/#!/home. Accessed: 2023-12-27.
[35] MaraunD2016 Bias correcting climate change simulations—a critical reviewCurrent Climate Change Reports 2 211–20
[36] ShapiroM, Engberg Z, TeohR, StettlerM andDeanT 2023 pycontrails: Python library formodeling aviation climate impacts
[37] Raftery A E,Gneiting T, Balabdaoui F and PolakowskiM2005Using Bayesianmodel averaging to calibrate forecast ensemblesMon.

Weather Rev. 133 1155–74
[38] SchumannU,Mayer B,Graf K andMannsteinH 2012Aparametric radiative forcingmodel for contrail cirrus J. Appl.Meteorol.

Climatol. 51 1391–406
[39] Engberg Z, TeohR, Abbott T,Dean T, StettlerME J and ShapiroML 2024 Forecasting contrail climate forcing forflight planning and

air trafficmanagement applications: theCocipGridmodel in pycontrails 0.51.0 EGUsphere 2024 1–45
[40] ShapiroML, Engberg Z, Zugic B, TeohR, StettlerME J, SchumannUandMcKay I 2022 Forecasting contrail climate forcing for flight

planning and air trafficmanagement applicationsTheV International Conference on Transport, Atmosphere andClimate (TAC-5)
(https://pa.op.dlr.de/tac/2022/archiv/web/presentations/29_Wed_PM/29-18Shapiro_Wednesday_oral.pdf)

[41] TeohR, Engberg Z, ShapiroM,Dray L and StettlerM2024Ahigh-resolution global aviation emissions inventory based onADS-B
(GAIA) for 2019-2021Atmospheric Chemistry and Physics 24 725–44

[42] Baulleret P 1998UserManual for the Base of Aircraft Data (BADA) - Revision 3.1
[43] NuicA, PolesD andMouillet V 2010 BADA: an advanced aircraft performancemodel for present and future ATMsystems Int. J. Adapt

Control Signal Process. 24 850–66
[44] EASA2021 ICAOaircraft engine emissions databankURL: (https://easa.europa.eu/domains/environment/icao-aircraft-

engineemissions-databank)
[45] SchumannU, Penner J E, ChenY, ZhouC andGraf K 2015Dehydration effects from contrails in a coupled contrail-climatemodel

Atmos. Chem. Phys. 15 11179–99
[46] ApplemanH1953The formation of exhaust condensation trails by jet aircraftBull. Am.Meteorol. Soc. 34 14–20
[47] Schmidt E 1941Die entstehung von eisnebel aus den auspuffgasen vonflugmotoren Schriften der Deutschen Akademie der

Luftfahrtforschung, Verlag R.Oldenbourg,München,Heft 44 vol 5 (Verlag R.Oldenbourg,München)pp 1–15
[48] SchumannU et al 2017 Properties of individual contrails: a compilation of observations and some comparisonsAtmos. Chem. Phys. 17

403–38
[49] SchumannU andGraf K 2013Aviation-induced cirrus and radiation changes at diurnal timescales J. Geophys. Res. D: Atmos. 118

2404–21
[50] SchumannU,Mayer B,GierensK,Unterstrasser S, Jessberger P, PetzoldA, Voigt C andGayet J-F 2011 Effective radius of ice particles

in cirrus and contrails J. Atmos. Sci. 68 300–21
[51] TeohR, StettlerME J,Majumdar A, SchumannU,Graves B andBoies AM2019Amethodology to relate black carbon particle number

andmass emissions J. Aerosol Sci. 132 44–59
[52] BaumBA,Heymsfield A J, Yang P andBedka S T 2005 Bulk scattering properties for the remote sensing of ice clouds. part i:

Microphysical data andmodels J. Appl.Meteorol. Climatol. 44 1885–95
[53] MurphyKP 2022ProbabilisticMachine Learning: An Introduction (MITPress)
[54] ThistlethwaiteG et al 2022Government greenhouse gas conversion factors for company reporting:Methodology paperDepartment of

Business, Energy, and Industrial Strategy, Government of theUK (https://assets.publishing.service.gov.uk/media/
62aee1fbe90e0765d523ca33/2022-ghg-cf-methodology-paper.pdf)

[55] Meijer VR, Kulik L, EasthamSD, Allroggen F, Speth RL, Karaman S andBarrett S RH2022Contrail coverage over theUnited States
before and during the COVID-19 pandemic Environ. Res. Lett. 17 034039

[56] Ng J Y-H,McCloskeyK, Cui J,Meijer VR, Brand E, Sarna A, GoyalN, VanArsdale C andGeraedts S 2024Contrail detection onGOES-
16ABIwith theOpenContrails dataset IEEE Transactions onGeoscience and Remote Sensing 62 1–14

[57] WangZ, Bugliaro L, Gierens K,HegglinM I, Rohs S, Petzold A, Kaufmann S andVoigt C 2024Machine learning for improvement of
upper tropospheric relative humidity in ERA5weathermodel dataEGUsphere 2024 1–28

[58] Chevallier R, ShapiroM, Engberg Z, SolerM andDelahayeD 2023 Linear contrails detection, tracking andmatchingwith aircraft using
geostationary satellite and air traffic dataAerospace 10 578

[59] Geraedts S et al 2024A scalable system tomeasure contrail formation on a per-flight basisEnviron. Res. Commun. 6 015008
[60] Vázquez-NavarroM,MannsteinH andKox S 2015Contrail life cycle and properties from 1 year ofMSG/SEVIRI rapid-scan images

Atmos. Chem. Phys. 15 8739–49
[61] BickelM, PonaterM, Bock L, BurkhardtU andReineke S 2020 Estimating the effective radiative forcing of contrail cirrus J. Clim. 33

1991–2005
[62] PonaterM,Marquart S, Sausen R and SchumannU2005On contrail climate sensitivityGeophys. Res. Lett. 32
[63] RapA, Forster PM,Haywood JM, Jones A andBoucherO2010 Estimating the climate impact of linear contrails using theUKmet

office climatemodelGeophys. Res. Lett. 37 L20703

15

Environ. Res. Commun. 6 (2024) 095015 J CPlatt et al

https://doi.org/10.5194/acp-20-8157-2020
https://doi.org/10.5194/acp-20-8157-2020
https://doi.org/10.5194/acp-20-8157-2020
https://doi.org/10.5194/acp-22-10919-2022
https://doi.org/10.5194/acp-22-10919-2022
https://doi.org/10.5194/acp-22-10919-2022
https://cds.climate.copernicus.eu/#!/home
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/JAMC-D-11-0242.1
https://doi.org/10.1175/JAMC-D-11-0242.1
https://doi.org/10.1175/JAMC-D-11-0242.1
https://pa.op.dlr.de/tac/2022/archiv/web/presentations/29_Wed_PM/29-18Shapiro_Wednesday_oral.pdf
https://doi.org/10.5194/acp-24-725-2024
https://doi.org/10.5194/acp-24-725-2024
https://doi.org/10.5194/acp-24-725-2024
https://doi.org/10.1002/acs.1176
https://doi.org/10.1002/acs.1176
https://doi.org/10.1002/acs.1176
https://easa.europa.eu/domains/environment/icao-aircraft-engineemissions-databank
https://easa.europa.eu/domains/environment/icao-aircraft-engineemissions-databank
https://doi.org/10.5194/acp-15-11179-2015
https://doi.org/10.5194/acp-15-11179-2015
https://doi.org/10.5194/acp-15-11179-2015
https://doi.org/10.1175/1520-0477-34.1.14
https://doi.org/10.1175/1520-0477-34.1.14
https://doi.org/10.1175/1520-0477-34.1.14
https://doi.org/10.5194/acp-17-403-2017
https://doi.org/10.5194/acp-17-403-2017
https://doi.org/10.5194/acp-17-403-2017
https://doi.org/10.5194/acp-17-403-2017
https://doi.org/10.1002/jgrd.50184
https://doi.org/10.1002/jgrd.50184
https://doi.org/10.1002/jgrd.50184
https://doi.org/10.1002/jgrd.50184
https://doi.org/10.1175/2010JAS3562.1
https://doi.org/10.1175/2010JAS3562.1
https://doi.org/10.1175/2010JAS3562.1
https://doi.org/10.1016/j.jaerosci.2019.03.006
https://doi.org/10.1016/j.jaerosci.2019.03.006
https://doi.org/10.1016/j.jaerosci.2019.03.006
https://doi.org/10.1175/JAM2308.1
https://doi.org/10.1175/JAM2308.1
https://doi.org/10.1175/JAM2308.1
https://assets.publishing.service.gov.uk/media/62aee1fbe90e0765d523ca33/2022-ghg-cf-methodology-paper.pdf
https://assets.publishing.service.gov.uk/media/62aee1fbe90e0765d523ca33/2022-ghg-cf-methodology-paper.pdf
https://doi.org/10.1088/1748-9326/ac26f0
https://doi.org/10.1109/TGRS.2023.3345226
https://doi.org/10.1109/TGRS.2023.3345226
https://doi.org/10.1109/TGRS.2023.3345226
https://doi.org/10.3390/aerospace10070578
https://doi.org/10.1088/2515-7620/ad11ab
https://doi.org/10.5194/acp-15-8739-2015
https://doi.org/10.5194/acp-15-8739-2015
https://doi.org/10.5194/acp-15-8739-2015
https://doi.org/10.1175/JCLI-D-19-0467.1
https://doi.org/10.1175/JCLI-D-19-0467.1
https://doi.org/10.1175/JCLI-D-19-0467.1
https://doi.org/10.1175/JCLI-D-19-0467.1
https://doi.org/10.1029/2005GL022580
https://doi.org/10.1029/2010GL045161

	1. Introduction
	2. Methods and materials
	2.1. Unbiasing and removing under-dispersion in ERA5
	2.2. CoCiP contrail model
	2.3. Climatological energy forcing prediction
	2.4. Short-term energy forcing prediction
	2.5. Incorporating model uncertainty
	2.6. Testing the predictions

	3. Results
	3.1. Intra-ensemble dispersion of ERA5 relative humidity
	3.2. Climatological predictions of energy forcing.
	3.3. Short-term predictions

	4. Discussion
	5. Conclusions
	Acknowledgments
	Data availability statement
	References



