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FluoMap: Sun-induced fluorescence (SIF) prediction from 
different imaging sensors

‣ SIF estimation from imagery 

‣ from different sensors: 
HyPlant, DESIS 

‣ at multiple spatial scales  
(0.5m - 2m / 30m) 

‣Model development and 
intercomparison  

‣ Corresponding data sets acquired 
in 2020 and 2023
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‣ see talk by Miguel Pato  
on Wed 16-17.30, DESIS session
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Model Development with FLEX’ Airborne Demonstrator HyPlant

FLUO

DUAL

‣ FLUO is the airborne demonstrator  
for FLEX 

‣ 0.24 nm FWHM, 0.11 nm SSI 

‣ 6 years of comparable campaign  
acquisitions 

‣ > 770 acquisitions, 384  [2000, 10’000] px 

‣ Operational Baseline SIF Retrieval Methods  

‣ Spectral Fitting Method (SFM),  
  Cogliati et al. 2019 

‣ Improved Fraunhofer Line Discrimination 
 (iFLD), Damm et al. 2022

×
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We extend the Spectral Fitting Method Neural Network (SFMNN) 
with accurate forward simulation

Buffat et al. 2024, submitted
Buffat et al, IGARSS 2023

‣ Leverage exact radiative transfer models (RTMs) to improve L̂

‣ Train an encoder  and decode to physical parameters  

‣ Physical, physiological and sensor-related constraints enforced 
by loss and architecture 

‣ Four-stream model  allows for self-supervised training 

‣ Yields performance comparable to SFM (Cogliati et al. 2019)

ein p

L̂

https://ieeexplore.ieee.org/document/10282828/
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Strategy
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π
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Simulation
atmospheric radiative transfer


sensor model

Emulation
Fast emulator for neural network 

training

Tight Emulator Integration
Integrate Emulator directly in the 

predictor network

Self-supervised Neural 
Network Training

Constraint & Loss Formulation
RE0

λ : Reflected solar irradiance

Lf : Fluorescence Emission

Lp
λ : Path radiance

θSZA, γ, ϕ : Solar zenith, Viewing and Relative Azimuth Angle

observer

sun
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Canopy
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Simulation and emulation of atmospheric radiative transfer 
and sensor response Pato et al. (2024), submitted

‣ Dedicated simulation tool for radiances around 
O2-A absorption band 

‣ Atmosphere & geometry: MODTRAN6 

‣ Reflectance & SIF: parametric models 

‣ Dense sampling of parameter space  
 HyPlant samples 

‣ Emulator: 4th order polynomial approximates 
the simulations very well 

‣ Fast computation 

‣ Easily integrated in a neural network 

∼ 1.5 × 107
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Simulation and emulation of atmospheric radiative transfer 
and sensor response 

Pato et al, IGARSS 2023

‣ Dedicated simulation tool for radiances around 
O2-A absorption band 

‣ Atmosphere & geometry: MODTRAN6 

‣ Reflectance & SIF: parametric models 

‣ Dense sampling of parameter space  
 HyPlant samples 

‣ Emulator: 4th order polynomial approximates 
the simulations very well 

‣ Fast computation 

‣ Easily integrated in a neural network 

∼ 1.5 × 107

https://ieeexplore.ieee.org/document/10281579
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Emulator integration in a neural network architecture

Residual loss
SNR-based weighting

Physiological prior

‣ Pre-training + Fine-tuning  

‣ Specialized loss 

‣ Architectural constraints: 

‣ Pixel: Reflectance, SIF 

‣ Patch: Atmosphere 

‣ Across-Track: Sensor
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Emulator integration in a neural network architecture

‣ Pre-training + Fine-tuning  

‣ Specialized loss 

‣ Architectural constraints: 

‣ Pixel: Reflectance, SIF 

‣ Patch: Atmosphere 

‣ Across-Track: Sensor

‣ Benefits 

‣ Upon Generalization: fast inference 

‣ Exact pixel-wise physical parametrization 
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Reconstruction errors
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Campaign data set validation with in-situ SIF measurements 
in a winter wheat field Forward scattering

MAE = 0.15 mW nm−1 sr−1 m−2
r2 = 0.53

±0.2 mW nm−1 sr−1 m−2

RAA > 50 °
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Pixel-wise parametrization allows for compensation of 
optical path differences in hilly terrain

SFMNN (ours)

SFM (Cogliati et al. 2019)

Elevation

2023/06/13 14:44 (Sophienhöhe) 
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Conclusion & Outlook
‣ The hybrid SIF retrieval approach improves SIF predictions 

‣ Extending simulation data base extension for larger validation study 

‣ Portability to other airborne and spaceborne sensors 

‣ DESIS (see talk by Miguel Pato on Wed 16-17.30, DESIS session) 

‣ FLEX 

‣ After training, the retrieval model is fast  

‣ Optimization isn’t performed for each pixel. 

‣ Generalization of trained models across different domains (e.g. different 
campaigns) has not yet been established systematically. 

‣ Pixel-wise model parametrization is possible without simplifications.  

‣ SIF prediction in hilly terrain can be addressed. 
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Parametrization

DB Parameter
HyPlant DB

1 2 3 4 5

A
T
M

Atmosphere model mls mls mls mls mls

H2O [cm] 2.0 0.3�3.0 0.3�3.0 0.3�3.0 0.3�3.0

O3 [DU] 332 332 332 332 332

AOT550 [] 0.1 0.05�0.40 0.05�0.40 0.05�0.40 0.02�0.30

aerosol model rural rural rural rural rural

g [] 0.8 [�1,+1] [�1,+1] [�1,+1] �
Geometry TA [�] 0 0 0�20 0�20 0�20

SZA [�] 30 30 20�55 20�55 20�55

RAA [�] 90 90 0�180 0�180 0�180

hgnd [m] 0 0 0�300 0�300 0�300

hsen [km] 0.675 agl
1.559 agl

0.675 agl
1.559 agl

0.659�0.691 agl
1.543�1.598 agl

0.659�0.691 agl
1.543�1.598 agl 0.659�0.691 agl

S
E
N
S
O
R

Surface ⇢740 [] 0.05�0.60 0.05�0.60 0.05�0.60 0.05�0.60 0.05�0.60

s [nm�1] 0�0.0008 0�0.0008 0�0.0008 0�0.0008 0�0.012

e [] 1 1 1 1 0�1

F737/F0 0�8 0�8 0�8 0�8 0�8

Sensor �CW [nm] 0 0 0 [�0.080, +0.023] [�0.080, +0.080]

�FWHM [nm] 0 0 0 [�0.040,+0.040] [�0.040,+0.040]

Table B.2: Configuration of input parameters for HyPlant simulated datasets. For each database, parameters in gray are varied
within the reported ranges. Separate HyPlant sub-databases are generated for the two ranges of sensor altitudes at around 675
and 1559 m agl (except for DB 5). The radiance unit used to specify the fluorescence output F737 is F0 = 1mW/m2/sr/nm.
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