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Abstract—Quantum-cascade lasers (QCLs) are critical 

components for high-resolution terahertz spectroscopy, especially 
in heterodyne spectrometers, where they serve as local oscillators. 
For this purpose, QCLs with stable frequencies and narrow 
linewidths are essential since their spectral properties limit the 
spectral resolution. We demonstrate the phase-locking of QCLs 
around 3.5 THz and 4.7 THz in mechanical cryocoolers. These 
frequencies are particularly interesting for atmospheric research 
because they correspond to the hydroxyl radical and the neutral 
oxygen atom. The phase-locked loop is based on frequency mixing 
of the QCLs at 3.5 and 4.7 THz with the sixth and eighth harmonic, 
respectively, generated by an amplifier-multiplier chain operating 
around 600 GHz, with a Schottky diode harmonic mixer. At both 
frequencies we achieved a linewidth of the intermediate frequency 
signal of less than 1 Hz. This is about seven orders of magnitude 
less than the linewidth of the free running QCL. 
 

Index Terms—frequency stabilization, harmonic mixers, 
heterodyne receivers, phase-locked loops, quantum-cascade 
lasers, Schottky diodes, terahertz  

I. INTRODUCTION 
ERAHERTZ (THZ) quantum-cascade lasers (QCLs) are 
essential for high-resolution spectroscopy [1]. One 

application is in absorption spectroscopy, where the QCL is 
used as a radiation source, and the frequency-dependent 
absorption of its emission by, e.g., molecular transitions is 
detected. The other application is in remote sensing as a local 
oscillator (LO) in a heterodyne spectrometer for detection of 
atoms and molecules in astronomical objects or planetary 
atmospheres [2-8]. In both cases, the spectral resolution is 
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limited by the emission linewidth of the QCL. Without any 
special measures, a free-running THz QCL typically has as a 
linewidth in the order of several MHz within a few seconds of 
integration time due to fluctuations of the short-term linewidth. 
This may increase further if the measurement time becomes 
longer. Fluctuations of the operating temperature, QCL driving 
current, and optical feedback are the foremost reasons for 
frequency instabilities. In contrast to the effective linewidth, an 
intrinsic linewidth of 90 Hz has been determined from the 
frequency noise power spectral density of a 2.5-THz QCL [9]. 

To realize a very narrow emission frequency, several 
approaches have been developed for the frequency stabilization 
of a QCL. A straightforward way is passive stabilization based 
on thermal and electrical bias control. This scheme relies on the 
fact that the QCL frequency changes with the temperature of 
the active medium (typically in the order of a few 100 MHz/K) 
and with the driving current of the QCL (typically a few 
MHz/mA). Keeping the temperature and current stable at the 
level of 1 mK and 1 µA yields a frequency-stable operation of 
the QCL. This scheme has been implemented in the heterodyne 
spectrometers GREAT and upGREAT on board of SOFIA 
[10, 11]. 

Active stabilization schemes are based on frequency 
references. One approach utilizes a molecular transition 
frequency as a reference. This approach was realized by locking 
the QCL frequency to an absorption line of methanol at 
2.55 THz [12] and at 3.5 THz [13], respectively. The linewidth 
can be further improved by locking to the Lamb-dip of a 
molecular transition [14, 15]. With this approach, frequency 
stability in the order of a few hundred kHz becomes feasible. 
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However, the gas cell is a rather challenging device for several 
applications, in particular for space-borne instruments. 
Furthermore, this stabilization scheme is limited to frequencies 
of molecular absorption lines and does not allow for continuous 
frequency tunability. 

A metrology-grade THz frequency comb can be used as a 
stable reference for the QCL frequency. A frequency accuracy 
of about 1 kHz has been demonstrated for a 3-THz QCL [16]. 
This is limited by the accuracy of the frequency comb. The 
measured linewidth of the QCL is about 10 Hz. However, 
frequency combs for THz frequencies are still rather large 
devices, which limits applicability and implementation outside 
a laboratory environment.  

The most promising approach to frequency stabilization of a 
QCL is using a microwave oscillator as a reference. The output 
signal of the oscillator is amplified and multiplied to obtain a 
frequency close to the QCL's frequency. Since microwave 
oscillators are available with linewidths below 1 Hz and 
frequency multiplication increases both, the linewidth and the 
phase noise only by 20 log(n) (n: multiplication factor), this 
approach provides a highly stable and precise reference 
frequency. A further advantage is, that the frequency can be 
tuned to arbitrary values simply by changing the reference 
frequency. Frequency and phase-locking have been 
demonstrated using a Schottky diode mixer [17-20], a 
superlattice mixer [21, 22], or a hot electron bolometer [23]. So 
far, the highest frequency at which phase locking has been 
achieved with room-temperature mixers is 3.4 THz as realized 
with a Schottky-diode mixer [20] and with a superlattice mixer 
[22].  

At two higher frequencies, namely at 3.5 THz and 4.7 THz, 
the phase-locking of QCLs is particularly important. At 
3.5 THz, the hydroxyl radical (OH) has a rotational transition, 
and at 4.7 THz, atomic oxygen (O) has its fine-structure 
ground-state transition. Both species are highly relevant in 
atmospheric science: OH plays a vital role in atmospheric 
chemistry as it is very reactive [24]. O is crucial for the energy 
balance of the mesosphere and lower thermosphere because it 
contributes to radiative cooling and is involved in exothermic 
chemical reactions [4, 25, 26]. In this paper, we report on phase-
locking of 3.5- and 4.7-THz QCLs using a room-temperature 
Schottky diode harmonic mixer.  

II. QUANTUM-CASCADE LASERS 
The phase locking is realized for tall-barrier 

GaAs/AlxGa1-xAs QCLs that are based on a hybrid design 
combining a bound-to-continuum lasing transition with a 
transition resonant to the energy of the longitudinal optical 
phonon for efficient population of the upper laser level. Tallest 
barriers are achieved by employing nominally binary AlAs 
barriers with an effective Al content of up to x=0.6 [27]. The 
tall barriers lead to reduced electrical pump powers and 
consequently minimizes the heat load on the cryocooler 
[28, 29]. These powerful QCLs allow for the implementation of 
single-plasmon waveguides and straightforward Fabry-Pérot 
resonators, which is advantageous for many practical 
applications. Single-mode emission is often achieved by using 

short cavities without any grating structures. Based on this 
approach, operation in miniaturized cryocoolers was 
demonstrated [30]. 

The QCLs for 3.5 THz and 4.7 THz were manufactured at 
Paul-Drude-Institut für Festkörperelektronik (PDI). In total, 
four QCLs (two around 3.5 THz and two around 4.7 THz) were 
investigated (Table 1). The active regions of the QCLs are 
based on GaAs/AlAs (QCLs 1 – 3) or GaAs/Al0.25Ga0.75As 
heterostructures (QCL 4). The QCLs were grown using 
molecular beam epitaxy on semi-insulating GaAs wafers. The 
active regions with a doping concentration of up to 
2 × 1017 cm−3 consist of 78 and 88 periods for 3.4/3.5 THz and 
4.7/4.8 THz, respectively, with eight quantum wells in each 
period and a total thickness of about 11 µm for both 
frequencies. 
 

TABLE 1 
 OVERVIEW OF THE QCLS USED IN THE EXPERIMENTS.  

  
QCL Frequency 

(THz) Cryocooler Resonator Operating 
Point 

Frequency Tuning 
at Operating Point 

1 3.44 AIM 120 × 826 µm² 
Fabry-Pérot 

389 mA / 
54 K 

~ -24 MHz/mA 
~-114 MHz/K 

2 3.46 Sumitomo 120 × 795 µm² 
Fabry-Pérot 

350 mA / 
20 K 

~-60 MHz/mA 
~-17 MHz/K 

3 4.81 AIM 120 × 1019 µm² 
Fabry-Pérot 

317 mA / 
54 K 

~-34 MHz/mA 
~-201 MHz/K 

4 4.76 Sumitomo 80 × 873 µm² 
DFB grating 

550 mA / 
20 K 

~-46 MHz/mA 
~-55 MHz/K 

 
In the case of QCLs 1 – 3 (3.4, 3.5, and 4.8 THz), short Fabry-

Pérot cavities ensure single-mode emission. QCL 4 (4.7 THz) 
has first-order lateral distributed feedback (DFB) gratings to 
achieve single-mode operation. The details of the investigated 
QCLs are given in Table 1. The operating points are the current 
and temperature settings used for the phase locking. 

The QCLs are soldered to a copper submount, which in turn 
is screwed to the cold finger of a mechanical cryocooler. Two 
cryocoolers were used: Either a Gifford-McMahon cooler from 
Sumitomo (SRDK-408D) with a cooling capacity of 1 W at 
4.2 K, or an AIM SL400 Stirling cooler with a cooling capacity 
of 1 W at 40 K. The latter one is very compact with a volume 
of about 300 × 120 × 140 mm3 and a mass of 3.9 kg, and 
requires little electrical input power (less than 130 W) [30]. The 
temperature of the cold fingers of both coolers is measured with 
resistive temperature sensors (Cernox 1050-AA-1.5L, 
Lakeshore) and read out by a temperature control unit 
(CryoCon Model 24, Cryogenic Control Systems Inc.). For high 
stability of the QCL emission frequency and output power, the 
heat sink temperature is stabilized by a heater and a 
proportional-integral-differential (PID) loop to a value of 
±1 mK. Both, temperature sensor and heater are mounted 
closely to the QCL. For laser operation, the QCL is driven by a 
low-noise dc current source which is combined with the phase-
locked loop (PLL) electronics (ppqSense QubeCL15-P or 
Toptica mFalc 110). 

A. Output power and frequency 
For initial frequency characterization, the QCL emission 

frequencies were measured by a Fourier-transform 
spectrometer (FTS). As an example, the spectrum of QCL 4 is 
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shown in Fig. 1(a), revealing single mode emission. Note that 
the linewidth is determined by the spectral resolution of the 
FTS. High-resolution molecular absorption spectroscopy was 
employed for a more detailed frequency characterization of the 
QCLs. For this measurement, all QCLs were mounted in the 
Sumitomo cryocooler. A polymethylpentene (TPX) lens in 
front of the cryocooler collimates the beam, and an absorption 
cell is placed between the lens and a calibrated Ge:Ga 
photoconductive detector. The absorption cell is filled with 
methanol (CH3OH) at a pressure of 100 Pa. To obtain spectral 
information, the QCL current and temperature are varied in 
continuous-wave operation, which results in a shift of the 
emission frequency. As an example, the power map as a 
function of current and temperature of the 4.7-THz QCL in the 
Sumitomo cooler (QCL 4) is displayed in Fig. 1(b). The map 
was referenced to an absolute power measurement with a 
Thomas Keating (TK) power meter in front of the vacuum 
window of the cryocooler. The currents from 400 mA to 
600 mA correspond to current densities of 573 A/cm² to 
859 A/cm². 

The faint narrow lines in the map are due to absorption by 
the CH3OH gas. This absorption spectrum is exploited to 
determine the absolute emission frequency of the QCL by 
comparing the measured fingerprint-like absorption spectrum 
with the calculated transmission spectrum using the Jet 
Propulsion Laboratory (JPL) database [31]. A cross-cut through 
the current-temperature map of the 4.7-THz QCL at a 
temperature of 20 K and between 520 mA and 600 mA with the 
assigned frequency scale is shown in Fig. 1(c). The grey lines 
indicate JPL database entries with line intensities larger than 
5 × 10-23 cm-1/(molecule/cm2). The QCL frequency depends on 
the driving current with a negative tuning coefficient of a few 
10 MHz/mA. Generally, the higher the operating temperature, 
the smaller is the tuning with current. The frequency tuning 
with temperature is also negative but with a larger variation 
between 6 MHz/K and 110 MHz/K. The minor deviations 
between the measured and the calculated frequencies indicate 
that the frequency tuning is not entirely linear with increasing 
driving current. For very high driving currents or very low 
temperatures, forming electric field domains in the active 
region leads to a significant deviation from a linear tuning 
behavior. Frequency calibration and the determination of the 
tuning coefficients were carried out the same way for all QCLs. 
The tuning coefficients at the operating points of the PLL are 
given in Table 1. 

B. Beam profiles 
The inset of Fig. 1(b) shows the beam profile of the 4.7-THz 

QCL in the Sumitomo cooler measured behind a TPX lens with 
a focal length of 75 mm (lens diameter: 46.4 mm) at the same 
distance where the aperture of the harmonic-mixer horn antenna 
is placed for the PLL (see section III). These profiles have been 
measured with a microbolometer camera for all QCLs at the 
same position. They are almost Gaussian-shaped, except for 
some small side lobes with an intensity of less than 3% relative 
to the maximum beam intensity. The side lobes are caused by 
diffraction at the TPX lens. The square indicates the aperture 
size of the diagonal horn antenna of the harmonic mixer. Both, 

QCL beam waist (230 µm) and aperture (384 µm, which 
corresponds to a beam waist of 165 µm) fit very well and we 
estimate a coupling efficiency of 75% according to Gaussian 
beam coupling theory [32]. The estimation is based on the 
optimum coupling efficiency for a diagonal horn (84%) and the 
mismatch between the two beams. The beam profiles of the 
other QCLs are similar, with somewhat lower side lobes. The 
estimated coupling efficiencies vary between 73% and 84% 
(see Table 2). 

a) 

 

b)  

 
 
c)  

 

Fig. 1. (a) Overview spectrum measured with a Fourier-
transform spectrometer and (b) current-temperature map of the 
4.7-THz QCL in the Sumitomo cooler (QCL 4). From 
absorption lines of gaseous methanol (cf. narrow lines in the 
map), tuning coefficients of the QCL can be derived. The inset 
shows the beam profile at the focal point. (c) Cross-cut of the 
above map at 20 K with distinct absorption lines and the 
resulting frequency assignment (cf. lower scale).  
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III. PHASE-LOCKED LOOP 
A scheme of the QCL stabilization with PLL is shown in Fig. 

2. It is based on a Schottky diode harmonic mixer and a 
multiplier source, which pumps the harmonic mixer. The output 
frequency is tunable from about 570 GHz to 610 GHz with 
more than 3 mW of output power. The Schottky diode harmonic 
mixer generates the sixth and eighth harmonic for phase-
locking of the 3.4-/3.5-THz QCLs and the 4.7-/4.8-THz QCLs, 
respectively. In the following sections, we will describe the 
main components of the PLL. 

A. Multiplier source 
The reference signal originates from a frequency synthesizer 
(Rohde & Schwarz SMA 100B) with very low phase noise 
(~ -40 dBc/Hz @ 1 Hz offset). It is fed into a Millitech ×8 E-
band active multiplier chain (AMC-12-RNHB1). This is 
followed by a high-power isolator (HMI12-387-69.5-5.0 from 
HMI), cascaded multiplier stages, which consist of two 
internally power-combined doubler modules from E-band to 
~300 GHz, and a single-monolithic-microwave-integrated-
circuit (MMIC) varactor doubler to ~600 GHz. The multiplier 
MMICs have about 20% relative bandwidth. The first stage 
doubler was designed for optimum performance at 150-250 
mW input power level with a typical conversion efficiency of 
30-40%. The peak efficiency of the complete ×2 ×2 ×2 system 
is about 2%, with about 40%, 30% and 20% peak efficiencies 
for the respective doubler stages starting from the low-
frequency side. The overall performance is mainly limited in 
frequency by the available output power from the AMC 
module. The output power at 600 GHz can be controlled by 
either varying the multiplier bias voltages or changing the 
active multiplier's input drive power.  

B. Harmonic mixer  
The Schottky diode harmonic mixer is designed to operate at 

the sixth harmonic of a ~600 GHz input signal [33]. It is based 
on a single-ended, planar Schottky diode integrated into an 
E-plane split mixer block. For coupling the radio frequency 
(RF) signal from the QCL into the harmonic mixer, a diagonal 
horn antenna with an aperture of 384 µm × 384 µm  is machined 
into the mixer block [34]. The aperture dimensions of the 
diagonal horn correspond to a theoretical Gaussian beam waist 
of 165 µm [32]. A rectangular WM-64 waveguide guides the 
RF signal to the harmonic mixer. A WM-380 waveguide is 
machined into the block for the LO signal.  

The measured conversion loss is about 59 dB at 3.5 THz; the 
mixer design and characterization details are described in [26]. 
While optimized initially for generation of the 6th harmonic at 
3.4-3.5 THz, the same mixer also performs well with a 
conversion loss of 76 dB at the eighth harmonic, between 4.7-
4.8 THz. This agrees well with ideal diode harmonic mixer 
simulations [35], showing about 10 dB difference between ×8 
and ×6 harmonic operation. Therefore, the same harmonic 
mixer was used for the 3.5-THz PLL and the 4.7-THz PLL. 

C. Intermediate frequency and phase-lock electronics 
The intermediate-frequency (IF) signal is amplified by a 

36-dB gain amplifier (Miteq AFS4 00100600-1310P-4), 
followed by another amplifier with 30 dB gain (Mini Circuits 
ZFL 500 LN+). The noise temperatures of the amplifiers are 
110 K and 290 K, respectively. Two 3-dB attenuators reduce 
standing waves between the components. A 3-dB power splitter 
feeds half of the amplified IF signal into a spectrum analyzer 
while the other half is fed into the PLL electronics. For the 
QCLs 1 – 3, this is a commercially available device 
(QubeCL15-P) consisting mainly of a frequency divider, a 
phase-frequency detector (PFD), and a loop filter. It accepts an 
IF input up to 300 MHz with a lock bandwidth of 800 kHz. In 
the case of QCL 4, PLL electronics from Toptica (model mFalc 
110) were used. The spectrum analyzer, the frequency 
synthesizer, and the PLL loop are synchronized to the same 
10 MHz reference oscillator.  

 

 
 

Fig. 2. Scheme of the PLL for the QCLs. The Schottky diode 
harmonic mixer generates the 6th harmonic (at 3.4/3.5 THz) or 
the 8th harmonic (4.7/4.8 THz) of the LO frequency and the IF 
signal of the harmonics and the QCL frequency. The PLL 
electronic uses the IF signal for locking the QCL frequency. 

IV. PHASE-LOCKING RESULTS 

A. Phase-locking at 3.4 and 3.5 THz 
Phase-locking has been achieved for all QCLs listed in 

Table 1. At 3.4/3.5 THz, the free running linewidths are 
approximately 15 MHz for both QCLs as shown in Figs. 3(a) 
and 3(d). The spectra were acquired with a real-time signal 
analyzer (Keysight MXA N9020B) showing a density 
representing the number of times, a frequency and amplitude is 
hit during the capture interval.  The linewidths of the free-
running QCLs are determined by temperature fluctuations of 
the cryocoolers, mechanical vibrations, and optical feedback. In 
both cases, the linewidth narrows significantly when the PLL is 
switched on [cf. Figs. 3(b) and 3(e)]. In Figs. 3(c) and 3(f), the 
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transition from an unlocked to a locked signal is shown. In the 
case of the AIM cryocooler, the frequency of the unlocked 
signal [cf. Fig. 3(c), top] varies by about ±7.5 MHz with a 
period of 25 ms due to cooler vibrations. The acquisition time 
per spectrum of the waterfall plot was 0.1 ms. When the PLL is 
switched on, a narrow line with side lobes at multiples of 
2 MHz appears [cf. Fig. 3(c), bottom]. The peak of the locked 
line is 25 dB above the peak of the first side lobe. The offset 
frequency of the side lobes corresponds to the bandwidth of the 
PLL. The situation for the QCL in the Sumitomo cryocooler is 
similar: Without phase-locking, a large frequency swing of 
about 80 MHz with a period of 1.2 s appears [cf. Fig. 3(f), 
bottom], which narrows when the PLL is switched on [cf. Fig. 
3(f), top]. The QCL powers at the operating points of the PLLs 
have been measured with a TK power meter placed at the 
position of the horn antenna of the harmonic mixer. It was 
450 µW (AIM cryocooler) and 550 µW (Sumitomo 
cryocooler), which was sufficient for a reliable phase-lock. 
Considering the estimated coupling efficiencies (cf. Table 2), 
the power actually coupled in is approximately 380 µW and 
400 µW, respectively. Besides the coupled power the QCL, the 
success of the phase-lock is also strongly affected by optical 
feedback, vibrations of the respective coolers, PID parameters 
as optimized individually for each configuration, or the tuning 
coefficients of the QCLs. The signal-to-noise ratios (SNRs) of 
the locked peaks were 29 dB and 34 dB, respectively. The peak 
power of the side lobes is 25 dB below the maximum of the IF 
signal measured with a resolution bandwidth of 47.9 kHz. For 
comparison, phase-locking of a 3.4-THz QCL using a 
superlattice mixer [22] instead of a Schottky mixer also yields 
an IF signal with a peak power 26 dB larger than the phase noise 
peak with the other measurement parameters comparable 
(300 µW from the QCL and 100 kHz resolution bandwidth).  

The fraction of the THz power which is locked in the central 
peak was estimated from Figs. 3(b) and 3(e) by the power in the 

main peak on the one hand, and the power outside of the main 
peak, i.e. the power in the side lobes and the noise on the other 
hand. It is 79 % for the QCL in the AIM cooler and 93 % for 
the QCL in the Sumitomo cooler. 

B. Phase-locking at 4.7 and 4.8 THz 
We use the same Schottky harmonic mixer for the PLL 
operating at 4.7/4.8 THz, since it also works very well at this 
high frequency. The power of the focused beams incident on 
the mixer was 350 µW and 360 µW, respectively (cf. Table 2). 
In both cases, the optics was optimized to achieve the maximum 
power coupled into the mixer. With beam waists of 210 µm and 
230 µm, the coupling efficiencies were estimated to 79 % and 
75 %, respectively. The results are displayed in Fig. 4. The free 
running linewidth is similar to the 3.5-THz QCLs, namely 15-
20 MHz [cf. Figs. 4(a) and 4(d)], which mainly result from the 
cryocooler cycles (~40 Hz for the AIM cooler and ~1 Hz for the 
Sumitomo cooler). When activating the PLL, the linewidth 
reduces [cf. Figs. 4(b) and 4(e)]. In Fig. 5, spectra of the locked 
signal with a very high spectral resolution (479 mHz) are 
shown, proving the very narrow IF signal (~ 1 Hz), which is 
typical for the PLL. In this setting, the SNR is 55 and 65, 
respectively. We determined the amount of locked power to 
values of 93 % and 97 % from Figs. 4(b) and 4(e). The 
transitions from the unlocked to the locked condition are 
illustrated by waterfall plots in Fig. 4 (c) and 4(f). The 
disturbances mainly resulting from the coolers are clearly 
recognizable in the free-running cases. In the case of the AIM 
cooler [cf. Fig. 4(c)], a slow drift on top of the cooler 
disturbance can be seen in the free-running condition. The PLL 
results of all QLCs are summarized in Table 2. It should be 
noted, that the resulting emission frequencies can be set 
arbitrarily within the tuning ranges of the QCLs by changing 
the reference frequencies.  
 
 

Fig. 3. Unstabilized (a, d) and stabilized (b, e) signals of the 3.4/3.5 THz QCLs mounted in the AIM cryocooler (top) and the 
Sumitomo cryocooler (bottom). Transitions between free-running and locked conditions are shown by waterfall plots on the right 
c, f).  
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TABLE 2 
SUMMARY OF THE PLL RESULTS. 

V. CONCLUSION 
We have successfully demonstrated phase-locking of QCLs at 
around 3.5 THz and 4.7 THz based on frequency mixing in a 
Schottky diode harmonic mixer. Narrow linewidth of the IF 
signal below 1 Hz were achieved with 79 % to 97 % of the 
power locked in the central peak. The QCLs were operated in 
mechanical cryocoolers, which poses an additional challenge 
due to their strong periodic disturbances. This proves the 
robustness of the PLL, which can be a significant advantage for 
certain application scenarios. Since the loop is referenced to a 
multiplier source, the QCL emission is tunable and traceable to 
a highly stable reference oscillator. Furthermore, stable long-
term operation of the PLL is expected, since external drifts can 
be well compensated by the temperature control loop [10]. This 
offers a very large potential for high-resolution spectroscopy at 
terahertz frequencies. For instance, heterodyne spectrometers 
based on QCL local oscillators could be deployed on balloons 
or satellites for remote sensing of the atmosphere. Particularly 
interesting are the transitions of OH and O at 3.5 THz and 
4.7 THz, respectively, as covered by this paper. Sensing of 
these transitions requires a high spectral resolution to resolve 
the line shape, which contains the most valuable information 
[4]. Consequently, phase-locked QCLs could play an important 
role in future missions for monitoring climate change or air 
pollution.  
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 Frequency 
(= LO × n + IF) 

Beam 
Waist 
(µm) 

Optical 
Coupling 

(%) 

Power 
(µW) 

SNR 
(dB) 

Power in 
Main 

Peak (%) 

1 3.441 750 000 000 THz 
(≈ 573.6 GHz × 6 + 150 MHz) 170 84 450 29 79 

2 3.462 221 040 000 THz 
(≈ 577 GHz × 6 + 150 MHz) 240 73 550 34 93 

3 4.806 150 025 600 THz 
(≈ 600.8 GHz × 8 + 150 MHz) 210 79 350 26 93 

4 4.755 324 400 000 THz 
(≈ 594.4 GHz × 8 + 150 MHz) 230 75 360 39 97 

Fig.5. Highly resolved IF spectra for the 4.7/4.8 THz QCLs in 
the (a) AIM cooler and (b) the Sumitomo cooler.  

Fig.4. Unstabilized (a, d) and stabilized (b, e) signals for the 4.8 THz QCL mounted in the AIM (top) and the 4.7 THz QCL 
mounted in the Sumitomo cryocooler (bottom). Transitions between free-running and locked conditions are shown by waterfall 
plots on the right (c, f). 
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