

Status of EnMAP processor and calibration activities

Miguel Pato^{1,*}, Kevin Alonso², Martin Bachmann³, Simon Baur⁴, Maximilian Brell⁵, Raquel de los Reyes¹, Birgit Gerasch¹, Martin Habermeyer³, Stefanie Holzwarth³, Maximilian Langheinrich¹, David Marshall Ingram¹, Mathias Schneider¹, Peter Schwind¹, Helge Witt¹, Emiliano Carmona¹

13th EARSeL Workshop on Imaging Spectroscopy València, 17.04.2024

¹ German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ² RHEA Group c/o European Space Agency (ESA), Frascati, Italy

Federal Ministry for Economic Affairs and Climate Action

- ³ German Aerospace Center (DLR), German Remote Sensing Data Center, Oberpfaffenhofen, Germany
- ⁴ OHB-System AG, Weßling, Germany
- ⁵ Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany

* Miguel. Figueiredo Vaz Pato@dlr.de

EnMAP mission: processing and calibration

https://www.enmap.org/

GS / processing and calibration:

- processor development
- in-flight calibration*
- data quality control
- instrument monitoring

* see next talk by David Marshall Ingram

EnMAP mission: requirements and fact sheet

https://www.enmap.org/

EnMAP specification	VNIR	SWIR
Spectral range	420 – 1000 nm	900 – 2445 nm
Number of spectral bands	91	133
Spectral sampling distance	6.5 nm	10 nm
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm
Spectral accuracy	0.5 nm	1 nm
Spectral smile	<0.2 pix	
Signal-to-noise ratio	>500 (at 495 nm)	>150 (at 2200 nm)
Radiometric accuracy	<5%	
Radiometric stability	<2.5%	
Geometric accuracy	1 pix (30 m) with GCPs, otherwise 100 m	
VNIR/SWIR co-registration	0.2 pix	
L2A AOT, WV, BOA (land, water)	see Storch et al 2023	
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96°	
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days	
Local time descending node	11:00 h ± 18 min	
Revisit time	4 days ($\pm 30^{\circ}$ off-nadir tilt) 21 days ($\pm 5^{\circ}$ off-nadir tilt)	
Ground sampling distance	30 m (at nadir; sea level)	
Swath width	30 km (2.63° across track)	
Swath length	1000 km / orbit; 5000) km / day
Product size	30 km x 30 km	

In-orbit calibration type	Mechanism	Frequency
Relative radiometric (lamp)	white spectralon	4x / month
Absolute radiometric (Sun)	Sun diffuser	1x / 2 months
Spectral	doped spectralon	2x / month
Linearity	focal plane LEDs	1x / month
Deep space	dark sky	1x / month
Dark frames	closed shutter	before/after imaging

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

EnMAP processing and calibration

- In-flight calibration to update calibration tables
- Complex processing chain under continuous improvement to generate EnMAP products:
 - L0: raw data (internal only)
 - L1B: top-of-atmosphere radiances
 - L1C: orthorectified top-of-atmosphere radiances
 - L2A: orthorectified bottom-of-atmosphere reflectances (L2A land and L2A water)
- User products annotated with quality control and instrument monitoring information
- L2A land CEOS CARD4L compliant (threshold)
- Official EnMAP products fullfil strict mission requirements that are validated extensively

Miguel Pato, German Aerospace Center (DLR), 17.04.2024

Tasking orders and catalog browsing: <u>https://planning.enmap.org/</u> Mission quarterly reports: <u>https://www.enmap.org/mission/</u> Product specification, ATBDs, FAQ: <u>https://www.enmap.org/data_access/</u>

EnMAP processing and calibration: operations

Status of routine operations (since launch on 01.04.2022 and as of 28.03.2024):

- 177 calibration datatakes tasked, acquired, processed and analysed
- 71 calibration tables generated
- 63008 Earth tiles / 9006 datatakes processed (re-processing of datatakes before Aug 2023 ongoing)
- 3 Moon observations tasked, acquired and processed (internal use only, committment to perform yearly observations)
- 23 processor versions with updates and improvements
- 5-6 internal reports every quarter and contribution to mission quarterly reports

EnMAP processing and calibration: operations

Challenges and improvements (after end commissioning in Nov 2022):

- VNIR degradation* solved identified during solved / in progress L1B striping commissioning L1C geolocation accuracy and VNIR/SWIR co-registration solved VNIR/SWIR mismatch in overlapping spectral range* in progress SWIR band configuration update solved identified during L2A snow spectra solved operations solved L2A water spectra Sun calibration frequency solved
- * see next talk by David Marshall Ingram

L1B striping

Challenge: Striping in L1B products below requirements but visible and important for users

Actions / results:

- In-depth analysis of striping and comparison of different destriping algorithms
- Calibration-based destriping not possible, so statistics-based algorithm (by GFZ) selected for implementation
- Across-track destriping implemented in processor version V01.02.00 (Mar 2023)
- SWIR along-track striping due to microvibrations under investigation

Conclusion: solved / in progress

Across-track striping

before

after

Along-track striping (SWIR, bands with high spectral slope)

L1C geolocation accuracy and VNIR/SWIR co-registration

Challenge: Geolocation errors below requirements but not optimal, co-registration errors above requirements

Actions / results:

- Detailed analysis led to fix of attitude processing (Aug 2022)
- Boresight calibration (Sep 2022) and geometric calibrations (Nov 2022, Feb 2023) performed
- Bug fixes in processor versions V01.02.00 (Mar 2023) and V01.03.01 (May 2023)
- Current geolocation errors: -0.05 pix (req: 1 pix)
- Current co-registration errors: -0.07 pix (req: 0.2 pix)
- Reprocessing of past L0 products ongoing, users should make sure that "archivedVersion" >= V01.03.01

Conclusion: solved

[Mission Quarterly Report #06] Development of Geolocation Accuracy 0.2 0.0 -0.1 -0.2 -0.3 -0.4 -05 Development of Mean Co-Registration Accuracy 0.8 -0.4-1.0 10/5/2022 10/23/2023 1/24/2024

Mean '

SWIR band configuration update

Challenge: Science Segment requested change of SWIR transmitted bands in view of geological applications

Actions / results:

- GS and OHB commanded SWIR band change successfully:
 - Before 05.07.2023: 1939, 1949 and 1958 nm
 - After 05.07.2023: 1450, 1767 and 1782 nm
- Change checked by quality control with the help of pixel defects in introduced SWIR bands
- Users should always rely on product metadata to find band wavelengths

Conclusion: solved

L2A snow spectra

Challenge: Inconsistencies in L2A snow spectra reported by users

Actions / results:

- High reflectance at blue wavelengths due to misclassification of snow as cirrus, fixed in processor version V01.03.03 (Jul 2023)
- Features at 590 nm and 647 nm due to coarse water vapour correction, fixed in processor version V01.04.01 (Dec 2023)
- Both fixes validated by quality control
- Users may simply re-order their products to benefit from improvements

Conclusion: solved

L2A water spectra

Challenge: Inconsistencies in L2A water spectra reported by users

Actions / results:

- Adjacency correction was unintentionally turned off in the MIP software since Nov 2022 and re-activated in processor version V01.04.00 (Sep 2023)
- Spectral noise below 500 nm due to sampling used in MIP for water look-up tables, fixed in processor version V01.04.02 (Mar 2024)
- Users may simply re-order their products to benefit from improvements

Conclusion: solved

11

[Mission Quarterly Report #04]

Sun calibration frequency

Challenge: Current frequency of Sun calibrations may limit mission lifetime

Actions / results:

- Impact analysis of reduction of Sun calibration frequency on radiometric coefficients
- Mission decision: starting in April 2024, Sun calibrations are performed once every 2 months (instead of monthly)
- Radiometric stability requirement (2.5%) is not violated

Conclusion: solved

[Mission Quarterly Report #06]

Life-Limited Item	01.10.2023 to 31.12.2023	until 31.12.2023	Estimated total usage
Fuel	+0.6 kg	5.1 kg	>15 years
Battery and Solar Cells	nominal	nominal	nominal
Shutter Usage (*)	+1,12%	8,73%	20 years (@ daily use)
FAD movements (*)	+2,00%	18,00%	8,6 years (@ monthly use)
Diffuser exposure ^(*) time based on sole measurement time	+3,33%	30,00%	5,3 years (@ monthly use)
Diffuser exposure ^(*) time based on real cyclogram duration	+3,96%	35,63%	4,5 years (@ monthly use)
On-Board Calibration Equipment Usage ^(*)	On-board calibration equipment:		
- OBCA SPC lamp 1	+1,00%	8,03%	19,3 years (@ biweekly use)
- OBCA RAD lamp 1/LED 1	+2,61%	14,35%	8 years (@ weekly use)
- FPA LEDs 1	+0,37%	4,12%	44,4 years (@ monthly use)

- Two years of processing and calibration activities have been successfully performed.
- The main issues affecting the quality of end-user products have been solved.
- Performance and capability enhancements have been implemented.
- There is still room for improving EnMAP products and user feedback is always welcome.
- Both VNIR and SWIR instruments are stable and expected to continue delivering highquality data for the rest of the mission (and beyond).

Acknowledgements

This research was supported by the DLR Space Agency with funds of the German Federal Ministry of Economic Affairs and Climate Action on the basis of a decision by the German Bundestag (50 EE 0850, 50 EE 1923 and 50 EE 2108).

Useful links:

- Tasking orders and catalog browsing: <u>https://planning.enmap.org/</u>
- Mission quarterly reports: https://www.enmap.org/mission/
- Product specification, ATBDs, FAQ: <u>https://www.enmap.org/data_access/</u>

https://www.enmap.org/

BACKUP SLIDES

EnMAP user feedback

- User feedback about EnMAP products is always welcome.
- Users may want to check the Frequently Asked Questions (FAQ):
 - Spectra noise pattern in VNIR/SWIR overlapping spectral range
 - EnMAP spectral response function
 - Radiance units of L1B products
 - Improvement of geometric accuracy and VNIR/SWIR co-registration
 - Different L2A processing modes
 - Definition of across-track and along-track off-nadir angles
 - Provision of view angles in LX metadata (ongoing)

EnMP			
Data Access Portal 12*	Home Data & Access Mission Data & Access		
SCREENCASTS How to register and assign to user roles L ²	The Data Access Portal 🗗 in general include two major entry points: the EnMAP Instrument Planning Portal and the EOWEB® GeoPortal.		
How to submit a data proposal 더	On the EnMAP Instrument Planning Portal user can register, submit proposals, and plan and req future orders. The EOWEB® GeoPortal contair the full EnMAP Data archive. Users can access EnMAP data using two different options:		
How to plan and request future observations			
How to search and download data from the archive 🖸	Users can request acquisitions through the EnMAP Instrument Planning Portal. The po		
	all scientific users responding to an Annoul		