
Department of Electrical, Electronic and Communications Engineering

Bachelor’s Degree in
Telecommunications Engineering

Bachelor’s Thesis

AllSky-Camera system for
Monitoring of Optical Satellite

Downlinks

Supervisor Student

Prof. Dr. Miguel A. G. Laso Iker Aldasoro Marculeta

DLR
Deutsches Zentrum
für Luft- und Raumfahrt
German Aerospace Center

The thesis work has been carried out at the German Aerospace Center (DLR),
in the Institute of Communications and Navigation (IKN) with collaboration of

the German Space Operations Center (GSOC), site Oberpfaffenhofen.

DLR
Supervisors

Dr. Dirk Giggenbach, IKN (Inst. of Communications and Navigation)
Dr. Marcus T. Knopp, RSC3 (Responsive Space Center)

Academic year 2023/2024

Acknowledgements

First of all, major thanks to my parents and family, for their upbringing and guiding me throughout
my journey to adulthood, and for being there for me in the highs and lows. This could not have been
possible without you.

I cannot fully express my gratitude to both my supervisors at the German Aerospace Center (DLR), Dr.
Dirk Giggenbach and Dr. Marcus T. Knopp, for their guidance and support. I am immensely grateful
for the time they dedicated to me, even outside of office hours, and giving the chance to experience this
magnificent opportunity. A special thanks to Andrea for all her help with the measurements and for
lending me a hand whenever I needed it.

I am also grateful to Dr. Miguel Angel Gomez Laso for his engaging lectures during my studies
and his invaluable support and advice during my stay. I am also sorry for the timing of this work,
which has not been optimal.

A big thanks to my friends from Pamplona, who helped me stay grounded and motivated during
this long period away from home. We do not really value what we have, how close are we, although
when being far apart. The longer and farther I am, the more I appreciate it.

Lastly, I would like to thanks all the students from the Institute of Communications and Naviga-
tion: Chiara, Salvatore, Davide, Jan, Aurora, Matteo, Thomas, Luka, Raphael, Guillaume, Matti,
Uri... Time has passed too quickly for us to realize it. You have all helped me grown up so much as a
professional, but most importantly as a person, for which I am deeply thankful. I am sure you all have
bright futures ahead of you—you are all wonderful people.

To whom it may concern: thank you, I am sorry, I love you.

Abstract

Satellites widely use the Radio Frequency (RF) band for communications. However, the rapid expansion
of Low Earth Orbit (LEO) in the last decade, driven by reduce costs, has led to larger volumes of data
to be transmitted from these satellites (the same problem appears in deep space communications).
Optical communications offer a solution, providing higher throughputs with reduced equipment volume,
lower power consumption, all while avoiding of the regulatory restrictions and tariffs associated with
RF. The main problem of space-to-ground links is that the need to face multiple loss-effects primarily
due to three main factors: pointing-error losses caused by the satellite’s pointing precision; Free-Space
Losses (FSL) resulting from the orbit geometry; and atmospheric effects and visibility problems such
as atmospheric attenuation, scintillation, and obstruction. This could lead to miss the downlink, being
difficult to assess exactly why did that happen.
We hypothesized that a validation tool could be developed as a proof of concept to evaluate the failure
point of the operation. Based on an Indium Gallium Arsenide (InGaAs) camera, the system can locate
the satellite and estimating its elevation, azimuth and the received intensity at the camera compared to
the expected intensity based on the link budget, all without requiring mechanical tracking. This tool is
a waterproof enclosure capable of being transported anywhere with any issue. The camera is fitted with
a wide-angle lens, providing a 140 degrees field of view, capturing most of the relevant hemisphere. We
tested the lens to estimate the Field of View FOV, while the intensity calibration was performed using
a method involving a Coarse Wavelength Division Multiplexing (CWDM) and a radio tower equipped
with a 1550 nm laser. The entire system is controlled by a Python project named ”allsky4oleodl,”
composed of eight different scripts. Our findings indicate that the device successfully detected the
satellite on occasions when the Optical Ground Station (OGS) did not, proving the proof-of-concept
successful. If further developed and tested, this tool could become a critical standard component of
Optical Low Earth Orbit Downlink (OLEODL) systems in the future.

Keywords: AllSky, Azimuth Angle, Beam Spot Size, Contour, CubeSat, CWDM, Deep Space
Optical Communications, Elevation Angle, Exposure Time, Filter, GUI, InGaAs, Infrared Camera,
Inter-satellite Links, Laser Signal Intensity, Laser Transmitter, Lens, Link Budget, NORSAT-TD,
OLEODL – Optical Low Earth Orbit Downlinks, OGS - Optical Ground Station, Optical Satellite
Terminal, Optical Space-ground Link, OSIRIS, Threshold.

v

Contents
Abstract v

Abbreviations xi

1 Introduction 1

2 Literature Review 3
2.1 Free Space Optical Communications . 3

2.1.1 Free Space Optics vs. Fiber Optics Communications 4
2.2 Low Earth Orbit Satellites . 4

2.2.1 History of Low Earth Orbit Satellites . 5
2.2.2 Advantages and Disadvantages of Low Earth Orbit Satellites 5

2.3 Optical Ground Stations . 6
2.3.1 Adaptive Optics . 7
2.3.2 Point-ahead Angle and References for Uplink Pre-correction 7
2.3.3 Spatial Diversity for Turbulence Mitigation . 8
2.3.4 Examples of Optical Ground Stations . 9

2.4 Optical Low Earth Orbit Data DownLinks . 10
2.4.1 Historical overview of Free Space Optics in space communications 11
2.4.2 Pointing, acquisition and tracking . 11
2.4.3 Low Earth Orbit-Direct to Earth Geometry . 13
2.4.4 Loss-Effects in Optical Space-Ground Links . 13
2.4.5 Link Budget . 19

2.5 Laser Transmitters for Optical Low Earth Orbit data DownLinks 21
2.5.1 OSIRISv1 Onboard Flying Laptop . 21
2.5.2 OSIRIS4CubeSat Onboard Laser CubeSat . 22
2.5.3 OSIRISv3 Onboard Titania . 24

3 Materials and Methods 27
3.1 System Requirements . 27
3.2 Component Selection . 27

3.2.1 Indium Gallium Arsenide Camera . 28
3.2.2 Wide Angle Lens . 30
3.2.3 Dome . 32
3.2.4 Enclosure . 33

3.3 Final Overview of the AllSky-camera System . 34
3.4 Controlling Software . 34

3.4.1 Vmbpy Application Programming Interface . 38
3.4.2 Image Processing . 39
3.4.3 Elevation and Azimuth . 46
3.4.4 Graphical User Interface . 49

3.5 Testing . 50
3.5.1 Calculation of the Link Budget for the Observed Satellites 50
3.5.2 Evaluation of the Lenses . 52
3.5.3 Intensity Measurement with a Coarse Wavelength Division Multiplexing Transceiver 54
3.5.4 Camera Calibration and Intensity Assessing with the Radio Tower 57

vii

4 Results & Discussion 63
4.1 OSIRIS4CubeSat Onboard Laser CubeSat Campaign 63
4.2 CubeCat Onboard NORSAT-TD Campaign . 64

5 Conclusion 67
5.1 Summary . 67
5.2 Future Work . 67

Bibliography 68

Appendix A A-1
A.1 Main.py . A-1
A.2 AllSkyCam4OLEODL Package . A-4

A.2.1 __init__.py . A-4
A.2.2 api.py . A-5
A.2.3 constants.py . A-25
A.2.4 gui.py . A-26
A.2.5 image_processing.py . A-30
A.2.6 input_checks.py . A-44
A.2.7 link_budget.py . A-45
A.2.8 printer.py . A-52

viii

Abbreviations

4QD 4-Quadrant Diode. 23

API Application Programming Interface. 29, 35, 38

APK Absolute Pointing Knowledge. 25

ARTEMIS Advanced Relay and Technology MIssion Satellite. 11

CPA Coarse Pointing Assembly. 24, 25

CPF Consolidated Prediction Format. 64

CRL Communications Research Laboratory. 11

Cu Copper. 28

CubeL Laser CubeSat. 23, 24, 63, 64

CubeLCT CubeSat Laser Communication Transmitter. 23

CWDM Coarse Wavelength Division Multiplexing. v, 54

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center). , 9–11, 16, 21, 22, 57,
68

DM Deformable Mirror. 6, 7

DPC Defect Pixel Correction. 30

DSOC Deep Space Optical Communications. 11

DTE Direct To Earth. 13, 15

EDFA Erbium-Doped Fiber Amplifier. 57

EDRS European Data Relay Satellite System. 11

ESA European Space Agency. 9, 11

ETS Engineering Test Satellite. 11

FEC Forward Error Correction. 6

FLP Flying LaPtop. 21, 22, 50, 63

FOC Fiber Optic Communication. 4

FOR Field Of Regard. 25

FOV Field Of View. v, 1, 21, 27–29, 31, 47, 48, 52, 53

FPA Fine Pointing Assembly. 23, 24

FSL Free-Space Losses. 13, 15

ix

FSM Fine Steering Mirror. 23

FSO Free Space Optical. 25

FSOC Free Space Optical Communications. 1, 3, 4, 10–12, 14

FSOL Free Space Optical Links. 1, 3, 8

FWHM Full Width at Half Maximum. 12, 20, 55

GEO GEostationary Orbit. 8, 10, 11, 14

GOPEX Galileo Optical EXperiment. 11

GSO GeoSynchronous Orbit. 5, 9

GSOC German Space Operations Center. , 9, 58, 61, 64

GUI Graphical User Interface. 35, 49

HAP High-Altitude Platform. 11

IKN Institute of Communications and Navigation. , 9, 21, 51, 55, 57, 58, 61

InGaAs INdium GAllium ArSenide. v, 1, 28, 51, 67

IR InfraRed. 1, 10, 27, 31

IRT Index-of-Refraction Turbulence. 11, 13

ISI Intensity-Scintillation Index. 17

ISS International Space Station. 5

JAXA Japan Aerospace eXploration Agency. 11

KIODO KIrari’s Optical Downlink to Oberpfaffenhofen. 9

LADEE Lunar Atmosphere and Dust Environment Explorer. 11

LCRD Laser Communications Relay Demonstration. 11

LCT Laser Communication Terminal. 9

LEO Low Earth Orbit. v, 1, 3–5, 10, 11, 13–15, 27

LLCD Lunar Laser Communication Demonstration. 11

LOS Line Of Sight. 19

LUT Look-Up Tables. 30, 38, 39, 63

MDA Missile Defense Agency. 11

MFD Mode Field Diameter. 55

NASA National Aeronautics and Space Administration. 5, 11, 15

NASDA National Space Development Agency of Japan. 11

NICT National Institute of information and Communications Technology. 11

OGS Optical Ground Station. v, 1, 3, 6, 9, 11, 13, 14, 16–21, 23, 27, 49, 57, 58, 60, 63, 64, 67, 68

OGSOP Optical Ground Station in OberPfaffenhofen. 9, 10

x

OICETS Optical Inter-orbit Communications Engineering Test Satellite. 11

OLEODL Optical Low Earth Orbit data DownLinks. v, 1, 13, 15–17, 21, 60, 64, 65, 67

OP Oberpfaffenhofen. 16, 57, 58, 60, 63

OSIRIS Optical Space InfraRed downlInk System. 21–25, 50, 63

OSIRIS4C Optical Space InfraRed downlInk System for CubeSat. 23

OSL Optical Satellite Link. 6

PAA Point-Ahead Angle. 7

PAT Pointing, Acquisition and Tracking. 23

PCB Printed Circuit Board. 23

POE Power Over Ethernet. 34

PSI Power Scintillation Index. 17, 21

PTU Pan-Tilt-Unit. 53, 57, 58

QKD Quantum Key Distribution. 11

RF Radio Frequency. v, 3, 10–12, 14, 67

RSC3 Responsive Space Center.

SAR Synthetic Aperture Radar. 11

SILEX Semiconductor Inter satellite Link EXperiment. 11

SMF Single Mode Fiber. 54, 55

SOFA Optical Ground Station Focal Assemblyr. 57

SOTA Small Optical TrAnsponder. 11

SWIR Short-Wavelength InfraRed. 28–31

TAOGS Transportable Adaptive Optics Ground Station. 9

TLE Two-Line Elements. 64

TNO Dutch Organization for Applied Scientific Research. 64

TOGS Transportable Optical Ground Station. 9, 10

VIR Visual and InfraRed. 31

VIS Visible. 28, 31

VSWIR Visible to Short-Wavelength InfraRed. 28, 30

WFS WaveFront Sensor. 6

WOC Wireless Optical Communications. 3

xi

1 Introduction

In recent years, wireless communications have developed at an unprecedented rate. From cellular net-
works to satellite links, every telecommunication branch has improved significantly. Free Space Optical
Communications (FSOC) has emerged as a disruptive technology. Besides other major advantages
discussed later, it unlocks the use of new technologies such as quantum communications or adaptive
optics, and the use of smaller and lighter antennas, promising to revolutionize satellite communications.

All major space agencies have been testing Free Space Optical Links (FSOL) with Low Earth Orbit
(LEO) satellites. One of the main challenges is diagnosing which element of the system is responsible
for a failed link acquisition process, as the cause is often unknown. These failures can be due to
misalignment, incorrect satellite’s orbit data, or faulty equipment in the Optical Ground Station (OGS):
The satellite itself could be the reason if its payload is malfunctioning. While visibility and atmospheric
conditions significantly impact acquisition success, they are less critical, as a link is attempted only
under favourable conditions. Correctly assessing the issue would enhance the understanding of data
and lead to improvements in the entire process.

Our hypothesis was that a validation tool could assess the failure point of the entire operation.
We propose a monitoring device based on an AllSky-Camera approach to verify the optical signal
at the location of the optical ground station. Using an Indium Gallium Arsenide (InGaAs) Infrared
(IR) camera operating at the same wavelength as the payload (typically 1550nm) should, if capable of
observing most of the hemisphere: track, position and assess the quality of the satellite link throughout
the whole acquisition without needing any tracking module. It must also acquire the necessary frames
for the posterior analysis while excluding the background light effects. Everything must be built using
standard hardware, keeping costs low.

Inspired by cloud coverage systems [1], [2], [3], this work presents a novel approach, offering a
compact, portable and affordable solution capable of working as a secondary OGS. Although similar
systems have been developed before, they are limited to tracking [4], [5], or narrow fields of view [6],
[7]; none can measure the intensity and position of the satellite without a tracking module.

This thesis serves as a Proof of Concept to determine the feasibility of such a device, which has
been developed from the ground up through the design, implementation, and evaluation phases. We
went through several key phases: requirement analysis of the system sensitivity (link budget), Field Of
View (FOV) and exposure times compared to the movement of the objects; component analysis and
evaluation; software design and housing the components within a robust, autonomous mechanical setup
controlled via Ethernet; testing, verification and analysis of Optical Low Earth Orbit data DownLinks
(OLEODL); and documentation of the setup, experiments and their analysis.

The research is structured into five chapters, beginning with this introduction. The second chapter
provides a review of the literature, primarily on OLEODL. The third chapter details the materials
and methods used, including the system requirements, component selection, experiments and the
controlling python software. The fourth chapter presents the results of the experiments. Finally in the
fifth summarizes the thesis and offers an outlook for future work.

1

2

2 Literature Review

This chapter describes the nature of Free Space Optical Communications (FSOC) and its advantages
and disadvantages compared to Radio Frequency (RF) communications. It also explores the use of
Free Space Optical Links (FSOL) for Low Earth Orbit (LEO) satellite-to-ground communications,
alongside the role of Optical Ground Stations (OGS).

This is an incredibly vast array of topics. Explaining them in its entirety would require a dedi-
cated dissertation, which is beyond the scope of this work. Therefore, we will focus on the key aspects
that directly influence this study.

2.1 Free Space Optical Communications

Free Space Optical Communications (FSOC), a branch of the Wireless Optical Communications (WOC),
are classified into terrestrial and space systems, as shown by Fig. 2.1.

Wireless Optical Communication System

Indoor
System

Directed
LOS Links

Non-Directed
LOS Links

Diffused
Links

Quasi-Diffused
Links

Outdoor
System (FSO)

Terrestrial
Links

Space
Links

Inter-
Orbital

Links (IOL)

Inter-
Satellite

Links (ISL)

Deep
Space

Links (DSL)

Optical
Low Earth
Orbit Data
DownLinks
(OLEODL)

Figure 2.1: Classification of wireless optical communication systems. [8].

The concept of transmitting information through light can be traced back to ancient times, when
humans used smoke signals for communication. Alexander Graham Bell, alongside his assistant Charles
Sumner Tainter laid the groundwork for modern optical communication patenting the photophone in
1880 [9], predating Guglielmo Marconi’s radio communication system [10]. The photophone transmit-
ted sound by modulating light and then extracting the sound signal using materials sensitive to light [11].

Nowadays, a typical free space optical communication system consists of the following components: an

3

electronic data input; a small but powerful light source which can be modulated; emitter optics which
shape the emitted beam into a highly directed beam; the atmosphere as the transmission medium;
detector optics which receive the transmitted light and focus it onto a photodetector; and an electronic
amplifier, as the data output. This setup is illustrated in Fig. 2.2.

Figure 2.2: Directed Point-to-Point FSOC Link by Modulated Laser Beams. Figure taken from [12].

2.1.1 Free Space Optics vs. Fiber Optics Communications
Both these communications methods rely on a light emitting diode or laser as a point source for data
transmission. The main difference is that Fiber Optic Communication (FOC) guides an energy beam
through an optical cable, while free space optic communication guides an energy beam through free
space. FSOC is particularly useful where physical connections via fiber optical cable are impractical
or non-feasible, being a viable solution for ”Last Mile Connectivity” [13]. However, it still has limitations.

FSOC greatly suffers from weather conditions, line of sight requirement and range limitation. Weather
dependence is particularly troublesome, as attenuation values can reach up to 300 dB/km under
adverse conditions [14]. These disadvantages compared with fiber optics, have resulted in its limited
adoption.

2.2 Low Earth Orbit Satellites

Almost 8000 active satellites are currently orbiting Earth [15]. This increase is primarily driven by the
Low Earth Orbit (LEO) industry, which accounts for close to 90% of the total satellites. Technological
advancements have made LEO satellites more cost-effective, easier to launch, and simpler to manage [16].

Low Earth orbit satellites are relatively low in altitude, typically orbiting between 350 and 2000
km above the Earth’s surface [17]. They work in interconnected constellations, communicating with
ground-based stations to transmit and receive data—enabling various applications such as global
communications, Earth observation, and navigation.

Figure 2.3: Different satellite orbits classified by altitude. Figure taken from [18].

4

2.2.1 History of Low Earth Orbit Satellites
The Earth orbit is currently dominated by Low Earth orbit satellites, but this was not always the
case. GeoSynchronous Orbit (GSO) satellites were the preferred method for observing the Earth until
recently. The first GSO satellite, Syncom II launched in 1963 [19], was the world’s first geosynchronous
communications satellite and set the standard for 30 years.

Sputnik I, the first LEO satellite was launched by the Soviet Union in 1957, marking the begin-
ning of the Space Race against the United States [20]. Sadly, low Earth orbit technology stagnated
until the early 1990s, with its resurgence by the launch of the IRIDIUM system, a constellation of
satellites aimed to provide global communication [21]. However, many LEO missions struggled to
meet demands due to their high costs. This would be solved in the 2000s with the development of the
CubeSats: a class of nanosatellites using a standard size and form factor. Originally developed in 1999
by California Polytechnic State University and Stanford University [22], The National Aeronautics and
Space Administration (NASA) Ames launched its first CubeSat, GeneSat, in December 2006 [23]. The
2010s saw a shift with the rise of commercial companies like SpaceX, and its Starlink project [24]. The
increase in LEO satellite deployments has raised concerns about space traffic management and orbital
debris, potentially leading into what is known as the ”Kessler syndrome”, rendering the entire Low
Earth Orbit unusable [25], [26].

Figure 2.4: The future number catastrophic collisions in Earth orbit. Figure taken from [27].

2.2.2 Advantages and Disadvantages of Low Earth Orbit Satellites
Being closer to the Earth’s surface offers different advantages compared to satellites in higher orbits:
lower latency and higher bandwidth; enhanced image resolution; faster orbiting speeds (traveling
at 7.8 km/s it takes just over 90 minutes to complete an orbit, which means circling around Earth
approximately 16 times per day); greater path flexibility, as tilting the orbital plane relative to the
Equator allows for more route options; and reduced energy requirements for reaching the final orbit,
which is why the International Space Station (ISS)—scheduled for deorbit in 2030 [28]—is positioned
at 415 km altitude, enabling quicker and more cost-effective access for spacecrafts.

The main problem of the low Earth orbit is the overcrowding of space debris as the number of
launches increases. This problem is aggravated by the fact that LEO satellites, due to their lower
altitudes, suffer from a higher rate of atmospheric drag, requiring more power and limiting their
lifespan to 7-10 years. Additionally, LEO satellites cannot function effectively alone for communication
purposes as they are hard to track, requiring full constellations.

5

Figure 2.5: Evolution of absolute area residing in or penetrating LEOIADC . Figure taken from [27].

2.3 Optical Ground Stations

To establish an Optical Satellite Link (OSL), an Optical Ground Station (OGS) is required to
communicate with the optical terminal. Fig. 2.6 illustrates the main components of the ground segment
for a very-high throughput communication system.

Figure 2.6: Main components of the space terminal of a very-high throughput communications satellite
based on optical feeder link. Figure taken from [29].

The telescope transmits and receives data to and from the satellite. The coarse-pointing system points
towards the satellite, maintaining a small pointing error to compensate for the signal’s angle-of-arrival.
The WaveFront Sensor (WFS) and Deformable Mirror (DM), components of the adaptive optics system,
compensate phase distortions caused by atmospheric turbulence. Both the adaptive optics and pointing
systems are employed in both link directions: in the downlink for fiber coupling and in the uplink for
pre-compensation of beam wander and phase distortions.

In the downlink process, the light is coupled into a single-mode fiber, pre-amplified, demultiplexed,
and converted to the electrical domain for Forward Error Correction (FEC) and data processing before
sending it to the network. Using a large telescope benefits the link budget, as the receiver gain increases

6

with the diameter of the receiver.

For the uplink, data from the network is converted into the optical feeder-link format, modulated onto
each laser carrier, multiplexed, amplified, and after compensating for the point-ahead angle, coupled
into the telescope system to be transmitted towards the satellite. The transmitter size is constrained
by atmospheric turbulence and pointing accuracy, which is limited by the beam wander.

Certain systems are required at ground stations to ensure reliable and stable satellite-to-ground
communications. Given their complexity, we will provide only a brief overview of these systems.

2.3.1 Adaptive Optics
To utilize components such as low-noise amplifiers or multiplexers, the light collected by the telescope
must be coupled into a single-mode optical fiber. This coupling efficiency is compromised due to
wavefront distortions caused by atmospheric turbulence. These phase distortions increase with the
telescope’s diameter, as larger apertures capture more phase aberrations—amount defined by the ratio
between the aperture’s diameter and the fried parameter D/ro. This is a key constraint in increasing
telescope diameter [30].

Adaptive optics systems can partially correct for these phase distortions. A typical adaptive op-
tics setup includes a tip-tilt mirror, which compensates for angle-of-arrival fluctuations caused by
atmospheric turbulence and tracking errors; a deformable mirror, composed of a set of actuators, which
receives the beam and compensates its phase distortion; and a wavefront sensor, which estimates the
phase of the received wavefront and computes the signals to drive the DM.

Figure 2.7: Block diagram of an ideal adaptive-optics system. Figure taken from [29].

2.3.2 Point-ahead Angle and References for Uplink Pre-correction
As previously discussed, the tip-tilt mirror is necessary to compensate for angle-of-arrival fluctuations
caused by atmospheric turbulence. In the meantime, the finite speed of light delays the uplink signal
reaching the satellite, resulting in an angular separation between the uplink and downlink directions.
This separation is referred to as the Point-Ahead Angle (PAA), as shown in Fig. 2.8.

This angle Φ can be calculated using equation (2.1), where vt is the tangential velocity of the
satellite and c denotes the speed of light.

Φ =
2vt
c

(2.1)

The pointing direction of the uplink will fluctuate due to atmospheric turbulence generating intensity
fluctuations; this phenomenon is known as beam wander. Ideally, the uplink could be compensated for
beam wander using the same measurements from the tip-tilt mirror as a form of pre-compensation. A
key challenge is that atmospheric effects are correlated within a certain cone, known as the isoplanatic

7

angle [31] (as illustrated in Fig. 2.8). If the point-ahead angle exceeds the isoplanatic angle, the system
will move outside this cone. Exiting the coherent cone leads to increased decorrelation between both
paths, resulting in greater beam wander and, ultimately, more significant intensity fluctuations at the
satellite.

Figure 2.8: Block diagram of an ideal adaptive-optics system. Figure taken from [29].

The most straightforward solution to reduce beam wander is to increase the divergence. The main
drawback is the reduction in mean power received at the satellite. Other solutions are possible, such as
laser guide stars based on Rayleigh scattering or adaptive optics, exist but they will not be covered in
this discussion.

2.3.3 Spatial Diversity for Turbulence Mitigation
Atmospheric turbulence can cause a significant performance degradation in Free Space Optical Links
(FSOL). Spatial diversity is applied on both the transmitter and receiver, alongside adaptive optics, to
minimize its impact.

Figure 2.9: Block diagram of transmitter diversity system with Phase-Division in Bit-Time for two
transmitters and a single receiver. Figure taken from [32].

At the transmitter, size N uncorrelated beams are transmitted to reduce the scintillation at the receiver
side by an equal factor [33], limiting power fluctuation. N independent sources might be used to obtain
these N beams, although this can be circumvented using on-off keying data modulation [34]. Each
beam is located at a certain distance respect to the others, to ensure that the turbulence crossed by
each one is mutually uncorrelated—as the atmospheric paths are assumed to be uncorrelated when
they are half a meter apart. The more beams we can use, the lower the scintillation will become;
however, this technique is mostly used for Geostationary Orbit (GEO) satellite links. Experimental
results can be found in [35], [36].

Data can be modulated on the laser carrier, but careful consideration is required, as partial bandwidth
overlap can result in strong interference. Techniques like polarization or wavelength separation can

8

mitigate this, although new methods, such as employing multiple signal sidebands, are currently being
researched [37].

At the receiver, diversity can be achieved using an array of telescopes, beneficial in avoiding monolithic
mirrors in deep space scenarios while achieving similar performance.

2.3.4 Examples of Optical Ground Stations
There are over 30 OGSs operated by various international organizations worldwide, with more planned
for the future. The European Space Agency (ESA)-OGS, located at the Observatorio del Teide in
Tenerife, Canary Islands (Spain) [38], was built in 2001 to support ground-to-GeoSynchronous Orbit
(GSO) satellite links as part of the SILEX project [39].

The Transportable Adaptive Optics Station (TAOGS), developed by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR) and Tesat Spacecom, was designed to support Tesat’s spaceborne Laser
Communication Terminals (LCTs). The key features of this OGS are its adaptive optics system and
its portability, with all equipment housed within a container [40].

Figure 2.10: ESA Optical Ground Station in Tenerife, Canary Islands (left). Figure taken from [41].
Photograph of the TAOGS (right). Figure taken from [42].

The DLR Optical Ground Station in OberPfaffenhofen (OGSOP), originally implemented for the
KIrari’s Optical Downlink to Oberpfaffenhofen (KIODO) experiment in 2006 [43], equipped with a
40-cm Ritchey–Chrétien telescope, a similar version of this telescope is now used at the German Space
Operations Center (GSOC). In 2021, this telescope was replaced with an 80-cm telescope featuring a
Coudé path [44].

Figure 2.11: DLR Oberpfaffenhofen OGS’s 80-cm telescope (left). Pre-distortion Adaptive Optics
experimental setup (right). Figure taken from [45].

In addition to the OGSOP, the the Institute of Communications and Navigation (IKN) at DLR
developed the Transportable Optical Ground Station (TOGS) in 2010, shown in Fig. 2.12. The TOGS
is a versatile and modular OGS designed for experimental optical uplink and downlink scenarios, as

9

well as for measuring the atmospheric optical channel. Equipped with a 60cm Ritchie-Chrétien, it was
intended for rapid deployment and determination of position and attitude, as required for alignment
with a known target.

Figure 2.12: DLR Transportable Optical Ground Station. Figure taken from DLR Media.

Both the OGSOP and the TOGS transmit and receive through different apertures (The OGSOP can
also use the same for transmission and reception). As a result, beam wander cannot be minimized,
forcing to increase divergence to ensure that the uplink reaches the satellite most of the time despite the
increased beam wander, as shown in equation (2.2). The root-mean-squared value of the beam wander
from GEO links are in the order of tens of microradians, however for LEO satellite links decreases to a
few microradians, making the impact of beam wander due to turbulence negligible in that case.

√
σ2

pointing = 0.73

(√
2λ

DT

)(
DT√
2r0

)5/6

(2.2)

2.4 Optical Low Earth Orbit Data DownLinks

As the amount of data we gather and transmit to Earth increases, we need solutions to accommodate
this need. Free Space Optical Communications (FSOC) have found their niche in satellite to ground,
inter-satellite and deep space communications, addressing the limitations of Radio Frequency (RF)
communications.

Figure 2.13: The electromagnetic spectrum. Figure taken from [46].

Although compatible [47], FSOC is establishing itself as an alternative over RF in many application
scenarios due to its reduced weight and volume of the transmitter and receiver equipment (up to 50%
less), lower power consumption (25% less power), and avoidance of the tariffs or regulatory restrictions
associated with RF usage. The InfraRed (IR) light packs data into tighter waves, allowing ground
stations to receive more data at once. While laser communications do not always provide higher
throughput, that is the goal as more data can be transmitted in one downlink, increasing bandwidth

10

by 10 to 100 times compared with radio frequency systems (Data rates up to Terabit/s are possible).

Main challenges such as link blocking by clouds and fog, signal scintillation by Index-of-Refraction
Turbulence (IRT) and precise pointing and tracking for the link acquisition, will remain.

2.4.1 Historical overview of Free Space Optics in space communications
Using free space optical communications for space communication is not new. Developed in 1965 by
the United States for deep space exploration, it would take until 1975 to complete an inter-satellite
communication system. Despite this progress, FSOC development stalled for two decades due to
atmospheric effects with optical signals.

In 1992, the National Aeronautics and Space Administration (NASA) performed the Galileo Op-
tical EXperiment (GOPEX)—they emitted megawatts power, 532nm pulses from Earth, detecting
them with a camera onboard Galileo probe, up to 6 million km away [48]. In 1994, the Communications
Research Laboratory (CRL) carried out the first laser-based ground-to-space downlink communication
using the Japanese Engineering Test Satellite VI (ETS-VI), launched by the NAtional Space Develop-
ment Agency of Japan (NASDA) [49]. The 21st century is witnessing a series of significant milestones:
the first inter-satellite link between the French SPOT4 Low Earth Orbit (LEO) satellite and the
European Space Agency (ESA) Advanced Relay and TEchnology MISsion (ARTEMIS) GEostationary
Orbit satellite (GEO), was achieved by the Semiconductor Inter satellite Link EXperiment (SILEX)
experiment in 2001 [50]; the first optical Gbit/s High-Altitude Platform (HAP) to ground downlink
by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in 2005 [51]; the first LEO-to-ground
optical communication link—between the ”Kirari” Optical Inter-orbit Communications Engineering
Test Satellite (OICETS) and the Optical Ground Station (OGS) developed by the National Institute
of Information and Communications Technology (NICT)—was performed in collaboration with the
Japan Aerospace Exploration Agency (JAXA) in 2006 [52]; the first LEO-to-LEO link between the
US Missile Defense Agency (MDA) experimental satellite and TerraSAR-X, a German commercial
Synthetic Aperture Radar (SAR) satellite—utilizing a secondary laser communication payload built by
Tesat-Spacecom—in 2007 [53]; the first duplex laser communication between a satellite in lunar orbit,
the Lunar Atmosphere and Dust Environment Explorer (LADEE), and ground stations on the Earth,
performed by NASA as the Lunar Laser Communication Demonstration (LLCD) in 2013 [54]; the first
LEO-to-ground optical communications using a Small Optical TrAnsponder (SOTA) and Quantum
Key Distribution (QKD) by NICT in 2014 [55]; the first optical communications link through the
atmosphere with a throughput over 1 Tbit/s under a realistic turbulence environment by DLR in 2016
[56]; the first long distance quantum-entanglement distribution experiment using the Chinese quantum
science experiments LEO satellite, Micius, in 2017 [57]; the first system to provide data relay services to
the LEO satellites from GEO orbit by means of optical and RF bands in real-time and at a rate of 1.8
Gbit/s, European Data Relay Satellite System (EDRS), developed, manufactured and tested by OHB
System AG in 2019 [58]; the inclusion of the Laser Communications Relay Demonstration (LCRD)
in the previously discussed LLCD to prove that optical communications can meet needs for higher
data rates, by NASA in 2022 [59] and the first mission using the Deep Space Optical Communications
(DSOC) system, PSYCHE, by NASA in 2023 [60].

2.4.2 Pointing, acquisition and tracking
The fundamental parameters involved in the pointing of a lasercom system are the spot size and the
divergence: the former estimates how well the system can focus the received laser signal, the latter
estimates how narrowly can it transmit a laser beam. Both can be studied through the concept of the
diffraction limit, given by the equation (2.3).

I(θ)

I(0)
=

[
2
J1(

πD
λ sin(θ))

πD
λ sin(θ)

]2
(2.3)

Here, the angular variation of the intensity of the radiation I(θ)
I(0) depends on: the aperture’s diameter D;

11

the wavelength λ; and the Bessel function of the first kind of x, J1(x). By applying the first-minimum
criterion and the approximation sin(θ) ≈ θ, the diffraction limit of a telescope θ can be approximated
by equation (2.4). The graph shown in Fig. 2.14 deviates from the practical application, as we can
only detect intensity levels down to -10/-15 dB—one will not detect much more than the Full Width
at Half Maximum (FWHM) as the sidelobes are too faint.

Figure 2.14: Intensity of radiation as a function of the wavelength λ, the aperture diameter D and the
angular width θ. The detectable part is marked in red. [29].

θ = 1.22
λ

D
(2.4)

From the transmitter perspective, equation (2.4) demonstrates that shorter wavelengths produce
narrower, minimal divergence beams: One of the main advantages of FSOC over RF. Low divergence is
crucial for long distances as it enhances directivity, but it also demands higher pointing accuracy—in
radio frequency communications pointing accuracy is in the order of milliradians, whereas deep-space
laser communications need sub-microradian precision.

To keep a stable line, the satellite requires a reference point: celestial bodies in deep space or a
laser beacon transmitted from the ground if the satellite is near Earth. As discussed in subsection 2.3.2,
the beacon emits a signal with a divergence matching the uncertainty zone where the satellite is
predicted to be. The satellite tracks this beacon and starts the downlink at a different wavelength or
polarization. The complete process is illustrated in Fig. 2.15.

Figure 2.15: Schematic representation of the 3 phases in optical downlink. Figure taken from [61].

12

2.4.3 Low Earth Orbit-Direct to Earth Geometry
Link duration, range, and angular slew rate (rate at which a satellite changes its orientation, measured in
degrees per second) for optical LEO-Direct to Earth (DTE) links are well-established from conventional
LEO-satellite studies. A minimum elevation angle of 5° is assumed for the start of signal acquisition,
with 10° or higher required for secure data transmission

Figure 2.16: Link geometry of typical LEO satellite downlinks with circular orbits. Figure taken from
[62].

Low elevations must be carefully considered, as the satellite spends nearly 80% of the time between 0°
and 20°, as illustrated in Fig. 2.17.

Figure 2.17: Typical distribution of the average viewing elevation for a polar LEO satellite (500 km
orbit height). This relative distribution is qualitatively similar for any optical ground station (OGS)
location on earth, although of course the absolute overall visibility changes depending on orbit and

OGS latitude. Figure taken from [62] [63].

2.4.4 Loss-Effects in Optical Space-Ground Links
The losses in Optical Low Earth Orbit data DownLinks (OLEODL) are primarily due to three main
factors: pointing-error losses caused by the satellite’s pointing precision; Free-Space Losses (FSL)
resulting from the orbit geometry; and atmospheric effects such as atmospheric attenuation, scintillation
due to IRT, and obstruction. These factors are illustrated in Fig. 2.18.

13

Figure 2.18: Link-parameters affecting the optical downlink quality. Effects in darker boxes change
faster during downlink, values in blank boxes are static. Figure taken from [64].

Pointing-error losses are defined as the ratio between the actual received power at the OGS and the
ideal received power [65]. It is crucial to address this issue as FSOC links have smaller divergence
compared to RF links, risking missing the OGS entirely. This is one of the key aspects which we want
to assess in this thesis, identifying how much did the satellite pointing deviated from its ideal value.
For GEO satellites, the uplink uses the information of the downlink’s angle-of-arrival (tilt component
of the phase) to point towards the satellite and pre-correct for pointing fluctuations: This is achievable
as both uplink and downlink paths are assumed the same for GEO links. For LEO satellites, the
presence of the point-ahead angle causes the uplink and downlink paths to be uncorrelated, making
this approach unsuitable.

Figure 2.19: The waist of a Gaussian beam is defined as the location where the irradiance is 1/e2
(13.5%) of its maximum value. Figure taken from [66].

The impact of the residual pointing jitter can be estimated by normalizing the beam wander variance,
σ2

pointing (presented on equation 2.2) by the beam divergence. The beam divergence is defined as the
radius of the Gaussian wave where the intensity decays to 1/e2, also known as Half Angle Beam
Divergence ϑbeam = λ/πw0, where w0 represents the beam waist radius, illustrated in Fig. 2.19. The
impact factor in the pointing is defined by equation (2.5), and its relation with the beam waist radius
can be appreciated in Fig. 2.20.

14

βpointing =

√
σ2

pointing

ϑbeam
(2.5)

Figure 2.20: Pointing impact factor βpointing vs transmitted beam diameter for several link elevation
angles. Figure taken from [29].

Free-space losses decrease with both distance and wavelength, as shown in Fig. 2.21, where the satellite
approaches zenith (closer to Earth). Shorter wavelengths should also minimize these losses, but this is
not entirely the case, as larger scintillation is generated when passing through the atmosphere. This is
one of the reasons—though not the primary one—why 1550 nm is typically used for LEO-DTE links,
while 1064 nm is preferred for inter-satellite links (eye safety can be ignored in this scenario). The
main reason of the dominance of the 1550 nm wavelenght is the superior availability of components, to
the extent that organizations like NASA are beginning to adopt this wavelength even for inter-satellite
links.

Figure 2.21: Distance and relative FSL for 500km orbit height. Figure taken from [64].

OLEODL systems deal with three major atmospheric effects: absorption, scattering, and scintillation.
Absorption occurs when photons in the beam collide with particles suspended in the atmosphere—
water vapor, volcanic ash, and aerosols—the latter being particularly problematic. This effect can be

15

minimized by optimizing the location of the optical ground station. The three main communication
wavelengths used in OLEODL occupy absorption-free windows, as shown in Fig. 2.22. In these cases,
absorption can be considered negligible at zenith, however it still need to be regarded in lower elevation
due to the larger presence of molecular and aerosol particles as appreciated in Fig. 2.23 and Fig. 2.24,
respectively.

Figure 2.22: Atmospheric (clear-sky) transmission window for absorption only. 850nm, 1064nm and
1550nm windows are shown. Figure taken from [67].

Figure 2.23: Volume mixing ratio of H2O molecules with respect to altitude, for different atmospheric
models (left). Volume mixing ratio of N2O, CH4, CO, and CO2 with respect to altitude for different

atmospheric models (right). Figure taken from [67].

Figure 2.24: Aerosol absorption coefficients for different atmospheric models and volcanic activity (VA)
levels (4 being the maximum) at 1550 nm. Figure taken from [67].

Scattering refers to the dispersal of the beam by suspended particles in the atmosphere. Aerosols
particles are larger than the wavelength of the incident beam, and variate depending on the height: this
known as Mie Scattering. Calculating its losses using simple equations is complex. For the OGS-OP of
DLR, a flat-Earth approximation model already exists [64], which confirms that 1550 nm is the best
choice. Scattering due to smaller particles than the wavelength, also known as Rayleigh scattering, is

16

negligible for near-infrared or longer wavelengths [68].

Figure 2.25: Atmos. attenuation over elevation at different wavelengths, air qualities, and
OGS-altitudes, using flat-Earth modelling. The minimum (5°) and typical medium (15°) elevation for
OLEODL are labeled as vertical lines (left). Zenith transmission vs OGS altitude, acc. to models

(right). Figure taken from [64].

Scintillation, defined as the variance of the signal normalized to its squared mean, characterizes the
temporal or spatial fluctuations of the received signal, this causes ”speckle-patterns” in intensity
through self-interference (the cause why we observe stars twinkle). The Power Scintillation Index (PSI)
is used to describe this effect on the optical wave at a single point, like a receiver—if we quantify it
with the normalized variance of the intensity, we obtain the Intensity-Scintillation Index (ISI), σ2

I .
When the aperture of the receiver increases beyond the correlation length of the intensity fluctuations,
the scintillation decreases as a bigger receiver can collect multiple correlation lengths, averaging signal
fluctuations. This is so-called aperture averaging.

As discussed in subsection 2.3.4, different apertures are often used for reception and transmission in
satellite communications. For the downlink, the receiver aperture is larger than the intensity correlation
length, applying aperture averaging and reducing scintillation. For the uplink, the turbulence is closer
to the transmitter, causing the intensity correlation length to extend up to several hundred of meters,
much larger that the transmitter aperture. The (ISI), for both paths can be estimated as follows
(equations 2.6 and 2.7):

σ2
I,downlink = exp

 0.49σ2
Bd(

1 + 1.11σ
12/5
Bd

)7/6 +
0.51σ2

Bd(
1 + 0.69σ

12/5
Bd

)5/6
− 1 (2.6)

σ2
I,uplink = exp

 0.49σ2
Bu(

1 + 0.56σ
12/5
Bu

)7/6 +
0.51σ2

Bu(
1 + 0.69σ

12/5
Bu

)5/6
− 1 (2.7)

where:

σ2
Bd

= 2.25k7/6 sec(ζ)11/6
∫ H

h0

C2
n(h) (h− h0)

5/6 dh (2.8)

17

σ2
Bu

= 2.25k7/6L5/6

∫ H

h0

C2
n(h)

(
1− h− h0

H − h0

)5/6(h− h0
H − h0

)5/6

dh (2.9)

Both equations give an estimation of the maximum expected scintillation. The wave number is
represented by k = 2π/λ, with λ as the wavelenght; the link distance by L; the zenith angle of the link
path is ζ; the height of the OGS is h0; and the height of the satellite is indicated by H.

After aperture averaging, scintillation values can be estimated using equation (2.10). This approximation
is valid only under weak turbulence conditions, which applies until 30°.

σ2
I,av = 8.70k7/6(H − h0)

5/6 sec(ζ)11/6<

{∫ H

h0

C2
n(h)

[(
kD2

16L
+ i

h− h0
H − h0

)5/6

−
(
kD2

16L

)5/6
]
dh

}
(2.10)

The refractive index structure parameter or index-of-refraction, denoted as C2
n [69], describes the

turbulence strength along the transmission path by a certain profile. One of the most used models is
the Hufnagel-Valley profile [70], shown in equation (2.11).

C2
n(h) = Ae−h/100 + 2.7× 10−16e−h/1500 + 0.00594

(ν

27

)2
(10−5h)10e−h/1000 (2.11)

This parameter depends on the height on the altitude above ground h; the turbulence at ground level,
defined by the structure parameter at zero height A = C2

n(0); and the mean cross-wind velocity v.
Based on these factors, the structure parameter can be optimized or even ignored depending on the
location of the OGS [64], as shown in Fig. 2.26.

Figure 2.26: Sample turbulence profiles. High C2
n values mean strong atmospheric turbulence near to

the surface. Figure taken from [33].

It is important for our application to discuss the relationship between scintillation and integration
time. When using a monitoring device, such as an infrared camera, we can increase the exposure time
to integrate the spatial fluctuations of the received signal. This is typically achieved from 100 ms
onwards, as illustrated in Fig. 2.27.

18

Figure 2.27: Scintillation index as a function of the integration time for 3 different data sets. The
horizontal axis is limited to the range [0–15]s. Figure taken from [71].

The final atmospheric effect to consider is obstruction. Establishing an optical link requires a clear
Line Of Sight (LOS) between the satellite and the OGS. The primary source of obstruction is cloud
coverage. As demonstrated in [72], cloud attenuation cannot be significantly mitigated by selecting
different wavelengths within the visible to near-infrared range. The most logical approach is to avoid
these conditions when attempting to establish a link. One promising strategy, as suggested in [73],
involves developing a network of OGSs to provide alternative communication pathways when cloud
cover impacts the primary LOS [73].

2.4.5 Link Budget
The link budget is key for determining the performance of a lasercom system under various operating
conditions. The total mean received power regarding all gains and losses can be calculated as the sum
of all link budget components in dB [64]:

pRx = pTx + aTx + gTx + aBW + aFSL + aAtm + aSci + gRx + aRx (2.12)

pTx average transmit optical source power [dBm]
aTx optical power loss inside the transmitter terminal [dB]
gTx transmitter antenna (telescope) gain [dB]
aBW average loss by dynamic beam miss-pointing and beam wander [dB]
aFSL free-space loss by link distance [dB]
aAtm sum of atmospheric attenuation effects [dB]
aSci losses through atmospheric scintillation [dB]
gRx receiver antenna gain [dB]
aRx optical losses inside receiver terminal (attenuation and splitting) [dB]
pRx received power on detector [dBm]

Gains (g) are positive values, while attenuations (a) are negative. The logarithmic calculation of the
link budget simplifies the representation of complex propagation effects. The linear representation are
G (values greater than 1 for gain) and A (with values ranging from 0 to 1 for attenuation).

19

• Tx-Antenna Gain [dB]:

gTx = 10 log10

(
4
√
ln 2

θFWHM

)2

= 10 log10

(
3.33

θFWHM

)2

(2.13)

Let θFWHM represents the Full Width at Half Maximum (FWHM) =
√

ln 2
2 θe−2 . Where θe−2

denotes the full divergence angle = 2 λ
π·ω0(0)

, with λ being the wavelength and ω0(0) the waist
radius at the beam’s narrowest point.

• Pointing-error loss [dB]:

aBW = 10 log10
β

β + 1
(2.14)

Where β = 1
2

(
θe−2/2

σBW

)2
= θFWHM

2

4·ln 2·σBW
2 =

(
0.85·θFWHM

2σBW

)2
is a special case of the beta-distribution.

• Free-Space loss [dB]:

aFSL = 10 log10

(
λ

4πL

)2

(2.15)

Where λ is the wavelength [m], and the link distance L [m] is computed as:

L =
√
(RE +HGS)2[sin ε]2 + 2(HO −HGS)(RE +HGS) + (HO −HGS)2

−(RE +HGS) sin ε
(2.16)

RE Earth radius [6370× 103m]
HGS height of the OGS over sea-level [DLR−OP = 650m]
HO height of the circular orbit above Earth [m]
ε link elevation angle [°]

Figure 2.28: Angles and distances in the general triangle Sat-OGS-Earth. Figure taken from [64].

20

• Atmospheric effects loss [dB]:

aAtm = 10 log10 T
1/ sin(ε)
Z (2.17)

As previously said in subsection 2.4.4, only aerosol absorption and scattering need to be considered.
The zenith transmission value, TZ , is computed assuming a flat-Earth model, as detailed [67].
Different values of TZ will be used based on atmospheric conditions; for example TZ = 0.891 for
1550nm under poor conditions [64].

• Scintillation loss [dB] [74]:

asci = 4.343

{
erf−1(2pthr − 1) ·

[
2 ln(σ2

p + 1)
]1/2 − 1

2
ln(σ2

p + 1)

}
. (2.18)

Where σ2
p, the Power Scintillation Index (PSI), is defined as

〈
P 2
Rx

〉
−〈PRx〉2

〈PRx〉2
, representing the

variance of the received optical power PRx [W] [75]. The power threshold pthr indicates the
allowed fractional time during which the received power is above this threshold.

• Rx-Antenna Gain [dB]:

gRx = 10 log10

(
4πARx

λ2

)
(2.19)

Where ARx is the aperture area of the receiver, assumed to be smaller than the spot size. is
assumed smaller than the spot size. When calculating the area of a Cassegrain-type telescope,
we need to subtract the area of the inner obscuration, which is the area blocked by the secondary
mirror.

The parameters pTx and aTx depend on the laser terminal, while aRx depends on the receiver telescope
and is typically measured for each link.

2.5 Laser Transmitters for Optical Low Earth Orbit data DownLinks

Different types of laser terminals are employed for Optical Low Earth Orbit data DownLinks (OLEODL).
These transmitters can be categorized into three distinct groups: No tracking systems, relaying on
full body-pointing through satellite’s attitude knowledge from star-camera sensors; Dynamic coarse
body-pointing by the satellite during Optical Ground Station (OGS)-overflight, with fine-pointing
achieved through beacon tracking by the optical terminal; and Terminals equipped with a coarse-
pointing assembly for a hemispherical Field Of View (FOV), which actively track a ground-based
beacon.

2.5.1 OSIRISv1 Onboard Flying Laptop
The small satellite ”Flying Laptop” (FLP), launched in 2017, was developed and built by students
at the University of Stuttgart. It has a mass of 110 kg and is equipped with the first version of the
Optical Space InfraRed downlInk System (OSIRIS) [76], built by the Institute of Communications and
Navigation (IKN) at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The satellite employs an
open-loop body pointing mode, avoiding dedicated optomechanical pointing assemblies. Instead, the
satellite relies on its entire rotation, controlled by onboard star cameras, to point towards the ground
station without feedback from the instrument [77].

21

Figure 2.29: OSIRISv1 setup, as located onboard FLP. Figure taken from [78].

Figure 2.30: “Flying Laptop” satellite. Figure taken from [79].

2.5.2 OSIRIS4CubeSat Onboard Laser CubeSat
In contrast to the other OSIRIS payloads that focus on increasing data rates, OSIRIS4CubeSat aims
to achieve a highly compact system design that enables the use of optical communication even on small
satellites like CubeSats. Developed by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) on
behalf of Tesat Spacecom, the OSIRIS4CubeSat terminal, also known as CubeSat Laser Communication

22

Transmitter (CubeLCT), has established itself as the smallest laser communication terminal in the world.

The first demonstration of complete end-to-end transmission took place as part of the PIXL-1 mission
[80]. On January 24, 2021, the CubeL satellite carrying the CubeLCT terminal was launched into
space.

Figure 2.31: 3D model of OSIRIS4CubeSat Payload (left). Figure taken from [81]. OSIRIS4C - Flight
model of the laser terminal OSIRIS4CubeSat (right). Figure taken from [82].

As shown in Fig. 2.31, the optomechanics, shown in blue (1), consist of the mechanical mounts and
housings for the optical elements, highlighted in light red (2) while the electronics mainboard is depicted
in green (3). The transmission system consists of the laser source in orange (4), and the transmit
collimator, shown in yellow (5). The driver electronics are mounted on the green Printed Circuit Board
(PCB) below a passive cooling element in gray (6). The receiver sensor is located on a separate PCB
at the back of the terminal (7).

The OSIRIS4C system combines body pointing with closed-loop tracking. To establish a connection,
the terminal uses the Pointing Acquisition and Tracking (PAT) system. A relatively broad beacon
signal is sent from an OGS to illuminate the satellite. This beacon is acquired by a 4-Quadrant Diode
(4QD), functioning as a tracking sensor within the satellite. The 4QD measures the angular error,
and a Fine Steering Mirror (FSM) then corrects it. Throughout the transmission, the satellite must
maintain a pointing accuracy of better than 1° towards the OGS. To ensure that the transmission
beam accurately reaches the OGS, it is coupled into the same optical path as the incoming beacon.

Figure 2.32: Block diagram of Fine Pointing Assembly (FPA) inside OSIRIS4C. Figure taken from [80].

The primary objective of the PIXL-1 mission was to integrate a high-power laser terminal into a 3U

23

CubeSat, such as the Laser CubeSat (CubeL), extending CubeSats’ data transmission rates up to 100
Mbit/s.

Figure 2.33: System overview of CubeL (left). Integrated CubeL (right). Figure taken from [81].

2.5.3 OSIRISv3 Onboard Titania
The next stage in the development of the OSIRIS program, OSIRISv3, aims to achieve higher data
rates, up to 10 Gbit/s. With a smaller divergence, OSIRISv3 relies on a new dedicated alignment unit.
This so-called Coarse Pointing Assembly (CPA) enables hemispheric movement, decoupling the laser
beam from the satellite’s position. The transmitter is also equipped with a FPA and a point ahead
assembly for improved accuracy and performance.

Figure 2.34: OSIRISv3 laser communication Terminal including CPA. Figure taken from [83].

24

The OSIRISv3 system provides a hemispherical Field Of Regard (FOR), which is the total area that can
be observed by the movable sensor. This FOR is achieved through two axes of movement—elevation
and azimuth—while maintaining an optical aperture of 30 mm. One key aspect of this system is the
Absolute Pointing Knowledge (APK) in both axes, which measures the satellite’s ability to accurately
determine its orientation in space. The position data is transmitted to the motor controller unit, which
manages the motor movements along the elevation and azimuth axes. For a Free-Space Optical (FSO)
link to an optical ground station, the OSIRISv3 CPA steers the beam during the full overflight.

Figure 2.35: OSIRIS-Program Road map. Figure taken from [84].

25

26

3 Materials and Methods

In this chapter we will discuss the design, implementation, and testing of the AllSky-camera system,
including its constrains and reasons behind the multiple decisions made throughout the process.

3.1 System Requirements

The proposed system was designed as a compact, portable, and self-sufficient device for use during
Low Earth Orbit (LEO) satellite downlinks. Based on an Infrared (IR) camera equipped with a
wide Field of View (FOV) lens, it covers the entire hemisphere without the need for satellite orbit
information or pointing. This approach allows continuous observation of satellite passes, providing
real-time assessment of elevation, azimuth, and intensity as detected by the camera with minimal user
intervention. The system could be remotely operated or even fixed as a permanent installation in the
future, serving dual purposes: evaluating the satellite’s pointing accuracy, and acting as a validation
tool for the Optical Ground Station (OGS) by verifying the correlation of results.

Figure 3.1: Initial diagram of the AllSky-camera system.

Given the system’s operational conditions, waterproofing, ventilation, and internet connectivity must
be regarded. Meeting those requirements was challenging, as we will discuss later.

3.2 Component Selection

The first step after defining the goals and requirements of the project, was to decide which components
were the most suitable for our application. The key elements are the camera, the lens, the dome and
the enclosure.

27

3.2.1 Indium Gallium Arsenide Camera
The camera serves as the primary component of our system. The satellites under observation are
equipped with a 1550nm laser terminal. Indium Gallium Arsenide (InGaAs) is the most appropriate
material for working at this wavelength.

Figure 3.2: Typical responsivity vs wavelength for silicon, InGaAs, and germanium. Figure taken from
[29]

Initially, the plan was to utilize the newly developed SONY Short-Wavelength InfraRed (SWIR) Image
Sensor Technology, known as SenSWIR. This technology integrates InGaAs photodiodes with silicon
readout circuits via Copper (Cu)-Copper bonding, resulting in a wide-band and highly sensitive SWIR
image sensor. SenSWIR allows imaging across a broad spectrum of wavelengths, ranging from 0.4 µm
to 1.7 µm. A single camera can now capture both the visible (VIS) light and the SWIR spectrum,
which previously required separate cameras. These cameras are called Visible to Short-Wavelength
InfraRed (VSWIR) cameras.

Figure 3.3: Operational Range SONY’S SWIR Sensor. Figure taken from [85]

There are two versions of the chip: The General-purpose SWIR Image Sensor (IMX990/IMX991) and
the High-resolution, High-performance SWIR Image Sensor (IMX992/IMX993). The general-purpose
chips feature 5 µm pixels, whereas the high-performance variants feature 3.45 µm pixels. The main
problem of these sensors is that the IMX992 and IMX993 are not yet available for purchase until Q4
2024, and using the IMX990 or IMX991 would compromise the Field Of View (FOV) of our final

28

system. The FOV of an imaging system depends on the focal length of the lens and the dimensions of
the sensor of the camera, as we will later discuss in subsection 3.2.2.

The dimensions of a camera’s sensor are calculated as follows, where the result can then be ap-
proximated to match one of the standard sensor sizes, as shown in Fig. 3.4:

Vsensor size [mm] = Vresolution [pixels] · Psize [µm] (3.1)

Hsensor size [mm] = Hresolution [pixels] · Psize [µm] (3.2)

Dsensor size [mm] =
√
(Hsensor size [mm])2 + (Vsensor size [mm])2 (3.3)

4/3"

1.1"
1"

2/3"
1/1.8" 1/2"

1/3"
1/4"

21.3 m
m

17.6 m
m

16 m
m

10.7 m
m

8.9 m
m

8 m
m

6 m
m

4.5 m
m

Figure 3.4: Common sensor formats and their diagonal dimensions. Figure taken from [86].

Figure 3.5: Specifications of the SONY SWIR image sensors. Figure taken from [85].

After careful evaluation, we decided to disregard the SenSWIR sensors and instead prioritized selecting
the camera with the largest possible sensor, we chose the Goldeye G-008 TEC1 [87]. The selection of
this specific camera was mainly backed by its software and Application Programming Interface (API)
as specifications are consistent across all considered cameras.

29

The C-mount camera records in 320 × 256 pixels at 344 frames per second. Users can select between
8-bit, 12-bit, 12-bit packed, or 14-bit monochrome pixel format. The camera also features advanced
image processing capabilities, such as background correction, Defect Pixel Correction (DPC), and
Look-Up Tables (LUTs). Designed for durability, the camera operates within a temperature range of
-20°C to +55°C, making it suitable for extended use in harsh environments. Additionally, the camera
exhibits a quantum efficiency of approximately 78% at 1550 nm, as illustrated in Fig. 3.6.

Figure 3.6: Goldeye G-008 TEC1 camera. (left). Quantum efficiency. (right). Figure taken from [87].

Table 3.1: Comparison of different cameras.

Specification Goldeye G-130
TEC1 [88]

Goldeye G-008
TEC1 [87]

Xenics Bobcat 320
CL 400 [89]

Interface Power over Ethernet Power over Ethernet CameraLink
Spectral range [nm] 400 - 1700 900 - 1700 900 - 1700
Resolution [H×V px.] 1280 × 1024 320 × 256 320 × 256
Pixel size [H×V µm] 5 × 5 30 × 30 20 × 20
Sensor Sony IMX990 | Type

1/2” VSWIR
Type 2/3” SWIR Type 1/2” SWIR

Lens mount C-Mount C-Mount C-Mount
Max. frames per second 94 344 400
Bit depth 8-bit to 12-bit 8-bit to 14-bit 8-bit to 16-bit
Power consumption [W] <12.95 <12.95 2.8
Operating temperature [°C] -20 to +55 -20 to +55 -40 to +70
Body dimensions*
[L×W×H mm] 78 × 55 × 55 78 × 55 × 55 72 × 55 × 55

Mass* [g] 340 340 285

*Lens not included.

3.2.2 Wide Angle Lens
Once an appropriate InGaAs camera is selected, the next challenge is finding a suitable C-Mount lens
that meets our requirements. The primary concern is achieving the largest possible field of view, ideally
close to 180 degrees. Fulfilling this requirement is challenging due to the limitations of the C-Mount

30

standard, which being relatively small, makes it difficult to accommodate the larger lenses providing a
wide FOV. Additionally, the requirement for InfraRed (IR) operation adds further complexity to the
selection process.

We considered two different approaches, the first used a specialized SWIR lens. The main prob-
lem of these kind of lenses, besides being expensive (around €2000), is their limited FOV—there are no
lenses with a wide enough FOV for our application, as the materials required to construct them also
make the lenses tedious to miniaturize, creating optics that are too large for a C-Mount (lenses like
this can be custom-made, they are just not available in the market as they go in a different direction
to the intended).

The second option featured a Visual and InfraRed (VIR) lens. Visible light lenses are more affordable
and offer wider FOVs. While these lenses can operate in the infrared spectrum, their transmittance
is reduced, leading to potential chromatic aberrations. This occurs when the lens fails to focus all
wavelengths to the same convergence point or image plane, resulting in color distortion and reduced
image quality.

Table 3.2: Comparison of different lenses.

Specification NAVITAR
SWIR 8 [90]

KOWA
LM100JC1MS
[91]

THOR-
LABS
MVL4WA
[92]

FUJINON
FE185C057HA-
1 [93]

Spectral range [nm] 700 - 1900
(SWIR)

380 - 1400
(VIR)

380 - 1400
(VIR)

380 - 780
(VIS)

Transitivity at 1550 nm [%] 81.6* 65** 56.8*** 42****
Focal length [nm] 8 100 3.5 1.8
F-Number [f/#] 1.4 - 16 2.8 - 32 1.4 - 16 1.4 - 16
Focus control Manual Manual Manual Fixed
Max. Aperture diameter [mm] 5.7 35.7 2.5 1.3
Diagonal Field of View [°]
2/3” sensor size 92.4 6.3 140***** 185
1/2” sensor size 70.7 4.6 132.1 185

Operating temperature [°C] -10 to +45 -10 to +50 -10 to +45 -10 to +50
Mass* [g] 205 145 70 135

*Transitivity at 1500 nm - Confidential Document.
**Transitivity at 1400 nm [94].
***Transitivity at 1400 nm [95].
****Transitivity at 1000 nm - Confidential Document.
*****In theory not compatible with 2/3” sensor size.

As we can see in Tab. 3.2, the narrow fields of view render the Navitar and Kowa lenses unusable.
When comparing the Thorlabs and Fujinon lenses, a compromise must be made: the MVL4WA
offers a narrower field of view with higher transmittance, while the FE185C057HA-1 provides a wider
field of view at the expense of lower transmittance. The Thorlabs lens is also incompatible with 2/3”
sensors, which could lead to potential issues such as distortion, vignetting, or cropping of the field of view.

Given the difficulty of deciding based just on this data, we tested both lenses to determine which one
would be more suitable for our specific application. The results of these tests will be discussed in
subsection 3.5.2.

31

Figure 3.7: Fujinon FE185C057HA-1. (left). Figure taken from [93]. Thorlabs MVL4WA. (right).
Figure taken from [96].

3.2.3 Dome
The lens will be protected from the exterior by a dome. We explored multiple options to ensure high
transmittance at 1550 nm. We inquired multiple companies, such as TTV and RÖHM, about the
transitivity of their Plexiglas/acrylic sheets that might meet our requirements. While the performance
of the materials was adequate, shaping them into a dome proved to be complex and impractical. As an
alternative, we considered crystal domes made from 1550 nm compatible materials.

Figure 3.8: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the
Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.).

Figure taken from [97]

N-BK7, fused silica, and sapphire exhibited excellent transmittance, but their cost was too much for
what they provided. Ultimately, we opted for a plexiglas dome that we already had in our possession,
as its performance in our tests was acceptable.

32

Figure 3.9: Final plexiglass dome.

3.2.4 Enclosure
All components must be enclosed in a box for transport and operation. This enclosure must meet
specific requirements to withstand harsh conditions: waterproofing; dustproofing; and sturdiness, to
ensure the components are fixed and can be moved without risk. The inclusion of a laptop for operating
the camera forces us to increase the dimensions of the box.

Figure 3.10: Max Koffer MAX540H245 box closed. (left). Max Koffer MAX540H245 box opened.
(right). Figures taken from [98].

The enclosure displayed in Fig. 3.10 has an IP67 rating, meaning it is dustproof, airtight, and waterproof,
even if temporarily submerged. With internal dimensions of 53.8 × 40.5 × 19.5 [L×W×H cm], weight
of 7.7 kg, and operating temperature range from -30°C to +90°C, the box is more than sufficient to
house all the required components and protect them from external conditions.

33

3.3 Final Overview of the AllSky-camera System

The final device will be controlled by a laptop housed inside the enclosure. This laptop will be connected
to a switch, linking the laptop and the camera and providing an option for internet connectivity. The
camera needs to go through a Power Over Ethernet (POE) injector before the switch to be granted
power, this could be ignored if POE switch was available, but is not the case.

A four-outlet power strip will supply power to the system: one outlet for the laptop charger, one for
the switch, one for the POE injector, and an additional outlet for a potential future dust filter. The
power cable of the power strip will exit the left side of the enclosure through a cable gland, maintaining
the system’s waterproof integrity.

The camera will be mounted on the left side of the lid, opposite the laptop. A hole will be made in the
lid for the camera lens, which will be protected from the exterior by the dome. The assembly of the
dome is key to prevent condensation and ensure the box remains waterproof.

One challenge with this device is that when the laptop needs to be pulled out for operation, the
Ethernet cable connected to the switch gets pinched between the lid and the box—not being able to
close properly—the solution was to install a double Ethernet socket on the right of the box. Both
internal connectors of the socket will be connected to the switch, this way if the laptop is inside of
the box, the internet cable will be connected to one of the external socket connectors, leaving the
second one free. If the laptop is outside the box, the internet cable will remain connected to one socket
connector while the laptop will be connected to the second connector, keeping connection to the switch.
The final iteration of the device can be shown in Fig. 3.11.

Po
we

r
St

rip

Eth. sock.

Filter

Cam

Switch

C
ha

rg
er

Po
E

In
j.

Laptop

Cable Gland

Figure 3.11: Final diagram of the proposed AllSkyCam4OLEODL system. Ethernet cables in red,
power cables in black.

3.4 Controlling Software

We developed software capable of managing the camera operations and processing the images to obtain
the required measurements. We will briefly explain the functionality of the code, rather than its
construction, as detailed documentation has been written for that purpose [99]. The source code is
included both in the documentation and in Appendix A.

34

Python was chosen as the programming language because the Application Programming Interface
(API) is available only in C or Python [100], with Python being faster for creating an initial iteration
of the software. In the future, the software could be ported to C if performance becomes a critical
factor, but the image processing would be challenging.

The program installation files and process can be found in the GitHub repository [101]. Both Git and
Python (version 3.7.4 or higher) need to be previously installed.

1. Install the PyPI package:

1 pip install allskycam4oleodl

2. Clone the AllSkyCam4OLEODL Git repository:

1 git clone https://github.com/Ikerald/AllSkyCam4OLEODL.git

3. Navigate to the AllSkyCam4OLEODL directory:

1 cd AllSkyCam4OLEODL/

4. Manually install the VmbPy API:

1 pip install './data/vmbpy-1.0.4-py3-none-any.whl[numpy,opencv]'

5. Execute the program:

1 python main.py

The program is executed from the main.py file, which imports all necessary functions from the
AllSkyCam4OLEODL package. This package consists of seven different scripts:

• api.py: Manages the API for camera control.

• constants.py: Stores all necessary constant values.

• gui.py: Handles the Graphical User Interface (GUI).

• image_processing.py: Processes the frames.

• input_checks.py: Grabs and validates input values.

• link_budget.py: Calculates and prints the link budget.

• printer.py: Prints the preambles.

The program operates as indicated in the following flow chart. This is a simplified diagram, as to
accurately represent every aspect of the code, we would need an individual diagram for each function.

35

Start

create_menu()

Gain Mode
Capture Mode
Light Mode
Camera Mode
Exposure Mode
Elevation Mode
Exposure Value
Elevation Angle
Payload
OGS’ height
Zenith Attenuation

Try block

Exception

While not
handler.shut-

down_event.is_set()

start_streaming(handler)

Finally block

stop_streaming()

save_plot()

End

True

False

Validate inputs - checks()

Payload selected? link_budget()

upload_lut()

Yes

No

36

setup_camera()

setup_pixel_format()

Grab temp frame - grab_frame()

create_graph()

Fig
Ax

Line
Xdata
Ydata

Handler Class

If self.shut-
down_event.is_set()

Counter +1. frame_processing()

No

Calculate bright-
est point -

brightest_V2()

Location brightest point
Pixel value brightest point
Intensity value brightest point
Mean pixel brightest contour
Summed pixel brightest contour
Summed intensity brightest contour

Calculate el.
and az. - calcu-
late_el_azi()

Elevation
Fov

Radial position
Azimuth

37

Draw overlays in frame - frame_draw()

Create directories for frames

write_csv() Downlink csv file

Delete temp frame

queue_frame()

If ”Q”/”q” is pressed

self.shutdown_event.set()

Yes

No

3.4.1 Vmbpy Application Programming Interface
The Allied Vision’s python API, Vmbpy [102], gives us control over most of the camera’s settings
directly from the code, allowing us to expand its functionalities.

One of the most important functions is setup_camera() in api.py. This function allows us to configure
the exposure mode, which can be set either in manual or automatic, and the gain mode, which is
chosen between gain 0 (0 dB), or gain 1 (18 dB)—the latter is preferred, as it enhances the visibility
of the satellite. In setup_pixel_format() the pixel format is set to 8-bit. Although our camera is
a 14-bit camera, this format is incompatible with the main processing tools like OpenCV or Pillow,
forcing us to use the inferior mode.

The upload_lut() function is responsible for uploading the Look-Up Table (LUT) to the camera
according to the selected mode. The goal is to correct the slight non-linearity in the camera output, as
can be seen in Fig. 3.12, 3.13 and 3.14.

38

Figure 3.12: Mean pixel value of the camera with no LUT uploaded. Figure taken from [103]

Figure 3.13: Mean pixel value of camera with LUT uploaded. Figure taken from [103]

Figure 3.14: Percentage of linearity error of both modes. Figure taken from [103]

3.4.2 Image Processing
The main goal of the software is to process all captured images in real time and tracking the satellite
while assessing its intensity, elevation and azimuth angle. This posed a challenge, as we had to balance
what we wanted to do with the computational resources needed to do so.

The process goes as follows: first, the taken frame from the camera is duplicated. If we want
to assess the intensity based on the pixel values of the image, the original must remain unaltered, or
the values will change. Depending on the selected camera mode, different processing algorithms are
applied.

• Hot-pixel removal:

We captured a set of images with exposure times ranging from 20000 µs to 300000 µs with the lid
on (lower exposure times were not considered, as hot pixels are not present at those levels). These
images, which feature only the hot pixels of the camera, are stored in the following directory:

39

1 cd AllSkyCam4OLEODL\data\references\gain1

These frames will be thresholded with a value of 45 and scaled by 255, obtaining a black image
with the hot pixels as maximum values. The normalized images will be subtracted from the
temporal image, eliminating the hot pixels.

The drawback of this approach is that not only eliminates the hot pixels, but also sets the
affected pixels to zero. If the satellite were to pass through one of these pixels, its value would be
zero.

• Own background subtraction:

In this mode, the temporal frame is directly subtracted from the current frame. One way
to apply this subtraction is capturing the first frame with the lid on top, this way we can delete
the background noise from the image.

However, changing exposure times during operation makes the subtraction of the black val-
ues inaccurate, as we cannot put the lid back on to retake a frame with the updated exposure.

The other way to use this mode is activating it with the lid already taken off, subtracting
the entire image. If done before the satellite pass, detection will be easier, as the difference
between the satellite’s value and the rest of the image will be higher. We will still face the same
problem when changing exposure times.

• Camera’s own background subtraction technique:

We discovered this option late in development, which is why we initially developed our own
background subtraction technique. The camera’s built-in subtraction outperforms ours, as it
averages the first four frames before subtraction. When initiated with the lid on, this technique
only reduces the mean pixel value of the image by a 0.04 %, whereas our subtraction reduces it
by 10.13 %, as shown in Fig. 3.15.

Figure 3.15: Taken images from the camera. Normal image (left). Own background subtraction (upper
right). Camera’s own background subtraction (lower right).

40

We do not need to process anything as the camera handles it all. However, the problem with the
exposure times remains, besides the intensity values are now more difficult to obtain, as we do
not know the subtracted value.

• Normal operation:

Nothing is removed from the frame under normal operation. We recommend using both this
method and the hot-pixel removal technique, as they are the most consistent. While background
subtraction is useful in specific scenarios, the normal mode is expected to be used most of the
time.

Now that the camera mode has been selected, the next step is tracking the satellite. We chose to avoid
inputting the satellite orbit information because we wanted to be able to track any satellite without
prior knowledge, discarding local thresholding. Therefore, the most effective approach was to track the
brightest point in the image, filtering by minimum and maximum spot size.

We developed two different modes based on lightning conditions. The daytime mode involves applying
a bilateral filter followed by an Otsu’s thresholding. Bilateral filtering smooths images while preserving
their edges as each pixel is replaced by a weighted average of its neighbours. The weighting is dictated
by a spatial component that penalizes distant pixels and a range component that penalizes pixels with
a different intensity. This combination ensures that only nearby similar pixels contribute to the result.
This method is ideal for our application, as we will apply contour detection, where maintaining the
edges around the satellite is crucial for distinguishing it from the rest of the image.

Figure 3.16: Bilateral filter weights. Figure taken from [104], reproduced from [105]

The key idea of the bilateral filter is that for a pixel to influence another pixel, it should not only
occupy a nearby location but also have a similar value. Denoted by BF [·], the bilateral filter is defined
by equation (3.4) [105]:

BF [I]p =
1

Wp

∑
q∈S

Gσs(‖p− q‖)Gσr(|Ip − Iq|) Iq (3.4)

41

Here, Gσs(‖p − q‖) represents the spatial weight, a Gaussian function that decreases the influence
of distant pixels. Gσr(|Ip − Iq|) represents the range weight, a Gaussian function that reduces the
influence of pixels q when their intensity values differ from Ip). Wp represents the normalization factor,
ensuring pixel weights sum to 1:

Wp =
∑
q∈S

Gσs(‖p− q‖)Gσr(|Ip − Iq|) (3.5)

Fig. 3.16 shows how the weights are computed for a pixel near an edge. Fig. 3.17 compares different
proposed blurring techniques, with the bilateral filter configured with a diameter of pixel neighborhood
of 3 and a σ value of 200 for both the color and coordinate space, performing the best.

Figure 3.17: Different blurring techniques.

The Otsu’s thresholding method, also known as the Otsu’s method, was the solution for the changing
exposure. When exposure times vary, the mean pixel values also change, which makes standard
thresholding techniques unreliable, as they may segment the satellite. We first thought of an adaptive
thresholding technique; however, as shown in Fig. 3.18, their performance was suboptimal. The Otsu’s
method automatically determines the threshold that separates pixels into two classes—foreground and
background—as explained in [106].

Fig. 3.18 demonstrates that only the Otsu’s thresholding method correctly localizes the satellite
under daylight conditions. Fig. 3.19 illustrates the effectiveness of combining the Otsu’s thresholding
with the previously discussed filters. We apply a filter prior to thresholding because, as shown in the
lower left image of Fig. 3.19, using Otsu’s thresholding by itself results in the removal of pixels with
lower values that are still illuminated by the satellite. By blurring, we average those pixels with the
ones with higher values, capturing the full area of the satellite in the image. Among all the filters
tested, the bilateral 3 200 × 200 performs best.

42

Figure 3.18: Different blurring techniques.

Figure 3.19: Otsu thresholding plus different blurring techniques.

After applying the appropriate threshold, we will obtain the contours of the mask, as shown in Fig.
3.20. These contours will then be filtered by the selected maximum and minimum spot size, based on
equations (3.6) and (3.7): obtaining the contour with the maximum total pixel value, as illustrated in
Fig. 3.21:

height of contour × width of thecontour ≥ minimum spot size value (3.6)

height of contour × width of the contour ≤ maximum spot size value (3.7)

43

Figure 3.20: Contours of the image obtained by different techniques.

Figure 3.21: Brightest contour of the image by different techniques filtered by spot size value.

From the mask, we extract the location of the brightest contour, which is then overlaid onto the original
image, as illustrated in Fig. 3.22. We extract the final values applying this location to the original
image: the value of the brightest pixel and the mean and summed pixel value of the entire brightest
contour. All these values along with the current date and time, exposure value, minimum and maxi-
mum spot size, elevation, azimuth, and the cardinal coordinates, will be overlaid onto the original image.”

The process of obtaining the intensity values involves applying a correction factor, the selection

44

of which will be explained in subsection 3.5.4.

Figure 3.22: Final brightest point of the image by different techniques filtered by spot size value.

When using the night-time mode, the procedure remains same as in daytime, with two differences: the
bilateral filter is replaced by a Gaussian 3 × 3 filter, and the Otsu’s thresholding method is substituted
with a binary threshold determined by the background noise curve of the camera. At night-time,
the mean pixel value is lower, therefore the difference with the satellite is higher, which allows us to
threshold the image based on the camera’s background noise. To obtain the noise curve, we captured
frames with exposure times ranging from 10 µs to 256000 µs, as illustrated in Fig. 3.23

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

120

Exposure Time [µs]

M
ea
n
P
ix
el

V
al
u
e
[D

N
]

Background noise - Allied Vision G-008

y = 0.0004 · x+ 13.113

Figure 3.23: Camera’s background noise curve of gain1 mode.

45

Both processed and unprocessed frames will be saved in the following directory with an specific name
depending on the date, time, exposure mode and time, camera mode, gain mode and payload:

1 AllSkyCam4OLEODL/data/tracking_images

A CSV file containing all the relevant parameters will be saved in the same directory as the processed
frames. This file is crucial, as it all the values necessary to assess the performance of the link. The
Intensity received - expected [dB] parameter will indicate us how far were we from the estimated value
from the link budget:

• Frame Number

• Gain Mode

• Time [CEST]

• Exposure [µs]

• Location [x, y]

• Elevation [°]

• Azimuth [°]

• FOV

• R

• Brightest Pixel Value [DN]

• Intensity Brightest Pixel [µW/m2]

• Mean Pixel Value of the Frame [DN]

• Summed Brightest Contour Pixel Value
[DN]

• Summed Brightest Contour Intensity
[µW/m2]

• Payload

• Payload Intensity [µW/m2]

• Intensity received - expected [µW/m2]

• Intensity received - expected [dB]

A graph of the entire recording is also saved in the same directory as the recorded frames. An example
of the graph is provided in Fig. 3.24.

Figure 3.24: Graph of a failed CubeCat downlink.

The y-axis represents the pixel value from the camera, as the intensity is not yet properly calibrated;
once calibrated, intensity will be the variable used. The title of the graph is automatically generated
based on the payload and current date.

3.4.3 Elevation and Azimuth
Elevation and azimuth are angular measurements to identify the position of a satellite relative to an
observer location. Measured both in degrees, they start from 0 degrees: azimuth starts from the north

46

and covers 360 degrees clockwise, being 90° east, 180° south and 270° east; elevation goes from horizon
(0°) until zenith at 90°. To accurately calculate these angles, it is necessary to know the focal length of
the lens, its mapping projection and the center coordinates of the capture image.

Figure 3.25: Diagram of the elevation and azimuth of an object. Figure taken from [107]

In this work, we use wide angle or fisheye lenses, this type of lenses provide a very wide FOV by
distorting the image. This distortion is achieved through an specific mapping function, referred as a
projection. There are several projection as illustrated in Fig. 3.26, but we will focus in the most used,
the equisolid projection.

Figure 3.26: Different types of fish-eye lens mapping functions. Figure taken from [108]

Let θ represent the angle in radians between a point in the real world and the real axis, f denotes
the focal length of the lens, and R is the radial distance in the image (the distance from the center
to an specific point). In a circular lens, θ can be interpreted as the field of view of the lens. For any
point within a given frame, all points at the same radius with respect of the center will share the same

47

θ. Thus, θ can be considered as the FOV that allows observation of that specific circle, defined by
equation (3.8).

θ = 2arcsin

(
R · Psize

2f

)
(3.8)

Where Psize is the pixel size inmm/pixel and the radial distanceR is calculated asR =
√
(x− xc)2 + (y − yc)2

[pixels].

Our final field of view and elevation angle will be defined by equations (3.9) and (3.10), respec-
tively.

θdeg = 2θ ·
(
180

π

)
(3.9)

elevation =
(180− θdeg)

2
(3.10)

To calculate the azimuth angle, we will define θ as the angle measured in the clockwise direction from
the origin of the north line A, to the object B, as illustrated in Fig. 3.27.

Figure 3.27: Azimuth diagram of an object. [109]

Then the coordinates of point B can be described by equation (3.11):

(b1, b2) = (a1 + r sin θ, a2 + r cos θ) (3.11)

Where r is the length of the line segment AB. θ is therefore defined by equation (3.12):

θ = arctan

(
b1 − a1
b2 − a2

)
(3.12)

The frame is divided into three quadrants: one for the bottom section of the image and two dividing
the upper section in half. It is important to note that the origin is at the upper left corner of the image.
Additionally, the images captured by the camera are mirrored, the left side of the image corresponds
to the west side, and vice versa. This is clearly illustrated in Fig. 3.28.

48

(0, 0)

(161, 131)

(320, 256)

E W

N

S

azimuth = θ azimuth = 360 + θ

azimuth = 180 + θ

Figure 3.28: Diagram of the calculation of the azimuth for the different quadrants of a picture.

3.4.4 Graphical User Interface
When executed, the program displays a Graphical User Interface (GUI) menu, allowing the user
to choose the settings for both the camera and link budget. The camera settings include the gain
mode, capture mode, lightning mode, camera mode, exposure mode and exposure time. For the link
budget, the user can adjust the payload, the height of the Optical Ground Station (OGS), the zenith
attenuation, the elevation mode and the elevation angle.

When capturing is initiated, three new windows appear on screen. The one on the bottom right
is tasked with controlling the exposure time, and the minimum and maximum spot size value—the
sliders use a logarithmic scale, making it easier to select lower values. The window on the bottom left,
displays a live graph, similar to the one shown in Fig. 3.24, which plots time against the mean pixel
value in real-time. The final window on the top left, shows both the processed and unprocessed frames
from the camera. An image of an actual operation of the system is displayed in Fig. 3.29.

Figure 3.29: Real time system operation.

49

3.5 Testing

In this section we will go over all the executed tests to ensure that we meet all the necessary requirements
of the final system.

3.5.1 Calculation of the Link Budget for the Observed Satellites
The first we challenge we faced was the complexity of the satellite’s visibility. We required an intensity
value to determine whether the camera could detect satellite. We chose the OSIRISv1 onboard Flying
Laptop (FLP), described in subsection 2.5.1, because it is one of the dimmest satellites that we will
test with the AllSky camera system.

Using the procedure outlined in subsection 2.4.5, we will perform the link budget analysis for the laser
terminal. Since we are using a camera, few exceptions need to be considered: The optical losses inside
the receiver terminal, aRx, are disregarded as we want to measure the intensity before it goes through
the camera; beam wander losses, or the average loss due to dynamic beam miss-pointing, aBW are also
ignored, as our camera is able to see the whole hemisphere, ensuring that the satellite will be within
the field of view of the receiver, regardless of pointing accuracy; finally, scintillation losses aSci will
be negligible. As explained in subsection 2.4.4, using a long exposure time (around 100000 µs) will
average the scintillation index over time.

For our calculations, we will use 15° as the minimum elevation angle visible:

50

Table 3.3: Link Budget from the observed satellites.

OSIRISv1 on Flying Laptop [64]: OSIRIS4CubeSat on CubeL [80]: CubeCat on NORSAT-TD:
595km polar orbit, 1.0 mrad FWHM Tx-div., 560km polar orbit, 120 µrad FWHM Tx-div., 455km polar orbit, 104 µrad FWHM Tx-div.,

1W Tx-power of λ = 1545 nm 85mW Tx-power of λ = 1550 nm 300mW Tx-power of λ = 1545 nm
into the 2.5mm ⌀ effective into the 2.5mm ⌀ effective into the 2.5mm ⌀ effective

aperture of the InGaAs on the IKN aperture of the InGaAs on the IKN aperture of the InGaAs on the IKN

Parameter (formula)
15◦ elevation zenith 15◦ elevation zenith 15◦ elevation zenith

Mean source power pTx +30 dBm +30 dBm +19.29 dBm +19.29 dBm +24.77 dBm +24.77 dBm
Tx internal losses aTx -1 dB -1 dB NA NA NA NA
Tx antenna gain gTx
(2.13) +70.4 dB +70.4 dB +88.9 dB +88.9 dB +90.1 dB +90.1 dB

Pointing loss aBW

(2.14) NA NA NA NA NA NA

Distance L (2.16) 1613 km 594 km 1538 km 559 km 1303 km 454 km
Freespace loss aFSL

(2.15) -262.4 dB -253.7 dB -261.9 dB -253.1 dB -260.5 dB -251.4 dB

Atmos. attenuation
aAtm (2.17) -1.94 dB -0.50 dB -1.94 dB -0.50 dB -1.94 dB -0.50 dB

Scintillation loss aSci NA NA NA NA NA NA
Rx antenna gain gRx

(2.19) +74.1 dB +74.1 dB +74.1 dB +74.1 dB +74.1 dB +74.1 dB

Power into camera’s
aperture pRx

-90.7 dBm -80.6 dBm -81.6 dBm -71.4 dBm -73.4 dBm -62.9 dBm

Rx-internal losses and
signal splitting for
tracking aRx

NA NA NA NA NA NA

Intensity into camera’s
aperture 0.1723 µW/m2 1.7679 µW/m2 1.407 µW/m2 14.819 µW/m2 9.228 µW/m2 105.64 µW/m2

Link margin for
communication -31.7 dB -21.6 dB -22.6 dB -12.4 dB -14.4 dB -3.8 dB

51

To obtain the Intensity into the camera’s aperture [W/m2], we transformed the Power into camera’s
aperture pRx (in dBm) and divided the resulting value by the effective area of the camera’s aperture
as shown in equation (3.13):

10
pRx
10 · 10−3

areaRx
(3.13)

Where the effective area of the camera arearx is given by the area of a circle:

areaRx = π ·
(
⌀ap

2

)2

(3.14)

Being ⌀ap the diameter of the effective aperture of the camera, 2.5·10−3 m, in our case.

The intensity requirements are strict—the link margin does not affect us, as we do not want to
establish any communication. Our goal is to visualize the satellite and assess weather observed intensity
is comparable to the value calculated under ”Intensity into camera’s aperture” in the link budget.
After recording, we will calculate the difference in decibels at each elevation angle of the satellite.

3.5.2 Evaluation of the Lenses
As explained in subsection 3.2.2, the two major factors to consider for the lenses are the Field Of
View (FOV) and transmittance at the desired wavelength of 1550 nm. The transmittance is already
suboptimal: it is below 45 % for the Fujinon lens at 1000 nm, and around 60 % for the Thorlabs lens
at 1400 nm. The field of view values are better: the FE185C057HA-1 maintains its 185° FOV, as it is
compatible with our 2/3” sensor; on the contrary, the MVL4WA is only compatible with sensors up to
a 1/2” size (we should obtain around 140° FOV with a 2/3” sensor based on our calculations). The
purchase of the Thorlabs MVL4WA was risky because using a lens not suitable for a certain sensor
could lead to the presence of vignetting, unexpected distortions or even a reduction in the camera’s
field of view. We tested the lens to verify its correct functionality.

We took two pictures to estimate the field of view: one with the subject positioned at the cen-
ter of the frame, and the other with the subject at the edge of the field of view, illustrated in Fig. 3.30.
The used setup is shown in Fig. 3.31.

Figure 3.30: Subject in the middle of the frame. (left). Subject on the right edge of the frame. (right)

52

Figure 3.31: Setup of the first FOV experiment.

In the first image, the subject is positioned at 7.42 m from the camera, while in the second image, the
subject is 19.32 m away from its initial position. Using basic trigonometry, the field of view of the lens
can calculated, as shown in equation (3.15):

FOV [°] = arctan
19.32m

7.42m
= 68.99° ⇒ 137.98° (3.15)

To confirm these results, we used a Pan-Tilt-Unit (PTU). By selecting a reference point in the center
of the frame and panning the PTU along the x-axis until the point reaches the edge of the frame, we
precisely determine the camera’s field of view, as illustrated in Fig. 3.32.

Figure 3.32: PTU pointing to 0° (left). PTU pointing to 70° (right).

Using the right edge of the sewer as a reference, as shown in Fig. 3.33, we confirm that the camera’s

53

field of views approximately 140 degrees, as estimated.

Figure 3.33: Reference point in the middle of the frame. (left). Reference point on the right edge of
the frame. (right)

The primary issue with the Fujinon FE185C057HA-1, as noted in Table 3.2, is its fixed focus, which
results in blurry images. This is a major drawback when attempting to evaluate laser intensity. We
tried adjusting the focus using spacer rings, but it was unsuccessful as it was impossible to screw the
lens in a consistent way. This lead to to instability and inconsistency in the focus, which rendered our
results unreliable. Summed to the low transitivity of the lens made us disregard the Fujinon lens.

3.5.3 Intensity Measurement with a Coarse Wavelength Division Multiplexing
Transceiver

After calculating the required minimum intensity and checking the correct functioning of the lens,
we checked whether the system could detect Flying Laptop at 15-degrees of elevation, our worst-
case scenario. We used a 1.6 mW Coarse Wavelength Division Multiplexing (CWDM) single-mode
transceiver, centered at 1550 nm, connected to a Single Mode Fiber (SMF) patch, to simulate the laser
signal. This approach provided an affordable and efficient method to validate the intensity received by
the camera.

Figure 3.34: LS42-CAU-TC-N55 CWDM transceiver.

54

With the aforementioned transceiver, we only needed the Full Width Half Angle (FWHM) to assess
the distance required to setup the laser away from the camera, so the axial intesity received replicates
the one we would receive from flying laptop at 15° elevation angle.

I0(L) =
4 ln 2

π
· P0

(L · 1.18 · θSM)2
(3.16)

The axial intensity does not account for atmospheric or pointing losses and assumes a Gaussian far-field
beam pattern [64]. Our main unknown, θSM, is defined by equation (3.17):

θSM = M2 λ

πw0
(3.17)

The divergence or acceptance angle θSM, is defined as the point with 1/e2 times the maximum intensity
of a Gaussian beam. However, in telecommunications, the full width half angle is more commonly used.
This full beam divergence angle is 1.18 times the half-angle divergence [110], as shown in equation (3.17).

The full width half angle is highly dependent on the fiber used—we connected the transmitter
side of the transceiver to a SMF-28 fiber patch [111]. The beam quality factor, or M2 parameter, is
defined as the ratio of the beam’s divergence to that of an ideal fundamental Gaussian beam. Since
the fundamental Gaussian beam has the least divergence, real beam always follow M2 > 1 (1.123
for the fundamental mode LP01 [112]). The beam waist w0, described in subsection 2.4.4, can be
approximated to half of the Mode Field Diameter (MFD) for single-mode fibers, as the beam profile at
the fiber output is identical to that within the fiber [113], [114].

w0 =
MFD

2
(3.18)

With all necessary parameters, we calculated the required distance using equation (3.19):

L =

√
4 ln 2 · P0

π · (1.18 · θSM)2 · I0(L)
(3.19)

Where:

• θSM = 1.12 1550·10−9 m

π 10.5·10−6 m
2

= 0.1137 rad

• I0(L) = 0.17232 µW/m2

• P0 = 1.6 mW = 1600 µW

The required distance for the test is L = 674.71 m, an unachievable distance, as the test was intended
to be conducted in the basement of the Institute of Communications and Navigation IKN. To address
this, we used different attenuators to lower the power, and therefore the distance, as illustrated in Fig.
3.35.

55

0 10 20 30 40 50 60
0

100

200

300

400

500

Attenuation [dB]

D
is
ta
n
ce

[m
]

Distance Needed to Replicate FLP’s Intensity Based on the Attenuation Level

35 40 45 50 55
0

2

5

10

Zoomed-in view of achievable distance

Figure 3.35: Attenuation for achievable distance.

The room used for the experiment has a length of 5 m, so we decided to use 50 dB of attenuation. The
laser was positioned 2.65 meters away from the camera, farther than the 2.13 m required to achieve
the target intensity. As seen in Fig 3.36, the transceiver was visible with the Thorlabs lens, meaning
that the satellite would also be detectable. This was not the case with the Fujinon lens, providing
another reason to discard it.

Figure 3.36: Thorlabs lens taken frame, laser not tracked as software was not ready yet. (left).
Fujinon lens taken frame. (right)

We measured the power on the fiber tip using a power-meter, registering a value of 0.02 µW . According
to equation (3.16), this equaled to an axial intensity of 0.139 W/m2 at the camera. We used this
value to calibrate the system—the system captures frames, which are measured by the digital number
of their pixel values, to convert them to intensity we need to apply a conversion—multiplying the
brightest pixel value by the obtained axial intensity, and then divided it by the curve generated from
taking pictures of the spot when it was undetectable by the camera until saturation (255 pixel value),

56

as illustrated in Fig. 3.37.

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000
0

50

100

150

200

255

Exposure Time [µs]

P
ix
el

V
al
u
e
[D

N
]

Pixel Value Curve of an 0.139 W/m2 Axial Intensity Spot - Allied Vision G-008 Gain0

y = 0.0001 · x+ 18.545

Figure 3.37: Camera´s curve for an 0.139 W/m2 axial intensity in gain 0 mode.

While this method allowed us to estimate the correct intensity regardless of the exposure time, it raised
two main issues. First, we had no way to precisely point the laser to the camera, leading to loses in the
detected intensity with no way to account for them. Second, the calibration factor was specific for an
intensity value similar to the one used, meaning that only similar intensity values would be estimated
accurately. The next experiment aimed to fix these issues.

3.5.4 Camera Calibration and Intensity Assessing with the Radio Tower
At the Deutsches Zentrum für Luft- und Raumfahrt (DLR), we have equipped a radio tower with a 2
mW , 1550 nm laser (with a minimum power output of 0.79 mW), an Erbium-Doped Fiber Amplifier
(EDFA); and a Pan-Tilt Unit (PTU), all controlled via DLR servers. This setup enabled us to replicate
the previous experiment, this time conducted on the IKN rooftop, aiming the laser with an angular
precision of one degree. The setup is identical as the one used by a previous student at DLR [115],
replacing the optical ground station focal assembly (SOFA with our camera positioned besides the
OGS-OP. The presence of the Pan-Tilt unit in the setup solved the pointing problem, allowing us to
precisely direct the laser. The calibration problem was harder to solve. A diagram of the experiment is
shown in Fig. 3.38.

Figure 3.38: IKN rooftop experiment viewed from above

57

Figure 3.39: IKN rooftop experiment viewed from the side.

The tower is located 6.6 km away from the OGS-OP with a full width half angle of 1 mrad. Based on
these parameters and equation (3.16), the lowest intensity generated was 15.95 µW/m2, much higher
than the laser we were using in the basement. This always saturated the camera, regardless of the
exposure time. While adjusting the laser’s pointing was a solution, it reintroduced the original pointing
problem.

We were unable to calibrate the camera using this method. The solution is either to install a
filter on the radio tower or use a laser with adjustable power, fixed on a movable mount. The correct
procedure for calibrating the camera is detailed in [116]. This method is similar to what we applied
in subsection 3.5.3, but in this case, the exposure remains fixed, while the power is changed from
undetectable levels until saturation, allowing us to obtain an accurate calibration curve for the entire
exposure range, as shown in Fig. 3.40.

Figure 3.40: Exposure curves with moving power (left). Final exposure curve (right). Figure taken
from [116].

A picture of the the saturated result are found next in Fig. 3.41. Pictures of the PTU menu and the
setup of the experiment are shown in Fig. 3.42 and Fig. 3.43 and 3.44, respectively. The pathing from
both the IKN and GSOC is shown in Fig. 3.45 and 3.46.

58

Figure 3.41: Picture of the radio tower taken by the camera using gain 1 mode at 0 dBm

Figure 3.42: Picture of the pan-tilt unit menu

59

Radio TowerOLEODL System

Figure 3.43: Picture of the two laptops controlling the OLEODL system (left) and the radio tower
(right)

Figure 3.44: Picture of the Allied Vision G-008 camera besides the OGS-OP

60

Figure 3.45: Image of the distance from the radio tower to both the IKN and GSOC. Figure taken
from Google Earth Pro.

Figure 3.46: Image of the radio tower. Figure taken from Google Earth Pro.

61

62

4 Results & Discussion

We found that the device was useful, capable of detecting the satellite downlink and helping with
the identification of the failure point of the system. We tested the device while this work was still
in development, which means that the state of the device in the point of each measurement was
usually different. This proved to be a challenging process as satellite downlinks are organized in
campaigns—periods of approximately two weeks where links are conducted every two days or so. If
the device was not ready for a specific campaign, we would not get any measurements until the next
campaign, which are really limited, taking several months between each other.

The first campaign we participated in was the Flying Laptop (FLP) campaign in April. This campaign
was unsuccessful as the software was incomplete at that time. The exposure time could not be changed
during operation, and the satellite was tracked by just looking for the brightest point of the image
without any filtering, thresholding or spot size filtering. Also, the visibility conditions were inadequate
during the campaign, which means that we probably would have not seen the laser signal from OSIRIS
on the satellite either way.

4.1 OSIRIS4CubeSat Onboard Laser CubeSat Campaign
The Laser CubeSat (CubeL) campaign took place in early July, while our software was still under
development. During this campaign, the outdated image processing technique was still used, however
we had already implemented the higher gain mode and the Look-Up Table (LUT) into the camera,
improving our detection threshold.

We detected the OSIRIS4CubeSat laser terminal onboard CubeL during this campaign, whereas
the OGS-OP did not. Initially, we considered the detection to be due to sun reflecting onto the satellite,
as some links were attempted still in the visible time. However, we believe we saw the actual signal
from the terminal, as sunlight reflection would have produced sudden sparks of light, rather than a
continuous signal during the satellite pass.

CubeL, as explained in subsection 2.5.2, is the type of satellite that requires to receive a beacon
to start the downlink. We tried to detect the satellite again when the beacon had not been sent,
and did not observe it, which supports our hypothesis of seeing the signal. Although this result may
seem minor, just for our camera to be able to see the laser terminal from the satellite, suggest that
the Optical Ground Station (OGS) should also be able to see it. The OGS not detecting the signal
indicates a potential issue with the telescope, probably related to the pointing accuracy. This was
exactly one of the main goals of this work, and we managed to prove its value.

Although highly unlikely, the satellite’s orbit could be slightly off, enough to miss it. For this
reason, the camera system is also designed to assess the elevation and azimuth of the satellite, and the
dB lost with respect to the expected intensity received from the laser terminal at that precise elevation
angle: assessing how off the satellite was from the expected values. This feature was not implemented
for this campaign and still requires further testing.

A frame of the pass can be seen in Fig. 4.1. We could also present the intensity values during

63

the pass, but it is not really useful as the calibration of the intensity is inaccurate.

Figure 4.1: Pictures taken with the OLEODL system of the CubeL satellite

4.2 CubeCat Onboard NORSAT-TD Campaign
We contacted the Dutch Organization for Applied Scientific Research (TNO) to establish a link with
their satellite, NORSAT-TD, fitted with the CubeCat laser terminal. This satellite operates similarly
to CubeL, with the principal difference being that its downlink remains active from the horizon,
using the beacon only to locate the targeted OGS, and refine its pointing accuracy. This satellite
stays within visible range for approximately the first 12 degrees, before shifting to the infrared spectrum.

Conducted at the German Space Operations Center (GSOC) during the last week of August, this
campaign was also unsuccessful. While the satellite downlink process worked normally for TNO in
The Hague, we were unable to consistently detect the CubeCat laser terminal onboard NORSAT-TD:
nor did the GSOC-OGS, nor did I with the camera. We detected the laser terminal during the visual
range on the first day, but we were unable to replicate the results the following day due to clouds.

We arranged a meeting to discuss potential causes of the issues we encountered. Two main points were
identified: first, the Two-Line Elements (TLE) files we used might not have been precise enough, as
TNO uses Consolidated Prediction Format (CPF) files, which they find to be more accurate. The
second was the differences in our beacons; while ours is a 4 W beacon, TNO’s is 6 W . Although this
difference in power should not have been a problem, the divergence angle difference was significant.
TNO’s beacon had a divergence angle of 220 µrad, whereas our beacon had a divergence angle of
2.1 mrad. This 10x increase could have prevented the satellite to detect our beacon, resulting in the
satellite spiraling instead of sending the downlink directly to us.

The following day, we found out that the link was impeded due to problems with the orbital el-
ements and the too low intensity of the beacon pointing to the satellite. This made sense, because
even if the TLE was imprecise and the satellite was not pointing directly at us, the OLEODL system
developed in this work should have detected the satellite, however it did not. After fitting a new
collimator into the telescope, we tried again the same night, but nothing was seen except three or four
sparks in the OLEODL system. These sparks seem to be the reflection of the downlink interacting

64

with the beacon of the telescope. This occurred due to humid conditions that night, which caused
some fog, leading to atmospheric interactions and reflections.

The presence of these reflections indicated that the satellite was likely sending the downlink as
intended. However, we were unable to assess the exact cause of our failure.

Figure 4.2: Pictures taken with the OLEODL system of the reflections from the NORSAT-TD satellite.

Figure 4.3: Picture taken of the setup for the NORSAT-TD link

65

66

5 Conclusion

5.1 Summary
Optical Low Earth Orbit DownLinks (OLEODL) are establishing themselves as an alternative to
Radio Frequency (RF) links in specific scenarios due to their reduced equipment volume, lower power
consumption, and avoidance of the regulatory restrictions and tariffs associated with RF.

When attempting Optical Low Earth Orbit Downlinks (OLEODL), various factors can cause a
failure, such as weather conditions, visibility, performance of the Optical Ground Station (OGS), or
issues with the satellite itself. Identifying the precise cause of a failure is challenging.

This work focuses on building a compact, portable, and waterproof validation tool for OLEODL
links. This tool is capable of assessing the signal intensity of a laser terminal onboard a satellite,
including deviations from the expected intensity as per the link budget. The azimuth and elevation
angle of the satellite are also computed, evaluating the overall performance of the link. Our device is
based on an Indium Gallium Arsenide (InGaAs) camera, which operates in the 900− 1700 nm spectral
range. The captured images are processed using a filtering-thresholding-contouring technique, for the
intensity-dependent value on that precise elevation to be compared to the expected intensity on that
same elevation angle.

This thesis demonstrates that the proposed proof-of-concept is feasible, and can be a valuable tool
during the downlinks, capable of detecting the satellite even when the OGS did not, providing us
with another tool to assess the failure point of the system. The goal is to establish this device as a
commonly used tool during the OLEODL campaigns. Although the system is operational, it is still
under development, with potential identified improvements and further testing needed.

The lack of consistent downlink campaigns, combined with the difficulties in establishing the link,
made testing challenging. Additionally, the imprecise intensity calibration caused the recorded values
to deviate from the expected values; if the values are far from our calibration factor.

5.2 Future Work
The AllSky-Camera system for Monitoring of Optical Satellite Downlinks aims to become a standard
tool for optical satellite downlinks. The main improvement needed lies in the intensity calibration
process, explained in subsection 3.5.4, which could not be fully accomplished due to the lack of
appropriate tools (a challenge impossible to solve within our time frame).

Having proven the device’s usefulness, it will be upgraded with more suitable components, replacing
off-the-shelf components with custom-made ones. A custom-designed Field of View closer to 180
degrees (allowing us to see the whole hemisphere) with appropriate transitivity will be commissioned,
as well as a crystal dome made of a more fitting material, such as BK7. These upgrades were initially
omitted to keep the proof-of-concept within a limited budget.

A 1550 nm band pass filter could be implemented. The main problem with these filters is that

67

their performance varies, highly, depending on the incident angle, rendering them useless for our case.
If we really want to implement the band pass filter, it should be placed between the sensor and the
lens, where the incident angles are much lower than before the lens. The spacing between the lens and
the sensor is approximately 4 mm, which would allow us to find a suitable filter if desired.

As a minor improvement, remote operation of the system could also be implemented in the fu-
ture. The project was developed with this in mind, but the DLR firewalls prevented its deployment.
An exception to the firewall is being considered, but this will take time.

In conclusion, this work successfully developed a device that will serve as an automated verifica-
tion tool for any satellite downlink in the near future. The closest application of the AllSky-Camera
system for Monitoring of Optical Satellite Downlinks is its deployment in Almeria, where it will operate
alongside the newly developed robotic Optical Ground Station (OGS) to monitor the planned satellite
downlinks.

68

Bibliography

[1] N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Uraguchi, “All-sky 10-um
cloud monitor on mauna kea,” in Large Ground-based Telescopes, vol. 4837. SPIE, 2003, pp.
872–877.

[2] Y. Wang, D. Liu, W. Xie, M. Yang, Z. Gao, X. Ling, Y. Huang, C. Li, Y. Liu, and Y. Xia,
“Day and night clouds detection using a thermal-infrared all-sky-view camera,” Remote Sensing,
vol. 13, no. 9, p. 1852, 2021.

[3] P. Crispel and G. Roberts, “All-sky photogrammetry techniques to georeference a cloud field,”
Atmospheric measurement techniques, vol. 11, no. 1, pp. 593–609, 2018.

[4] E. Kerr, B. D. C. López, N. Maric, J. N. Torres, G. Falco, N. Sánchez Ortiz, C. Dorn, and
S. Eves, “Design and prototyping of a low-cost leo optical surveillance sensor,” in Proceedings of
the 8th European Conference on Space Debris, Darmstadt, Germany, 2021, pp. 20–23.

[5] M. N. Sarvi, D. Abbasi-Moghadam, M. Abolghasemi, and H. Hoseini, “Design and implementation
of a star-tracker for leo satellite,” Optik, vol. 208, p. 164343, 2020.

[6] K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit
satellite communications,” in 2017 IEEE International Conference on Space Optical Systems and
Applications (ICSOS). IEEE, 2017, pp. 108–114.

[7] N. Estell, D. Ma, and P. Seitzer, “Daylight imaging of leo satellites using cots hardware,” in Proc.
AMOS, 2019.

[8] H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 60.

[9] A. G. Bell, “Apparatus for signaling and communi-cating, called photophone,” U.S. Patent No.
235,199, Dec. 7, 1880.

[10] G. Marconi, “Improvements in transmitting electrical impulses and signals and in apparatus
there-for,” British Patent No. 12,039, Jul. 7, 1897.

[11] A. G. Bell, “The photophone,” Science, no. 11, pp. 130–134, 1880.

[12] D. Giggenbach, “Optimierung der optischen freiraumkommunikation durch die turbulente
atmosphäre-focal array receiver,” Ph.D. dissertation, Shaker-Verlag, 2005.

[13] M. M. Hassan and G. Rather, “Free space optics (fso): a promising solution to first and last mile
connectivity (flmc) in the communication networks,” IJ Wireless and Microwave Technologies,
vol. 4, no. 1, p. 1, 2020.

[14] M. N. Sadiku, S. M. Musa, and S. R. Nelatury, “Free space optical communications: an overview,”
European scientific journal, vol. 12, no. 9, pp. 55–68, 2016.

[15] K. A. Sebastian. ”UCS Satellite Database”. Union of Concerned Scientist. Accessed: Aug. 9,
2024. [Online]. Available: https://www.ucsusa.org/resources/satellite-database

[16] P.-H. Chen and R. L.-T. Cho, “The technological trajectory of leo satellites: Perspectives from
main path analysis,” IEEE Transactions on Engineering Management, 2023.

69

https://www.ucsusa.org/resources/satellite-database

[17] V. Pesce, A. Colagrossi, and S. Silvestrini, “Chapter four - orbital dynamics,” in Modern spacecraft
guidance, navigation, and control: from system modeling to AI and innovative applications.
Elsevier, 2022, pp. 131–206.

[18] H. Riebeek. ”Catalog of Earth Satellite Orbits”. NASA Earth Observatory. Accessed: Aug. 9,
2024. [Online]. Available: https://earthobservatory.nasa.gov/features/OrbitsCatalog

[19] “Syncom II Summary Report,” NASA - Hughes Aircraft Co. SSD 3128R, Culver City, CA, USA,
Sum. Rep. N66-23589, 1963, Accessed: Aug. 9, 2024. [Online]. Available: https://ntrs.nasa.gov/
api/citations/19660014300/downloads/19660014300.pdf.

[20] P. Dickson, Sputnik: The shock of the century. Bloomsbury Publishing USA, 2001.

[21] K. Maine, C. Devieux, and P. Swan, “Overview of iridium satellite network,” in Proceedings of
WESCON’95. IEEE, 1995, p. 483.

[22] J. Puig-Suari, J. Schoos, C. Turner, T. Wagner, R. Connolly, and R. P. Block, “Cubesat
developments at cal poly: the standard deployer and polysat,” in Small Payloads in Space, vol.
4136. SPIE, 2000, pp. 72–78.

[23] C. Kitts, J. Hines, E. Agasid, A. Ricco, B. Yost, K. Ronzano, and J. Puig-Suari, “The genesat-1
microsatellite missiona challenge in small satellite design,” 2006.

[24] F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure, “A first look at starlink performance,”
in Proceedings of the 22nd ACM Internet Measurement Conference, 2022, pp. 130–136.

[25] C. Pardini and L. Anselmo, “Environmental sustainability of large satellite constellations in low
earth orbit,” Acta Astronautica, vol. 170, pp. 27–36, 2020.

[26] J. N. Pelton, “The space debris threat and the kessler syndrome,” in Space Debris and Other
Threats from Outer Space. Springer, 2013, pp. 17–23.

[27] “ESA’S Annual Space Environment Report,” ESA Space Debris Office, Darmstadt, Germany,
Ann. Rep., 2024. Accessed: Aug. 10, 2024. [Online]. Available: https://www.sdo.esoc.esa.int/
environment_report/Space_Environment_Report_latest.pdf.

[28] “International Space Station Deorbit Analysis Summary,” NASA, Washington, DC, USA, White
Paper, 2024. Accessed: Aug. 10, 2024. [Online]. Available: https://www.nasa.gov/wp-content/
uploads/2024/06/iss-deorbit-analysis-summary.pdf.

[29] A. Carrasco-Casado and R. Mata-Calvo, “Space optical links for communication networks,” in
Springer Handbook of Optical Networks. Springer, 2020, pp. 1057–1103.

[30] Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and esa’s optical ground
station,” in Free-Space Laser Communications IX, vol. 7464. SPIE, 2009, pp. 47–55.

[31] J. Crass, “The adaptive optics lucky imager: combining adaptive optics and lucky imaging,”
Ph.D. dissertation, 2014.

[32] C. Fuchs, D. Giggenbach, R. M. Calvo, and W. Rosenkranz, “Optical transmitter diversity with
phase-division in bit-time,” in 2022 IEEE International Conference on Space Optical Systems
and Applications (ICSOS). IEEE, 2022, pp. 1–4.

[33] R. M. Calvo, P. Becker, D. Giggenbach, F. Moll, M. Schwarzer, M. Hinz, and Z. Sodnik, “Trans-
mitter diversity verification on artemis geostationary satellite,” in Free-space laser communication
and atmospheric propagation xxvi, vol. 8971. SPIE, 2014, pp. 24–37.

[34] D. Giggenbach, F. Moll, C. Schmidt, C. Fuchs, and A. Shrestha, “Optical on-off keying data
links for low earth orbit downlink applications,” Satellite Communications in the 5G Era, vol. 79,
pp. 307–339, 2018.

70

https://earthobservatory.nasa.gov/features/OrbitsCatalog
https://ntrs.nasa.gov/api/citations/19660014300/downloads/19660014300.pdf
https://ntrs.nasa.gov/api/citations/19660014300/downloads/19660014300.pdf
https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
https://www.nasa.gov/wp-content/uploads/2024/06/iss-deorbit-analysis-summary.pdf
https://www.nasa.gov/wp-content/uploads/2024/06/iss-deorbit-analysis-summary.pdf

[35] A. Mustafa, D. Giggenbach, J. Poliak, A. Shrestha, R. Mata-Calvo, and C. Fuchs, “Lab imple-
mentation of 10 gbps/channel optical transmitter diversity scheme for geostationary satellite
feeder links,” in Photonic Networks; 16. ITG Symposium. VDE, 2015, pp. 1–3.

[36] R. Kaushik, V. Khandelwal, and R. C. Jain, “Effect of aperture averaging and spatial diversity
on capacity of optical wireless communication systems over lognormal channels,” Radioelectronics
and Communications Systems, vol. 59, pp. 527–535, 2016.

[37] A. Mustafa, “Spectrally efficient transmitter diversity scheme for optical satellite feeder links,”
Ph.D. dissertation, Universität Stuttgart, 2024.

[38] M. R. Garcia-Talavera, J. A. Rodriguez, T. Viera, H. Moreno-Arce, J. L. Rasilla, F. Gago, L. F.
Rodriguez, P. Gomez, and E. B. Ramirez, “Design and performance of the esa optical ground
station,” in Free-Space Laser Communication Technologies XIV, vol. 4635. SPIE, 2002, pp.
248–261.

[39] A. Alonso, M. Reyes, and Z. Sodnik, “Performance of satellite-to-ground communications link
between artemis and the optical ground station,” in Optics in Atmospheric Propagation and
Adaptive Systems VII, vol. 5572. SPIE, 2004, pp. 372–383.

[40] K. Saucke, C. Seiter, F. Heine, M. Gregory, D. Tröndle, E. Fischer, T. Berkefeld, M. Feriencik,
M. Feriencik, I. Richter et al., “The tesat transportable adaptive optical ground station,” in
Free-Space Laser Communication and Atmospheric Propagation XXVIII, vol. 9739. SPIE, 2016,
pp. 37–47.

[41] IQOQI Vienna, Austrian Academy of Sciences. ”Laser from Optical Ground Station on Tenerife”.
ESA. Accessed: Aug. 12, 2024. [Online]. Available: https://www.esa.int/ESA_Multimedia/
Images/2012/09/Laser_from_Optical_Ground_Station_on_Tenerife

[42] E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth,
R. Czichy, J. Kunde, K. Saucke et al., “Development, integration and test of a transportable
adaptive optical ground station,” in 2015 IEEE International Conference on Space Optical
Systems and Applications (ICSOS). IEEE, 2015, pp. 1–6.

[43] N. Perlot, M. Knapek, D. Giggenbach, J. Horwath, M. Brechtelsbauer, Y. Takayama, and
T. Jono, “Results of the optical downlink experiment kiodo from oicets satellite to optical ground
station oberpfaffenhofen (ogs-op),” in Free-Space Laser Communication Technologies XIX and
Atmospheric Propagation of Electromagnetic Waves, vol. 6457. SPIE, 2007, pp. 28–35.

[44] J. Prell, A. Duliu, R. Andrew, I. Hristovski, S. Amita, F. Moll, and C. Fuchs, “Optical ground
station oberpfaffenhofen next generation: first satellite link tests with 80 cm telescope and ao
system,” in 2023 IEEE International Conference on Space Optical Systems and Applications
(ICSOS). IEEE, 2023, pp. 42–48.

[45] I. R. Hristovski, A. R. Campelo, B. Femenía-Castella, E. Doensdorf-Sternal, A. O. Duliu,
S. Haeusler, J. F. Holzman, K. Klemich, D. J. Laidlaw, T. Marynowski et al., “Pre-distortion
adaptive optics: experimental results from bi-directional tracking links between dlr’s optical
ground station and alphasat’s tdp-1 terminal,” in Free-Space Laser Communications XXXVI,
vol. 12877. SPIE, 2024, pp. 328–336.

[46] G. E. Stillman, “Optoelectronics,” in Reference data for engineers: radio, electronics, computers
and communications. Elsevier, 2002, pp. 21–1–21–31.

[47] B. Rödiger, D. Ginthör, J. P. Labrador, J. Ramirez, C. Schmidt, and C. Fuchs, “Demonstration
of an fso/rf hybrid-communication system on aeronautical and space applications,” in Laser
Communication and Propagation through the Atmosphere and Oceans IX, vol. 11506. SPIE,
2020, p. 1150603.

71

https://www.esa.int/ESA_Multimedia/Images/2012/09/Laser_from_Optical_Ground_Station_on_Tenerife
https://www.esa.int/ESA_Multimedia/Images/2012/09/Laser_from_Optical_Ground_Station_on_Tenerife

[48] K. E. Wilson, J. R. Lesh, and T.-Y. Yan, “Gopex: a laser uplink to the galileo spacecraft on its
way to jupiter,” in Free-Space Laser Communication Technologies V, vol. 1866. SPIE, 1993, pp.
138–146.

[49] K. Araki, Y. Arimoto, M. Shikatani, M. Toyoda, M. Toyoshima, T. Takahashi, S. Kanda, and
K. Shiratama, “Performance evaluation of laser communication equipment onboard the ets-vi
satellite,” in Free-Space Laser Communication Technologies VIII, vol. 2699. SPIE, 1996, pp.
52–59.

[50] G. Fletcher, T. Hicks, and B. Laurent, “The silex optical interorbit link experiment,” Electronics
& communication engineering journal, vol. 3, no. 6, pp. 273–279, 1991.

[51] J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul
links for high-altitude platform networks: Atmospheric turbulence and downlink availability,”
International Journal of Satellite Communications and Networking, vol. 25, no. 5, pp. 501–528,
2007.

[52] M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, and H. Kunimori, “Results of
kirari optical communication demonstration experiments with nict optical ground station (koden)
aiming for future classical and quantum communications in space,” Acta Astronautica, vol. 74,
pp. 40–49, 2012.

[53] R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski, J. Jordan, B. Hansen, G. Muehlnikel,
W. Scheel, U. Sterr et al., “Nfire-to-terrasar-x laser communication results: satellite pointing,
disturbances, and other attributes consistent with successful performance,” in Sensors and
Systems for Space Applications III, vol. 7330. SPIE, 2009, pp. 211–225.

[54] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik,
and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” in
Free-Space Laser Communication and Atmospheric Propagation XXVI, vol. 8971. SPIE, 2014,
pp. 213–223.

[55] A. Carrasco-Casado, H. Takenaka, D. Kolev, Y. Munemasa, H. Kunimori, K. Suzuki, T. Fuse,
T. Kubo-Oka, M. Akioka, Y. Koyama et al., “Leo-to-ground optical communications using
sota (small optical transponder)–payload verification results and experiments on space quantum
communications,” Acta Astronautica, vol. 139, pp. 377–384, 2017.

[56] D. Giggenbach, J. Poliak, R. Mata-Calvo, C. Fuchs, N. Perlot, R. Freund, and T. Richter,
“Preliminary results of terabit-per-second long-range free-space optical transmission experiment
thrust,” in Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space
Optical Communication Techniques and Applications, vol. 9647. SPIE, 2015, pp. 61–73.

[57] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai
et al., “Satellite-based entanglement distribution over 1200 kilometers,” Science, vol. 356, no.
6343, pp. 1140–1144, 2017.

[58] D. Calzolaio, F. Curreli, J. Duncan, A. Moorhouse, G. Perez, and S. Voegt, “Edrs-c–the second
node of the european data relay system is in orbit,” Acta Astronautica, vol. 177, pp. 537–544,
2020.

[59] D. J. Israel, B. L. Edwards, R. L. Butler, J. D. Moores, S. Piazzolla, N. Du Toit, and L. Braatz,
“Early results from nasa’s laser communications relay demonstration (lcrd) experiment program,”
in Free-Space Laser Communications XXXV, vol. 12413. SPIE, 2023, pp. 10–24.

[60] D. Rieländer, A. Di Mira, D. Alaluf, R. Daddato, S. Mejri, J. Piris, J. Alves, D. Antsos,
A. Biswas, N. Karafolas et al., “Esa ground infrastructure for the nasa/jpl psyche deep-space
optical communication demonstration,” in International Conference on Space Optics—ICSO
2022, vol. 12777. SPIE, 2023, pp. 159–169.

72

[61] D. Giggenbach, A. Shrestha, C. Fuchs, C. Schmidt, and F. Moll, “System aspects of optical
leo-to-ground links,” in International Conference on Space Optics—ICSO 2016, vol. 10562. SPIE,
2017, pp. 1635–1643.

[62] D. Giggenbach and F. Moll, “Scintillation loss in optical low earth orbit data downlinks with
avalanche photodiode receivers,” in 2017 IEEE International Conference on Space Optical Systems
and Applications (ICSOS). IEEE, 2017, pp. 115–122.

[63] D. Giggenbach, F. Moll, C. Fuchs, T. de Cola, and R. Mata-Calvo, “Space communications
protocols for future optical satellite-downlinks,” 2011.

[64] D. Giggenbach, M. T. Knopp, and C. Fuchs, “Link budget calculation in optical leo satellite down-
links with on/off-keying and large signal divergence: A simplified methodology,” International
Journal of Satellite Communications and Networking, vol. 41, no. 5, pp. 460–476, 2023.

[65] A. Carrillo-Flores, D. Giggenbach, M. Knopp, D. Orsucci, and A. Shrestha, “Effects of pointing
errors on intensity losses in the optical leo uplink,” in International Conference on Space
Optics—ICSO 2022, vol. 12777. SPIE, 2023, pp. 2476–2491.

[66] EDMUND OPTICS. ”Gaussian Beam Propagation”. EDMUND OPTICS. Accessed: Feb. 27,
2024. [Online]. Available: https://www.edmundoptics.com/knowledge-center/application-notes/
lasers/gaussian-beam-propagation/

[67] D. Giggenbach and A. Shrestha, “Atmospheric absorption and scattering impact on optical
satellite-ground links,” International Journal of Satellite Communications and Networking, vol. 40,
no. 2, pp. 157–176, 2022.

[68] H. Hemmati, “Near-earth laser communications,” in Near-Earth Laser Communications, Second
Edition. CRC press, 2020, pp. 1–40.

[69] A. Tunick, “The refractive index structure parameter/atmospheric optical turbulence model:
Cn2 (no. arl-tr-1615),” ARMY RESEARCH LABORATORY ADELPHI MD, 1998.

[70] Y. K. Chahine, S. A. Tedder, B. E. Vyhnalek, and A. C. Wroblewski, “Beam propagation
through atmospheric turbulence using an altitude-dependent structure profile with non-uniformly
distributed phase screens,” in Free-Space Laser Communications XXXII, vol. 11272. SPIE, 2020,
pp. 263–277.

[71] E. Aristidi, A. Ziad, J. Chabé, Y. Fantéi-Caujolle, C. Renaud, and C. Giordano, “A generalized
differential image motion monitor,” Monthly Notices of the Royal Astronomical Society, vol. 486,
no. 1, pp. 915–925, 2019.

[72] F. Moll and M. Knapek, “Wavelength selection criteria and link availability due to cloud coverage
statistics and attenuation affecting satellite, aerial, and downlink scenarios,” in Free-Space Laser
Communications VII, vol. 6709. SPIE, 2007, pp. 347–358.

[73] J. P. Jakobs, A. Köhler, M. T. Knopp, and A. Ohndorf, “Development of an optical ground
station (ogs) network in germany and europe,” 2023.

[74] D. Giggenbach and H. Henniger, “Fading-loss assessment in atmospheric free-space optical
communication links with on-off keying,” Optical Engineering, vol. 47, no. 4, pp. 046 001–046 001,
2008.

[75] F. Moll, D. Giggenbach, C. Schmidt, and C. Fuchs, “Analysis of power scintillation and fading
margin in the leo-ground downlink with the osirisv1 laser terminal on flying laptop and the dlr
optical ground station oberpfaffenhofen,” in Environmental Effects on Light Propagation and
Adaptive Systems V, vol. 12266. SPIE, 2022, pp. 75–82.

73

https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/
https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/

[76] J. Keim, S. Gaißer, P. Hagel, M. Böttcher, M. Lengowski, M. Graß, D. Giggenbach, C. Fuchs,
C. Schmidt, S. Klinkner et al., “Commissioning of the optical communication downlink system
osirisv1 on the university small satellite “flying laptop”,” in 70th International Astronautical
Congress (IAC), Washington, 2019.

[77] D. Giggenbach, C. Fuchs, C. Schmidt, B. Rödiger, S. Gaißer, S. Klinkner, D.-H. Phung, J. Chabé,
C. Courde, N. Maurice et al., “Downlink communication experiments with osirisv1 laser terminal
onboard flying laptop satellite,” Applied optics, vol. 61, no. 8, pp. 1938–1946, 2022.

[78] D. Giggenbach, P. Karafillis, J. Rittershofer, A. Immerz, A. Spoerl, S. Gaisser, S. Klinkner,
and M. Knopp, “Transmitter beam bias verification for optical satellite data downlinks with
open-loop pointing–the 3-ogs-experiment,” in International Conference on Space Optics—ICSO
2022, vol. 12777. SPIE, 2023, pp. 398–412.

[79] C. Fuchs, F. Moll, D. Giggenbach, C. Schmidt, J. Keim, and S. Gaisser, “Osirisv1 on flying
laptop: Measurement results and outlook,” in 2019 IEEE International Conference on Space
Optical Systems and Applications (ICSOS). IEEE, 2019, pp. 1–5.

[80] B. Rödiger and C. Schmidt, “In-orbit demonstration of the world’s smallest laser communication
terminal-osiris4cubesat/cubelct,” in Small Satellites Systems and Services-The 4S Symposium
2024, 2024.

[81] B. Rödiger, C. Menninger, C. Fuchs, L. Grillmayer, S. Arnold, C. Rochow, P. Wertz, and
C. Schmidt, “High data-rate optical communication payload for cubesats,” in Laser Communi-
cation and Propagation through the Atmosphere and Oceans IX, vol. 11506. SPIE, 2020, pp.
12–24.

[82] DLR Institute of Communications and Navigation. ”OSIRIS4CubeSat / CubeLCT”. DLR.
Accessed: Aug. 14, 2024. [Online]. Available: https://www.dlr.de/en/kn/research-transfer/
projects/osiris-optical-communication-in-space/cube4cubesat-cubelct

[83] B. Rödiger, L. R. Rodeck, M.-T. Hahn, and C. Schmidt, “Transformation of dlr’s laser communi-
cation terminals for cubesats towards new application scenarios,” in Small Satellites Systems
and Services-The 4S Symposium 2024, 2024.

[84] DLR Institute of Communications and Navigation. ”OSIRIS - Optical Communication in Space”.
DLR. Accessed: Aug. 14, 2024. [Online]. Available: https://www.dlr.de/en/kn/research-transfer/
projects/osiris-optical-communication-in-space

[85] SONY. ”Short-Wavelength InfraRed Image Sensor Technology SenSWIR™”. SONY. Accessed:
Jan. 18, 2024. [Online]. Available: https://www.sony-semicon.com/en/technology/industry/
senswir.html

[86] IDS Imaging Development Systems GmbH. ”Sensor sizes”. IDS. Accessed: Jan. 21, 2024. [Online].
Available: https://www.1stvision.com/cameras/IDS/IDS-manuals/en/basics-sensor-size.html

[87] Allied Vision. ”Goldeye G-008 TEC1”. Allied Vision. Accessed: Feb. 13, 2024. [Online]. Available:
https://www.alliedvision.com/en/camera-selector/detail/goldeye/g-008-tec1/

[88] ——. ”Goldeye G-130 TEC1”. Allied Vision. Accessed: Feb. 13, 2024. [Online]. Available:
https://www.alliedvision.com/en/camera-selector/detail/goldeye/g-130-tec1/

[89] Exosens. ”Bobcat 320 Series”. Exosens. Accessed: Feb. 22, 2024. [Online]. Available:
https://www.exosens.com/products/bobcat-320-series

[90] NAVITAR. ”SWIR/Hyperspectral Lenses - SWIR-8”. NAVITAR. Accessed: Aug.
16, 2024. [Online]. Available: https://www.navitar.com/-/media/project/oneweb/
oneweb/navitar/navitar-product/swir/swir-catalog-page-navitar.pdf?la=en&revision=
6d4f2a19-1a0b-49c9-8719-d26a6d921765

74

https://www.dlr.de/en/kn/research-transfer/projects/osiris-optical-communication-in-space/cube4cubesat-cubelct
https://www.dlr.de/en/kn/research-transfer/projects/osiris-optical-communication-in-space/cube4cubesat-cubelct
https://www.dlr.de/en/kn/research-transfer/projects/osiris-optical-communication-in-space
https://www.dlr.de/en/kn/research-transfer/projects/osiris-optical-communication-in-space
https://www.sony-semicon.com/en/technology/industry/senswir.html
https://www.sony-semicon.com/en/technology/industry/senswir.html
https://www.1stvision.com/cameras/IDS/IDS-manuals/en/basics-sensor-size.html
https://www.alliedvision.com/en/camera-selector/detail/goldeye/g-008-tec1/
https://www.alliedvision.com/en/camera-selector/detail/goldeye/g-130-tec1/
https://www.exosens.com/products/bobcat-320-series
https://www.navitar.com/-/media/project/oneweb/oneweb/navitar/navitar-product/swir/swir-catalog-page-navitar.pdf?la=en&revision=6d4f2a19-1a0b-49c9-8719-d26a6d921765
https://www.navitar.com/-/media/project/oneweb/oneweb/navitar/navitar-product/swir/swir-catalog-page-navitar.pdf?la=en&revision=6d4f2a19-1a0b-49c9-8719-d26a6d921765
https://www.navitar.com/-/media/project/oneweb/oneweb/navitar/navitar-product/swir/swir-catalog-page-navitar.pdf?la=en&revision=6d4f2a19-1a0b-49c9-8719-d26a6d921765

[91] KOWA. ”LM100JC1MS | 2/3” 100mm 2MP C-Mount Lens”. KOWA. Accessed: Mar. 12, 2024.
[Online]. Available: https://www.kowa-lenses.com/en/lm100jc1ms-2mp-industrial-lens-c-mount

[92] THORLABS. ”MVL4WA - 3.5 mm EFL, f/1.4, for 1/2” C-Mount Format Cameras,
with Lock”. THORLABS. Accessed: Mar. 12, 2024. [Online]. Available: https:
//www.thorlabs.de/thorproduct.cfm?partnumber=MVL4WA

[93] FUJIFILM. ”FE185 Series”. FUJIFILM. Accessed: Mar. 12, 2024. [Online]. Available:
https://www.fujifilm.com/de/en/business/optical-devices/mvlens/fe185

[94] KOWA. ”LM100JC1MS(100mmF2.8) Transmission”. KOWA. Accessed: Mar. 12, 2024. [Online].
Available: https://www.kowa-lenses.com/media/pdf/34/d4/83/LM100JC1MS_Transmission_
03_2020.pdf

[95] THORLABS. ”MVL4WA - Machine Vision Lens Transmission”. THORLABS. Accessed: Mar. 12,
2024. [Online]. Available: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%
2Fwww.thorlabs.de%2Fimages%2Ftabimages%2FMVL4WA.xlsx&wdOrigin=BROWSELINK

[96] ——. ”Camera Lenses for Machine Vision”. THORLABS. Accessed: Mar. 12, 2024. [Online].
Available: https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=1822

[97] EDMUND OPTICS. ”The Correct Material for Infrared (IR) Applications”. EDMUND OPTICS.
Accessed: Mar. 27, 2024. [Online]. Available: https://www.edmundoptics.de/knowledge-center/
application-notes/optics/the-correct-material-for-infrared-applications/#:~:text=Index%20of%
20Refraction%20%E2%80%93%20IR,N%2DSF11%2C%20BOROFLOAT%C2%AE%2C%20etc.)

[98] KOFFERMARKT. ”Max Koffer MAX540H245 Outdoor Case 2 Rollen leer schwarz”.
KOFFERMARKT. Accessed: Jun. 20, 2024. [Online]. Available: https://www.koffermarkt.com/
max-koffer-max540h245-outdoor-case-2-rollen/

[99] Iker Aldasoro. ”AllSkyCam4OLEODL package”. READ THE DOCS. Accessed: Aug. 22, 2024.
[Online]. Available: https://allskycam4oleodl.readthedocs.io/en/latest/AllSkyCam4OLEODL.
html

[100] ALLIED VISION. ”VmbPy repository”. GITHUB. Accessed: Aug. 22, 2024. [Online]. Available:
https://github.com/alliedvision/VmbPy

[101] Iker Aldasoro. ”AllSkyCam4OLEODL repository”. GITHUB. Accessed: Aug. 22, 2024. [Online].
Available: https://github.com/Ikerald/AllSkyCam4OLEODL

[102] ALLIED VISION. ”Python API Manual”. READ THE DOCS. Accessed: Aug. 22,
2024. [Online]. Available: https://docs.alliedvision.com/Vimba_X/Vimba_X_DeveloperGuide/
pythonAPIManual.html

[103] “Linearity Goldeye G/CL-008,” Allied Vision, Osnabrueck, Germany, Tech. Rep., May. 2024.

[104] S. Paris, P. Kornprobst, J. Tumblin, F. Durand et al., “Bilateral filtering: Theory and appli-
cations,” Foundations and Trends® in Computer Graphics and Vision, vol. 4, no. 1, pp. 1–73,
2009.

[105] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,”
in Proceedings of the 29th annual conference on Computer graphics and interactive techniques,
2002, pp. 257–266.

[106] N. Otsu et al., “A threshold selection method from gray-level histograms,” Automatica, vol. 11,
no. 285-296, pp. 23–27, 1975.

[107] A. Nabil, M. Abdelfatah, A. Mousa, and G. El-Fiky, “A new model for reduction of azimuth
asymmetry biases of tropospheric delay,” NRIAG Journal of Astronomy and Geophysics, vol. 8,
no. 1, pp. 97–102, 2019.

75

https://www.kowa-lenses.com/en/lm100jc1ms-2mp-industrial-lens-c-mount
https://www.thorlabs.de/thorproduct.cfm?partnumber=MVL4WA
https://www.thorlabs.de/thorproduct.cfm?partnumber=MVL4WA
https://www.fujifilm.com/de/en/business/optical-devices/mvlens/fe185
https://www.kowa-lenses.com/media/pdf/34/d4/83/LM100JC1MS_Transmission_03_2020.pdf
https://www.kowa-lenses.com/media/pdf/34/d4/83/LM100JC1MS_Transmission_03_2020.pdf
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.thorlabs.de%2Fimages%2Ftabimages%2FMVL4WA.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.thorlabs.de%2Fimages%2Ftabimages%2FMVL4WA.xlsx&wdOrigin=BROWSELINK
https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=1822
https://www.edmundoptics.de/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/#:~:text=Index%20of%20Refraction%20%E2%80%93%20IR,N%2DSF11%2C%20BOROFLOAT%C2%AE%2C%20etc.)
https://www.edmundoptics.de/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/#:~:text=Index%20of%20Refraction%20%E2%80%93%20IR,N%2DSF11%2C%20BOROFLOAT%C2%AE%2C%20etc.)
https://www.edmundoptics.de/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/#:~:text=Index%20of%20Refraction%20%E2%80%93%20IR,N%2DSF11%2C%20BOROFLOAT%C2%AE%2C%20etc.)
https://www.koffermarkt.com/max-koffer-max540h245-outdoor-case-2-rollen/
https://www.koffermarkt.com/max-koffer-max540h245-outdoor-case-2-rollen/
https://allskycam4oleodl.readthedocs.io/en/latest/AllSkyCam4OLEODL.html
https://allskycam4oleodl.readthedocs.io/en/latest/AllSkyCam4OLEODL.html
https://github.com/alliedvision/VmbPy
https://github.com/Ikerald/AllSkyCam4OLEODL
https://docs.alliedvision.com/Vimba_X/Vimba_X_DeveloperGuide/pythonAPIManual.html
https://docs.alliedvision.com/Vimba_X/Vimba_X_DeveloperGuide/pythonAPIManual.html

[108] PANOTOOLS. ”Fisheye Projection”. PANOTOOLS. Accessed: Apr. 16, 2024. [Online]. Available:
https://wiki.panotools.org/Fisheye_Projection

[109] K. Miller. ”Python API Manual”. MATHEMATICS STACK EXCHANGE. Accessed:
Aug. 22, 2024. [Online]. Available: https://math.stackexchange.com/questions/1596513/
find-the-bearing-angle-between-two-points-in-a-2d-space

[110] R. Paschotta. ”Beam Divergence”. RP Photonics AG. Accessed: Mar. 7, 2024.
[Online]. Available: https://www.rp-photonics.com/beam_divergence.html#:~:text=For%20a%
20diffraction,beam%20waist.

[111] CORNING. ”https://math.stackexchange.com/questions/1596513/find-the-bearing-angle-
between-two-points-in-a-2d-space”. CORNING. Accessed: Mar. 7, 2024. [Online]. Available:
https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20ULL.pdf

[112] H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a
step-index fiber,” Journal of lightwave technology, vol. 24, no. 3, pp. 1350–1355, 2006.

[113] R. Paschotta. ”Mode Radius”. RP Photonics AG. Accessed: Mar. 7, 2024. [Online]. Available:
https://www.rp-photonics.com/mode_radius.html

[114] ——. ”Beam Radius”. RP Photonics AG. Accessed: Mar. 7, 2024. [Online]. Available:
https://www.rp-photonics.com/beam_radius.html

[115] R. Jaiswal, “Design and implementation of an integrated optical signal sensor device for telescopes
for optical satellite data reception and measurements of signal variations,” Master’s thesis,
Technische Universität Berlin (TUB) - Institute for Aeronautics and Astronautics, 2020.

[116] S. T. Popescu, P. S. Gheorghe, and A. Petris, “Measuring very low optical powers with a common
camera,” Applied Optics, vol. 53, no. 24, pp. 5460–5464, 2014.

76

https://wiki.panotools.org/Fisheye_Projection
https://math.stackexchange.com/questions/1596513/find-the-bearing-angle-between-two-points-in-a-2d-space
https://math.stackexchange.com/questions/1596513/find-the-bearing-angle-between-two-points-in-a-2d-space
https://www.rp-photonics.com/beam_divergence.html#:~:text=For%20a%20diffraction,beam%20waist.
https://www.rp-photonics.com/beam_divergence.html#:~:text=For%20a%20diffraction,beam%20waist.
https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20ULL.pdf
https://www.rp-photonics.com/mode_radius.html
https://www.rp-photonics.com/beam_radius.html

Appendix A

A.1 Main.py

1 """Main fuction of the project where everything is called.
2

3 Python version: 3.12.2.
4 Numpy version: 2.0.0.
5 Scipy version: 1.14.0.
6 Matplotlib version: 3.9.1.
7 Mplcursors version: 0.5.3.
8 Tkinter version: 0.1.0.
9 Pytz version: 2024.1.

10 OpenCV version: 4.10.0.84.
11

12

13 Author:
14 Iker Aldasoro - 19.04.2024
15 """
16

17 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\constants.py
18

19 from tkinter import ttk
20 from datetime import datetime
21 from typing import Tuple
22 import time
23 import matplotlib.pyplot as plt
24 import os
25

26 import AllSkyCam4OLEODL
27

28

29 def create_graph(
30 elevation_in, payload
31) -> Tuple[plt.figure, plt.axes, plt.hlines, list, list]:
32 """Creates the live graph displayed in the GUI:
33

34 1. Creates the plot with an specific size, position, title and labels.
35

36 2. If a payload with full elevation range has been chosen, the graph will be smaller
↪→

37 to acomodate the link budget graph.
38

39 3. Initializes the data for the graph.
40

41 Args:

A-1

42 elevation_in (tk.StringVar): Container of the elevation mode (Individual or
Full).↪→

43 payload (tk.StringVar): Container of the payload used (None, KIODO, OsirisV1,
Osiris4CubeSat, CubeCat).↪→

44

45 Returns:
46 tuple[plt.figure, plt.axes, plt.hlines, list, list]: fig (plt.figure): Figure of

the created plot.↪→

47

48 ax (plt.axes): Axes of the created plot.
49

50 line (plt.hlines): Lines of the created plot.
51

52 xdata (list): X-axis data from the created plot.
53

54 ydata (list): Y-axis data from the created plot.
55 """
56 # Create figure and axis objects
57 fig, ax = plt.subplots()
58 if elevation_in.get() == "Full" and payload.get() != "None":
59 # Size and position of the intensity graph.
60 fig.set_size_inches(5.38, 3.3)
61 fig.canvas.manager.window.wm_geometry("+5+290")
62 fig.subplots_adjust(left=0.11, right=0.95, top=0.92, bottom=0.13)
63 else:
64 fig.set_size_inches(8.9, 3.3)
65 fig.canvas.manager.window.wm_geometry("+5+290")
66 fig.subplots_adjust(left=0.08, right=0.97, top=0.92, bottom=0.13)
67

68 (line,) = ax.plot([], [], lw=2)
69

70 ax.set_ylim(0, 255)
71 ax.grid()
72 if payload.get() != "None":
73 ax.set_title(
74 f"{payload.get()} downlink on {datetime.now().strftime('%Y-%m-%d')}"
75)
76 else:
77 ax.set_title(f"Downlink on {datetime.now().strftime('%Y-%m-%d')}")
78 ax.set_xlabel("Time [UTC]")
79 ax.set_ylabel("Brightness")
80

81 # Initialize empty data
82 xdata, ydata = [], []
83

84 return fig, ax, line, xdata, ydata
85

86

87 def main():
88 AllSkyCam4OLEODL.print_preamble()
89 cam_id = AllSkyCam4OLEODL.parse_args()
90

91 with AllSkyCam4OLEODL.VmbSystem.get_instance():
92 with AllSkyCam4OLEODL.get_camera(cam_id) as cam:
93 AllSkyCam4OLEODL.print_preamble_settings()
94

95 (
96 gain_in,
97 check_in,
98 light_in,

A-2

99 payload_in,
100 h_ogs_in,
101 zenith_in,
102 elevation_in,
103 elevation_angle_in,
104 exposure_in,
105 exposure_time_in,
106 iso_in,
107 root,
108 exposure_time_entry,
109 elevation_angle_entry,
110) = AllSkyCam4OLEODL.create_menu()
111

112 def start_streaming():
113 # Validate inputs
114 (
115 elevation_angle,
116 exposure_time_value,
117 zenith,
118 h_ogs,
119) = AllSkyCam4OLEODL.checks(
120 elevation_in,
121 elevation_angle_in,
122 exposure_in,
123 exposure_time_in,
124 zenith_in,
125 h_ogs_in,
126)
127

128 if payload_in.get() != "None":
129 AllSkyCam4OLEODL.link_budget(
130 elevation_in, elevation_angle, payload_in, zenith, h_ogs
131)
132

133 # Setup camera
134 AllSkyCam4OLEODL.upload_lut(
135 cam, AllSkyCam4OLEODL.LUT_INDEX, gain_in
136)
137 AllSkyCam4OLEODL.setup_camera(
138 cam, gain_in, exposure_in, exposure_time_value, iso_in
139)
140 AllSkyCam4OLEODL.setup_pixel_format(cam)
141 AllSkyCam4OLEODL.grab_frame(cam)
142 AllSkyCam4OLEODL.print_start_stream()
143

144 # Create graph
145 fig, ax, line, xdata, ydata = create_graph(
146 elevation_in, payload_in
147)
148 # plt.show(block=False) # Show the plot window without blocking
149

150 handler = AllSkyCam4OLEODL.Handler(
151 cam,
152 exposure_time_value,
153 check_in,
154 light_in,
155 gain_in,
156 iso_in,
157 payload_in,
158 elevation_in,

A-3

159 fig,
160 ax,
161 line,
162 xdata,
163 ydata,
164)
165 handler.create_camera_control_slider(root)
166 plt.ion() # Turn on interactive mode
167 plt.show()
168

169 try:
170 cam.start_streaming(handler=handler, buffer_count=10)
171 while not handler.shutdown_event.is_set():
172 root.update()
173 time.sleep(
174 0.01
175) # Small delay to prevent high CPU usage
176 finally:
177 cam.stop_streaming()
178 AllSkyCam4OLEODL.print_end_stream()
179 handler.save_plot() # Save the plot when streaming stops
180 root.quit()
181 root.destroy()
182 if os.path.isfile(AllSkyCam4OLEODL.BACKGROUND_FRAME_DIR):
183 os.remove(AllSkyCam4OLEODL.BACKGROUND_FRAME_DIR)
184

185 start_button = ttk.Button(
186 root, text="Start Capture", command=start_streaming, width=60
187)
188 # start_button.grid(row=13, column=0, columnspan=2, pady=10)
189 start_button.grid(
190 row=13, column=0, columnspan=2, pady=10, sticky=""
191)
192

193 # Initial call to set the correct state of the exposure and elevation
194 AllSkyCam4OLEODL.update_entry(exposure_in, exposure_time_entry)
195 AllSkyCam4OLEODL.update_entry(elevation_in, elevation_angle_entry)
196

197 root.mainloop()
198

199

200 if __name__ == "__main__":
201 main()

A.2 AllSkyCam4OLEODL Package

A.2.1 __init__.py

1 # __init__.py
2

3 from .api import *
4 from .constants import *
5 from .gui import *
6 from .image_processing import *
7 from .input_checks import *

A-4

8 from .link_budget import *
9 from .printer import *

A.2.2 api.py

1 """This module contains the API of the Allied Vision Goldeye Camera.
2

3 It has been modified in order to allow both streaming and recording. It
4 allows processing of the frames without the need of writting them first.
5 """
6

7 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\api.py
8

9 from vmbpy import * # noqa: F403
10

11 from typing import Optional
12 from datetime import datetime, timedelta
13 from tkinter import ttk
14 from matplotlib import dates as mdates
15 import sys
16 import os
17 import threading
18 import cv2
19 import math
20 import pytz
21 import tkinter as tk
22 import matplotlib.pyplot as plt
23 import matplotlib.animation as animation
24

25 from . import image_processing as im
26 from . import constants as const
27 from . import printer as pri
28

29 # All frames will either be recorded in this format, or transformed to it before being
displayed↪→

30 opencv_display_format = PixelFormat.Bgr8 # noqa: F405
31

32

33 def feature_changed_handler(feature) -> None:
34 """API propietary printing fuction to indicate a changed of value of a feature.
35

36 Args:
37 feature (_type_): Feature to be changed.
38 """
39 msg = "Feature '{}' changed value to '{}'"
40 print(msg.format(str(feature.get_name()), str(feature.get())), flush=True)
41

42

43 def abort(reason: str, return_code: int = 1, usage: bool = False) -> None:
44 """API propietary exiting fuction and indicate an error.
45

46 Args:
47 reason (str): Reason to abort operation.
48 return_code (int, optional): Error code raised. Defaults to 1.
49 usage (bool, optional): Bool to check if an argument has been parsed. Defaults

to False.↪→

50 """
51 print(reason + "\n")

A-5

52

53 if usage:
54 pri.print_usage()
55

56 sys.exit(return_code)
57

58

59 def parse_args() -> Optional[str]:
60 """API propietary fuction to parse an argument.
61

62 Returns:
63 Optional[str]: Parsed argument.
64 """
65 args = sys.argv[1:]
66 argc = len(args)
67

68 for arg in args:
69 if arg in ("/h", "-h"):
70 pri.print_usage()
71 sys.exit(0)
72

73 if argc > 1:
74 abort(
75 reason="Invalid number of arguments. Abort.",
76 return_code=2,
77 usage=True,
78)
79

80 return None if argc == 0 else args[0]
81

82

83 def get_camera(camera_id: Optional[str]) -> Camera: # noqa: F405
84 """API propietary fuction to obtain the camera.
85

86 Args:
87 camera_id (Optional[str]): Specific camera we want to connect to.
88

89 Returns:
90 Camera: Camera we have connected to.
91 """
92 with VmbSystem.get_instance() as vmb: # noqa: F405
93 # ip = vmb.GevDeviceForceIPAddress.get()
94 if camera_id:
95 try:
96 return vmb.get_camera_by_id(camera_id)
97

98 except VmbCameraError: # noqa: F405
99 abort("Failed to access Camera '{}'. Abort.".format(camera_id))

100

101 else:
102 cams = vmb.get_all_cameras()
103 if not cams:
104 abort("No Cameras accessible. Abort.")
105

106 return cams[0]
107

108

109 def setup_camera(
110 cam: Camera, # noqa: F405
111 gain: tk.StringVar,

A-6

112 exposure: tk.StringVar,
113 exposure_time_value: int,
114 iso: tk.StringVar,
115) -> None:
116 """Configures the camera based on user inputs:
117

118 1. Checks camera mode, if the own camera's background is chosen, it needs be
enabled.↪→

119

120 2. Sets the gain mode, either 0dB or 18dB.
121

122 3. Selects the exposure mode, Auto or Manual. If Manual, sets the exposure value.
123

124 4. Enables white balancing if camera supports it.
125

126 5. Adjusts GeV packet size (just for PoE camera).
127

128 Args:
129 cam (Camera): Camera object from the VMBPY API module.
130 gain (tk.StringVar): Container of the gain mode (0 [0 dB] or 1 [18 dB]).
131 exposure (tk.StringVar): Container of the exposure mode (Manual or Auto).
132 exposure_time_value (int): Specified exposure value for Manual mode.
133 iso (tk.StringVar): Container of the camera mode: Normal, Hot-pixel

substraction, Subtraction or Camera's BC.↪→

134 """
135 with cam:
136 # print(cam.LUTEnable)
137 # lut = cam.LUTEnable.get()
138 # print(cam.LUTEnable.get())
139 # # lut = True
140 # lut = True
141 # print(cam.LUTEnable)
142 # print(lut)
143 # cam.LUTEnable.set(lut)
144 # print(cam.LUTEnable)
145 # print(cam.LUTEnable)
146 # cam.LUTEnable.value(True)
147 # print(cam.LUTEnable)
148

149 # Default settings
150 cam.BCMode.set("Off")
151 cam.IntegrationMode.set("IntegrateWhileRead")
152 # cam.IntegrationMode.set("IntegrateThenRead")
153 print(cam.IntegrationMode)
154

155 # Background Correction settings
156 if iso.get() == "Camera's BC":
157 cam.BCMode.set("On")
158 cam.BCIntegrationStart.run()
159 print(cam.BCMode)
160

161 # lut_enable = cam.LUTEnable
162 # print(lut_enable)
163 # lut_enable.set(True)
164 # print(lut_enable)
165

166 # Gain settings
167 if gain.get() == "1 [18 dB]":
168 try:
169 cam.SensorGain.set("Gain1")

A-7

170 except (AttributeError, VmbFeatureError): # noqa: F405
171 pass
172 else:
173 try:
174 cam.SensorGain.set("Gain0")
175 except (AttributeError, VmbFeatureError): # noqa: F405
176 pass
177 print(cam.SensorGain)
178

179 # Exposure settings
180 if exposure.get() == "Manual":
181 try:
182 cam.ExposureAuto.set("Off")
183 exposure_time = cam.ExposureTime
184 exposure_time.set(exposure_time_value)
185 except (AttributeError, VmbFeatureError): # noqa: F405
186 pass
187 else:
188 try:
189 cam.ExposureAuto.set("Continuous")
190 except (AttributeError, VmbFeatureError): # noqa: F405
191 pass
192

193 # White balancing settings
194 try:
195 cam.BalanceWhiteAuto.set("Continuous")
196 except (AttributeError, VmbFeatureError): # noqa: F405
197 pass
198

199 # GeV packet size settings (only available for GigE Cameras)
200 try:
201 stream = cam.get_streams()[0]
202 stream.GVSPAdjustPacketSize.run()
203 while not stream.GVSPAdjustPacketSize.is_done():
204 pass
205 except (AttributeError, VmbFeatureError): # noqa: F405
206 pass
207

208

209 def setup_pixel_format(cam: Camera) -> None: # noqa: F405
210 """Configures the camera's pixel format:
211

212 1. Retrieves all the camera's compatible color pixel formats.
213

214 2. Filters out formats not compatible with OpenCV.
215

216 3. Retrieves all the camera's compatible monochrome pixel formats.
217

218 4. Filters out formats not compatible with OpenCV.
219

220 5. Selects the OpenCV-compatible color pixel format. If none exist, attempts
221 to convert an incompatible format to be compatible. If conversion is not possible,
222 selects an OpenCV-compatible monochrome pixel format.
223

224 Args:
225 cam (Camera): Camera object from the VMBPY API module.
226 """
227 # Available color pixel formats. Prefer color formats over monochrome formats
228 cam_formats = cam.get_pixel_formats()
229 cam_color_formats = intersect_pixel_formats(# noqa: F405

A-8

230 cam_formats,
231 COLOR_PIXEL_FORMATS, # noqa: F405
232)
233 convertible_color_formats = tuple(
234 f
235 for f in cam_color_formats
236 if opencv_display_format in f.get_convertible_formats()
237)
238

239 cam_mono_formats = intersect_pixel_formats(cam_formats, MONO_PIXEL_FORMATS) # noqa:
F405↪→

240 convertible_mono_formats = tuple(
241 f
242 for f in cam_mono_formats
243 if opencv_display_format in f.get_convertible_formats()
244)
245

246 # Use OpenCV color format
247 if opencv_display_format in cam_formats:
248 cam.set_pixel_format(opencv_display_format)
249

250 # Else convert color to OpenCV format
251 elif convertible_color_formats:
252 cam.set_pixel_format(convertible_color_formats[0])
253

254 # Else use OpenCV monochrome format
255 elif convertible_mono_formats:
256 cam.set_pixel_format(convertible_mono_formats[0])
257

258 else:
259 abort("Camera does not support an OpenCV compatible format. Abort.")
260

261

262 def upload_lut(
263 cam: Camera, # noqa: F405
264 lut_dataset_selector_index: int,
265 gain: tk.StringVar,
266) -> None: # noqa: F405
267 """Uploads and enables the LUT:
268

269 1. Checks the gain to select the correct LUT path.
270

271 2. Opens the LUT file, loads it into the camera and runs it.
272

273 3. Prints the directory and selected LUT.
274

275 Args:
276 cam (Camera): Camera object from the VMBPY API module.
277 lut_dataset_selector_index (int): Index of the selected LUT.
278 gain (tk.StringVar): Container of the gain mode for choosing the LUT (0 [0 dB]

or 1 [18 dB]).↪→

279 """
280 # Set directory
281 if gain.get() == "1 [18 dB]":
282 dir = const.LUT_DIR1
283 else:
284 dir = const.LUT_DIR0
285

286 # Read LUT, upload to camera
287 with cam:

A-9

288 with open(dir, mode="rb") as file:
289 fileContent = file.read()
290

291 cam.LUTDatasetSelector.set(lut_dataset_selector_index)
292 cam.LUTValueAll.set(fileContent)
293

294 cam.LUTDatasetSave.run()
295

296 print(
297 f"LUT from file {dir} loaded into LUT Nr.{lut_dataset_selector_index}."
298)
299

300

301 def grab_frame(cam: Camera) -> None: # noqa: F405
302 """Captures a frame to be used as a temporal frame:
303

304 1. Grabs a frame from the camera.
305

306 2. Saves the frame in the specified directory.
307

308 Args:
309 cam (Camera): Camera object from the VMBPY API module.
310 """
311 frame = cam.get_frame()
312 cv2.imwrite(const.BACKGROUND_FRAME_DIR, frame.as_opencv_image())
313

314

315 class Handler:
316 """Handles the mayority of the camera operation.
317

318 Methods:
319

320 __init__: Initializes the Handler class.
321

322 update: Updates the live graph of the GUI.
323

324 save_plot: Saves the plot stored in the instance.
325

326 create_camera_control_slider: Creates an slider, saves it in the instance.
327

328 set_exposure: Updates the exposure value.
329

330 set_min_max_value: Updates the minimum or maximum spot size value.
331

332 __call__: Between each frame, sends the frame for
333 processing, prepares for the next one, and checks if the program has stopped.
334 """
335

336 def __init__(
337 self,
338 cam: Camera, # noqa: F405
339 exposure_time_value: int,
340 check: tk.StringVar,
341 light: tk.StringVar,
342 gain: tk.StringVar,
343 iso: tk.StringVar,
344 payload: tk.StringVar,
345 elevation_in: tk.StringVar,
346 fig: plt.figure,
347 ax: plt.axes,

A-10

348 line: plt.hlines,
349 xdata: list,
350 ydata: list,
351):
352 """Initializes the Handler class with the specified camera and plotting
353 parameters, and creates a directory for storing the frames:
354

355 1. Sets up all necessary instances based on the chosen settings.
356

357 2. Creates the directory for saving frames according to the specified settings
358 (will be saves in the data directory on the root folder of the project,
359 inside a folder called tracking_images).
360

361 Args:
362 self (Instance): Current instance, provides access to attributes and

methods.↪→

363 cam (Camera): Camera object from the VMBPY API module.
364 exposure_time_value (int): Specified exposure value for Manual mode.
365 check (tk.StringVar): Container of the streaming mode.
366 light (tk.StringVar): Container of the time of day.
367 gain (tk.StringVar): Container of the gain mode (0 [0 dB] or 1 [18 dB]).
368 iso (tk.StringVar): Container of the camera mode: Normal, Hot-pixel

substraction, Subtraction or Camera's BC.↪→

369 payload (tk.StringVar): Container of the payload.
370 elevation_in (tk.StringVar): Container of the elevation mode.
371 fig (plt.figure): Figure for the GUI plot.
372 ax (plt.axes): Axes for the GUI plot.
373 line (plt.hlines): Lines for the GUI plot
374 xdata (list): Data for the x-axis for the GUI plot
375 ydata (list): Data for the y-axis for the GUI plot
376

377 :no-index:
378 """
379 # Setting up instances
380 self.shutdown_event = threading.Event()
381 self.cam = cam
382 self.exposure_slider = None
383 self.min_value = 1
384 self.max_value = const.H_SENSOR_SIZE * const.V_SENSOR_SIZE
385 self.root = None
386

387 # Input instances
388 self.gain = 1
389 self.counter = 0
390 self.background = 0
391 self.mode = 0
392 self.cond = 0
393

394 # Graph instances
395 self.fig = fig
396 self.ax = ax
397 self.line = line
398 self.xdata = xdata
399 self.ydata = ydata
400

401 # Graph's update
402 self.ani = animation.FuncAnimation(
403 self.fig,
404 self.update_graph,
405 interval=100,

A-11

406 blit=False,
407 cache_frame_data=False,
408)
409

410 # Directory where the tracking frames get saved: directory of script.
411 d = r".\data"
412

413 self.payload = payload.get()
414 # self.elevation_mode = elevation_in.get()
415 if gain.get() == "1 [18 dB]":
416 self.gain = 1
417 else:
418 self.gain = 0
419

420 if iso.get() == "Normal":
421 self.background = 0
422 elif iso.get() == "Subtraction":
423 self.background = 1
424 elif iso.get() == "Camera's BC":
425 self.background = 2
426 else:
427 self.background = 3
428

429 if light.get() == "Daytime":
430 self.cond = 0
431 else:
432 self.cond = 1
433

434 if check.get() == "Record":
435 # Directory creation
436 self.mode = 1
437 now = datetime.now()
438 if exposure_time_value == 1:
439 foldername_NP = (
440 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now.strftime('%d')}_"
441 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
442 f"exp_AUTO_GAIN{self.gain}_NP"
443)
444 if self.background == 0:
445 foldername = (
446 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

447 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}"
448 f"_exp_AUTO_GAIN{self.gain}"
449)
450 elif self.background == 1:
451 foldername = (
452 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

453 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
454 f"exp_AUTO_GAIN{self.gain}_IS"
455)
456 elif self.background == 2:
457 foldername = (
458 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

459 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
460 f"exp_AUTO_GAIN{self.gain}_CAMERA_BC"
461)
462 else:

A-12

463 foldername = (
464 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

465 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
466 f"exp_AUTO_GAIN{self.gain}_HP"
467)
468 else:
469 foldername_NP = (
470 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now.strftime('%d')}_"
471 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
472 f"exp_{exposure_time_value}us_GAIN{self.gain}_NP"
473)
474 if self.background == 0:
475 foldername = (
476 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

477 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
478 f"exp_{exposure_time_value}us_GAIN{self.gain}"
479)
480 if self.background == 1:
481 foldername = (
482 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

483 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
484 f"exp_{exposure_time_value}us_GAIN{self.gain}_IS"
485)
486 if self.background == 2:
487 foldername = (
488 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

489 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
490 f"exp_{exposure_time_value}us_GAIN{self.gain}_CAMERA_BC"
491)
492 else:
493 foldername = (
494 f"tc_{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_"↪→

495 f"{now.strftime('%H')}{now.strftime('%m')}{now.strftime('%S')}_"
496 f"exp_{exposure_time_value}us_GAIN{self.gain}_HP"
497)
498

499 if elevation_in.get() == "Full" and self.payload != "None":
500 foldername = foldername + "_" + self.payload
501 foldername_NP = foldername_NP + "_" + self.payload
502

503 self.pnp = os.path.join(d, "tracking_images", foldername_NP)
504 self.p = os.path.join(d, "tracking_images", foldername)
505

506 os.makedirs(self.p)
507 os.makedirs(self.pnp)
508

509 def update_graph(self, frame: Frame) -> plt.hlines: # noqa: F405
510 """Updates the live graph of the GUI with new data stored in the current

instance (self):↪→

511

512 1. If data is available, plots it on the graph.
513

514 2. Adjusts the graph's horizontal and vertical limits, extends the x-axis by 60
515 seconds, and increase the y-axis limit by 10% of the maximum value.
516

A-13

517 3. Updates the graph's format as needed.
518

519 4. Plots the new data on the graph.
520

521 Args:
522 self (Instance): Current instance, provides access to attributes and

methods.↪→

523 frame (Frame): Frame object from the VMBPY API module.
524

525 Returns:
526 plt.hlines: Updated graph instance.
527

528 :no-index:
529 """
530 if not self.xdata: # If no data, just return
531 return (self.line,)
532

533 # Ensure xdata is in UTC
534 self.xdata = [x.astimezone(pytz.UTC) for x in self.xdata]
535

536 self.line.set_data(self.xdata, self.ydata)
537 ax = self.ax
538

539 # Update axis limits
540 ax.set_xlim(
541 self.xdata[0],
542 max(self.xdata[-1], self.xdata[0] + timedelta(seconds=60)),
543)
544

545 if self.ydata:
546 ax.set_ylim(0, max(255, max(self.ydata) * 1.1))
547

548 # Update the formatter to show appropriate range
549 locator = mdates.AutoDateLocator()
550 # formatter = mdates.AutoDateFormatter(locator)
551 formatter = mdates.DateFormatter("%H:%M:%S", tz=mdates.UTC)
552 ax.xaxis.set_major_locator(locator)
553 ax.xaxis.set_major_formatter(formatter)
554

555 self.fig.canvas.draw()
556 return (self.line,)
557

558 def save_plot(self) -> None:
559 """Saves the plot stored in the current instance (self):
560

561 1. If recording mode is selected, sets the plot size, data, title, and labels.
562

563 2. Adjust the format of the time as H:M:S.
564

565 3. If a payload is chosen, its name will be added to the plot's title.
566

567 4. Saves the plot in the same directory as the recorded frames (stored in the
568 instance).
569

570 Args:
571 self (Instance): Current instance, provides access to attributes and

methods.↪→

572

573 :no-index:
574 """

A-14

575 if self.mode != 0: # Only save if in recording mode
576 plt.figure(figsize=(20, 8))
577 plt.plot(self.xdata, self.ydata)
578

579 # Enable the grid
580 plt.grid(True)
581

582 # Format the x-axis ticks
583 time_format = mdates.DateFormatter("%H:%M:%S")
584 plt.gca().xaxis.set_major_formatter(time_format)
585

586 plt.xlabel("Time [UTC]")
587 plt.ylabel("Brightness")
588 plt.gcf().autofmt_xdate() # Rotate and align the tick labels
589 # Adjust layout manually for a tighter fit, but not as tight as

plt.tightlayout()↪→

590 plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.1)
591 # plt.tight_layout()
592 if self.payload != "None":
593 plt.title(
594 f"{self.payload} downlink on {datetime.now().strftime('%Y-%m-%d')}"
595)
596 plt.savefig(
597 f"{self.p}/{datetime.now().strftime('%Y-%m-%d')}_{self. c

payload}_DL_plot.png"↪→

598)
599 else:
600 plt.title(f"Downlink on {datetime.now().strftime('%Y-%m-%d')}")
601 plt.savefig(
602 f"{self.p}/{datetime.now().strftime('%Y-%m-%d')}_DL_plot.png"
603)
604 plt.close()
605

606 def create_camera_control_slider(self, root: tk.Tk) -> None:
607 """Creates an slider, saves it in the current instance (self) and sets its
608 initial values:
609

610 1. Creates a slider within the current instance using the CameraControlSlider
611 class.
612

613 2. Sets the initial values of the minimum and maximum spot size and the
614 exposure with set_initial_values().
615

616 Args:
617 self (Instance): Current instance, provides access to attributes and

methods.↪→

618 root (tk.Tk): Main window of the GUI menu.
619

620 :no-index:
621 """
622 self.camera_control_slider = CameraControlSlider(root, self)
623 current_exposure = self.cam.ExposureTime.get()
624 self.camera_control_slider.set_initial_values(
625 current_exposure, self.min_value, self.max_value
626)
627

628 def set_exposure(self, exposure_time: int) -> None:
629 """Updates the exposure value stored in the current instance (self).
630

631 Args:

A-15

632 self (Instance): Current instance, provides access to attributes and
methods.↪→

633 exposure_time (int): Exposure time value.
634 :no-index:
635 """
636 try: # Tries to update the exposure time
637 self.cam.ExposureTime.set(exposure_time)
638 except (AttributeError, VmbFeatureError): # noqa: F405
639 print("Failed to set exposure time")
640

641 def set_min_max_value(self, value: int, siz: int) -> None:
642 """Updates the minimum or maximum spot size value stored in the current
643 instance (self).
644

645 Args:
646 self (Instance): Current instance, provides access to attributes and

methods.↪→

647 value (int): Final minimum or maximum spot size value.
648 siz (int): Integer to differenciate if we want to change the minimum or the

maximum spot size value,↪→

649 1 for the maximum, 0 for minimum.
650

651 :no-index:
652 """
653 if siz == 1: # Max value
654 self.max_value = value
655 print(f"Max value set to: {value}")
656 else:
657 self.min_value = value
658 print(f"Min value set to: {value}")
659

660 def __call__(self, cam: Camera, stream: Stream, frame: Frame) -> None: # noqa:
F405↪→

661 """Between each frame, sends the current frame for processing, prepares for
662 the next one, and checks if the program has stopped:
663

664 1. If program shutdown is activated, exits the fuction.
665

666 2. If a frame has been grabbed, increments the counter and starts image
667 processing.
668

669 3. Prepares for the next frame and checks if program is stopped (by
670 pressing q / Q)
671

672 Args:
673 self (Instance): Current instance, provides access to attributes and

methods.↪→

674 cam (Camera): Camera object from the VMBPY API module.
675 stream (Stream): Stream object from the VMBPY API module.
676 frame (Frame): Frame object from the VMBPY API module.
677

678 :no-index:
679 """
680 if self.shutdown_event.is_set():
681 return
682

683 if frame.get_status() == FrameStatus.Complete: # noqa: F405
684 self.counter += 1
685 # Image Processing fuction
686 im.frame_processing(self, cam, frame)

A-16

687

688 cam.queue_frame(frame)
689

690 # Check for 'q' key press to stop recording
691 if cv2.waitKey(1) & 0xFF == ord("q") or cv2.waitKey(1) & 0xFF == ord(
692 "Q"
693):
694 self.shutdown_event.set()
695 if self.root:
696 self.root.quit()
697

698

699 class CameraControlSlider(tk.Toplevel):
700 """Handles the sliders of the GUI menu.
701

702 Methods:
703

704 __init__: Initializes the CameraControlSlider class.
705

706 setup_exposure_slider: Creates the exposure slider.
707

708 setup_min_value_slider: Creates the minimum spot size value slider.
709

710 setup_max_value_slider: Creates the maximum spot size value slider
711

712 update_exposure: Updates the exposure value.
713

714 update_min_value: Updates the minimum spot size value.
715

716 update_max_value: Updates the maximum spot size value.
717

718 update_from_exposure_entry: Updates the exposure value parsed through the
button.↪→

719

720 update_from_min_entry: Updates the minimum spot size value parsed through the
button.↪→

721

722 update_from_max_entry: Updates the maximum spot size value parsed through the
button.↪→

723

724 set_initial_values: Sets the intial values for all the varibales of the sliders.
725

726 Args:
727 tk (tk.Toplevel): Window where the slider should be created.
728 """
729

730 def __init__(self, master: tk.Tk, camera_control: Handler):
731 """Initializes the CameraControlSlider class with the specified
732 GUI parameters, and creates the sliders:
733

734 1. Sets up all necessary instances for the slider elements in the menu.
735

736 2. Configures exposure, minimum, and maximum spot size using the appropriate
functions.↪→

737

738 Args:
739 self (Instance): Current instance, provides access to attributes and

methods.↪→

740 master (tk.Tk): Tinker GUI window.
741 camera_control (Handler): Parsed through handler.

A-17

742 """
743 # Allows the child class to invoke the constructor of its parent class.
744 super().__init__(master)
745 self.camera_control = camera_control
746 self.title("Camera Control Sliders")
747 # Dimensions adn position of the control sliders (WidthxHeight+X+Y).
748 self.geometry("370x285+900+360")
749

750 # Creates a frame to hold min and max sliders side by side
751 self.min_max_frame = ttk.Frame(self)
752 self.min_max_frame.pack(fill="x", expand=True, pady=10)
753

754 # Slider setup
755 # Exposure slider
756 self.setup_exposure_slider()
757 # Min value slider
758 self.setup_min_value_slider()
759 # Max value slider
760 self.setup_max_value_slider()
761

762 def setup_exposure_slider(self) -> None:
763 """Creates the exposure slider:
764

765 1. Initializes all slider elements and converts the exposure to a logarithmic
scale.↪→

766

767 2. Sets up the displayed exposure value and its slider.
768

769 3. Configures the button to manually change the exposure value.
770

771 Args:
772 self (Instance): Current instance, provides access to attributes and

methods.↪→

773 """
774 # Initial values are converted to a logarithmic scale
775 self.min_exposure = 10
776 self.max_exposure = 3000000 # 1 second
777 self.log_min_exposure = math.log10(self.min_exposure)
778 self.log_max_exposure = math.log10(self.max_exposure)
779

780 self.current_exposure = tk.DoubleVar(value=self.log_min_exposure)
781 ttk.Label(self, text="Exposure Control").pack(pady=(10, 0))
782

783 self.exposure_label = ttk.Label(
784 self, text=f"Exposure: {self.min_exposure:.2f} µs"
785)
786 self.exposure_label.pack(pady=(0, 5))
787

788 # Exposure slider settings
789 self.exposure_slider = ttk.Scale(
790 self,
791 from_=0,
792 to=1000,
793 orient="horizontal",
794 length=600,
795 command=self.update_exposure, # Calls the fuction on each value change
796 variable=self.current_exposure,
797)
798 self.exposure_slider.pack(pady=5, padx=20, fill="x")
799

A-18

800 self.exposure_entry = ttk.Entry(self, width=10)
801 self.exposure_entry.pack(pady=5)
802 self.exposure_entry.bind("<Return>", self.update_from_exposure_entry)
803

804 self.exposure_set_button = ttk.Button(
805 self, text="Set Exposure", command=self.update_from_exposure_entry
806)
807 self.exposure_set_button.pack(pady=5)
808

809 def setup_min_value_slider(self) -> None:
810 """Creates the minimum spot size value slider:
811

812 1. Initializes all slider elements and converts the minimum spot size value to a
logarithmic scale.↪→

813

814 2. Sets up the displayed minimum value and its slider.
815

816 3. Configures the button to manually change the minimum spot size value.
817

818 Args:
819 self (Instance): Current instance, provides access to attributes and

methods.↪→

820 """
821 self.min_value = 1
822 self.max_value = const.H_SENSOR_SIZE * const.V_SENSOR_SIZE
823 self.log_min_value = math.log10(self.min_value)
824 self.log_max_value = math.log10(self.max_value)
825

826 self.current_min = tk.DoubleVar(value=self.log_min_value)
827

828 min_frame = ttk.Frame(self.min_max_frame)
829 min_frame.pack(side="left", expand=True, fill="x", padx=10)
830

831 ttk.Label(min_frame, text="Minimum Value Control").pack()
832 self.min_label = ttk.Label(
833 min_frame, text=f"Min. Beam Spot Size: {self.min_value:.0f}"
834)
835 self.min_label.pack()
836

837 self.min_slider = ttk.Scale(
838 min_frame,
839 from_=0,
840 to=1000,
841 orient="horizontal",
842 command=self.update_min_value,
843 variable=self.current_min,
844)
845 self.min_slider.pack(fill="x")
846

847 self.min_entry = ttk.Entry(min_frame, width=10)
848 self.min_entry.pack()
849 self.min_entry.bind("<Return>", self.update_from_min_entry)
850

851 self.min_set_button = ttk.Button(
852 min_frame, text="Set Min", command=self.update_from_min_entry
853)
854 self.min_set_button.pack()
855

856 def setup_max_value_slider(self) -> None:
857 """Creates the maximum spot size value slider:

A-19

858

859 1. Initializes all slider elements and converts the maximum spot size value to a
logarithmic scale.↪→

860

861 2. Sets up the displayed maximum value and its slider.
862

863 3. Configures the button to manually change the maximum spot size value.
864

865 Args:
866 self (Instance): Current instance, provides access to attributes and

methods.↪→

867 """
868 self.current_max = tk.DoubleVar(value=self.log_max_value)
869

870 max_frame = ttk.Frame(self.min_max_frame)
871 max_frame.pack(side="right", expand=True, fill="x", padx=10)
872

873 ttk.Label(max_frame, text="Maximum Value Control").pack()
874 self.max_label = ttk.Label(
875 max_frame, text=f"Max Beam Spot Size: {self.max_value:.0f}"
876)
877 self.max_label.pack()
878

879 self.max_slider = ttk.Scale(
880 max_frame,
881 from_=0,
882 to=1000,
883 orient="horizontal",
884 command=self.update_max_value,
885 variable=self.current_max,
886)
887 self.max_slider.pack(fill="x")
888

889 self.max_entry = ttk.Entry(max_frame, width=10)
890 self.max_entry.pack()
891 self.max_entry.bind("<Return>", self.update_from_max_entry)
892

893 self.max_set_button = ttk.Button(
894 max_frame, text="Set Max", command=self.update_from_max_entry
895)
896 self.max_set_button.pack()
897

898 def update_exposure(self, event=None) -> None:
899 """Updates the exposure value parsed through the slider:
900

901 1. Gets the exposure from the slider and converts it to a logarithmic scale.
902

903 2. Sends the updated exposure value to the camera.
904

905 Args:
906 self (Instance): Current instance, provides access to attributes and

methods.↪→

907 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

908 """
909 log_value = (
910 self.exposure_slider.get()
911 / 1000
912 * (self.log_max_exposure - self.log_min_exposure)
913 + self.log_min_exposure

A-20

914)
915 print(f"the log_value in update_exposure is {log_value}")
916 print(
917 f"the self.exposure_slider.get() in update_exposure is

{self.exposure_slider.get()}"↪→

918)
919 print(
920 f"the self.log_max_exposure in update_exposure is {self.log_max_exposure}"
921)
922 print(
923 f"the self.log_min_exposure in update_exposure is {self.log_min_exposure}"
924)
925 exposure = round(10**log_value)
926 self.exposure_label.config(text=f"Exposure: {exposure:.2f} µs")
927 self.camera_control.set_exposure(exposure)
928 self.exposure_entry.delete(0, tk.END)
929 self.exposure_entry.insert(0, str(exposure))
930

931 def update_min_value(self, event=None) -> None:
932 """Updates the minimum spot size value parsed through the slider:
933

934 1. Gets the minimum spot size value from the slider and converts it to a
logarithmic scale.↪→

935

936 2. If the miniumum sleected spot size value is bigger than the maximum
937 spot size value, the maximum spot size value is selected as the minimum
938 spot size value. If a negative value is selected, it will be converted to 0.
939

940 Args:
941 self (Instance): Current instance, provides access to attributes and

methods.↪→

942 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

943 """
944 log_value = (
945 self.min_slider.get()
946 / 1000
947 * (self.log_max_value - self.log_min_value)
948 + self.log_min_value
949)
950 min_value = round(10**log_value)
951 self.min_value = max(0, min(self.max_value - 1, min_value))
952 self.min_label.config(text=f"Min Value: {self.min_value:.2f}")
953 # Updates min value
954 self.camera_control.set_min_max_value(self.min_value, 0)
955 self.min_entry.delete(0, tk.END)
956 self.min_entry.insert(0, str(self.min_value))
957

958 def update_max_value(self, event=None) -> None:
959 """Updates the maximum spot size value parsed through the slider:
960

961 1. Gets the maximum spot size value from the slider and converts it to a
logarithmic scale.↪→

962

963 2. The maximum selected spot size value will be the maximum value between
964 the minimum spot size value and the smaller value between the maximum spot
965 size value selected from the slider and whole dimensions of the image.
966

967 Args:
968 self (Instance): Current instance, provides access to attributes and

methods.↪→

A-21

969 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

970 """
971 log_value = (
972 self.max_slider.get()
973 / 1000
974 * (self.log_max_value - self.log_min_value)
975 + self.log_min_value
976)
977 max_value = round(10**log_value)
978 self.max_value = max(
979 self.min_value,
980 min((const.H_SENSOR_SIZE * const.V_SENSOR_SIZE), max_value),
981)
982 self.max_label.config(text=f"Max Value: {self.max_value:.2f}")
983 self.camera_control.set_min_max_value(self.max_value, 1)
984 self.max_entry.delete(0, tk.END)
985 self.max_entry.insert(0, str(self.max_value))
986

987 def update_from_exposure_entry(self, event=None) -> None:
988 """Updates the exposure value parsed through the button:
989

990 1. Gets the exposure value and converts it to a logarithmic scale if it
991 is in the correct range. If not, it raises an error.
992

993 2. Updates the exposure value calling the update_exposure() function.
994

995 Args:
996 self (Instance): Current instance, provides access to attributes and

methods.↪→

997 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

998

999 Raises:
1000 ValueError: Exposure time inputed in the text-box is either bigger than the
1001 maximum exposure time or smaller than the smallest exposure time.
1002 """
1003 try:
1004 exposure = float(self.exposure_entry.get())
1005 if self.min_exposure <= exposure <= self.max_exposure:
1006 log_value = (
1007 (math.log10(exposure) - self.log_min_exposure)
1008 / (self.log_max_exposure - self.log_min_exposure)
1009 * 1000
1010)
1011 self.exposure_slider.set(log_value)
1012 # Updates the exposure value
1013 self.update_exposure(None)
1014 else:
1015 raise ValueError
1016 except ValueError:
1017 self.exposure_entry.delete(0, tk.END)
1018 self.exposure_entry.insert(
1019 0, str(round(10 ** self.current_exposure.get()))
1020)
1021

1022 def update_from_min_entry(self, event=None) -> None:
1023 """Updates the minimum spot size value parsed through the button:
1024

1025 1. Gets the minimum spot size value and converts it to a logarithmic scale if

A-22

1026 it is bigger than zero but smaller than the maximum value.
1027

1028 2. Updates the minimum spot size value calling the update_min_value() function.
1029

1030 Args:
1031 self (Instance): Current instance, provides access to attributes and

methods.↪→

1032 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

1033

1034 Raises:
1035 ValueError: Minimum spot size value is either smaller than zero or bigger
1036 than the maximum spot size value.
1037 """
1038 try:
1039 min_value = int(self.min_entry.get())
1040 if 0 <= min_value < self.max_value:
1041 self.min_value = min_value
1042 log_value = (
1043 (math.log10(max(1, min_value)) - self.log_min_value)
1044 / (self.log_max_value - self.log_min_value)
1045 * 1000
1046)
1047 self.min_slider.set(log_value)
1048 # Updates the min spot value
1049 self.update_min_value(None)
1050 else:
1051 raise ValueError
1052 except ValueError:
1053 self.min_entry.delete(0, tk.END)
1054 self.min_entry.insert(0, str(self.min_value))
1055

1056 def update_from_max_entry(self, event=None) -> None:
1057 """Updates the maximum spot size value parsed through the button:
1058

1059 1. Gets the maximum spot size value and converts it to a logarithmic scale
1060 if it is bigger or equal to the minimum spot size values and smaller or equal
1061 than the full image.
1062

1063 2. Updates the maximum spot size value calling the update_max_value() function.
1064

1065 Args:
1066 self (Instance): Current instance, provides access to attributes and

methods.↪→

1067 event (_type_, optional): Nothing, just compatibility purposes. Defaults to
None.↪→

1068

1069 Raises:
1070 ValueError: Maximum spot size value is either bigger than the dimensions of
1071 the whole frame or smaller than the minimum spot size value.
1072 """
1073 try:
1074 max_value = int(self.max_entry.get())
1075 if max_value >= self.min_value and max_value <= (
1076 const.H_SENSOR_SIZE * const.V_SENSOR_SIZE
1077):
1078 self.max_value = max_value
1079 log_value = (
1080 (math.log10(max_value) - self.log_min_value)
1081 / (self.log_max_value - self.log_min_value)

A-23

1082 * 1000
1083)
1084 self.max_slider.set(log_value)
1085 # Updates the max spot value
1086 self.update_max_value(None)
1087 else:
1088 raise ValueError
1089 except ValueError:
1090 self.max_entry.delete(0, tk.END)
1091 self.max_entry.insert(0, str(self.max_value))
1092

1093 def set_initial_values(
1094 self, exposure: float, min_value: int, max_value: int
1095) -> None:
1096 """Sets the intial values for all the varibales of the sliders.
1097

1098 1. Gets the maximum and minimum spot size and exposure values and converts them
to a logarithmic scale.↪→

1099

1100 2. Sets initial values of the sliders.
1101

1102 3. Calls the update fuctions to set an inicial value for the variables.
1103

1104 Args:
1105 self (Instance): Current instance, provides access to attributes and

methods.↪→

1106 exposure (float): Initial exposure time.
1107 min_value (int): Initial minimum spot size value.
1108 max_value (int): Initial maximum spot size value.
1109 """
1110 log_exposure = (
1111 (
1112 math.log10(
1113 max(self.min_exposure, min(self.max_exposure, exposure))
1114)
1115 - self.log_min_exposure
1116)
1117 / (self.log_max_exposure - self.log_min_exposure)
1118 * 1000
1119)
1120 self.min_value = min_value
1121 self.max_value = max_value
1122 log_min_value = (
1123 (math.log10(max(1, self.min_value)) - self.log_min_value)
1124 / (self.log_max_value - self.log_min_value)
1125 * 1000
1126)
1127 log_max_value = (
1128 (math.log10(self.max_value) - self.log_min_value)
1129 / (self.log_max_value - self.log_min_value)
1130 * 1000
1131)
1132 # Sets inital values of the sliders
1133 self.exposure_slider.set(log_exposure)
1134 self.min_slider.set(log_min_value)
1135 self.max_slider.set(log_max_value)
1136 # Sets inital values
1137 self.update_exposure(None)
1138 self.update_min_value(None)

A-24

1139 self.update_max_value(None)

A.2.3 constants.py

1 """This module contains all the constants needed to allow the project to work
correctly."""↪→

2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\constants.py
4

5 import numpy as np
6

7 # Directories
8 HOT_PIXEL0_DIR: str = r".\data\references\gain0\hot_500000.tiff"
9 HOT_PIXEL1_DIR: str = r".\data\references\gain1\hot_50000.tiff"

10 BACKGROUND_FRAME_DIR: str = r".\temp_.tiff"
11 TEMP_FRAME_DIR: str = r".\temp.tiff"
12

13 LUT_DIR0: str = r".\data\lut\Goldeye-G-CL-008_LinLUT_Gain0.bin"
14 LUT_DIR1: str = r".\data\lut\Goldeye-G-CL-008_LinLUT_Gain1.bin"
15

16 HOT_PIXEL0_THRES_VAL: int = 45
17 LUT_INDEX: int = 4
18

19 # Calibration factors
20 # CALIBRATION_THOR: float = 0.139602768 / 166
21 # CALIBRATION_THOR_GRID: float = 0.139602768 / 1426
22 # CALIBRATION_EDMU: float = 0.139602768 / 166
23 # MIN_BEAM_SIZE = 1
24 # MAX_BEAM_SIZE = 10
25

26 GRID_RADIUS: int = 2
27

28 # Lens parameters
29 LENS_FOCAL_LENGTH: float = 3.5 # mm
30 V_SENSOR_SIZE: int = 256 # Pixels
31 H_SENSOR_SIZE: int = 320 # Pixels
32 PIXEL_SIZE: float = 0.03 # mm (30um)
33

34 FISH_CENTER = [161, 131]
35

36 K = np.array(
37 [
38 [123.48774151225143, 0.0, 160.36138044001243],
39 [0.0, 123.21716405041697, 130.60363126947752],
40 [0.0, 0.0, 1.0],
41]
42)
43 D = np.array(
44 [
45 [-0.04444806603723004],
46 [0.0036746704759666278],
47 [0.0030634545076764002],
48 [-0.0019588697364114325],
49]
50)
51

52

53 ###################### LINK BUDGET ######################

A-25

54 # Fixed constants
55 C = 3e8 # m/s - speed of light
56 H = 6.626e-34 # m²-kg/s - Planck's constant
57 R_E = 6370e3 # m - Earth's radius
58

59 # Environment constants
60 PSI = 0.3
61 # PSI = 0 # a change according to el is not yet regarded
62 # PSI = 0.1
63 # PSI = 1E-8
64 P_THR = 0.1 # loss_fraction for ScintiLoss
65

66 # Satellite constants
67 # el = 15 # ° - Elevation of the satellite
68 # P_tx = 30 # dBm - Transmited power
69 # 1W mean was used in FLP-OSIRISv1 experiments with OCAM
70 # 100mW or 50mW mean we expect in KIODO, since the 20dBm mentioned in the book might be

peak-power↪→

A.2.4 gui.py

1 """This module manages the GUI settings menu that appears when the program is first
run."""↪→

2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\gui.py
4

5 from tkinter import ttk
6 from typing import Tuple
7 import tkinter as tk
8

9

10 def update_entry(variable: tk.StringVar, entry: tk.ttk.Entry) -> None:
11 """Checks for the parsed state of a variable to enable
12 or disable its text box.
13

14 Args:
15 variable (tk.StringVar): Container of the variable to check.
16 entry (tk.ttk.Entry): Container of the value and its state.
17 """
18 if variable.get() == "Auto" or variable.get() == "Full":
19 # If exposure is automatic, the button will be greyed-out
20 entry.config(state="disabled")
21 else:
22 entry.config(state="normal")
23

24

25 def create_menu() -> (
26 Tuple[
27 tk.StringVar,
28 tk.StringVar,
29 tk.StringVar,
30 tk.StringVar,
31 tk.StringVar,
32 tk.StringVar,
33 tk.StringVar,
34 tk.StringVar,
35 tk.StringVar,
36 tk.StringVar,

A-26

37 tk.StringVar,
38 tk.Tk,
39 tk.ttk.Entry,
40 tk.ttk.Entry,
41]
42):
43 """Creates the GUI menu to configure the initial settings:
44

45 1. Creates the variables windows with an specific size and position.
46

47 2. Creates varibales to store the inputs.
48

49 3. Creates dropdown menus with default values.
50

51 4. Defines a lambda function to parse the exposure and elevation varibales to
update_time_entry().↪→

52

53 Returns:
54 tuple: gain_var (tk.StringVar): Container of the gain mode (0 [0 dB] or 1 [18

dB]).↪→

55

56 check_var (tk.StringVar): Container of the streaming mode (Stream or Record).
57

58 light_var (tk.StringVar): Container of the time of the day (Daytime or
Nighttime).↪→

59

60 payload_var (tk.StringVar): Container of the payload used (None, KIODO,
61 OsirisV1, Osiris4CubeSat or CubeCat).
62

63 h_ogs_var (tk.StringVar): Container of the height of the OGS used (IKN-OP or
GSOC-OP).↪→

64

65 zenith_var (tk.StringVar): Container of the zenith attenuation (Bad
66 1550nm [0.891], Good 1550nm [0.986], Bad 850nm [0.705], Good 850nm
67 [0.950] or CubeCat 20240822 [0.963])
68

69 elevation_var (tk.StringVar): Container of the elevation mode (Individual or
Full).↪→

70

71 elevation_angle_var (tk.StringVar): Container of the elevation angle (if
manual).↪→

72

73 exposure_var (tk.StringVar): Container of the exposure mode (Auto or Manual).
74

75 exposure_time_var (tk.StringVar): Container of the exposure value (if manual).
76

77 iso_var (tk.StringVar): Container of the main camera mode (Normal, Hot-pixel
78 substraction, Subtraction ormCamera's BC).
79

80 root (tk.Tk): Main window of the GUI menu.
81

82 exposure_time_entry (tk.ttk.Entry): Value of the exposure.
83

84 elevation_angle_entry (tk.ttk.Entry): Value of the elevation.
85 """
86 root = tk.Tk()
87 root.title("IR Camera for Satellite Tracking")
88 # Dimensions and position of the settings menu (WidthxHeight+X+Y).
89 root.geometry("370x320+900+5")
90

A-27

91 # Variables
92 gain_var = tk.StringVar(value="1")
93 check_var = tk.StringVar(value="S")
94 light_var = tk.StringVar(value="D")
95 payload_var = tk.StringVar(value="")
96 h_ogs_var = tk.StringVar(value="IKN-OP")
97 zenith_var = tk.StringVar(value="B_1")
98 elevation_var = tk.StringVar(value="F")
99 elevation_angle_var = tk.StringVar(value="")

100 exposure_var = tk.StringVar(value="M")
101 exposure_time_var = tk.StringVar(value="")
102 iso_var = tk.StringVar(value="N")
103

104 # Camera title
105 ttk.Label(text="Camera settings", font=(14)).grid(
106 row=0, column=0, pady=5, sticky=""
107)
108 # LB title
109 ttk.Label(text="LB Settings", font=(14)).grid(
110 row=0, column=1, columnspan=1, pady=5
111)
112

113 # Dropdown menus
114 ttk.Label(text="Gain:").grid(row=1, column=0, sticky="")
115 gain_combo = ttk.Combobox(
116 textvariable=gain_var, values=["0 [0 dB]", "1 [18 dB]"]
117)
118 gain_combo.grid(row=2, column=0)
119 gain_combo.set("1 [18 dB]")
120

121 ttk.Label(text="Payload:").grid(row=1, column=1, sticky="")
122 payload_combo = ttk.Combobox(
123 textvariable=payload_var,
124 values=[
125 "None",
126 "KIODO",
127 "OsirisV1",
128 "Osiris4CubeSat",
129 "CubeCat",
130],
131)
132 payload_combo.grid(row=2, column=1)
133 payload_combo.set("None")
134

135 ttk.Label(text="Capture Mode:").grid(row=3, column=0, sticky="")
136 check_combo = ttk.Combobox(
137 textvariable=check_var, values=["Stream", "Record"]
138)
139 check_combo.grid(row=4, column=0)
140 check_combo.set("Stream")
141

142 ttk.Label(text="OGS:").grid(row=3, column=1, sticky="")
143 h_ogs_combo = ttk.Combobox(
144 textvariable=h_ogs_var, values=["IKN-OP", "GSOC-OP"]
145)
146 h_ogs_combo.grid(row=4, column=1)
147 h_ogs_combo.set("IKN-OP")
148

149 ttk.Label(text="Zenith-attenuation:").grid(row=5, column=1, sticky="")
150 zenith_combo = ttk.Combobox(

A-28

151 textvariable=zenith_var,
152 values=[
153 "Bad 1550nm [0.891]",
154 "Good 1550nm [0.986]",
155 "Bad 850nm [0.705]",
156 "Good 850nm [0.950]",
157 "CubeCat 20240822 [0.963]",
158],
159)
160 zenith_combo.grid(row=6, column=1)
161 zenith_combo.set("Bad 1550nm [0.891]")
162

163 ttk.Label(text="Time of the day:").grid(row=5, column=0, sticky="")
164 light_combo = ttk.Combobox(
165 textvariable=light_var, values=["Daytime", "Nighttime"]
166)
167 light_combo.grid(row=6, column=0)
168 light_combo.set("Daytime")
169

170 ttk.Label(text="Elevation:").grid(row=7, column=1, sticky="")
171 elevation_combo = ttk.Combobox(
172 textvariable=elevation_var, values=["Full", "Individual"]
173)
174 elevation_combo.grid(row=8, column=1)
175 elevation_combo.set("Full")
176

177 ttk.Label(text="Elevation Angle (°):").grid(row=9, column=1, sticky="")
178 elevation_angle_entry = ttk.Entry(textvariable=elevation_angle_var)
179 elevation_angle_entry.grid(row=10, column=1)
180

181 ttk.Label(text="Exposure:").grid(row=7, column=0, sticky="")
182 exposure_combo = ttk.Combobox(
183 textvariable=exposure_var, values=["Auto", "Manual"]
184)
185 exposure_combo.grid(row=8, column=0)
186 exposure_combo.set("Manual")
187

188 ttk.Label(text="Exposure Time (µs):").grid(row=9, column=0, sticky="")
189 exposure_time_entry = ttk.Entry(textvariable=exposure_time_var)
190 exposure_time_entry.grid(row=10, column=0)
191

192 ttk.Label(text="Tecnique Used:").grid(row=11, column=0, sticky="")
193 iso_combo = ttk.Combobox(
194 textvariable=iso_var,
195 values=[
196 "Normal",
197 "Hot-pixel substraction",
198 "Subtraction",
199 "Camera's BC",
200],
201)
202 iso_combo.grid(row=12, column=0)
203 iso_combo.set("Normal")
204

205 # lambda to parse exposure and elevation states
206 exposure_var.trace_add(
207 "write",
208 lambda *args: update_entry(exposure_var, exposure_time_entry),
209)
210

A-29

211 elevation_var.trace_add(
212 "write",
213 lambda *args: update_entry(elevation_var, elevation_angle_entry),
214)
215

216 return (
217 gain_var,
218 check_var,
219 light_var,
220 payload_var,
221 h_ogs_var,
222 zenith_var,
223 elevation_var,
224 elevation_angle_var,
225 exposure_var,
226 exposure_time_var,
227 iso_var,
228 root,
229 exposure_time_entry,
230 elevation_angle_entry,
231)

A.2.5 image_processing.py

1 """This module manages the processing of the frames taken by the camera."""
2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\image_processing.py
4

5 from datetime import datetime
6 from typing import Tuple
7 import cv2
8 import os
9 import csv

10 import math
11 import numpy as np
12

13 from . import constants as const
14

15

16 def dark_frame_setup(frame: np.array) -> np.array:
17 """Prepares a frame for processing:
18

19 1. A threshold of 45 is applied to a previously recorded image of the camera's hot
pixels.↪→

20

21 2. The resulting thresholded image is normalized, resulting in an image with values
[0, 1].↪→

22

23 3. Finally the normalized image is scaled, obtaining an image with values [0, 255].
24

25 Args:
26 frame (np.array): Frame with the hot pixels present.
27

28 Returns:
29 np.array: Image after normalization, thresholding and scaling.
30 """
31 # Apply threshold to create a binary image
32 _, thresh = cv2.threshold(

A-30

33 frame, const.HOT_PIXEL0_THRES_VAL, 255, cv2.THRESH_BINARY
34)
35

36 # Normalize the binary image
37 normalized = cv2.normalize(
38 thresh, None, 0, 1.0, cv2.NORM_MINMAX, dtype=cv2.CV_32F
39)
40 # Scale the image to [0, 255]
41 normalized = normalized * 255
42 normalized = normalized.astype(np.uint8)
43

44 return normalized
45

46

47 def subtract_frames(frame: np.array, frame_substracted: np.array) -> np.array:
48 """Subtracts one frame from another using OpenCV:
49

50 1. Checks if both frames have the same dimensions and format.
51

52 2. Substracts both of the frames.
53

54 Args:
55 frame (np.array): Original frame.
56 frame_substracted (np.array): Frame to substract.
57

58 Returns:
59 np.array: Image obtained after frame subtraction.
60 """
61 # Ensure images are the same size and format
62 assert (
63 frame.shape == frame_substracted.shape
64), "Both image frames must have the same dimensions"
65 assert (
66 frame.dtype == frame_substracted.dtype
67), "Both image frames must have the same data type"
68

69 # Subtract the dark frame using OpenCV
70 subtracted_image = cv2.subtract(frame, frame_substracted)
71

72 return subtracted_image
73

74

75 def write_csv(
76 self,
77 frame_mean_pixel_value: int,
78 frame_number: str,
79 time: str,
80 exposure: float,
81 r: float,
82 elevation: float,
83 azimuth: float,
84 fov: float,
85 location: Tuple,
86 pvalue: float,
87 pvalue_grid: np.uint32,
88 intensity: float,
89 intensity_grid: np.float64,
90) -> None:
91 """Writes a csv file with all the parameters needed to perform the analysis of the

final satellite pass:↪→

A-31

92

93 1. Creates the dictionaries and fields.
94

95 2. Writes the csv file.
96

97 Args:
98 self (Instance): Parsed instance from Handler in the api module, provides access

to attributes and methods.↪→

99 frame_mean_pixel_value (int): Mean Pixel Value of the entire frame.
100 frame_number (str): Frame number.
101 time (str): Current time where the frame as been recorded.
102 exposure (float): Exposure time used for that particular frame.
103 r (float): Radial position of the brightest point.
104 elevation (float): Elevation of the brightest point
105 azimuth (float): Azimuth of the brightest point.
106 fov (float): Field Of View of the camera, in degrees, at the brightest point
107 location (tuple): Location of the brightest point: [0] = x-axis, [1] = y-axis.
108 pvalue (float): Pixel Value of the brightest point [0-255].
109 pvalue_grid (np.uint32): Pixel Value of the whole brightest contour.
110 intensity (float): Intensity value of the brightest point.
111 intensity_grid (np.float64): Intensity value of the whole brightest contour.
112 """
113 if self.gain == 1:
114 gain = "Gain 1 [18dB]"
115 else:
116 gain = "Gain 0 [0dB]"
117 exposure = exposure.get()
118 mydict = [
119 {
120 "Frame": frame_number,
121 "Gain Mode": gain,
122 "Time [CEST]": time,
123 "Exposure [us]": exposure,
124 "Location [x, y]": location,
125 "Elevation [°]": elevation,
126 "Azimuth [°]": azimuth,
127 "FOV": fov,
128 "R": r,
129 "Mean Pixel Value [DN]": frame_mean_pixel_value,
130 "Brightest Pixel Value [DN]": pvalue,
131 "Grid Brightest Pixel Value [DN]": pvalue_grid,
132 "Intensity [uW/m^-2]": intensity,
133 "Grid Intensity[uW/m^-2]": intensity_grid,
134 }
135]
136

137 fields = [
138 "Frame",
139 "Gain Mode",
140 "Time [CEST]",
141 "Exposure [us]",
142 "Location [x, y]",
143 "Elevation [°]",
144 "Azimuth [°]",
145 "FOV",
146 "R",
147 "Mean Pixel Value [DN]",
148 "Brightest Pixel Value [DN]",
149 "Grid Brightest Pixel Value [DN]",
150 "Intensity [uW/m^-2]",

A-32

151 "Grid Intensity[uW/m^-2]",
152]
153

154 if self.payload != "None":
155 filename =

f"{self.p}/{datetime.now().strftime('%Y-%m-%d')}_{self.payload}_DL_csv.csv"↪→

156 else:
157 filename = f"{self.p}/{datetime.now().strftime('%Y-%m-%d')}_DL_csv.csv"
158 file_exists = os.path.isfile(filename)
159

160 # Write csv
161 with open(filename, "a", newline="") as csvfile:
162 writer = csv.DictWriter(csvfile, fieldnames=fields)
163 if not file_exists:
164 writer.writeheader()
165 writer.writerows(mydict)
166

167

168 def brightest_V2(
169 self,
170 frame: np.array,
171 exposure: float,
172) -> Tuple[Tuple, float, float, float, float, float]:
173 """Calculates the brightest point of the frame based on an specified minimum and

maximum spot size.↪→

174

175 1. Setups the calibration factor.
176

177 2. Depending if the daylight or nighttime is selcted a different process will be
applyed:↪→

178

179 In case of Daytime: Bilateral filter 3 200x200 -> OTSU Thresholding.
180

181 In case of Nighttime: Gaussian blur 3x3 -> Threshold based on black values.
182

183 3. Finds the contours of the figure (zones of the fram with similar pixel values).
184

185 4. Bounds the contours and filters them based on the minimum and maximum spot sizes
values.↪→

186

187 5. Select the contour with the highest mean pixel value.
188

189 6. Obtains the brightest pixel and the sum of all the values from the brightest
contour.↪→

190

191 7. Converts pixel value to intensity using the correction factor.
192

193 Args:
194 self (Instance): Current instance, provides access to attributes and methods.
195 frame (np.array): Frame from where the brightest point will be obtained.
196 exposure (float): Exposure time used for that particular frame.
197

198 Returns:
199 tuple[tuple, float, float, float, float, float]: max_loc (tuple):Location of the

brightest point:↪→

200 [0] = x-axis, [1] = y-axis.
201

202 max_val (float): Pixel value of the brightest point [0-255].
203

204 intensity_brightest (float): Intensity value of the brightest point.

A-33

205

206 max_mean_pixel_value (float): Mean pixel value of the whole brightest contour.
207

208 sum_max_mean_pixel_value[0] (float): Summed pixel value of the whole brightest
contour.↪→

209

210 intensity_brightest_grid (float): Summed intensity value of the whole brightest
contour.↪→

211 """
212 max_mean_pixel_value = 0
213 max_val = 0
214 max_loc = [0, 0]
215 intensity_brightest = 0
216 intensity_brightest_grid = 0
217 sum_max_mean_pixel_value = [0, 0, 0]
218 # sum_max_mean_pixel_value[0]
219

220 exposure = exposure.get() # Exposure in us
221

222 # Calibration factors
223 calibration_THOR = 0.139602768 / (0.0001 * exposure + 18.545)
224 calibration_THOR_grid = 0.139602768 / (0.0008 * exposure + 443.22)
225 if self.gain == 1:
226 calibration_THOR_gain = 0.139602768 / (1.4788 * exposure - 82.62)
227 else:
228 calibration_THOR_gain = 0.139602768 / (0.2427 * exposure + 1.67)
229

230 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
231 if self.cond == 0:
232 # Processing for Daytime - Bilateral filter and otsu thresholding
233 # filter = cv2.bilateralFilter(gray, 3, 100, 100)
234 filter = cv2.bilateralFilter(gray, 3, 200, 200)
235 # filter = cv2.GaussianBlur(gray, (5, 5), 0)
236 # filter = cv2.GaussianBlur(gray, (3, 3), 0)
237

238 _, th = cv2.threshold(
239 filter, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
240)
241 else:
242 # Processing for Nighttime - Gaussian filter and thresholding based on dark

pixels pixel value↪→

243 thresh_val = 0.0004 * exposure + 13.113
244

245 filter = cv2.GaussianBlur(gray, (3, 3), 0)
246 _, th = cv2.threshold(filter, thresh_val, 255, cv2.THRESH_BINARY)
247

248 contours, _ = cv2.findContours(th, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
249

250 min_size = self.min_value
251 max_size = self.max_value
252

253 for contour in contours:
254 _, _, w, h = cv2.boundingRect(contour)
255 # Filter contours based on min and max spot size
256 if min_size <= w * h and max_size >= w * h:
257 mask = np.zeros(gray.shape, np.uint8)
258 cv2.drawContours(mask, [contour], 0, 255, -1)
259

260 mean_pixel_value = cv2.mean(gray, mask=mask)[0]
261

A-34

262 # Compares current contour with the brightest one
263 if mean_pixel_value > max_mean_pixel_value:
264 max_mean_pixel_value = mean_pixel_value
265

266 # Obtain brightest point and full brightness of the contour
267 masked_gray = cv2.bitwise_and(gray, gray, mask=mask)
268 sum_max_mean_pixel_value = cv2.sumElems(masked_gray)
269 _, max_val, _, max_loc = cv2.minMaxLoc(masked_gray)
270

271 # Convert to intensity
272 intensity_brightest = max_val * calibration_THOR
273 intensity_brightest_grid = (
274 sum_max_mean_pixel_value[0] * calibration_THOR_grid
275)
276

277 return (
278 max_loc,
279 max_val,
280 intensity_brightest,
281 max_mean_pixel_value,
282 sum_max_mean_pixel_value[0],
283 intensity_brightest_grid,
284)
285

286

287 def calculate_el_azi(max_loc: Tuple) -> Tuple[float, float, float, float]:
288 """Calculates the elevation and azimuth of the brightest point of the frame,
289 making use of the fisheye projections. Equidistant, equisolid and stereographic
290 can be selected.
291

292 1. Calculates the distance from the center of the image to the brightest point.
293

294 2. Applies the projection to obtain the fov of the lens in the brightest point.
295

296 3. Obtains the elevation based on the fov.
297

298 4. Calculates the azimuth based on the center of the lens.
299

300 Args:
301 max_loc (tuple): Location of the brightest point: [0] = x-axis, [1] = y-axis.
302

303 Returns:
304 tuple[float, float, float, float]: elevation (float): Elevation of the brightest

point.↪→

305

306 fov (float): Field Of View of the camera, in degrees, at the brightest point.
307

308 r (float): Radial position of the brightest point.
309

310 azimuth (float): Azimuth of the brightest point.
311 """
312 # print(max_loc)
313 # print(type(max_loc))
314 # max_loc = np.array([[[max_loc[0], max_loc[1]]]], dtype=np.float32)
315 # # Undistort the point
316 # undist_max_loc = cv2.fisheye.undistortPoints(max_loc, const.K, const.D, P=const.K)
317 # undist_max_loc = undist_max_loc[0][0]
318 # max_loc = (int(round(undist_max_loc[0])), int(round(undist_max_loc[1])))
319 # print(max_loc)
320

A-35

321 F = const.LENS_FOCAL_LENGTH
322 r = math.sqrt(
323 (max_loc[0] - const.FISH_CENTER[0]) ** 2
324 + (max_loc[1] - const.FISH_CENTER[1]) ** 2
325)
326

327 # Lens Projections
328 # EQUIDISTANT PROJECTION
329 # fov_rad = (r * const.PIXEL_SIZE) / F # rad - FOV in radians
330 # EQUISOLID PROJECTION
331 fov_rad = 2 * math.asin((r * const.PIXEL_SIZE) / (2 * F))
332 # STEREOGRAPHIC PROJECTION
333 # fov_rad = 2 * math.atan((r * const.PIXEL_SIZE) / (2 * F))
334 # RECTILINEAR PROJECTION
335 # fov_rad = math.atan((r * const.PIXEL_SIZE) / F)
336

337 fov = (fov_rad * (180 / math.pi)) * 2 # ° - FOV in degrees
338 elevation = (180 - fov) / 2
339

340 # Azimuth at the exact center of the frame
341 if max_loc[1] == const.FISH_CENTER[1]:
342 azimuth = 0
343 else:
344 azimuth = (
345 math.atan(
346 (max_loc[0] - const.FISH_CENTER[0])
347 / (max_loc[1] - const.FISH_CENTER[1])
348)
349) * (180 / math.pi)
350

351 # If point is in the upper part of the frame
352 if max_loc[1] >= const.FISH_CENTER[1]:
353 azimuth = 180 + azimuth
354 else:
355 # If point is the bottom-right part of the frame
356 if max_loc[0] >= const.FISH_CENTER[0]:
357 azimuth = 360 + azimuth
358

359 return elevation, fov, r, azimuth
360

361

362 def frame_draw(
363 frame: np.array,
364 time: str,
365 exposure: float,
366 rad: int,
367 max_bright_loc: Tuple,
368 max_bright_val: float,
369 int_bright_val: float,
370 mean_bright_grid_val: np.uint32,
371 max_bright_grid_val: np.uint32,
372 int_bright_grid_val: np.float64,
373 min_size: int,
374 max_size: int,
375 elevation: float,
376 azimuth: float,
377) -> None:
378 """Draws the overlays on top of the frame:
379

380 Args:

A-36

381 frame (np.array): Frame where the overlays will be drawn.
382 time (str): Actual time in that particular frame.
383 exposure (float): Exposure time used for that particular frame.
384 rad (int): Radius of the intensity grid.
385 max_bright_loc (tuple): Location of the brightest point: [0] = x-axis, [1] =

y-axis.↪→

386 max_bright_val (float): Pixel value of the brightest point [0-255].
387 int_bright_val (float): Intensity value of the brightest point.
388 mean_bright_grid_val (np.uint32): Mean pixel value of the whole brightest

contour.↪→

389 max_bright_grid_val (np.uint32): Summed pixel value of the whole brightest
contour.↪→

390 int_bright_grid_val (np.float64): Summed intensity value of the whole brightest
contour.↪→

391 min_size (int): Minimum spot size value used.
392 max_size (int): Maximum spot size value used.
393 elevation (float): Elevation of the brightest point.
394 azimuth (float): Azimuth of the brightest point.
395 """
396 # Draw the time, exposure, coordinates and crosshair on the frame
397 cv2.putText(
398 frame,
399 time,
400 (1, 7),
401 cv2.FONT_HERSHEY_SIMPLEX,
402 0.3,
403 (255, 255, 255),
404 1,
405)
406 cv2.putText(
407 frame,
408 f"Exposure: {exposure.get()} us",
409 (1, 38),
410 cv2.FONT_HERSHEY_SIMPLEX,
411 0.25,
412 (255, 255, 255),
413 1,
414)
415 cv2.putText(
416 frame,
417 f"Min Size: {min_size:.0f}",
418 (1, 47),
419 cv2.FONT_HERSHEY_SIMPLEX,
420 0.25,
421 (255, 255, 255),
422 1,
423)
424 cv2.putText(
425 frame,
426 f"Max Size: {max_size:.0f}",
427 (1, 56),
428 cv2.FONT_HERSHEY_SIMPLEX,
429 0.25,
430 (255, 255, 255),
431 1,
432)
433 cv2.putText(
434 frame,
435 f"El.: {elevation:.0f}",
436 (1, 201),

A-37

437 cv2.FONT_HERSHEY_SIMPLEX,
438 0.25,
439 (255, 255, 255),
440 1,
441)
442 cv2.putText(
443 frame,
444 f"Az.: {azimuth:.0f}",
445 (1, 210),
446 cv2.FONT_HERSHEY_SIMPLEX,
447 0.25,
448 (255, 255, 255),
449 1,
450)
451 cv2.putText(
452 frame,
453 f"Brightness at {max_bright_loc}: {int_bright_val:.3f} uw/m^2 ->

{max_bright_val}",↪→

454 (1, 238),
455 cv2.FONT_HERSHEY_SIMPLEX,
456 0.25,
457 (255, 255, 255),
458 1,
459)
460 if max_bright_val == 255:
461 cv2.putText(
462 frame,
463 "Saturated! Lower Exposure",
464 (115, 20),
465 cv2.FONT_HERSHEY_SIMPLEX,
466 0.25,
467 (255, 255, 255),
468 1,
469)
470 cv2.putText(
471 frame,
472 f"Brightness {rad*2+1}x{rad*2+1} grid: {int_bright_grid_val:.3f} uw/m^2 "
473 f"-> {max_bright_grid_val} (mean: {mean_bright_grid_val:.1f})",
474 (1, 245),
475 cv2.FONT_HERSHEY_SIMPLEX,
476 0.25,
477 (255, 255, 255),
478 1,
479)
480 cv2.putText(
481 frame,
482 "N",
483 (160, 7),
484 cv2.FONT_HERSHEY_SIMPLEX,
485 0.4,
486 (255, 255, 255),
487 1,
488)
489 cv2.putText(
490 frame,
491 "S",
492 (160, 254),
493 cv2.FONT_HERSHEY_SIMPLEX,
494 0.4,
495 (255, 255, 255),

A-38

496 1,
497)
498 cv2.putText(
499 frame,
500 "E",
501 (1, 128),
502 cv2.FONT_HERSHEY_SIMPLEX,
503 0.4,
504 (255, 255, 255),
505 1,
506)
507 cv2.putText(
508 frame,
509 "W",
510 (310, 128),
511 cv2.FONT_HERSHEY_SIMPLEX,
512 0.4,
513 (255, 255, 255),
514 1,
515)
516 cv2.putText(
517 frame,
518 "SW",
519 (290, 242),
520 cv2.FONT_HERSHEY_SIMPLEX,
521 0.4,
522 (255, 255, 255),
523 1,
524)
525 cv2.putText(
526 frame,
527 "(225)",
528 (280, 227),
529 cv2.FONT_HERSHEY_SIMPLEX,
530 0.25,
531 (255, 255, 255),
532 1,
533)
534 cv2.putText(
535 frame,
536 "(248)",
537 (295, 190),
538 cv2.FONT_HERSHEY_SIMPLEX,
539 0.25,
540 (255, 255, 255),
541 1,
542)
543 cv2.putText(
544 frame,
545 "NW",
546 (290, 17),
547 cv2.FONT_HERSHEY_SIMPLEX,
548 0.4,
549 (255, 255, 255),
550 1,
551)
552 cv2.putText(
553 frame,
554 "(338)",
555 (225, 10),

A-39

556 cv2.FONT_HERSHEY_SIMPLEX,
557 0.25,
558 (255, 255, 255),
559 1,
560)
561 cv2.putText(
562 frame,
563 "(315)",
564 (280, 29),
565 cv2.FONT_HERSHEY_SIMPLEX,
566 0.25,
567 (255, 255, 255),
568 1,
569)
570 cv2.putText(
571 frame,
572 "(293)",
573 (295, 66),
574 cv2.FONT_HERSHEY_SIMPLEX,
575 0.25,
576 (255, 255, 255),
577 1,
578)
579 cv2.putText(
580 frame,
581 "SE",
582 (30, 242),
583 cv2.FONT_HERSHEY_SIMPLEX,
584 0.4,
585 (255, 255, 255),
586 1,
587)
588 cv2.putText(
589 frame,
590 "(135)",
591 (35, 227),
592 cv2.FONT_HERSHEY_SIMPLEX,
593 0.25,
594 (255, 255, 255),
595 1,
596)
597 cv2.putText(
598 frame,
599 "(113)",
600 (11, 190),
601 cv2.FONT_HERSHEY_SIMPLEX,
602 0.25,
603 (255, 255, 255),
604 1,
605)
606 cv2.putText(
607 frame,
608 "NE",
609 (30, 17),
610 cv2.FONT_HERSHEY_SIMPLEX,
611 0.4,
612 (255, 255, 255),
613 1,
614)
615 cv2.putText(

A-40

616 frame,
617 "(45)",
618 (35, 29),
619 cv2.FONT_HERSHEY_SIMPLEX,
620 0.25,
621 (255, 255, 255),
622 1,
623)
624 cv2.putText(
625 frame,
626 "(68)",
627 (11, 66),
628 cv2.FONT_HERSHEY_SIMPLEX,
629 0.25,
630 (255, 255, 255),
631 1,
632)
633

634 # Circle for the brightest point
635 cv2.circle(frame, max_bright_loc, 5, (255, 255, 255), 1)
636

637 # Crosshair
638 # cv2.line(frame, (159, 128), (161, 128), (255, 255, 255), 1)
639 # cv2.line(frame, (160, 127), (160, 129), (255, 255, 255), 1)
640

641

642 def frame_processing(self, cam, frame) -> None:
643 """Procceses the frame.
644

645 1. Grabs a temporal frame.
646

647 2. Depending on the selected mode by the user:
648

649 - Hot-pixel removal.
650 A frame with the hot pixels will threshold and normalized by the
651 dark_frame_setup() fuction and then subtracted to the the taken frame
652 with the subtract_frames() function.
653

654 - Own background correction.
655 Substracts the temporal frame to the next grabbed frame. The
656 subtract_frames() fuction is applied for substracting the temporal frame,
657 just grabbed, with the next frame.
658

659 - Normal operation.
660 The temporal frame will be used directly.
661

662 - Camera's own background correction.
663 The temporal frame will be used directly.
664

665 3. Obtains the brightest point thanks to the brightest_V2() function.
666

667 4. Obtains the elevation and azimuth of the brightest pixel with the
calculate_el_azi() fuction.↪→

668

669 5. Draws all the desired values on top of the frame using the frame_draw() fuction.
670

671 6. Just in case the Record mode is being used, both the processed and unprocessed
frames,↪→

672 besides the csv file, will all be saved.
673

A-41

674 7- Finally the frames will be display and the first temporal frame will be removed.
675

676 Args:
677 self (Instance): Current instance, provides access to attributes and methods.
678 cam (Camera): Camera object from the VMBPY API module.
679 frame (Frame): Frame object from the VMBPY API module.
680 """
681 # Get the current time with ms.
682 now = datetime.now()
683 current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
684 exposure_time = cam.ExposureTime
685 msg = "Stream from '{}'. Press <q> to stop stream."
686

687 print("{} acquired {}".format(cam, frame), flush=True)
688

689 # Create a temporal frame where the proccessing will be made.
690 cv2.imwrite(const.TEMP_FRAME_DIR, frame.as_opencv_image())
691 frame_temp = cv2.imread(const.TEMP_FRAME_DIR)
692

693 # Hot-pixel removal
694 if self.background == 3:
695 # Setup of the hot pixels of the wanted exposure.
696 hot = cv2.imread(const.HOT_PIXEL0_DIR)
697 normalized = dark_frame_setup(hot)
698 # Removal of the dark pixels from the taken frame.
699 frame_subs = subtract_frames(frame_temp, normalized)
700 # Background substraction.
701 elif self.background == 1:
702 normalized = cv2.imread(const.BACKGROUND_FRAME_DIR)
703 # background = background.astype(np.uint8)
704 frame_subs = subtract_frames(frame_temp, normalized)
705 # frame_subs = subtract_frames(normalized, frame_temp) # Chroma effect
706 # Normal operation or Background correction mode
707 else:
708 frame_subs = cv2.imread(const.TEMP_FRAME_DIR)
709

710 # Calculate the brightest point, elevation and azimuth
711 mean_val_grid = 0
712 (
713 max_loc,
714 max_val,
715 intensity_brightest,
716 mean_val_grid,
717 max_val_grid,
718 intensity_brightest_grid,
719) = brightest_V2(self, frame_subs, exposure_time)
720

721 elevation, fov, r, azimuth = calculate_el_azi(max_loc)
722

723 # Append data for update the live graph of the GUI
724 self.xdata.append(now)
725 self.ydata.append(max_val)
726

727 # Draw on-top of the frame
728 frame_draw(
729 frame_subs,
730 current_time,
731 exposure_time,
732 const.GRID_RADIUS,
733 max_loc,

A-42

734 max_val,
735 intensity_brightest,
736 mean_val_grid,
737 max_val_grid,
738 intensity_brightest_grid,
739 self.min_value,
740 self.max_value,
741 elevation,
742 azimuth,
743)
744

745 # We only write the frame if the mode selected is Record.
746 if self.mode != 0:
747 cv2.imwrite(
748 f"{self.p}/{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_{now.strftime('%H')}"↪→

749 f"{now.strftime('%M')}{now.strftime('%S')}_frame_{str(self.counter)}.tiff",
750 frame_subs,
751)
752 cv2.imwrite(
753 f"{self.pnp}/{now.strftime('%Y')}{now.strftime('%m')}{now. c

strftime('%d')}_{now.strftime('%H')}"↪→

754 f"{now.strftime('%M')}{now.strftime('%S')}_frame_{str(self.counter)}.tiff",
755 frame_temp,
756)
757

758 # Calculate mean pixel value of the frame and generate csv
759 frame_mpv = frame_subs.mean()
760 frame_num = f"frame_{str(self.counter)}"
761 write_csv(
762 self,
763 frame_mpv,
764 frame_num,
765 current_time,
766 exposure_time,
767 r,
768 elevation,
769 azimuth,
770 fov,
771 max_loc,
772 max_val,
773 max_val_grid,
774 intensity_brightest,
775 intensity_brightest_grid,
776)
777

778 # Create the window for the frames
779 window = np.concatenate((frame_subs, frame_temp), axis=1)
780 winname = msg.format(cam.get_name())
781 cv2.namedWindow(winname)
782 cv2.moveWindow(winname, 70, 5)
783 cv2.imshow(winname, window) # Show the frame
784

785 if os.path.isfile(const.TEMP_FRAME_DIR):
786 os.remove(const.TEMP_FRAME_DIR)

A-43

A.2.6 input_checks.py

1 """This modules manages the checking and validation of the user inputs."""
2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\input_checks.py
4

5 from typing import Tuple
6

7 def checks(
8 elevation_in,
9 elevation_angle_in,

10 exposure_in,
11 exposure_time_in,
12 zenith,
13 h_ogs,
14) -> Tuple[int, int, float, int]:
15 """Based on the selected values in the GUI it preapres the exposure, elevation and
16 zenith attenuation we will finally use.
17

18 1. If manual exposure mode is selected, retrieves the exposure time, ensuring that
19 the value is non-negative.
20

21 2. If individual elevation mode is selected, retrieves the elevation angle, ensuring
↪→

22 that the selected value is between 0 and 90 degrees of elevation.
23

24 3. Selects the value of the atmospheric zenith attenuation.
25

26 Args:
27 elevation_in (tk.StringVar): Container of the chosen elevation mode.
28 elevation_angle_in (tk.StringVar): Container of the chosen elevation angle (if

manual).↪→

29 exposure_in (tk.StringVar): Container of the chosen exposure mode.
30 exposure_time_in (tk.StringVar): Container of the chosen exposure value (if

manual).↪→

31 zenith (tk.StringVar): Container of the atmospheric zenith attenuation.
32 h_ogs (tk.StringVar): Container of the height of the OGS used.
33

34 Raises:
35 ValueError: Exposure time value is a lower than zero.
36 ValueError: Elevation angle is lower than 0 or bigger than 90.
37

38 Returns:
39 tuple[int, int, float, int]: elevation_angle (int): Final selected elevation

angle (if individual).↪→

40

41 exposure_time_value (int): Final selected exposure value (if manual).
42

43 zenith (float): Final selected zenith attenuation value.
44

45 h_ogs (int): Final height of the selected OGS.
46 """
47 # Validate exposure time
48 if exposure_in.get() == "Manual":
49 try:
50 exposure_time_value = int(exposure_time_in.get())
51 if exposure_time_value <= 0:
52 raise ValueError
53 # Error validation
54 except ValueError:

A-44

55 print("[ERROR] Invalid exposure time. Must be a positive integer.")
56 return
57 else:
58 exposure_time_value = 1 # Default value for Auto mode
59

60 # Validate elevation
61 if elevation_in.get() == "Individual":
62 try:
63 elevation_angle = int(elevation_angle_in.get())
64 print(elevation_angle)
65 if elevation_angle <= 0 or elevation_angle >= 90:
66 raise ValueError
67 # Error validation
68 except ValueError:
69 print(
70 "[ERROR] Invalid elevation angle. Must be a whole angle between 1 and 89

degrees."↪→

71)
72 return
73 else:
74 elevation_angle = 15 # Default value for Auto mode
75

76 if zenith.get() == "Bad 1550nm [0.891]":
77 zenith = 0.891
78 elif zenith.get() == "Good 1550nm [0.986]":
79 zenith = 0.986
80 elif zenith.get() == "Bad 850nm [0.705]":
81 zenith = 0.705
82 elif zenith.get() == "Good 850nm [0.950]":
83 zenith = 0.950
84 else:
85 zenith = 0.963
86

87 if h_ogs.get() == "IKN-OP":
88 h_ogs = 650
89 else:
90 h_ogs = 600
91

92 return (
93 elevation_angle,
94 exposure_time_value,
95 zenith,
96 h_ogs,
97)

A.2.7 link_budget.py

1 """This modules manages the creation and display of the link budget."""
2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\03_SCRIPTS\05_LINK_BUDGET\link_budget.py
4

5 from typing import Union
6 from scipy.special import erfinv
7

8 import numpy as np
9 import mplcursors

10 import matplotlib.pyplot as plt
11

A-45

12 import math
13

14 from . import constants as const
15

16

17 def printer_lb(
18 el: Union[np.ndarray, int],
19 elevation_mode,
20 sat,
21 a_tx: int,
22 p_tx: int,
23 ppb: int,
24 teta_tx: float,
25 a_rx: int,
26 leng: Union[np.ndarray, float],
27 g_tx: float,
28 a_fsl: Union[np.ndarray, float],
29 i_axial: Union[np.ndarray, float],
30 area_rx: float,
31 a_atm: Union[np.ndarray, float],
32 a_bw: int,
33 g_rx: float,
34 p_rx: Union[np.ndarray, float],
35 int_ogs_lin: Union[np.ndarray, float],
36 int_ogs_lin_loss: Union[np.ndarray, float],
37 p_ogs_mean: Union[np.ndarray, float],
38 p_ogs_mean_loss: Union[np.ndarray, float],
39 p_rx_lin: Union[np.ndarray, float],
40 wl: float,
41 p_rfe_lin: float,
42 a_sci: int,
43) -> None:
44 """Prints the graph or the results and summary of the link budget.
45

46 1. If the elevation mode is "Full" it will just print the graph, if not
47 it will print the result of the link budget.
48

49 Args:
50 el (np.ndarray | int): Elevation of the satellite
51 elevation_mode (tk.StringVar): Container of the elevation mode.
52 sat (tk.StringVar): Container of the payload used.
53 a_tx (int): Transmitter optical loss.
54 p_tx (int): Transmitter power.
55 ppb (int): Photons/bit.
56 teta_tx (float): Transmitter divergence.
57 a_rx (int): Receiver optical loss onto RFE.
58 leng (np.ndarray | float): Length of the link.
59 g_tx (float): Transmitter antenna gain.
60 a_fsl (np.ndarray | float): Free-space loss.
61 i_axial (np.ndarray | float): Axial intensity at OGS-distance.
62 area_rx (float): Receiver antenna area.
63 a_atm (np.ndarray | float): Atmospheric attenuation loss.
64 a_bw (int): Mean BeamWander loss.
65 g_rx (float): Reveiver antenna gain.
66 p_rx (np.ndarray | float): Received power.
67 int_ogs_lin (np.ndarray | float): Intensity onto OGS-apertue exc. losses.
68 int_ogs_lin_loss (np.ndarray | float): Intensity onto OGS-apertue inc. losses.
69 p_ogs_mean (np.ndarray | float): Power into the OGS-apertue - no additional

RX-losses.↪→

70 p_ogs_mean_loss (np.ndarray | float): Power into the OGS-apertue including
RX-losses.↪→

A-46

71 p_rx_lin (np.ndarray | float): RxPower onto RFE-detector incl all losses.
72 wl (float): Wavelength.
73 p_rfe_lin (float): RFE-sensitivity for an specific Photons/bit.
74 a_sci (int): Scintillation loss.
75 """
76 if elevation_mode.get() == "Full":
77 print(int_ogs_lin_loss)
78 el = np.arange(5, 90)
79 print(el)
80 plt.figure()
81

82 plt.plot(el, int_ogs_lin_loss * 1e6, "-", color="r", linewidth=2)
83 plt.ylabel("Intensity onto Camera-apertue / µW/m²")
84 plt.xlabel("Elevation / 1°")
85 plt.subplots_adjust(left=0.17, right=0.95, top=0.92, bottom=0.13)
86 plt.title(f"{sat.get()} intensity Link Budget")
87 plt.grid(True)
88

89 fig_manager = plt.get_current_fig_manager()
90

91 # Dimensions and position of the link budget window (WidthxHeight+X+Y)
92 fig_manager.window.wm_geometry("355x372+545+290")
93

94 mplcursors.cursor()
95 plt.show(block=False)
96 else:
97 print("///")
98 print()
99 print(f"Transmit-power = {p_tx} dBm")

100 print(f"Divergence = {((teta_tx*1E6*10)/10)} µrad")
101 print(f"Optical loss Tx = {a_tx} dB")
102

103 print(
104 f"Optical loss onto RFE (incl. splitting) = {a_rx} dB - We are not "
105 f"taking into account optical loss as the receiver is a camera"
106)
107 # if sat == "OsirisV1":
108 # print(
109 # f"Optical loss onto RFE (incl. splitting) = {a_rx} dB - in OSIRISv1

from FLP -7,5dB were measured in 30cm telescope towards PowerSensor"↪→

110 #)
111 # print(f"Optical loss Rx (incl. splitting) = {a_rx} dB - in KIODO only 4% of

Rx-light was on RFE-APD")↪→

112

113 print()
114 print(f"Link-distance = {(leng/100)*.1} km")
115 print(f"Tx-antenna gain = + {g_tx} dB")
116 print(f"Freespace Loss = {a_fsl} dB")
117 print(
118 f" # axial Intensity a OGS-distance = {i_axial*1E6} µW/m^2, after "
119 f"only distance and Tx-internal losses"
120)
121 print(f" # Area of Rx-antenna = {area_rx} m^2")
122 print(
123 f" # power into Rx-aperture [no a_atmo nor a_pointing, only a_Tx, "
124 f"a_fsl, g_Rx] = {1E6*i_axial * area_rx} µW"
125)
126 print()
127 print(f"atmosph. atten. = {a_atm} dB")
128 print(

A-47

129 f"mean BeamWander loss = {a_bw} dB - Being the receiver a camera, we are "
130 f"not taking into acount BeamWander losses"
131)
132

133 print(
134 f"scinti-loss = {a_sci} dB - Once again we suppose Scintillation loss as

cero"↪→

135)
136

137 print()
138 print(f"Rx-antenna gain = + {g_rx} dB")
139 print(f"optical loss Rx = {a_rx} dB, includes splitting for Tracking")
140 print(f"RxPower on RFE with all losses = {p_rx} dBm")
141 print(
142 f" # intensity onto OGS-apertue incl atmosphere but excl. "
143 f"Rx-losses = {int_ogs_lin *1E6} µW/m^2"
144)
145 print(
146 f" # intensity onto OGS-apertue incl atmosphere including "
147 f"Rx-losses = {int_ogs_lin_loss *1E6} µW/m^2"
148)
149 print(
150 f" # power into the OGS-apertue - no additional RX-losses"
151 f"= {(10**(p_ogs_mean/10)/1000)*1E6} µW"
152)
153 print(
154 f" # power into the OGS-apertue including RX-losses = "
155 f"{(10**(p_ogs_mean_loss/10)/1000)*1E6} µW"
156)
157 print(
158 f"RxPower onto RFE-detector incl all losses = {p_rx_lin*1E9} nW, "
159 f"sufficient for {(p_rx_lin/ppb/(const.H*const.C/wl))/1E9} Gbps at {ppb}

Photons/bit"↪→

160)
161 print(
162 f"RFE-sensitivity for {ppb} Ppb = {p_rfe_lin*1E9} nW or "
163 f"{math.log10(p_rfe_lin*1000)*10} dBm"
164)
165 print()
166 print(f"Link Margin: {p_rx - math.log10(p_rfe_lin*1000)*10 } dBm")
167 print()
168

169 print("///////////////////// Summary /////////////////////")
170 if elevation_mode.get() == "Individual":
171 print(f"mean source power +{p_tx} dBm")
172 print(f"Tx-internal losses {a_tx} dBm")
173 print(f"Tx-antenna gain +{g_tx} dB")
174 print(f"pointing loss {a_bw} dB")
175 print(f"Distance {leng/1000} km")
176 print(f"freespace loss {a_fsl} dB")
177 print(f"Atmospheric loss {a_atm} dB")
178 print(f"scintillation loss {a_sci} dB")
179 print(f"Rx-antenna gain +{g_rx} dB")
180 print(f"Power into Rx-Aper {p_ogs_mean} dBm")
181 print(f"Rx-internal losses {a_rx} dB")
182 p_rx_ = (
183 p_tx + a_tx + g_tx + a_bw + a_fsl + a_atm + a_sci + g_rx + a_rx
184)
185 print(f"Power onto detectr {p_rx_} dBm")
186 print(

A-48

187 f"Sensitivity of RFE {10*math.log10(p_rfe_lin*1000)} dBm /
{p_rfe_lin*1E9} nW"↪→

188)
189 print(
190 f"Link Margin {p_rx_ - 10*math.log10(p_rfe_lin*1000)} dB"
191)
192 print()
193

194 print("//////////////////// Intensity ////////////////////")
195 print(
196 f"Axial Intensity at OGS-distance = {i_axial*1E6} µW/m^2, after only "
197 f"distance and Tx-internal losses"
198)
199 print(
200 f"Intensity onto OGS-apertue incl atmosphere but excl. Rx-losses = "
201 f"{int_ogs_lin *1E6} µW/m^2"
202)
203 print(
204 f"Intensity onto OGS-apertue incl atmosphere including Rx-losses = "
205 f"{int_ogs_lin_loss *1E6} µW/m^2"
206)
207 print()
208

209 print("////////////////////// Power //////////////////////")
210 print(
211 f"Power into Rx-aperture [no a_atmo nor a_pointing, only a_Tx, a_fsl, "
212 f"g_Rx] = {1E6*i_axial * area_rx} µW"
213)
214 print(
215 f"Power into the OGS-apertue - no additional RX-losses = "
216 f"{(10**(p_ogs_mean/10)/1000)*1E6} µW"
217)
218 print(
219 f"Power into the OGS-apertue including RX-losses = "
220 f"{(10**(p_ogs_mean_loss/10)/1000)*1E6} µW"
221)
222

223

224 def link_budget(elevation_mode, el: int, payload, zenith: float, h_ogs: int) -> None:
225 """Performs the link budget based on the parameters from the GUI:
226

227 1. Selects specific parameters based on the payload chosen.
228

229 2. Specifies the losses.
230

231 3. Calculates antennas dimensions.
232

233 4. If the elevation mode is "Full", the elevation angle will be converted to an
array from 0 to 90 degrees.↪→

234

235 5. The rest of the parameters dependent on the elevation are calculated based on if
236 the elevation is just a point or the full range.
237

238 6. Computes the final received power at the receiver.
239

240 7. Calculates the intensity onto the receiver using its area.
241

242 Args:
243 elevation_mode (tk.StringVar): Container of the elevation mode.
244 el (int): Elevation angle.

A-49

245 payload (tk.StringVar): Container of the payload used.
246 zenith (float): Final selected zenith attenuation value.
247 h_ogs (int): Final height of the selected OGS.
248 """
249 if payload.get() == "OsirisV1":
250 h_orbit = 595 # km - Satellite height
251 wl = 1545e-9 # m - Wavelenght of the downlink
252 p_tx = 30 # dBm - Transmited power
253 teta_tx = 1e-3 # rad - OSIRISv1: 1.0E-3 oder 1.2E-3 mrad - die Dokumente sagen

immer 1,2 aber CF meinte f�rs CNES-Paper 1,0↪→

254 a_tx = -1 # dB - Optical Transmissor losses (Tx)
255 dr = 39e6 # bps - datarate in KIODO, 39Mbps in OSIRIS-FLP for OCAM and some

tests to OP↪→

256 ppb = 250 # ppb - Photons per bit required bei RFE at BER=1E-3 at first OSIRIS
with APD-RFE-100-OLD, 320Photons for RFE-300-NEW↪→

257 # diese Formel muss noch durch WL erg�nzt werden: D_tx=0.2; teta_tx = 100E-6 *
0.01/D_tx; % estimate for near-optimum cut-gauss Tx↪→

258 elif payload.get() == "KIODO":
259 h_orbit = 610 # km - Satellite height
260 wl = 847e-9 # m - Wavelenght of the downlink
261 p_tx = 20 # dBm - Transmited power
262 # p_tx = 16.99
263 teta_tx = 5.5e-6 # rad - OICETS-Kirari-LUCE FWHM beam divergence
264 a_tx = -1 # dB - Optical Transmissor losses (Tx)
265 dr = 39e6 # bps - datarate in KIODO, 39Mbps in OSIRIS-FLP for OCAM and some

tests to OP↪→

266 ppb = 250 # ppb - Photons per bit required bei RFE at BER=1E-3 at first OSIRIS
with APD-RFE-100-OLD, 320Photons for RFE-300-NEW↪→

267 elif payload.get() == "CubeCat":
268 h_orbit = 455 # km - Satellite height
269 wl = 1545e-9 # m - Wavelenght of the downlink
270 p_tx = 24.7712 # dBm - Transmited power [300 mW]
271 # p_tx = 16.99
272 teta_tx = 104E-6 # rad - collimator F220FC-1550
273 a_tx = 0 # dB - Optical Transmissor losses (Tx)
274 dr = 39e6 # bps - datarate in KIODO, 39Mbps in OSIRIS-FLP for OCAM and some

tests to OP↪→

275 ppb = 250 # ppb - Photons per bit required bei RFE at BER=1E-3 at first OSIRIS
with APD-RFE-100-OLD, 320Photons for RFE-300-NEW↪→

276 # diese Formel muss noch durch WL ergnzt werden: D_tx=0.2; teta_tx = 100E-6 *
0.01/D_tx; % estimate for near-optimum cut-gauss Tx↪→

277 else:
278 h_orbit = 595 # km - Satellite height
279 wl = 1545e-9 # m - Wavelenght of the downlink
280 p_tx = 30 # dBm - Transmited power
281 teta_tx = 1e-3 # mrad - OSIRISv1: 1.0E-3 oder 1.2E-3 mrad - die Dokumente sagen

immer 1,2 aber CF meinte frs CNES-Paper 1,0↪→

282 a_tx = -1 # dB - Optical Transmissor losses (Tx)
283 dr = 39e6 # bps - datarate in KIODO, 39Mbps in OSIRIS-FLP for OCAM and some

tests to OP↪→

284 ppb = 250 # ppb - Photons per bit required bei RFE at BER=1E-3 at first OSIRIS
with APD-RFE-100-OLD, 320Photons for RFE-300-NEW↪→

285 # diese Formel muss noch durch WL ergnzt werden: D_tx=0.2; teta_tx = 100E-6 *
0.01/D_tx; % estimate for near-optimum cut-gauss Tx↪→

286

287 h_orbit_m = h_orbit * (10**3) # m - Satellite height
288 # 1W mean was used in FLP-OSIRISv1 experiments with OCAM
289 # 100mW or 50mW mean we expect in KIODO, since the 20dBm mentioned in the book might

be peak-power↪→

290

A-50

291 sigma_jit = 0.85 * teta_tx / 2 # erzeugt dann -3dB BW-loss
292 # sigma_jit = 1E-9 # 0.85*teta_tx/2 # erzeugt dann -3dB BW-loss
293 # sigma_jit = teta_tx/4 # irrelevant when we set beta later below
294

295 beta = teta_tx**2 / sigma_jit**2 / (8 * math.log(2))
296 # beta = 8
297 # beta = 2 # produces a pointing loss of -1.7dB
298 # beta=1000 # no pointing loss for the plot in fig.10
299

300 ############ RECEIVER SETTINGS ############ -> Check standalone script for
noncam values↪→

301 # LOSSES
302 a_rx = 0 # dB - Optical Receiver losses (Tx) -
303 a_bw = 0 # dB - Beam Wander losses
304 a_sci = 0 # dB - Scintillation losses
305

306 ########### ANTENA'S DIMENTIONS ###########
307 d_rx_o = 2.5e-3 # m - Diameter Rx-apertur in meter - Infra-FE4.41.0-17
308 # d_rx_o = 5.6e-3 # m - Diameter Rx-apertur in meter - Infra-FE5.61.0-
309 area_rx = math.pi * (d_rx_o / 2) ** 2
310 # m^2 - Area of a fisheye lens based on its aperture
311

312 # alpha = (180/math.pi) * math.asin((const.R_E+h_ogs)/(const.R_E+h_orbit) *
math.sin((90+el)*math.pi/180))↪→

313 # gamma = 90 - el - alpha;
314 # leng = math.sqrt((const.R_E+h_ogs)**2 + (const.R_E+h_orbit_m)**2 - 2 *

(const.R_E+h_ogs)*(const.R_E+h_orbit_m)*math.cos(gamma*math.pi/180))↪→

315 if elevation_mode.get() == "Individual":
316 a = math
317 grad = el * math.pi / 180
318 else:
319 el = np.arange(5, 90)
320 a = np
321 grad = np.radians(el)
322

323 leng = a.sqrt(
324 (const.R_E + h_ogs) ** 2 * a.sin(grad) ** 2
325 + 2 * (h_orbit_m - h_ogs) * (const.R_E + h_ogs)
326 + (h_orbit_m - h_ogs) ** 2
327) - (const.R_E + h_ogs) * a.sin(grad)
328

329 a_fsl = 10 * a.log10((wl / (4 * math.pi * leng)) ** 2)
330 # dB - Freespace losses
331

332 a_atm = 10 * a.log10(zenith ** (1.0 / a.sin(math.pi * el / 180)))
333 # dB - Athmosperic Attenuation
334 # It is using degrees now
335

336 g_tx = 10 * math.log10((3.33 / teta_tx) ** 2)
337 # dB - Gain of thetransmissor antena
338

339 # weitere Berechnung - sollte selbes rauskommen: i_axial = (0.693/pi) * 10**(
(a_tx+p_tx) /10)/1000 / (leng*teta_tx/2)**2 # W/m^2↪→

340 i_axial = 0.001 * 10 ** (
341 (
342 p_tx
343 + a_tx
344 + g_tx
345 + a_fsl
346 + 10 * math.log10(4 * math.pi * 1 / (wl**2))

A-51

347)
348 / 10
349) # W/m^2 - Axial Intensity
350

351 g_rx = 10 * math.log10(4 * math.pi * area_rx / (wl**2))
352 # dB - Gain of the receiver antena
353 # g_rx = 0
354

355 p_rx = (
356 p_tx + a_tx + g_tx + a_fsl + a_bw + a_atm + a_sci + g_rx + a_rx
357) # dBm - RxPower on RFE with all losses
358

359 p_ogs_mean = p_rx - a_rx
360 # dBm - power onto OGS-aperture - no Rx-internal losses
361 p_ogs_mean_loss = p_rx
362 # dBm - power onto OGS-aperture - WITH Rx-internal losses
363 int_ogs_lin = (10 ** ((p_ogs_mean) / 10) / 1000) / area_rx
364 int_ogs_lin_loss = (10 ** ((p_ogs_mean_loss) / 10) / 1000) / area_rx
365 p_rx_lin = (10 ** (p_rx / 10)) / 1000 # W
366 p_rfe_lin = ppb * const.H * const.C * dr / wl # W
367

368 printer_lb(
369 el,
370 elevation_mode,
371 payload,
372 a_tx,
373 p_tx,
374 ppb,
375 teta_tx,
376 a_rx,
377 leng,
378 g_tx,
379 a_fsl,
380 i_axial,
381 area_rx,
382 a_atm,
383 a_bw,
384 g_rx,
385 p_rx,
386 int_ogs_lin,
387 int_ogs_lin_loss,
388 p_ogs_mean,
389 p_ogs_mean_loss,
390 p_rx_lin,
391 wl,
392 p_rfe_lin,
393 a_sci,
394)

A.2.8 printer.py

1 """This script manages all the printing functions needed to display the results
correctly."""↪→

2

3 # C:\Users\alda_ik\Documents\04_PROGRAMMING\02_FINAL_PROJECT\constants.py
4

5

6 def print_preamble() -> None:

A-52

7 """Printing fuction - prints program preamble."""
8 print("///")
9 print("/// IR Camera System for Satellite Observation ///")

10 print("///\n")
11

12

13 def print_preamble_settings() -> None:
14 """Printing fuction - prints settings preamble."""
15 print("//////////////////// Settings ////////////////////")
16

17

18 def print_start_stream() -> None:
19 """Printing fuction - prints the start of the stream."""
20 print()
21 print("/// Stream started. Press <q> to stop stream ///")
22

23

24 def print_end_stream() -> None:
25 """Printing fuction - prints the end of the stream."""
26 print("/////////////////// Stream ended ///////////////////")
27 print("///\n")
28

29

30 def print_usage() -> None:
31 """Printing fuction - prints the usage."""
32 print("Usage:")
33 print(" python asynchronous_grab_opencv.py [camera_id]")
34 print(" python asynchronous_grab_opencv.py [/h] [-h]")
35 print()
36 print("Parameters:")
37 print(
38 " camera_id ID of the camera to use (using first camera if not specified)"
39)
40 print()

53

	Abstract
	Abbreviations
	Introduction
	Literature Review
	Free Space Optical Communications
	Free Space Optics vs. Fiber Optics Communications

	Low Earth Orbit Satellites
	History of Low Earth Orbit Satellites
	Advantages and Disadvantages of Low Earth Orbit Satellites

	Optical Ground Stations
	Adaptive Optics
	Point-ahead Angle and References for Uplink Pre-correction
	Spatial Diversity for Turbulence Mitigation
	Examples of Optical Ground Stations

	Optical Low Earth Orbit Data DownLinks
	Historical overview of Free Space Optics in space communications
	Pointing, acquisition and tracking
	Low Earth Orbit-Direct to Earth Geometry
	Loss-Effects in Optical Space-Ground Links
	Link Budget

	Laser Transmitters for Optical Low Earth Orbit data DownLinks
	OSIRISv1 Onboard Flying Laptop
	OSIRIS4CubeSat Onboard Laser CubeSat
	OSIRISv3 Onboard Titania

	Materials and Methods
	System Requirements
	Component Selection
	Indium Gallium Arsenide Camera
	Wide Angle Lens
	Dome
	Enclosure

	Final Overview of the AllSky-camera System
	Controlling Software
	Vmbpy Application Programming Interface
	Image Processing
	Elevation and Azimuth
	Graphical User Interface

	Testing
	Calculation of the Link Budget for the Observed Satellites
	Evaluation of the Lenses
	Intensity Measurement with a Coarse Wavelength Division Multiplexing Transceiver
	Camera Calibration and Intensity Assessing with the Radio Tower

	Results & Discussion
	OSIRIS4CubeSat Onboard Laser CubeSat Campaign
	CubeCat Onboard NORSAT-TD Campaign

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	Main.py
	AllSkyCam4OLEODL Package
	__init__.py
	api.py
	constants.py
	gui.py
	image_processing.py
	input_checks.py
	link_budget.py
	printer.py

