Mapping Solar-Induced Fluorescence at High Spatial Resolution using Data from the Imaging Spectrometer DESIS on-board the International Space Station

> Stefan W Maier maitec stefan.maier@maitec.com.au

Rupert Müller & Miguel Pato Remote Sensing Technology Institute, Earth Observation Center - German Aerospace Center (DLR)

What is Solar Induced Fluorescence (SIF)?

What is Solar Induced Fluorescence (SIF)?

SIF Contribution to At-Sensor Radiance

space-borne sensor

What is SIF used for?

SIF is produced only by the photosynthetic apparatus SIF is linked to instantaneous photosynthetic activity \rightarrow instantaneous GPP, early disease and stress detection reflectance fluorescence (red/NIR light) chemical energy (photosynthesis) heat

SIF Retrieval - 3FLD Method

radiance at sensor (in small spectral range so R and L_{fluorescence} are wavelength independent):

 $L_{\lambda} = \left(\frac{R E_{\lambda}^{0}}{\pi} + L_{fluorescence}\right) T_{\lambda} + L_{\lambda}^{path}$

measure in two spectral bands (A, B):

$$L_{fluorescence} = \frac{1}{k_3} (L_A - k_1 L_B - k_2) \qquad k_1 \equiv \frac{E_A^0 T_A}{E_B^0 T_B}; k_2 \equiv L_A^{path} - k_1 L_B^{path}; k_3 \equiv T_A - k_1 T_B$$

3FLD: A is a virtual band using sensor bands on both sides of B and centred on B

Maier, Günther & Stellmes 2003. Sun-induced fluorescence: a new tool for precision farming. In *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 209-222

3FLD Method - Retrieval Error

 $1/k_1 \sim 0.16$ no atmospheric spectral features $\rightarrow 1/k_1 = 1$

Therefore:

lowest error

B is in O₂A atmospheric absorption band

A is a virtual band using sensor bands on both sides of O₂A atmospheric absorption band

3FLD Method - Spectral Resolution

FWHM	1/k ₁	$\Delta L_{f} / \Delta L$
0.2nm	~0.05	~5
1.3nm	~0.16	~4
3nm	~0.35	~5
10nm	~0.65	~10

DESIS Overview

- imaging spectrometer (push-broom)
- platform: International Space Station
- no coverage of high latitudes
- frequent coverage of equatorial regions and mid-latitudes
- varying observation times
- 402 1000nm spectral range
- 235 spectral channels
- 2.55nm spectral sampling
- FWHM 3.5nm
- 30m spatial resolution
- 1024 spatial pixel
- 13bit + 1bit gain
- **10% absolute radiometric accuracy**

Is DESIS Suitable for 3FLD in O₂A Band?

10

Is DESIS Suitable for 3FLD in O₂A Band?

11

3FLD Method - Determination of Constants

$$L_{fluorescence} = \frac{1}{k_3} (L_A - k_1 L_B - k_2) \qquad k_1 \equiv \frac{E_A^0 T_A}{E_B^0 T_B}; k_2 \equiv L_A^{path} - k_1 L_B^{path}; k_3 \equiv T_A - k_1 T_B$$

$\mathbf{k}_{_{1}}\text{,}\ \mathbf{k}_{_{2}}\ \text{and}\ \mathbf{k}_{_{3}}\ \text{depend}\ \text{on:}$

- atmosphere
- observation geometry
- sensor spectral characteristics (band centre wavelength and FWHM)

L_{fluorescence} is very small. Requirement for very high radiometric accuracy, i.e. high demand on:

- absolute radiometric calibration
- dark signal correction
- non-linearity correction

Smile Effect DESIS

variation of band centre wavelength across-track (\rightarrow smile effect)

potentially variation of band centre wavelength with temperature / time

variation of spectral resolution across-track potentially variation of spectral resolution with temperature / time

Impact of Varying Centre Wavelength and Spectral Resolution

14

In-Scene Instrument Calibration for 3FLD

3FLD equation:

$$L_{fluorescence} = \frac{1}{k_3} (L_A - k_1 L_B - k_2)$$

non-fluorescent targets:

 $L_{A} = k_{1}L_{B} + k_{2}$

 ${\bf k}_1$ and ${\bf k}_2$ can be determined from image scene by selecting non-fluorescent targets sensor properties vary across track

 \rightarrow k₁ and k₂ have to be determined for each across track pixel separately

Results (Litchfield Supersite / NASVF, Australia)

Results (Litchfield Supersite / NASVF, Australia)

Results (Litchfield Supersite / NASVF, Australia)

19

SIF can be retrieved from DESIS data

simultaneous sensor correction, atmosphere correction and SIF retrieval to achieve required accuracy and SNR (cannot be done using standard products)

- SIF @30m resolution from space
- fills important spatial and temporal scale gap
- SIF retrieval possible despite very low / no understorey greenness
- SIF retrieval possible despite canopy greenness at lowest level
- SIF retrieval possible despite erectophile leaf angle distribution in canopy
- orbit of International Space Station provides varying observation times

What's Next?

- comparison with radiative transfer modelling and neural network approach developed in FluoMap (DLR, FZJ, maitec)
- comparison with simultaneous HyPlant SIF
- implementation of operational processing chain for DESIS SIF retrieval
- diurnal and seasonal studies (same area captured 2-3 times on same day)
- compare differing dynamics of understorey and canopy of savanna vegetation
- compare differing dynamics of savanna and riparian vegetation
- development of detailed error model for DESIS and error analysis for 3FLD

Questions?

stefan.maier@maitec.com.au

Scientific and Engineering Consulting

PO Box U19Bergtorstrasse 21Charles Darwin University NT 0815D-88316 Isny im AllgäuAustraliaGermany