

Leveraging a large-scale radiative transfer simulation for an emulator based retrieval scheme of sun-induced fluorescence in HyPlant imagery

17.04.2024

<u>Jim Buffat¹, Miguel Pato², Kevin Alonso³, Stefan Auer², Emiliano Carmona², Stefan Maier², Rupert Müller²,</u> Patrick Rademske¹, Uwe Rascher¹ and Hanno Scharr⁴

¹ Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences ² German Aerospace Center (DLR), Earth Observation Center, Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ³ RHEA Group c/o European Space Agency (ESA), Largo Galileo Galilei, 00044 Frascati, Italy ⁴ Forschungszentrum Jülich GmbH, Institute of Advanced Simulations, IAS-8: Data Analytics and Machine Learning

FluoMap: Sun-induced fluorescence (SIF) prediction from different imaging sensors

- SIF estimation from imagery
 - from different sensors: HyPlant, DESIS
 - at multiple spatial scales (0.5m - 2m / 30m)
- Model development and intercomparison
 - Corresponding data sets acquired in 2020 and 2023

DESIS

HyPlant FLUO

Mong track

FluoMap: Sun-induced fluorescence (SIF) prediction from different imaging sensors

- SIF estimation from imagery
 - from different sensors: HyPlant, DESIS
 - at multiple spatial scales (0.5m - 2m / 30m)
- Model development and intercomparison
 - Corresponding data sets acquired in 2020 and 2023

DESIS

HyPlant FLUO

Model Development with FLEX' Airborne Demonstrator HyPlant

- FLUO is the airborne demonstrator for **FLEX**
- 0.24 nm FWHM, 0.11 nm SSI
- 6 years of comparable campaign acquisitions
- ► > 770 acquisitions, 384 × [2000, 10'000] px
- Operational Baseline SIF Retrieval Methods
 - Spectral Fitting Method (SFM), Cogliati et al. 2019
 - Improved Fraunhofer Line Discrimination *(iFLD)*, Damm et al. 2022

We extend the Spectral Fitting Method Neural Network (SFMNN) with accurate forward simulation

17.04.2024

- Train an encoder e_{in} and decode to physical parameters p
- Physical, physiological and sensor-related constraints enforced by loss and architecture
- **Four-stream model** \hat{L} allows for self-supervised training
- Yields performance comparable to SFM (Cogliati et al. 2019)

$$\rightarrow \underline{p} \longrightarrow \hat{L}(\underline{p})$$

Leverage exact radiative transfer models (RTMs) to improve L

Simulation and emulation of atmospheric radiative transfer and sensor response

- Dedicated simulation tool for radiances around O₂-A absorption band
 - Atmosphere & geometry: MODTRAN6
 - Reflectance & SIF: parametric models
- **Dense sampling** of parameter space $\sim 1.5 \times 10^7$ HyPlant samples
- Emulator: 4th order polynomial approximates the simulations very well
 - Fast computation
 - Easily integrated in a neural network

Simulation and emulation of atmospheric radiative transfer and sensor response

- Dedicated **simulation tool** for radiances around **O**₂-**A** absorption band
 - Atmosphere & geometry: MODTRAN6
 - Reflectance & SIF: parametric models
- Dense sampling of parameter space $\sim 1.5 \times 10^7$ HyPlant samples
- Emulator: 4th order polynomial approximates the simulations very well
 - Fast computation
 - Easily integrated in a neural network

8

Emulator integration in a neural network architecture

Measurement

- Pre-training + Fine-tuning
- Specialized loss
- Architectural **constraints**:
- Pixel: Reflectance, SIF
- Patch: Atmosphere
- Across-Track: Sensor

Emulator integration in a neural network architecture

Measurement

- Pre-training + Fine-tuning
- Specialized **loss**
- Architectural **constraints**:
- Pixel: Reflectance, SIF
- Patch: Atmosphere
- Across-Track: Sensor

Benefits

- Upon Generalization: fast inference
- Exact pixel-wise physical parametrization

Reconstruction errors

Mitglied der Helmholtz-Gemeinschaft

Campaign data set validation with in-situ SIF measurements in a winter wheat field

17.04.2024 Mitglied der Helmholtz-Gemeinschaft

Forward scattering

Pixel-wise parametrization allows for compensation of optical path differences in hilly terrain

2023/06/13 14:44 (Sophienhöhe)

17.04.2024 Mitglied der Helmholtz-Gemeinschaft

13

Conclusion & Outlook

- The hybrid SIF retrieval approach improves SIF predictions
 - Extending simulation data base extension for larger validation study
- Portability to other airborne and spaceborne sensors
 - DESIS (see talk by Miguel Pato on Wed 16-17.30, DESIS session)
 - ► FLEX
- After training, the retrieval model is fast
 - Optimization isn't performed for each pixel.
 - Generalization of trained models across different domains (e.g. different) campaigns) has not yet been established systematically.
- Pixel-wise model parametrization is possible without simplifications.
 - SIF prediction in hilly terrain can be addressed.

Acknowledgements: This work is part of the project "FluoMap" funded by the Helmholtz Initiative and Networking Fund, Helmholtz AI, Deutsches Zentrum für Luft- und Raumfahrt (DLR) and Forschungszentrum Jülich GmbH (FZJ). The authors gratefully acknowledge the computing time granted through JARA on the supercomputer JURECA [1] at Forschungszentrum Jülich.

[1] Jülich Supercomputing Centre. (2021). JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich Supercomputing Centre Journal of large-scale research facilities, 7, A182. http://dx.doi.org/10.17815/jlsrf-7-182

Parametrization

Parameter

Atmosphere	model	mls
	H_2O [cm]	0.3-3.0
	$O_3 [DU]$	332
	AOT ₅₅₀ []	0.02 - 0.30
	aerosol model	rural
	g []	
Geometry	TA $[^{\circ}]$	0-20
	SZA [°]	20 - 55
	RAA [°]	0-180
	$h_{\rm gnd} \ [{\rm m}]$	0-300
	$h_{\rm sen} \; [{\rm km}]$	$0.659 {-} 0.691$ agl
Surface	$ ho_{740} []$	$0.05 {-} 0.60$
	$s [\mathrm{nm}^{-1}]$	0 - 0.012
	e []	0-1
	F_{737}/F_0	0-8
Sensor	$\delta_{\rm CW}$ [nm]	[-0.080, +0.080]
	$\delta_{\rm FWHM}$ [nm]	[-0.040, +0.040]

