ALLSKY-CAMERA SYSTEM FOR MONITORING OF OPTICAL SATELLITE DOWNLINKS

Iker Aldasoro Final presentation 09.09.2024

Iker Aldasoro, Communications and Navigation, 09.09.2024

- 1. Motivation
- 2. Proposed system
- 3. Testing
- 4. Conclusion

MOTIVATION

Free Space Optical Communications Improvements

OVER RADIO-FRECUENCY:

5

Motivation

OGS' LEO signal detection :

- 1. Satellite's incorrect orbit data
- 2. Satellite's laser
- 3. Visibility / clouds
- 4. OGS functioning

6

OGS' LEO signal detection :

- 1. Satellite's incorrect orbit data
- 2. Satellite's laser
- 3. Visibility / clouds
- 4. OGS functioning

SOURCE OF ERROR UNKNOWN!

Motivation

Goal Validation tool usable during link operations

- Full hemisphere coverage, no pointing nor orbit knowledge is needed, as we could see the satellite at all time.
- Compact, portable and self-sufficient.
- Able to detect azimuth, elevation and intensity received by the satellite, allowing evaluation of pointing quality.
- General application useful for any satellite emitting around 1550nm.

FINAL OVERVIEW OF THE SYSTEM

 $\widetilde{\int}$ 16 cm

 $BLLO$

 $14cm$

The following is the proposed preliminary final system:

Final System Overview

■ Sensor resolution and pixel size will influence the angle of view.

 $D_{sensor size} = D_{sensor res} P_{size}$

■ We should look for the biggest sensor possible.

Image credits: https://www.1stvision.com/cameras/IDS/IDS-manuals/en/basics-sensor-size.html

InGaAs Camera Camera selection

- At first, Sony IMX 990/ 991; ½', ¼'
SenSWIR Sensors (400nm —
1700nm).
■ Wavelength range is not that
important for our application.
At important for our application.
At any propose and Navigation, 09.09.2024 SenSWIR Sensors (400nm – 1700nm).
	- Wavelength range is not that important for our application.

Enclosure \bigotimes Lens Power I IR Came Interface Θ Dome $\boxed{}$ Compute Python Projec

Lens Challenges

- lenses.
- SWIR lenses, expensive, not enough angle of view.
- VIR lenses, wide enough, bad infrared transmission.
- \nTwo options; SWIR lenses or VIR lenses.\nSWIR lenses, expensive, not enough angle of view.\nVR lenses, wide enough, bad infrared transmission.\nMust be compatible with our sense size and camera mount.\n ■ Must be compatible with our sensor size and camera mount.

1000

MVL4WA Transmission

100

80

60

40

20

0

300 400

600

800

Wavelength (nm)

Transmission (%)

Lens Lens selection

- Navitar MVL4WA, ½' 132.1 ° FOV.
- With 2/3' sensor, FOV should be higher.
- We are at risk of vignetting or unexpected distortions.
- **Clear image 140° FOV.**

Final System Overview

The following is final system:

Figure 3.11: Final diagram of the proposed AllSkyCam4OLEODL system. Ethernet cables in red, power cables in black.

¹⁵ Iker Aldasoro, Communications and Navigation, 09.09.2024

Python Script Camera modes

- **Example Operation**
- **Elmage Subtraction**
- **E** Hot pixel removal:

Python Script Satellite tracking

- Normal system:
	- Blurring
	- Thresholding
- **Exposure will change** during operation
- **Different for daytime** and night-time

Bluring + Otsu Thresholding

Python Script Satellite tracking - Daytime

Enclosure

 \prod IR Camera

Interface

 $\frac{\pi}{2}$ Power

 \bigotimes Lens

 \bigotimes Dome

 -250

 -200

 -150

 100

 -50

18 Iker Aldasoro, Communications and Navigation, 09.09.2024

Python Script Azimuth and elevation - elevation

Equisolid projection:

$$
r = 2f \sin \frac{\theta}{2}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x - x_c)^2 + (y - y_c)}
$$
\n
$$
r = \sqrt{(x -
$$

Python Script Azimuth and elevation - azimuth

• Origin is in the top left of the frame.

 $(b_1, b_2) = (a_1 + r \sin \theta, a_2 + r \cos \theta)$

Python Script GUI

21 Iker Aldasoro, Communications and Navigation, 09.09.2024

TESTING

22

File Edit Image Options View Help

File Edit Image Options View Help

File C X C C Options View Help

GQ++HEP3

DLR

- We are using Flying laptop as it is one of the worse cases we can try.
- Being a camera.
	- No Pointing losses.
	- No Scintillation losses.
	- No Rx internal losses.

$$
I_o(L) = \frac{4ln2}{\pi} * \frac{P_{tx}}{(L * \theta_{FWHM})^2}
$$

Simulated testbed:

$$
P_{tx}=0.2\mu W\left(1.6mW-50dB\right)
$$

 $L = 2.65m$

$$
\theta_{FWHM}=0.134\ rad
$$

Basement Testing Done with a SMF-28 fiber + 50dB of attenuation

• With the values previously stated $I_o(L)$ should be equal to 0.1396 $\mu W/m^2$.

■ It is seen, so Flying laptop should be seen as well.

Intensity calibration Method

- The test tower is too bright (0 dBm).
- **Example 2 Laser that variates the power on a mount**

2024-02-08 21:14:15.356
Exposure: 590.0 us

N

O

NW

W

SW

Exightness of (180, 33): 1.843 um/m-2 -> 218.0
Exightness 5x5 grid: 0.583 um/m-2 -> 1854
Iker Aldasoro, Communications and Navigation, 09.09.2024

Е

Iker Aldasoro, Communications and Navigation, 09.09.2024

- We have proven the device to be possible.
- Fine-tune reference intensity to obtain better results.
- More testing is needed.
- Make it able to be operated remotely.

THANK YOU FOR YOUR ATTENTION!

Iker Aldasoro, Communications and Navigation, 09.09.2024