Towards a machine learning retrieval of solarinduced fluorescence from DESIS data

Miguel Pato^{1,*}, Jim Buffat², Kevin Alonso³, Stefan Auer¹, Emiliano Carmona¹, Stefan Maier¹, Rupert Müller¹, Patrick Rademske², Uwe Rascher², Hanno Scharr⁴

13th EARSeL Workshop on Imaging Spectroscopy València, 17.04.2024

¹ German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ² Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany

³ RHEA Group c/o European Space Agency (ESA), Frascati, Italy

⁴ Forschungszentrum Jülich GmbH, Institute of Advanced Simulations, IAS-8: Data Analytics and Machine Learning, Jülich, Germany

*Miguel.FigueiredoVazPato@dlr.de

Motivation

What is solar-induced fluorescence (SIF)?

- During photosynthesis chlorophyll emits fluorescence light at red and near infrared wavelengths.
- This light output is an indicator of photosynthesis efficiency and plant stress.

Remote sensing of SIF is challenging:

- SIF is very much smaller than reflectance signal.
- Fraunhofer lines or absorption features typically used.
- Atmospheric effects need to be corrected for.
- Very strict requirements on detector: high spectral resolution, spectral stability, reasonable SNR, good radiometric accuracy.

Motivation

Current status of SIF measurements:

- High spectral resolution instruments (ground-based, airborne, space-based) provide either high spatial resolution <u>or</u> large spatial coverage.
- Moderate spectral resolution instruments fill in the gap.

Motivation

Current status of SIF measurements:

- High spectral resolution instruments (ground-based, airborne, space-based) provide either high spatial resolution <u>or</u> large spatial coverage.
- Moderate spectral resolution instruments fill in the gap.

DESIS advantages for SIF:

- Regional coverage around the globe possible.
- Different hours of day for same site.
- Large archive of data available.

Goal: Machine learning SIF retrieval for DESIS

DESIS specification				
Spectral range	420 – 1000 nm			
Number of spectral bands	235			
Spectral sampling distance	2.5 nm			
Spectral full width at half maximum	3.5 nm			
Spectral accuracy	0.5 nm			
Signal-to-noise ratio	>150			
Orbit type, altitude and inclination	ISS, 400 km, 51.64°			
Local time and revisit time	variable			
Ground sampling distance	30 m			
Product size	30 km x 30 km			

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

5

* For HyPlant results, see talk by Jim Buffat on Wed 08:30–10:00 (SIF session).

Simulation setup:

- At-sensor radiances around O₂-A band: 740–780 nm.
- Atmosphere+geometry: radiative transfer with MODTRAN6.
- Surface: reflectance and fluorescence parametric models.
- Sensor: based on expert DESIS and HyPlant knowledge.

Note: Other specialized simulation codes exist, but we opted to design a dedicated tool for our needs.

Simulated datasets:

- Key parameters and ranges set after sensitivity analysis (see backup slides).
- Hierarchical complexity of datasets.
- Sampling: uniform grid, random, Halton.
- Early comparison to real data.

Outcome: Highly realistic simulated DESIS data in O₂-A band

7

[Pato et al, IGARSS 2023]

Fast machine learning simulator:

- Aim: generalize the slow physics-based forward simulator with a fast ML-based model.
- Framework:
 - x = [atm, geo, sen, tar] $L_{sen} = F(x)$
 - learn forward simulator $\hat{F} \approx F$
- Input: DESIS/HyPlant simulated data.
- Output: trained ML forward simulator.

[Pato et al, IGARSS 2023]

Fast machine learning simulator:

- Simple ML models are adequate to emulate the full-fledged simulation in the case considered.
- Polynomials of 4th degree are both fast and accurate.
- Speed: 10⁷ faster than the simulation.
- Accuracy: 10 times below SIF signal.
- There is room for improvement.

Performance parameter	DESIS			
	OLS	P2	P4	NN
Test set MAE [mW/cm ² /sr/µm]	0.65	0.13	0.0041	0.017
Total training time	1.6 s	14 s	1.4 min	1.7 h
Prediction time per sample $[\mu s]$	0.04	0.9	11	31

Step 2: Train ML model

DESIS SIF ML model:

- Idea: self-supervised scheme initialised by supervised predictor.
- Inputs from simulation: simulated datasets, fast ML simulator (see red blocks).
- Differentiated treatment of parameters:
 - Pixel: reflectance, fluorescence
 - Patch: atmosphere
 - Across-track: sensor
- Encoder: multi-layer perceptrons with residual links.
- Loss: least squares, O₂A boost, physiological constraint.

Step 3: Apply to real data

Dataset:

- SW of Cologne, Germany in Jun 2020 and Jul 2023.
- Coincident DESIS/HyPlant overflights (Δt: minutes to 1 hour).
- HyPlant SIF estimates obtained with spectral fitting method (SFM) serve as validation for our DESIS SIF predictions.

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

Step 3: Apply to real data

Executive summary:

- Final SIF prediction is much improved over initial (supervised) prediction.
- Results are qualitatively plausible and correlate well with vegetation fields.
- Model is not learning a correlation between reflectance and fluorescence, but fluorescence.
- Spatial patterns of HyPlant SFM SIF reproduced.

DESIS SIF

15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 L2A 780 nm

0.5 1.0 1.5 2.0 2.5 3.0 3.5 DESIS SIF

Step 3: Apply to real data

Executive summary:

- DESIS SIF predictions match very well HyPlant SFM SIF estimates for a coincident acquisition.
- There appears to be a slight tendency for our model to overpredict SIF wrt HyPlant SFM SIF.
- Note: HyPlant SFM provides a completely independent check of our results (different method, detector and spatial resolution).

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

Step 3: Apply to real data

Executive summary:

- DESIS SIF predictions match very well HyPlant SFM SIF estimates for a coincident acquisition.
- There appears to be a slight tendency for our model to overpredict SIF wrt HyPlant SFM SIF.
- Note: HyPlant SFM provides a completely independent check of our results (different method, detector and spatial resolution).
- DESIS SIF larger than HyPlant SFM SIF later in the morning (as expected physiologically).
- Comparison with in-situ data is needed for actual validation.
- It is possible to retrieve SIF with DESIS.

Conclusion

- ML-based SIF retrieval for DESIS developed with the help of careful simulations.
- Results are very encouraging and suggest DESIS can be used for SIF retrieval.
- Proposed model is work in progress and needs proper validation with in-situ data.
- If validated, the proposed model can be used to:
 - derive SIF from large DESIS archive; and
 - help in the validation of upcoming FLEX mission.
- Our approach is generic and can be applied to other sensors.

HELMHOLTZAI ARTIFICIAL INTELLIGENCE COOPERATION UNIT

DESIS archive

[FLEX, earth.esa.int]

This work is part of the project "FluoMap" funded by the Helmholtz Initiative and Networking Fund, <u>Helmholtz AI</u>, Deutsches Zentrum für Luft- und Raumfahrt (DLR) and Forschungszentrum Jülich GmbH (FZJ). The authors gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercom- puter JURECA [1] at Forschungszentrum Jülich.

[1] Jülich Supercomputing Centre, JURECA: Data centric and booster modules implementing the modular supercomputing architecture at Jülich supercomputing centre, Journal of large-scale research facilities 7 (A182) (2021). <u>https://doi.org/10.17815/jlsrf-7-182</u>

BACKUP SLIDES

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

Sensitivity analysis

RT: LBL, 0.1 cm⁻¹ / 100, DISORT (8S) Atm: mid-lat summer, rural, 23 km vis Geo: nadir, 30 deg Sun, h=0 km

Sensitivity analysis: radiative transfer

Case	Model	Resolution	Multiple scattering	Run time
00	correlated-k (fast)	$1.0 \ {\rm cm^{-1}} \ / \ -$	Isaacs scaled (8S)	00:02
A1	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 100$	DISORT (8S)	09:13
B2	correlated-k (slow)	$0.1 \ {\rm cm^{-1}} \ / \ -$	DISORT (8S)	01:40
B3	correlated-k (fast)	$0.1 \ {\rm cm^{-1}} \ / \ -$	DISORT (8S)	00:59
B4	band model	$0.1 \ {\rm cm^{-1}} \ / \ -$	DISORT (8S)	00:09
C2	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 50$	DISORT (8S)	04:34
C3	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 20$	DISORT (8S)	01:55
C4*	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 10$	DISORT (8S)	00:57
C5	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 5$	DISORT (8S)	00:30
C6	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 3$	DISORT (8S)	00:20
C7	correlated-k (slow)	$1.0 \ {\rm cm^{-1}} \ / \ -$	DISORT (8S)	00:20
C8	correlated-k (slow)	$5.0 \ {\rm cm^{-1}} \ / \ -$	DISORT (8S)	00:05
D2	line-by-line	$0.1 \ {\rm cm^{-1}} \ / \ 100$	Isaacs scaled (8S)	failed
D3	correlated-k (slow)	$0.1 \ {\rm cm^{-1}}$ / -	Isaacs scaled (8S)	00:07
D4	correlated-k (fast)	$0.1 \ {\rm cm^{-1}}$ / -	Isaacs scaled (8S)	00:06
D5	line-by-line	$0.1 \ \mathrm{cm}^{-1} \ / \ 100$	None	00:05

Sensitivity analysis: atmosphere

Sensitivity analysis: geometry

Sensitivity analysis: uncertainties

