
Executable Behavioral Models in Model-based
Systems Engineering using Capella

Philipp Chrszon1 , Anton Donner2 , Moritz Edelhäuser2,
Lucia Andrea Jara Garcia2, Robert Uebelacker2, Philipp M. Fischer1 , and

Andreas Gerndt1,3

1 Institute for Software Technology, German Aerospace Center (DLR),
Braunschweig, Germany,

philipp.chrszon@dlr.de, philipp.fischer@dlr.de, andreas.gerndt@dlr.de
2 Galileo Competence Center, German Aerospace Center (DLR),

Weßling/Oberpfaffenhofen, Germany,
anton.donner@dlr.de, moritz.edelhaeuser@dlr.de, lucia.jaragarcia@dlr.de,

robert.uebelacker@dlr.de
3 University of Bremen, Bremen, Germany

Abstract. Methodologies and tools for model-based systems engineering
often not only support the specification of a system’s structure, but also
its behavior. Behavioral diagrams such as state machines and sequence di-
agrams allow the description of mode-dependent behavior and interaction
scenarios, respectively. The key characteristic of these behavioral dia-
grams is their inherent dynamic nature which allows them to be executed.
Having tool support for execution can promote a better understanding of
the system, allows consistency checking, and even enables the application
of verification techniques.
In this paper, we present an add-on for the open-source MBSE tool
Capella supporting the execution of state machines, either manually
or driven by scenarios. The add-on is targeted towards facilitating the
integration of approaches for checking the consistency and correctness of
the modeled system.

Keywords: Model-based systems engineering · Behavioral modeling ·
Simulation

1 Introduction

The validation of the correct and expected behavior of a system before its
deployment is of utmost importance, especially when developing a system for
space applications. An unexpected and unintended behavior of the system cannot
be corrected by on-site maintenance, which in turn may lead to partial or complete
mission failure.

In this paper, we present an approach that allows incorporating the validation
of the system’s behavior in the model-based systems engineering (MBSE) process
during the design phase. To this end, we have implemented a simulation add-on
for the MBSE tool Capella.

https://orcid.org/0000-0002-8785-0272
https://orcid.org/0000-0002-4458-7929
https://orcid.org/0000-0003-2918-5195
https://orcid.org/0000-0002-0409-8573


2 P. Chrszon et al.

Integrating the validation of behavior into the design process has two main
advantages. First, problems in the spacecraft architecture can be identified very
early in the design process. Then, corrections are possible without massive cost
and schedule impact, as would be the case if the problems were identified later
during testing of real hardware and software. Second, it allows for a more holistic
analysis of the system. Model-checking approaches can be applied to cover more
than just specific use cases like in traditional test campaigns.

Among the many advantages obtained by modeling state machines as part of
the MBSE approach, the following stand out for space applications [4].
– Identification and recovery of hazardous states. Executable state machines

help identify undesirable states or deadlocks/livelocks during system design.
The occurrence of these deadlocks can be reproduced and understood by
simulating the state machines.

– Validation of requirements and operational procedures. Requirements and
operational procedures can be modeled in most MBSE tools. Both can be
traced to a certain state-transition sequence that can be validated within the
MBSE environment.

– Fault detection and isolation mechanisms. Recovery measures can be validated
directly in the model when traced to an executable state machine.

Checking the behavior model of a spacecraft not only allows unhealthy or
unexpected state combinations to be identified. It also enables the validation of
specific command sequences required to successfully operate the spacecraft by
issuing the correct command sequence to activate the desired function.

In contrast to (semi-)static mass budgets, both data rates (on-board and
space-to-ground) and power consumption result from dynamic processes. Gener-
ally, commands and external events trigger different payload operational states.
Especially in early design phases, it is of key importance to dimension data
links and power systems properly—or to identify command sequences leading to
overload situations.

Although there are existing approaches integrated into MBSE tools that
combine modeling with simulation of system behavior, none of them satisfy our
requirements completely. Specifically, the tool itself must be open to unrestricted
modification, since a primary concern is its usage in applied research. Additionally,
it should be able to simulate operational procedures, allow the identification
of deadlocks/livelocks, and provide the possibility to interface with external
verification tools such as model checkers.

2 Related Work

This section gives an overview of the related work on behavioral models and
simulation as well as their use and support in MBSE tools, particularly in Capella.

2.1 State Machines

There are several standards for graphical modeling notations which encompass
behavioral models, including state-machine diagrams and sequence diagrams,



Executable Behavioral Models in MBSE using Capella 3

also called message sequence charts. The Specification and Description Language
(SDL) is designed for distributed systems in general and telecommunications in
particular. While the Unified Modeling Language (UML) is mainly applied in
software design, the Systems Modeling Language (SysML), originally derived
from UML, is targeted towards systems engineering activities.

Basic state machines consist of the core elements state and transition. A state
represents a situation in which the system is, that could be stable or linked to
some quasi-stationary behavior or action. A transition represents the change of
the state from one to another, like from the off-state of a system to the on-state.
Transitions can be triggered by conditions or events.

2.2 Behavior Modeling in MBSE Tools

Simulation, a feature provided by several MBSE tools, may be employed for an
early verification of the system behavior during modeling. In general, the actual
simulation approach depends on the chosen tool. In some tools, simulation is fully
integrated, while others offer import and export functionalities to use the model
data within specialized simulation tools. Without claiming to be exhaustive, the
following is an overview of common tools:

– For Cameo Systems Modeler, the Cameo simulation toolkit is available.
Besides this integrated solution, Cameo also provides export capabilities
targeting simulation tools like Matlab, Simulink, and Modelica.

– Enterprise Architect offers the connection to different simulation toolkits
including Matlab, Simulink, and OpenModelica.

– OpenModelica includes the modeling of clocked state machines, immedi-
ate and delayed transitions, conditional data flows, and hierarchical state
machines, which can be simulated by using OMSimulator.

– For Virtual Satellite, an approach that integrates simulation for verifying the
satisfaction of mission requirements has been presented [7]. Furthermore, state
machines modeled in Virtual Satellite can be analyzed using model checking
to detect, e.g., deadlocks and livelocks. For this, a prototype integration of
multiple model-checking tools has been implemented [3].

– Capella does not implement an out-of-the-box integrated simulation envi-
ronment, but there are 3rd-party add-ons available. The add-on Dynamic
Execution and System Simulation (DESS) by PGM is a tool-integrated solu-
tion, whereas other add-ons allow the export of model data into simulation
software like Ansys ModelCenter. Siemens also offers a Capella integration
within the Siemens product lifecycle management (PLM) solution Teamcen-
ter, connecting the model to several other Siemens design and simulation
tools.

Capella was chosen as the basis for this work because it is an open-source
tool and provides all the necessary interfaces for data exchange as well as custom
extensions.



4 P. Chrszon et al.

2.3 Behavior Modeling in Capella

In Capella [6] and the respective Arcadia method [8], behavior of a system can be
modeled and described using “mode and state machine” diagrams. These diagrams
are inspired by UML/SysML diagrams, to which they are largely equivalent.
Capella distinguishes between a mode of a system, which is an expected behavior
of a system (e.g., triggered by an operator), and a state of a system, which
describes the behavior of the system imposed through external influences such as
environmental conditions. States and modes cannot be mixed within the same
machine. A further difference in Capella is the direct coupling with the functional
system model. Functions, which may be active in a mode of a mode machine, are
part of the functional model and are selected from there. It is also possible to
define which functions are available in a mode but not necessarily active when the
mode is entered. Similar to modes, also transitions can be linked to the functional
model. In particular, the trigger that initiates the firing of a transition can be
a functional exchange, i.e., a connection or data flow between functions, or an
exchange item. Additionally, transitions may be triggered by timers or change
events like in SysML.

Scenario diagrams describe the sequence of functions for a set of components
carrying out a specific capability of the system. Here, modes of mode machines
can be referenced to specify conditions under which certain functionalities are
available.

3 State Machine Simulation Add-on

Fig. 1. A state machine during execution of a scenario. The selected configuration and
transition are highlighted.



Executable Behavioral Models in MBSE using Capella 5

This section gives an overview of our state machine simulation add-on and its
capabilities. The add-on provides the State Machine Simulator view, as shown in
the bottom half of Fig. 1. During an execution, the left table shows the execution
trace, i.e., the sequence of configurations, where each configuration comprises
one or more states. The right table lists the transitions that are enabled in the
currently selected configuration. The view is synchronized with the diagram
editors in which the selected configuration and transition are highlighted in blue
and red, respectively.

The underlying execution engine of the simulator is based on the formal
semantics for UML state machines presented in [5]. Table 1 provides an overview
of the currently implemented syntactic constructs. Both orthogonal regions within
states as well as fork and join pseudostates are supported, allowing for modeling
and executing concurrent behavior. Furthermore, support for sub-state-machines,
i.e., nested states, is fully implemented, enabling a hierarchical modeling of
complex systems.

The simulator supports both a manual, user-guided exploration and an
automatic exploration of the configuration space. In the manual mode, the next
configuration is chosen by selecting and executing one of the enabled transitions
using the right table in the simulator view. This mode is especially useful during
the initial creation of the state machine, as it allows a quick identification of
modeling issues as well as missing transitions or states. Moreover, a manual
exploration may be useful for explaining and illustrating the system’s behavior
in discussions with engineers or stakeholders.

Table 1. Syntactic constructs supported by the simulator compared to the underlying
semantics [5] (classification adapted from [1], RTC: run-to-completion).

states transitions
ortho sub fork/join choice history internal inter-level completion RTC variables time

semantics [5] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖
simulator ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖

In the automatic mode, a selected scenario, e.g., a functional exchange scenario,
is used to drive the execution by replaying the scenario’s messages as triggers on
the state machine. Consider again the screenshot in Fig. 1. Here, the exchange
scenario on the right has been executed on the displayed state machine, creating
the trace on the bottom left. The execution trace not only contains the final
state reached in the scenario (Write Mode), but also all intermediate states that
have been visited. Within a scenario execution, intermediate steps are allowed
and are automatically taken as long as the execution remains deterministic. For
instance, after the Error Occurred trigger has been received, the Report mode and
Error Mode are visited before returning to the Processing Mode, where the next
trigger (Write Processed Data) is executed. In case a scenario cannot be executed
until the end, either because of a missing fitting transition or a nondeterministic
choice, the execution stops and the simulator switches to the manual mode. Then,



6 P. Chrszon et al.

the partial execution trace and current configuration may help to either amend
the state machine or the scenario. Since scenarios can be generated automatically
from functional chains, scenario execution allows checking whether the state
machine actually implements a functional chain from start to end. Additionally, if
scenarios or state machines are linked with requirements, the add-on also enables
checking the satisfaction of these behavior-related requirements.

The add-on, including the drop-in for installation in Capella, and its source
code are provided in the accompanying artifact [2].

4 Conclusion and Outlook

We have presented an add-on for the MBSE tool Capella that allows for the
step-wise execution of state machines, both manually and automatically. It
supports the execution of exchange scenarios and functional chains, enabling a
straightforward consistency checking.

The presented work can be extended in several directions. First, the simulator
itself might be extended to support also history and choice pseudostates. Addi-
tionally, support for more complex scenarios involving, e.g., loop and alternative
fragments, might be integrated. Second, the simulation of state machines may
be complemented by formal verification, in particular model checking, since
simulation alone cannot cover all possible scenarios and behaviors. For this, we
plan to integrate state-of-the-art model-checking tools, similar to the approach
presented in [3]. In case of violated requirements, the counterexample returned by
the model checker could then be automatically imported into the state-machine
simulator as an execution trace, aiding the comprehension of the faulty behavior.

References

1. André, E., Liu, S., Liu, Y., Choppy, C., Sun, J., Dong, J.S.: Formalizing UML state
machines for automated verification – a survey. ACM Comput. Surv. 55(13s) (jul
2023). https://doi.org/10.1145/3579821

2. Chrszon, P.: State machine simulator add-on (Feb 2024). https://doi.org/10.5281/
zenodo.10657885

3. Chrszon, P., Maurer, P., Saleip, G., Müller, S., Fischer, P.M., Gerndt, A., Felderer,
M.: Applicability of model checking for verifying spacecraft operational designs. In:
26th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2023, Västerås, Sweden, October 1-6, 2023. pp. 206–216.
IEEE (2023). https://doi.org/10.1109/MODELS58315.2023.00011

4. Harris, J.A., Patterson-Hine, A.: State machine modeling of the space launch system
solid rocket boosters. NASA Aeronautics Scholarship Program — Internship Fi-
nal Report (2013), https://ntrs.nasa.gov/citations/20160000328, NASA Ames
Research Center

5. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal
semantics for complete UML state machines with communications. In: Johnsen,
E.B., Petre, L. (eds.) Integrated Formal Methods, 10th International Conference,

https://doi.org/10.1145/3579821
https://doi.org/10.1145/3579821
https://doi.org/10.5281/zenodo.10657885
https://doi.org/10.5281/zenodo.10657885
https://doi.org/10.5281/zenodo.10657885
https://doi.org/10.5281/zenodo.10657885
https://doi.org/10.1109/MODELS58315.2023.00011
https://doi.org/10.1109/MODELS58315.2023.00011
https://ntrs.nasa.gov/citations/20160000328


Executable Behavioral Models in MBSE using Capella 7

IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 7940, pp. 331–346. Springer (2013). https://doi.org/10.1007/
978-3-642-38613-8_23

6. Roques, P.: Systems Architecture Modeling with the Arcadia Method - A Practical
Guide to Capella. iSTE (2018), ISBN: 978-1-78548-168-0

7. Schaus, V., Fischer, P.M., Lüdtke, D., Tiede, M., Gerndt, A.: A Continuous Ver-
ification Process in Concurrent Engineering (2013). https://doi.org/10.2514/6.
2013-5429

8. Voirin, J.L.: Model-based System and Architecture Engineering with the Arcadia
Method. Elsevier (2018), ISBN: 978-1-78548-169-7

https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.2514/6.2013-5429
https://doi.org/10.2514/6.2013-5429
https://doi.org/10.2514/6.2013-5429
https://doi.org/10.2514/6.2013-5429

	Executable Behavioral Models in Model-based Systems Engineering using Capella

