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Abstract. A comprehensive understanding of the cloud ther-
modynamic phase is crucial for assessing the cloud radiative
effect and is a prerequisite for remote sensing retrievals of
microphysical cloud properties. While previous algorithms
mainly detected ice and liquid phases, there is now a growing
awareness for the need to further distinguish between warm
liquid, supercooled and mixed-phase clouds. To address this
need, we introduce a novel method named ProPS (PROba-
bilistic cloud top Phase retrieval for SEVIRI), which enables
cloud detection and the determination of cloud-top phase us-
ing SEVIRI (Spinning Enhanced Visible and Infrared Im-
ager), the geostationary passive imager aboard Meteosat Sec-
ond Generation. ProPS discriminates between clear sky, op-
tically thin ice (TI) cloud, optically thick ice (IC) cloud,
mixed-phase (MP) cloud, supercooled liquid (SC) cloud and
warm liquid (LQ) cloud. Our method uses a Bayesian ap-
proach based on the cloud mask and cloud phase from the
lidar–radar cloud product DARDAR (liDAR/raDAR). The
validation of ProPS using 6 months of independent DAR-
DAR data shows promising results: the daytime algorithm
successfully detects 93 % of clouds and 86 % of clear-sky
pixels. In addition, for phase determination, ProPS accurately
classifies 91 % of IC, 78 % of TI, 52 % of MP, 58 % of SC and
86 % of LQ clouds, providing a significant improvement in
accurate cloud-top phase discrimination compared to tradi-
tional retrieval methods.

1 Introduction

Understanding and correctly identifying clouds and their
thermodynamic phases in satellite remote sensing is crucial
for several reasons. First, the phase critically affects cloud–
radiation interactions (Choi et al., 2014; Komurcu et al.,
2014; Matus and L’Ecuyer, 2017; IPCC, 2023; Cesana et al.,
2022), and numerous studies have demonstrated the influ-
ence of the cloud phase on climate sensitivity in general
circulation models (Gregory and Morris, 1996; Doutriaux-
Boucher and Quaas, 2004; Cesana et al., 2012; Tan et al.,
2016; Bock et al., 2020). Furthermore, phase transition pro-
cesses depend on various factors like temperature, aerosol
abundance and type, the Wegener–Bergeron–Findeisen pro-
cess, vertical velocity and turbulence and are thus difficult to
understand and model (Mioche et al., 2015; Korolev et al.,
2017; Coopman et al., 2021; Ricaud et al., 2024). Accurate
observations of cloud occurrence and thermodynamic phase
are therefore essential to improve their representation in cli-
mate models (Atkinson et al., 2013; Cesana et al., 2015;
Matus and L’Ecuyer, 2017; Moser et al., 2023; Hahn et al.,
2023; Kirschler et al., 2023). Second, the reliable detection of
clouds and the determination of the phase of each cloud is a
critical first step in the remote sensing retrieval of cloud prop-
erties such as optical thickness, effective particle radius and
water path. Ice and liquid cloud particles have different scat-
tering and absorption properties, and an incorrect phase as-
signment can lead to significant errors in remotely retrieved
cloud properties (Marchant et al., 2016).

Passive sensors aboard geostationary satellites play an im-
portant role in the observation of clouds and their thermo-
dynamic phases. The advantages of these sensors are their
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wide field of regard and their ability to observe the same
area at any time of day, allowing the temporal evolution of
clouds to be studied with high temporal resolution. How-
ever, determining the thermodynamic phases of clouds using
passive sensors is a challenging task. In the past, passive-
sensor phase retrievals often only distinguished between ice
and liquid clouds (or between ice, liquid and unknown-phase
clouds) (e.g. Key and Intrieri, 2000; Knap et al., 2002; Baum
et al., 2012; Bessho et al., 2016; Marchant et al., 2016; Plat-
nick et al., 2017; Benas et al., 2017). More recently, re-
trieval algorithms have been developed for imagers on geo-
stationary satellites like the Advanced Baseline Imager (ABI)
aboard GOES-R and the Advanced Himawari Imager (AHI)
aboard Himawari-8, allowing for a further distinction be-
tween mixed-phase, liquid, and in the case of ABI super-
cooled liquid cloud tops (Pavolonis, 2010; Wang et al., 2019;
Li et al., 2022). Nevertheless, accurately distinguishing be-
tween phases beyond just liquid and ice remains challenging
(Korolev et al., 2017). Also, Mayer et al. (2023) show that
mixed-phase and supercooled cloud tops are often present
over the Meteosat disc, not only in regions like the Southern
Ocean, and thus deserve dedicated retrieval algorithms.

We have developed a new cloud detection and cloud-top
phase determination method for the Spinning Enhanced Visi-
ble and Infrared Imager (SEVIRI) on board the geostationary
Meteosat Second Generation (MSG) satellite (Schmetz et al.,
2002) that uses a Bayesian approach. Our focus is on the
identification of mixed-phase and supercooled liquid clouds
in addition to the “traditional” purely ice and warm liquid
cloud tops. We use the lidar–radar cloud product DARDAR
(liDAR/raDAR; Delanoë and Hogan, 2010) as the basis for
this method. DARDAR is based on the combination of ac-
tive radar and lidar measurements from the A-Train satellites
CloudSat and CALIPSO and provides a consolidated classi-
fication of the measured clouds into different cloud phases.
Synergistic lidar–radar techniques are considered the most
reliable for cloud phase determination from satellites because
the instruments used are complementary due to their differ-
ent penetration depths and different particle size sensitivities
(Wang, 2012; Delanoë and Hogan, 2008; Zhang et al., 2010;
Korolev et al., 2017; Ewald et al., 2021). Over the years, they
have been widely used to study the global horizontal and
vertical distribution of cloud occurrence and cloud phases
(Okamoto et al., 2010; Wang, 2012; Mioche et al., 2015;
Matus and L’Ecuyer, 2017; Listowski et al., 2019). For our
new phase retrieval method, we use the DARDAR product
– which can distinguish between warm liquid, supercooled
liquid, mixed-phase and ice clouds – as the ground truth for
cloud and phase occurrence. We collocate 5 years of these
data with SEVIRI measurements in selected channels and
ancillary data to create a large collocated data set with infor-
mation on the cloud-top phase from DARDAR. Our method
then uses a probabilistic Bayesian approach as follows. We
compute a prior representing the probability of cloud and
phase occurrence as well as probabilities for SEVIRI chan-

nel measurements from the collocated data set. We update
the prior with each successive SEVIRI measurement using
Bayes’ formula, resulting in probabilities for cloud occur-
rence and for the cloud-top phase based on the prior infor-
mation and the selected SEVIRI measurements. The SEVIRI
channels used in this calculation include three infrared chan-
nels (centred at 8.7, 10.8 and 12 µm), two visible channels
(0.6 and 1.6 µm) and a local texture parameter derived from
the 10.8 µm channel.

Bayesian approaches have proven successful in various
classification problems using satellite data (Merchant et al.,
2005; Mackie et al., 2010; Heidinger et al., 2012; Pavolo-
nis et al., 2015; Meirink et al., 2022). One advantage of the
Bayesian approach is its ability to handle complexity and
consolidate diverse spectral information from different SE-
VIRI channels into a single metric (Pavolonis et al., 2015).
Furthermore, it is straightforward to define a quality param-
eter for the result since the outcome of a Bayesian approach
is a probability.

To test the performance of our method, we validate it us-
ing 6 months of DARDAR data which were not used for the
computation of probabilities in order to keep the validation
independent.

2 Data set

2.1 DARDAR-MASK

This study uses the product DARDAR-MASK, part of the
synergistic active remote sensing product DARDAR, specif-
ically the DARMASK_Simplified_Categorization data set
(Delanoë and Hogan, 2010; Ceccaldi et al., 2013), as the
ground truth for cloud occurrence and cloud thermody-
namic phase. DARDAR-MASK is derived from the sun-
synchronous, low-Earth-orbit satellites CloudSat (Stephens
et al., 2002) and CALIPSO (Winker et al., 2003). To distin-
guish between cloud phases, DARDAR-MASK uses the wet-
bulb temperature derived from the ECMWF-AUX data set
(Benedetti, 2005) and the extent of cloud layers as well as the
different sensitivities of lidar and radar to cloud particles of
varying sizes: cloud layers containing water have a strong li-
dar backscatter and subsequent attenuation, while the Cloud-
Sat radar is mostly only sensitive to the larger ice crystals
(Hogan et al., 2003). DARDAR-MASK provides the verti-
cally resolved cloud thermodynamic phase along the tracks
of the CALIPSO and CloudSat satellites with a spatial res-
olution of 1.1 km along track and 60 m in the vertical direc-
tion. For brevity, we use “DARDAR” instead of DARDAR-
MASK to describe the cloud product in the following. An
example curtain from DARDAR can be seen in the back-
ground of Fig. 6. We collocate 5 years (2013–2017) of DAR-
DAR data with observations of the passive instrument SE-
VIRI aboard the geostationary satellite Meteosat-9 (part of
the Meteosat Second Generation series) by merging over-
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passes of the polar-orbiting satellites with the corresponding
SEVIRI pixel for each time and latitude–longitude combi-
nation. The collocated DARDAR data are then aggregated
to the spatial resolution of the SEVIRI sensor (3× 3 km2 at
the sub-satellite point). Details on how this collocation is
done can be found in Mayer et al. (2023). From the DAR-
DAR data, we extract two key pieces of information for
each SEVIRI pixel: (1) whether a pixel is clear or cloudy
and (2) the cloud-top phase. This cloud-top phase at SE-
VIRI’s resolution is defined by horizontal and vertical av-
eraging of DARDAR’s gates using a simplified penetration
depth (Mayer et al., 2023). We distinguish between warm
liquid (LQ), supercooled liquid (SC), mixed-phase (MP) and
ice clouds. MP cloud tops at SEVIRI’s resolution are defined
as containing either only gates classified as mixed phase by
DARDAR or a mixture of liquid, ice and/or mixed-phase
DARDAR gates in the cloud-top gates considered for the
collocation (see Mayer et al., 2023, for details). To ensure
that the averaging over DARDAR gates for a SEVIRI pixel
is not done over two different clouds, the gates are all re-
quired to have a similar cloud-top height. For multilayered
clouds, e.g. a high cirrus cloud on top of lower clouds, only
the uppermost cloud layer is considered. For pure-ice clouds,
we use information on the optical thickness contained in the
DARDAR data to further distinguish between optically thin
ice (TI) and thick ice (IC), where we use an optical thick-
ness of 2 as the threshold. We employ this distinction since
TI and IC have different radiative properties and are typi-
cally detected by different channel (combinations) of SE-
VIRI (see Sect. 4). The threshold for optical thickness is con-
sistent with the cloud type categories of GOES-R (Pavolonis,
2010). To combine both aspects (cloudy/clear and the cloud-
top phase), we introduce a “cloud state parameter”, denoted
as q ε {clear, TI, IC, MP, SC, LQ}. Note that in the following,
when we use the terms “cloud state” or “cloud phase” in the
context of our retrieval, we are referring to the phase of only
the top of the cloud, as passive imagers such as SEVIRI can-
not penetrate deep into a cloud.

2.2 Distribution of samples

Figure 1a shows the distribution of samples in the SEVIRI
disc in latitude–longitude boxes of 2.5°× 2.5°. The figure
demonstrates the good coverage of samples over the entire
SEVIRI disc.

The DARDAR data are obtained from polar-orbiting satel-
lites that follow a sun-synchronous orbit. Consequently, they
can only provide information about clouds during the over-
flight times. This characteristic of the data has implications
for our retrieval process, particularly for the use of solar
channels and their dependence on solar and satellite viewing
angles. Figure 1b shows the distribution of samples in the
parameter space spanned by the solar zenith angle (sza) and
the cosine of the satellite zenith angle (umu). Notably, there
are two regions in this parameter space where no samples are

Figure 1. (a) Number of samples in latitude–longitude boxes of
2.5°× 2.5° in the SEVIRI disc. (b) Number of samples in sza–umu
(solar zenith angle–cosine of the satellite zenith angle) parameter
space.

available: one is the region where sza values are below 20°;
the other is the region with combinations of high umu and
sza values. The use of solar channels in the retrieval is han-
dled differently for these two regions. For sza values below
20°, the probabilities employed in the retrieval process are
obtained from probabilities for sza values larger than 20°.
For the regions of the parameter space that lack samples and
have high sza and umu combinations, the solar channels are
effectively not used. In a Bayesian update, this is done by
imposing flat probability distributions for the solar channels
in these regions of the parameter space; i.e. the cloud state
probabilities are not changed by the solar channels. This is
further explained in Sect. 6. In addition, since the DARDAR
data do not contain data points at the sunglint, we also im-
pose flat probability distributions for the solar channels close
to the sunglint, defined as sunglint angles below 20°.

There are samples available for all other combinations of
umu and sza. However, it is important to note that the data set
does not include all of these possible combinations of angles
for every latitude. For instance, at low latitudes, the over-
flight times always occur around noon, resulting in relatively
low sza values (between 20 and 40° for latitudes between 0
and 10° N/S). The statistics for large sza values consequently
originate from clouds in higher latitudes. This discrepancy
could introduce a bias when using solar channels depending
on angles, as meteorological and microphysical conditions in
high latitudes may differ from those in lower latitudes.

In addition, as CloudSat operated in daylight-only mode,
our data set only includes samples collected during the day.
This could potentially introduce a bias into the nighttime re-
trieval for clouds whose properties differ between night and
day.

2.3 Ancillary data

In addition, we include ancillary data such as surface tem-
perature and surface type in the collocated data set. The sur-
face temperature data are obtained from the ERA5 reanalysis
(Hersbach et al., 2018) and interpolated to the SEVIRI grid.
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For surface type classification, we have adopted the Inter-
national Geosphere-Biosphere Programme (IGBP) scheme
(Loveland and Belward, 1997) provided in the MODIS L3
product MCD12C1 (Friedl et al., 2010). Surface types are
grouped into five categories (water, barren, permanent ice
and snow, forest, and vegetation excluding forest) and pro-
jected onto the SEVIRI grid (for details, see Strandgren et al.,
2017). In summary, our collocated data set includes the cloud
state parameter q from DARDAR, SEVIRI observations, and
ancillary data from ERA5 and IGBP for 5 years of data.
These data spanning 5 years amount to over 40 million data
points. The use of all these years should ensure that a reason-
able amount of annual variability is accounted for.

3 Bayes’ approach applied to satellite data

The output of our new cloud state retrieval method ProPS
(PRObabilistic cloud top Phase retrieval for SEVIRI) is a
probability for the cloud state, given all (useful) SEVIRI
measurements (as defined in Sect. 4) and ancillary data. In
the following, we explain how this probability is computed
with the help of Bayes’ formula. Figure 2 shows a schematic
of the method.

3.1 Bayes’ method

First, we use the collocated data set to compute probabili-
ties P(q |A) for the occurrence of each cloud state q, con-
ditioning on a set of ancillary parameters A independent of
the satellite observations. These probabilities serve as pri-
ors of the cloud state distribution and are updated for each
SEVIRI measurement. The updated probability for the cloud
state, P(q |M1,A), given a SEVIRI measurement M1 (i.e.
a brightness temperature (BT), a brightness temperature dif-
ference (BTD) or a solar observation; see below) and the set
of ancillary parameters A already mentioned above, is calcu-
lated using Bayes’ formula:

P(q |M1,A)=
P(M1 |q,A)P (q |A)

P (M1 |A)
. (1)

The first term in the numerator, P(M1 |q,A), is a condi-
tional probability for the SEVIRI measurement M1 and can
be derived from the collocated SEVIRI–DARDAR data set
(Sect. 2). The denominator P(M1 |A) acts as a normaliza-
tion factor. It can be computed by breaking it down for each
possible cloud state q, leading to the following decompo-
sition: P(M1 |A)=

∑
qP(M1 |q,A)P (q |A). Note that this

is equal to the numerator of Eq. (1) summed over all cloud
states q. Hence, all of the terms needed to compute the up-
dated probability P(q |M1,A) can be derived from the col-
located data set. We repeat the same step for subsequent SE-
VIRI measurements. Updating the probability with a second
SEVIRI measurement M2 leads to

P(q |M2,M1,A)=
P(M2 |q,M1,A)P (M1 |q,A)P (q |A)

P (M2 |M1,A)P (M1 |A)
, (2)

with Bayes’ formula applied twice. For a series of n mea-
surements, the probability for cloud state q given all the mea-
surements M := (M1,M2, . . .,Mn) and ancillary parameters
A can be expressed as

P(q |M,A)=
1
N
P(Mn |q,Mn−1, . . .,M1,A). . .

P (M2 |q,M1,A)P (M1 |q,A)P (q |A), (3)

with the normalization factor

N = P(Mn |Mn−1, . . .,M1,A). . .P (M2 |M1,A)P (M1 |A). (4)

Thanks to Eq. (3), we can compute a probability for the cloud
state q that takes into account (i) prior knowledge about q,
(ii) all SEVIRI measurements M and (iii) all ancillary pa-
rameters A.

The data requirements for calculating each probability
scale with the number of parameters used as conditions. For-
tunately, the conditional probabilities on the right-hand side
of Eq. (3) can be simplified by considering the dependen-
cies of the different SEVIRI channels. For example, if the
measurement of one channel, M2, is (approximately) inde-
pendent of the measurement of another channel, M1, then
its probability reduces to P(M2 |q,M1,A)= P(M2 |q,A).
Similarly, if a measurement is independent of certain auxil-
iary parameters, these parameters can be removed from set
A in the conditional probability (i.e. A= {a1,a2,a3, . . .} →

A= {a1,a3, . . .} if M2 is independent of a2). This simpli-
fication step is essential to ensure that the probabilities are
meaningful and statistically valid. Given the size of our data
set (about 40 million data points), we limit the number of
conditions to a maximum of four per probability to ensure
statistical validity. In cases where a SEVIRI measurement
depends on more than four of the parameters in its condi-
tional probability, we carefully select the most significant of
these parameters and focus on those, removing the less sig-
nificant parameters. The selection of channels and conditions
for each probability is further explained in the following sec-
tion (Sect. 4).

3.2 Retrieval result

The result of Eq. (3) is a probability for each cloud state q. As
the final result of the retrieval method, we choose the most
likely cloud state, q∗, i.e. the cloud state with the highest
probability for each SEVIRI pixel:

q∗ =max
q
(P (q |M,A)). (5)

Thus, the final result is one cloud state per SEVIRI pixel.

3.3 Measure of certainty

There are several advantages of using (Bayesian) probabili-
ties. First, they allow us to incorporate prior knowledge. This
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Figure 2. Scheme of the phase retrieval method ProPS. The green box shows the preparation for the retrieval, i.e. the calculation of the
probabilities from the collocated data set. The blue box shows the phase retrieval steps of ProPS.

is in contrast to traditional decision-tree models, which typi-
cally do not take this valuable information into account. Sec-
ond, Bayes’ formula provides a standardized approach to in-
tegrating information from different channel measurements
into a single objective metric. It eliminates the need for arbi-
trary rules when faced with conflicting cloud state indications
from different measurements. Third, the approach maintains
transparency; one can clearly understand the origin of the
probability values assigned to each cloud state. Finally, since
the outcome is a probability for each cloud state, it is straight-
forward to develop a measure of certainty (a quality measure)
associated with the outcome. We define the certainty c as
the difference between the probability for q∗ and the aver-
age probability of the remaining cloud states q ′:

c = P(q∗ |M,A)−
1
5

∑
q ′

P(q ′ |M,A). (6)

This certainty is a number between 0 and 1. It is close to 1
when the highest probability is much larger than the other
probabilities. The certainty becomes small when the proba-
bilities for other cloud states are close to the highest proba-
bility.

4 Selection of channels and dependencies

This section describes which SEVIRI channels and condi-
tions are used for each probability. From the collocated data
set, we have the following set of ancillary parameters:

A= {sza, umu, sfc, skt, lat, long, season}, (7)

where “sza” is the solar zenith angle, “umu” is the cosine
of the satellite zenith angle, “sfc” is the surface type, “skt”
is the surface temperature, “lat” is the latitude, “long” is
the longitude and “season” is one of the four seasons of
the year (December–January–February, March–April–May,
June–July–August or September–October–November).

To choose the SEVIRI channels and their most important
dependencies for the retrieval, we combine theoretical prin-
ciples of the physics involved with statistical tools. First, we
select channels and channel combinations that are known to
carry information about the cloud state. We also consider
only a selection of conditions for the probability of each
channel (or channel combination) that make sense from a
physical perspective. From this selection of physically mean-
ingful conditions, we decide on the optimal conditions for
the probability of each channel (or channel combination) us-
ing the statistical tool of mutual information (Shannon and
Weaver, 1949; Cover and Thomas, 2005). The mutual infor-
mation I (Mi;q) between a channel (or channel combination)
Mi and q is a measure of the information content of Mi with
respect to q: the higher the mutual information, the greater
the information that can be gained from Mi in a retrieval
of q. We calculate the mutual information I (Mi;q |C) for
different sets of conditions C to find the set of conditions
C∗ which maximizes the mutual information. These optimal
sets of conditions are then used for the respective conditional
probabilities, P(Mi |q,C

∗). A selection of computed mutual
information values for different SEVIRI channels (or chan-
nel combinations) and sets of conditions are displayed in
Table 1. To gain insights into the contributions of different
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Table 1. The first part of the table shows the mutual information I between the latitude and the cloud state q (first row), cloudy/clear state
(abbreviated to “c/c”; second row), and cloud phase (third row) for different sets of conditions C. This represents the information content
of the different priors we considered, where latitude is a fixed condition, i.e. P(q | lat,C). The other parts of the table show the mutual
information I between SEVIRI channels (or channel combinations) and cloud state q, c/c and cloud phase for different sets of conditions C.
Columns with no condition C refer to the starting point of I before conditions are introduced. The different mutual information values for q,
c/c and phase indicate whether a channel (or channel combination) contributes more to cloud or phase detection. The blue boxes indicate the
sets of conditions selected for ProPS.

channels (or channel combinations) to cloud and phase de-
tection, we additionally calculate the mutual information be-
tween each channel Mi and the cloud classification cloudy/-
clear as well as that between Mi and the phase classification
under the specified conditions C. By comparing the mutual
information values for I (Mi;q |C), I (Mi;cloudy/clear |C)
and I (Mi;phase |C), we can assess the extent to which each
channel contributes to the detection of cloudy or clear condi-
tions and to the determination of cloud phase.

In the following, we briefly describe which conditional
probabilities are consequently used for the retrieval. We dis-
cuss the physical connection between each channel (or chan-
nel combination) and the cloud state q, and we explore the
physical reasons why the chosen conditions for the probabil-
ities might enhance their information content.

Atmos. Meas. Tech., 17, 4015–4039, 2024 https://doi.org/10.5194/amt-17-4015-2024
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4.1 Prior

We use the probability

P(q | lat, long, season) (8)

as prior knowledge. This means that the prior is the proba-
bility for each cloud state per latitude, longitude and season,
calculated from the 5 years of collocated data. Besides lati-
tude, longitude and season, the set of ancillary parameters A
introduced above in Sect. 4 also includes surface type, sur-
face temperature and solar/satellite zenith angles. However,
since latitude and longitude are already constrained, incor-
porating surface type or satellite viewing angle as additional
constraints becomes unnecessary. Furthermore, our mutual
information calculations show that conditioning on latitude,
longitude and season yields the prior with the optimal infor-
mation content compared to other possible sets of conditions
(see Table 1). This means that location (latitude and longi-
tude) and season are the main dependencies.

4.2 Brightness temperature at 10.8 µm

We use the BT centred at 10.8 µm wavelength, BT10.8, lo-
cated in the atmospheric window of the electromagnetic
spectrum, as the first SEVIRI measurement. At this wave-
length, the atmosphere is more transparent than at all the
other SEVIRI infrared channels. Therefore, it is a good ap-
proximation for the temperature of the surface and (optically
thick) cloud tops – one of the most important parameters for
cloud detection and phase discrimination. This can also be
seen in Table 1, as the mutual information between q and
BT10.8 has higher values compared to all other SEVIRI chan-
nel mutual information values. We use the conditional prob-
ability

P(BT10.8 |q,umu, skt). (9)

By conditioning on skt, we take into account the temperature
difference (contrast) between BT10.8 and the surface temper-
ature. This is particularly important for cloud detection. The
dependence on umu is particularly relevant for optically thin
clouds, where a higher satellite zenith angle means an effec-
tive increase in optical thickness and therefore smaller BT10.8
values.

4.3 Brightness temperature difference between the 10.8
and 8.7 µm channels

The BTD between the 10.8 and 8.7 µm window channels is
commonly used in phase determination algorithms (Menzel
et al., 2002; Platnick et al., 2003; Zhou et al., 2022). This
BTD, denoted as BTD10.8–8.7, provides valuable information
about the cloud phase in several ways. Firstly, it is sensi-
tive to the amount of water vapour present above the cloud
top. This is because the 8.7 µm channel is more strongly af-
fected by water vapour absorption in the atmosphere com-

pared to the 10.8 µm channel. Thus, the BTD is closely re-
lated to the cloud-top height and thus to the cloud-top tem-
perature, which, in turn, is related to the cloud phase. Sec-
ondly, the BTD is influenced by the effective radius of cloud
particles (Ackerman et al., 1990). This parameter provides a
clue about the phase of the cloud, since ice crystals gener-
ally have larger effective radii than liquid droplets. Thirdly,
BTD10.8–8.7 is sensitive to cloud optical thickness (for small
optical thicknesses; Ackerman et al., 1990). On the one hand,
this is helpful for the detection of optically thin clouds; on
the other hand, this can indirectly indicate the cloud phase,
since only ice clouds, such as cirrus clouds, typically show
very low optical thicknesses. Note, however, that dissipating
clouds or fractional cloud cover can also result in low optical
thickness in SEVIRI pixels, which could bias the interpreta-
tion of these clouds as ice clouds. Lastly, the BTD also has
a direct dependence on cloud phase for optically thin clouds,
i.e. when transmission through the cloud is significant, since
the variation in scattering and absorption properties between
the wavelengths 8.7 and 10.8 µm is different for ice crystals
and liquid droplets. We use the conditional probability

P(BTD10.8–8.7 |q,BT10.8,umu, sfc). (10)

Conditioning on umu takes into account that the satellite
zenith angle affects the path length and therefore both the
amount of water vapour above the cloud and the effective
cloud optical thickness. We also condition on the surface type
since the typical values of BTD10.8–8.7 for clear sky differ be-
tween surface types – especially for deserts such as the Sa-
hara or the Arabian Peninsula due to the low spectral emis-
sivity of desert dust at 8.7 µm (Masiello et al., 2014). The
relationship with BT10.8 is obvious since it is contained in
BTD10.8–8.7.

4.4 Brightness temperature difference between the
10.8 µm and 12.0 µm channels

The BTD between the two window channels at wavelengths
of 10.8 and 12.0 µm is often used in satellite retrievals for
cloud detection and cloud properties (e.g. Key and Intrieri,
2000; Pavolonis et al., 2005; Krebs et al., 2007; Kox et al.,
2014; Hünerbein et al., 2023). BTD10.8–12.0 is mainly sen-
sitive to optical thickness and effective radius. Both of these
quantities contain information about the cloud phase, as men-
tioned above. Furthermore, BTD10.8–12.0 also depends di-
rectly on the phase, especially for small optical thicknesses,
since (just as for BTD10.8–8.7) the scattering and absorption
properties between the two wavelengths 12.0 and 10.8 µm
vary differently for ice crystals and liquid droplets (Key and
Intrieri, 2000). We use the conditional probability

P(BTD10.8–12.0 |q,BT10.8,sfc). (11)

Since the main sensitivity is to optical thickness,
BTD10.8–12.0 is mainly useful for detecting thin ice clouds.
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This is particularly useful when combined with BT10.8,
as BTD10.8–12.0 can distinguish between warm cloud-top
temperatures and optically thin clouds with warm surface
temperatures, which may have the same value of BT10.8.

4.5 Reflectivity of the 1.6 µm channel

The reflectivity of solar radiation is generally a good indica-
tor of the presence of a cloud, as clouds are usually brighter
(more reflective) than the surface for clear-sky conditions.
Further, the near-infrared (NIR) reflectivity, like the 1.6 µm
channel, is a well-established indicator of cloud phase, as the
reflectivity at 1.6 µm, R1.6, is sensitive to the effective ra-
dius of cloud particles. The typically small liquid droplets
reflect more radiation at this wavelength than the typically
large ice crystals. In addition to its sensitivity to the effective
radius, R1.6 is also sensitive to the phase itself, since ice ab-
sorbs more radiation than water at this wavelength. We use
the conditional probability

P(R1.6 |q,sza, umu, sfc). (12)

Conditioning on the solar and satellite zenith angles, sza and
umu, takes into account that reflectivities are angle depen-
dent. The sensitivity of R1.6 to azimuth angle is compara-
tively small; we therefore neglect it in order to keep the num-
ber of conditions small. The surface type, sfc, is a proxy for
surface albedo, as different surface types have their own typ-
ical albedo values.

4.6 Reflectivity ratio of the 0.6 and 1.6 µm channels

For the next observation, we consider the reflectivity ratio
RR1.6/0.6 =

R1.6
R0.6

. The combination of an NIR channel (R1.6)
and a visible channel (R0.6) is often used to retrieve cloud
microphysical parameters such as effective radius and opti-
cal thickness (Nakajima and King, 1990). These microphysi-
cal parameters contain phase information, so combining NIR
and visible channels is useful for a phase retrieval (Knap
et al., 2002; Marchant et al., 2016). We use the ratio between
the two channels to reduce the dependence on the solar and
satellite viewing angles as well as that on particle number
concentration (Chylek et al., 2006). We use the probability

P(RR1.6/0.6 |q,R1.6,sza, umu). (13)

Apart from the dependence on R1.6, we again consider the
solar and satellite zenith angles for the same reasons as for
the conditional probability of R1.6.

4.7 Local binary pattern at 10.8 µm

Finally, we use the local binary pattern (LBP) of the 10.8 µm
infrared channel, LBP(BT10.8). The LBP technique is used
for texture analysis. This characterizes the spatial variations
of pixel intensities by comparing the central pixel with its

surrounding neighbours within a defined local region. Tex-
ture parameters have already been used in Bayesian retrieval
methods for cloud detection (Merchant et al., 2005). The
texture of clouds differs in most cases from the texture of
the surface, so the LBP can help in the detection of clouds.
Further, the texture of cloudy regions can differ for different
cloud types; for example, small cumulus clouds show large
local spatial variations, whereas large smooth cirrus clouds
show small variations. Since different cloud types are asso-
ciated with different cloud phases, the LBP is also a suitable
parameter for phase detection.

To compute the LBP, the central pixel is compared with
eight surrounding pixels in a defined neighbourhood: if the
intensity value of a neighbour is greater than or equal to the
intensity of the central pixel, a binary 1 is assigned; other-
wise, a binary 0 is assigned for each neighbour. The sum of
these binary values contains valuable texture information: a
maximum sum value of 8 indicates a uniform image region,
while lower values indicate non-uniform regions. For exam-
ple, a sum of 4 indicates an even distribution of neighbours
with both higher (or equal) and lower intensities compared to
the central pixel. A Gaussian filter is then applied to smooth
the results to obtain a continuous value.

The infrared channel BT10.8 is well suited for calculating
a texture, as the atmosphere is more transparent at this wave-
length compared to all other SEVIRI infrared channels. The
advantage of choosing an infrared channel is that it is also
available during the night. The LBP of BT10.8 is particularly
useful for detecting low clouds during the night, which are
otherwise difficult to distinguish from clear sky for infrared
channels. We use the conditional probability

P(LBP(BT10.8) |q,sfc, umu). (14)

The conditioning on surface type, sfc, takes into account that
different surface types have different textures. The condition-
ing on umu takes into account that pixel sizes, and therefore
the computed texture from LBP, vary with umu.

5 The PRObabilistic cloud top Phase retrieval for
SEVIRI (ProPS)

This section gives an overview of the ProPS retrieval method
using the equations and probabilities explained in the last two
sections (Sects. 3 and 4). Figure 2 gives a schematic overview
of the retrieval method.

5.1 Cloud-top phase

The output of the Bayesian method is the
probability P(q |M,A) for each cloud state
qε{clear, TI, IC, MP, SC, LQ}. We use the cloud state
with the highest probability, q∗, as the final result.
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5.2 Daytime

Using the probabilities for the selection of SEVIRI channels,
as explained in the previous section, the cloud state retrieval
equation for ProPS (see Eq. 3) becomes

P(q |M,A)=
1
N
P(LBP(BT10.8) |q,sfc, umu)

P (RR1.6/0.6 |q,R1.6,sza, umu)
P (R1.6 |q,sza, umu, sfc)
P (BTD10.8–12.0 |q,BT10.8,sfc)
P (BTD10.8–8.7 |q,BT10.8,umu, sfc)
P (BT10.8 |q,umu, skt)P (q | lat, long, season), (15)

with the normalization factor N =N(M,A) defined such
that

∑
qP(q |M,A)= 1. M is the set of SEVIRI channels

(or channel combinations),

M ={LBP(BT10.8),RR1.6/0.6,R1.6,BTD10.8–12.0,

BTD10.8–8.7,BT10.8}, (16)

and A the set of ancillary parameters (see Eq. 7).

5.3 Nighttime

During the night, only thermal SEVIRI channels are avail-
able. For the night version of ProPS, we therefore only use
probabilities of the thermal channels from Eq. (15):

P(q |M,A)=
1
N
P(LBP(BT10.8) |q,sfc, umu)

P (BTD10.8–12.0 |q,BT10.8,sfc)
P (BTD10.8–8.7 |q,BT10.8,umu, sfc)
P (BT10.8 |q,umu, skt)P (q | lat, long, season). (17)

6 Computation of probabilities

We use the method of kernel density estimation (KDE) to
compute the probabilities needed for ProPS from the collo-
cated data set. KDE is a technique for estimating a probabil-
ity density function (pdf) which better represents the details
of the pdf compared to traditional histograms (Węglarczyk,
2018). The KDE technique provides a smooth estimate of the
pdf without imposing assumptions about its shape. Further
advantages are that, unlike histograms, it includes all sam-
ple point locations and can more convincingly suggest the
presence of multiple modes (Węglarczyk, 2018). Consider a
variable of interest x with an unknown probability distribu-
tion P(x) and a sample of n observations, x1,x2, . . .xn, of
that variable. To compute the kernel estimate P̂ (x) for the
true probability distribution P(x), we assign a kernel func-
tion K(xi,x) to each sample data point xi as follows (Silver-
man, 1986; Węglarczyk, 2018):

P̂ (x)=
1
n

n∑
i=1

K(xi,x). (18)

Figure 3. Construction of a kernel density estimate (continu-
ous line) with a Gaussian kernel (dashed lines) for four sam-
ples of the true probability distribution (vertical red line seg-
ments). Figure adapted from Węglarczyk (2018) (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/, last access: 1 Febru-
ary 2024).

The kernel function K(xi,x) is centred at xi and normal-
ized to unity, i.e.

∫
+∞

−∞
K(xi,x)dx = 1. We employ a Gaus-

sian kernel function, which is commonly used. The kernel
transforms the discrete point location represented by xi into
a smooth distribution centred around xi . Figure 3 illustrates
this technique for the one-dimensional case. For d > 1 di-
mensions, both x and xi become d-dimensional vectors in-
stead of scalars. For example, in our case, to compute the
probability P(BT10.8,q,umu, skt), the variable x is a four-
dimensional vector x = (BT10.8,q,umu, skt).

The width of the kernel function determines the amount
of smoothing and is represented by a parameter called the
bandwidth h. Too small values of h may result in a probabil-
ity estimate that shows insignificant details, while too large
values of h may smooth out important features (Węglarczyk,
2018). A certain compromise is needed. We choose to use an
(effectively) dynamic bandwidth h since there are regions of
parameter space with many samples that allow small values
of h and other regions with few samples that require large h
values. Before computing the kernel estimate P̂ (x), the vari-
able x is transformed: xt = f (x) := arctan

(
1
β
(x−α)

)
/γ .

As a non-linear transformation, f (x) can reshape the distri-
bution of the data by stretching or compressing certain re-
gions by fine-tuning the α, β and γ parameters. The param-
eters of the transformation are chosen for each variable x in
such a way that the samples of the variable xi are more evenly
distributed in the transformed space. The arctan function in
the transformation is particularly useful for this purpose, as
it has the ability to condense the edges of parameter space,
where there are typically fewer samples, while expanding the
central region. The parameters α and β can be understood as
the global mean and variance of the variable x. Additionally,
these transformation parameters are chosen to ensure that all
transformed variables fall within a similar range, typically
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Table 2. Parameters for transforming and computing the kernel den-
sity estimate (KDE) for SEVIRI measurements and ancillary pa-
rameters.

Variable Transformation parameters Bandwidth

BT10.8 α = 270, β = 30, γ = 1 0.04
BTD10.8–8.7 α = 2.3, β = 2, γ = 1.5 0.04
BTD10.8–12 α = 1, β = 3, γ = 1.1 0.04
R1.6 α = 30, β = 40, γ = 1 0.04
RR1.6/0.6 α = 0.7, β = 1.1, γ = 1 0.04
LBP(BT10.8) α = 6, β = 2, γ = 1 0.04
sza α = 45, β = 120, γ = 1 0.04
umu α = 0.58, β = 1.2, γ = 1 0.04
skt α = 290, β = 20, γ = 1 0.04
lat No transformation 2
long No transformation 2

around −1 to 1, to maintain similar smoothness in the di-
rections of all variables. This requires (in some cases) linear
scaling with the γ parameter in the transformation function.
After the transformation, the kernel estimate P̂ t (xt ) is com-
puted in the transformed space using a constant bandwidth.
The variable is finally transformed back to the original vari-
able space: P̂ t (xt )= P̂ t (f (x))=: P̂ (x). This approach re-
sults in a narrower kernel in regions with many xi samples
and a wider kernel in regions with fewer xi samples. Con-
sequently, our procedure allows for detailed features in the
kernel estimate P̂ (x) where numerous samples are available
while maintaining reasonable smoothness and flatness in re-
gions with limited samples. The transformation parameters
as well as the bandwidth for each variable are shown in Ta-
ble 2.

In the case of discrete variables such as q, season or sur-
face type, the KDE method cannot be used directly. Instead,
we divide the variable space into subcategories based on all
possible combinations of the discrete variables of the prob-
ability in question. For each subset, we utilize the KDE
method to calculate the probability for the continuous vari-
ables within that specific subcategory. Subsequently, we nor-
malize the probabilities to obtain a normalized probability
distribution that incorporates both discrete and continuous
variables.

Using the computed kernel estimate P(x), where x is
the d-dimensional vector x = (X1,X2, . . .Xd), a conditional
probability can be computed using the relationship

P
(
X1
|X2, . . .,Xd

)
=
P
(
X1,X2, . . .,Xd

)
P
(
X2, . . .,Xd

)
=

P
(
X1,X2, . . .,Xd

)∑
X1P

(
X1,X2, . . .,Xd

) . (19)

The probabilities are only computed for the locations in
parameter space where a sufficient number of samples, xi ,
are available. If too few samples are available, the pdf is set

Figure 4. Examples of the probability distribution
P(BT10.8 |q,umu, skt) computed using KDE with fixed val-
ues for umu and skt.

to a flat distribution; i.e. it contains no information and does
not change the probability for cloud state q when multiplied
as in the retrieval equation (15). Since the collocated data set
is quite large, this is only necessary for a few special cases.
Most notably, this is necessary for the solar channel R0.6
and channel combination RR1.6/0.6 for the regions of sza–
umu parameter space where no samples are available (see
Sect. 2.2 and Fig. 1). There is, however, one important special
case for the probabilities of the solar channel R0.6 and chan-
nel combination RR1.6/0.6 in which we proceed differently.
DARDAR data are not available for sza values below 20° (see
Sect. 2.2), as the sun-synchronous orbits of the polar-orbiting
satellites CALIPSO and CloudSAT never reach low sza val-
ues. For these relatively low sza values, the dependence of
the reflectivity on sza is small compared to other dependen-
cies. As a simple solution for this special case, we therefore
use the probabilities calculated for the lowest available sza
for the smaller values of sza too.

Using this KDE method, we compute all probability distri-
butions needed for the ProPS algorithm (see Eq. 15). Figure 4
shows examples of the probability P(BT10.8 |q,umu, skt),
i.e. the probability of measuring particular BT10.8 values,
given the cloud states q (in different colours) and with fixed
values for the surface temperature (skt) and satellite zenith
angle (umu). As expected, for clear sky, the probability peaks
at BT10.8 values close to the surface temperature. The proba-
bility distribution shifts to lower BT10.8 values upon shifting
from LQ to SC to MP to IC clouds. There are, however, large
overlap regions, which show that the cloud state cannot be
determined from BT10.8 measurements alone. TI clouds have
a relatively flat probability distribution over a wide range of
BT10.8 values since the radiation from the surface is transmit-
ted to a varying degree. More examples of probability distri-
butions can be found in the Appendix (see Fig. A1).
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7 Example application of ProPS

Figure 5 (right) shows the output of the ProPS retrieval for
an example of a SEVIRI scene obtained on 25 April 2022 at
12:00 UTC. For comparison, the natural colour RGB of the
scene is also shown on the left of the figure. The result of the
ProPS retrieval looks sensible. The retrieval detects (most of)
the clouds which can be seen in the RGB. The distribution of
phases on the SEVIRI disc makes physical sense, with, for
example, mainly IC in the Intertropical Convergence Zone
(ITCZ), LQ over the subtropical ocean and SC/MP mainly
over the Southern Ocean and at northern high latitudes.

8 Performance evaluation using DARDAR

In this section, we evaluate how well ProPS is able to re-
produce the DARDAR cloud detection and phase classifi-
cation. To this end, we randomly select 6 months from the
5-year collocated data set as a validation data set (under
the constraint that every season must be represented), which
amounts to about 3.7 million data points. These data points
of the validation data set are not used for the computation
of the probabilities (see Sect. 6), allowing us to perform an
independent validation.

8.1 Comparison to DARDAR example tracks

We start the performance evaluation with two example cur-
tains from DARDAR to highlight the strengths of the ProPS
retrieval and the challenges posed by, for example, complex
cloud scenes or the different viewing geometries of polar-
orbiting and geostationary satellites (see Fig. 6). These two
examples demonstrate how the retrieval works at different
latitudes and under different meteorological conditions. Both
examples show a DARDAR curtain coarsened to SEVIRI
resolution and the corresponding results of the ProPS algo-
rithm in the plots above, i.e. the probabilities for cloud state
q and the certainty measure along the track. Overlaid on
the DARDAR curtain, the figures also show the most likely
cloud state from ProPS, q∗, and the cloud state retrieved from
DARDAR, qdardar, which is an aggregate of all DARDAR
values per SEVIRI pixel over a vertical depth of 240 m from
the cloud top (see Sect. 2.1 and Mayer et al., 2023, for de-
tails).

The ProPS and DARDAR cloud states, q∗ and qdardar,
match well in most cases. For the high-latitude example in
Fig. 6a, ProPS is able to detect MP and SC clouds, even for
very low (< 1 km) cloud-top heights. Figure 6b shows that
MP and SC clouds are also present in low latitudes close to
the Equator, where convection is the main cloud formation
mechanism, and that ProPS is mostly able to detect them.
This might be very useful for future studies of the life cycle
and phase transitions of convective clouds (Coopman et al.,
2020). The two figures also show some examples of small
cirrus clouds as well as some LQ clouds beneath an aerosol

layer. In both cloud situations, clouds are mostly retrieved
in an accurate way. In general, however, the detection works
best for spatially extended cloud states. The probabilities for
the cloud state, P(q), and the corresponding certainty mea-
sure show that some clouds can be classified more easily than
others, i.e. when the probability for a particular state is close
to 1, corresponding to high values of the certainty parame-
ter. This is the case, for example, for the large IC clouds and
some LQ clouds and clear-sky pixels in the example figures.

However, the examples also highlight challenging situa-
tions for the retrieval. In the DARDAR curtain, SC and MP
cloud tops often appear together in a cloud and alternate on
small spatial scales. ProPS is often not able to resolve this
small-scale variability. Another challenge is posed by opti-
cally thin ice clouds. When ProPS fails to detect these TI
clouds, it often classifies these pixels either as the cloud state
below (if the overlying TI cloud is optically very thin, so
that the radiation from the cloud below is largely transmit-
ted through the overlying ice cloud) or as MP (if the over-
lying TI cloud is somewhat thicker and the radiation signals
from a cloud below containing liquid particles mix with the
overlying TI cloud signal). This effect often happens at the
edges of large ice clouds, which are typically optically very
thin and/or do not fill an entire SEVIRI pixel. An example
can be seen in Fig. 6a at the edges of the large ice cloud
on the right. To overcome this shortcoming, a combination
of ProPS with a cloud product that identifies multilayered
clouds would make sense in the future (as is, for instance,
planned for the EarthCARE multi-spectral imager; Hüner-
bein et al., 2023). Another challenge, again related to opti-
cally thin clouds, is the misclassification of MP, SC or LQ
clouds as TI when they are optically thin, e.g. during forma-
tion or dissipation. These optically thin clouds are typically
characterized by high values of BTD10.8–12. Since the vast
majority of pixels with high BTD10.8–12 values correspond
to TI clouds, ProPS, being a statistical method, tends to label
pixels with high BTD10.8–12 values as TI clouds.

Sometimes, the ProPS q∗ is spatially slightly shifted
against the DARDAR results, especially in the high-latitude
example in Fig. 6a, where q∗ is slightly shifted to the left
relative to qdardar in some cases. This is most likely due to
the different viewing geometries of the two instruments. Fur-
ther, as SEVIRI looks at the clouds from a given angle, a
high cloud can cover a neighbouring lower cloud from SE-
VIRI’s perspective. In addition, the cloud cover in the rest
of the SEVIRI 2D pixel can be different from that in the
overflight swath of the polar-orbiting satellite, and there can
be a time difference of up to 7.5 min between the satellites.
These effects could explain some of the differences between
the ProPS and DARDAR classifications, especially for high-
certainty pixels, where we expect the classification to be cor-
rect. However, these effects are difficult to account for in a
quantitative evaluation (see Sect. 8.2) and lead to lower prob-
abilities of detection.
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Figure 5. False-colour RGB composite (left) and example application of ProPS (right) for a SEVIRI scene obtained on 25 April 2022 at
12:00 UTC.

The example figures also demonstrate that the cloud situa-
tion is often complex, with multi-layered clouds at different
altitudes, cloud-phase changes on small scales and other at-
mospheric factors such as aerosols. The certainty parameter
can be an indicator of the complexity of the scene: compli-
cated cloud scenes, such as multi-layered clouds or rapidly
changing phases on small scales, tend to have lower certainty
values compared to simpler scenarios. For example, the cer-
tainty drops from almost 1 to lower values in Fig. 6a to the
left and right of the thick ice cloud, where it becomes thinner
with underlying liquid layers.

To get an impression of how ProPS compares to other
cloud and phase retrieval algorithms, we additionally con-
ducted a comparison of ProPS with the most recent version
of the CM SAF CLoud property dAtAset using SEVIRI –
Edition 3 (CLAAS-3) for 12 example scenes. CLAAS-3 dis-
tinguishes between clear sky, warm liquid, supercooled liq-
uid and ice clouds. We find a good general agreement be-
tween the two methods, with differences mainly constrained
to cloud edges and the transition regions between different
phases. In general, ProPS classifies more pixels as cloudy
than CLAAS-3, especially small, warm cumulus clouds, and
categorizes more pixels as thin ice than CLAAS-3. A detailed
discussion can be found in the Appendix (see Figs. B1 and
B2).

8.2 POD and FAR

In the following, we only consider pixels with a homoge-
neous cloud state over at least three consecutive pixels along
the DARDAR curtain. It is difficult for SEVIRI to resolve
the cloud state on smaller scales, as mentioned in the sec-
tion above. Furthermore, isolated cloud state pixels may be
artefacts of the DARDAR product, which we try to exclude.

Figure 7 shows the overall performance of ProPS evalu-
ated pixel by pixel against the DARDAR cloud state for the
6 months of validation data. We distinguish between cloud
and phase detection. Figure 7a and c show the numbers of
clear and cloudy pixels according to DARDAR, and the num-
ber of pixels identified as clear and cloudy by ProPS are
colour coded. The upper row shows this validation for the
daytime version of ProPS, while the lower row shows it for
the nighttime version. The probability of detection (POD) of
clouds (clear sky) is defined as the percentage of pixels clas-
sified as cloudy (clear) by both ProPS and DARDAR rela-
tive to the pixels classified as cloudy (clear) by DARDAR.
With this definition, the POD for clear sky is 86 %, and for
clouds it is 93 %. Optically thin TI clouds and small, warm
LQ clouds are the clouds which are most difficult to detect: of
all the undetected clouds (i.e. the red part of the “DARDAR
cloudy” bar in Fig. 7a), 54 % are TI clouds and 37 % are LQ
clouds. Difficulties in detecting TI clouds are expected since
passive sensors are less sensitive to optically thin clouds than
lidar instruments. LQ clouds are particularly difficult to de-
tect when they occur over bright surfaces or are embedded
in (thick) aerosol layers. Small LQ clouds that do not fully
cover SEVIRI pixels and therefore go undetected also play a
role. For the same reasons, TI and LQ are again the two most
problematic cloud phases when looking at false alarms: of all
the false alarms (i.e. the red part of the “DARDAR clear” bar
in Fig. 7a), 40 % are classified as TI and 43 % are classified
as LQ clouds by ProPS. Looking at these results the other
way around, this also implies that one can be very sure that
there really is a cloud at pixels classified as SC, MP or IC
by ProPS during the day and that pixels classified as clear by
ProPS are almost never SC, MP or IC clouds.

As expected, the nighttime version of ProPS performs
slightly worse than the daytime version, with a POD of 76 %
for clear sky and 95 % for clouds. The nighttime version
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Figure 6. Example of the application of ProPS to DARDAR tracks in (a) high latitudes and (b) low latitudes. The bottom part of each panel
shows the DARDAR curtain coarsened to SEVIRI resolution; the corresponding results of the ProPS algorithm (the probabilities P(q)) are
shown in the panels above. The cloud state retrieved from DARDAR, qdardar, and the most likely cloud state from ProPS, q∗, along the track
are shown in between (using the same colour code as for P(q)). Above the P(q) panels, the corresponding certainties of the ProPS results
are shown, with the colour code indicating whether q∗ agrees with qdardar. The box plots on the right show the quartiles of the certainty
measure for disagreement (q∗ 6= qdardar; red) and agreement (q∗ = qdardar; blue).

tends to classify too many pixels as cloudy (the red part of
the “DARDAR clear” bar in Fig. 7c). This is particularly
the case for LQ clouds, which have similar temperatures to
the surface and are therefore difficult to detect using thermal
channels alone.

Figure 7b and d show the phase detection performance of
ProPS for the pixels that are correctly classified as cloudy by
the daytime and nighttime versions of ProPS, respectively.
The POD is defined analogously to that for cloud detection.

For the daytime version, the POD for IC, TI, MP, SC and LQ
is 91 %, 78 %, 52 %, 58 % and 86 %, respectively. For the cal-
culation of these POD values, for IC (TI) clouds, the other ice
classification, TI (IC), was also counted as correctly classi-
fied since it is the same thermodynamic phase. The POD val-
ues show that the majority of pixels are correctly classified by
ProPS. The phase classification works especially well for IC
and LQ clouds. The TI clouds which are not correctly classi-
fied by ProPS are mainly optically very thin TI clouds with
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Figure 7. Cloud and phase detection for the day version (a, b) and
the night version (c, d) of the ProPS method. For IC and TI, we
count both ice classifications as correct in the POD values.

other clouds below. As explained in Sect. 8.1, these pixels
are often classified as either MP or as the cloud phase of the
cloud below. Figure 7b shows that it is difficult to distinguish
between MP and SC, with many MP cloud tops being clas-
sified as SC and vice versa. This difficulty is expected since
SC and MP cloud tops occur in very similar circumstances
(at similar latitudes, cloud-top temperatures and cloud types)
and alternate on relatively small scales (see Fig. 6). In addi-
tion, an MP cloud top may consist mainly of liquid droplets
and therefore has very similar radiative properties to an SC
cloud top. Unfortunately, there is no parameter that quantifies
the liquid fraction of MP pixels in DARDAR, so we have no
way of checking the performance of ProPS MP detection as
a function of liquid fraction. Nevertheless, results show the
ability of ProPS to also identify the most challenging phases,
MP and SC (more than half of the DARDAR MP and SC
pixels are correctly classified by ProPS; see the numbers dis-
cussed above).

Interestingly, the nighttime phase classification performs
remarkably well, almost on par with the daytime version.
To understand why this is the case, we studied examples in
the SEVIRI disc and compared the phase classification per-
formed using only thermal channels against that performed
using only solar channels for the retrieval. We find that there
are easier-to-classify (unambiguous) cloud-phase cases for
which the classification obtained using only thermal or only
solar channels is correct; hence, in these situations, using a
combination of thermal and solar channels does not lead to
different results. For the more complex cases, the classifica-

tion is challenging when using both thermal and solar chan-
nels, and the combination of solar and thermal information
does not lead to a significant increase in correctly detected
phases. However, the certainty of the retrieval increases con-
siderably when all channels are used. Since solar channels
contain valuable information on the phase, as outlined in
Sect. 4, the increase in certainty when using all channels
shows that the solar channels do indeed enhance the accu-
racy of phase determination while boosting the confidence
of the obtained results. It has also been shown in previous
studies that the use of solar channels increases accuracy in
phase detection (Baum et al., 2000). Note that the two al-
gorithm versions only show similar performances if we con-
sider the cases where a cloud has been correctly (according to
DARDAR) detected. For cloud detection, the thermal and so-
lar channels have complementary advantages: solar channels
are very helpful for detecting low clouds, which have similar
temperatures to the surface, while thermal channels have ad-
vantages for detecting optically very thin clouds. Therefore,
the combination of the selected thermal and solar channels is
the best option for reliable cloud and phase detection, but the
similarity of the performance of ProPS during daytime and
nighttime allows for a smooth transition from day to night.

Recall that the output of ProPS contains not only the most
likely cloud state, q∗, but also the probabilities for all cloud
states. In cases where q∗ does not match DARDAR, the sec-
ond most likely cloud state often does. This is especially true
for MP and SC clouds: when q∗ does not match the DAR-
DAR classification of MP (SC), 68 % (65 %) of these pix-
els have MP (SC) as their second most likely cloud phase.
Hence, if both the most likely and the second most likely
cloud states are considered to be correct, the POD increases
to 84 % for both MP and SC. This means that we can gain
information from the second most likely cloud-state result.

8.3 Relation to the certainty parameter

One of the advantages of the Bayesian approach is the cer-
tainty parameter for the retrieval (see Sect. 3.3). For the ex-
ample curtains in Fig. 6, the mean certainty values are shown
on the right for pixels where ProPS and DARDAR agree or
disagree. Where ProPS and DARDAR agree, the average cer-
tainty is higher, indicating that the certainty measure is mean-
ingful. However, as the examples in Fig. 6 show, this is only
true on average – there are still cases with a low level of cer-
tainty that are correctly identified and vice versa.

Figure 8 gives an overview of the relation to the certainty
parameter for the 6 months of validation data for the day-
time version of ProPS. It shows the POD and false alarm rate
(FAR) for cloud detection and phase determination (given
that a cloud was detected) for each phase separately and
their average (weighted by the counts of each phase) per
certainty bin of width 0.1. The two lower panels show the
number of occurrences of the certainty values. The average
POD for cloud detection is high (> 90 %) for almost all cer-
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Figure 8. POD of (a) cloud and (b) phase detection (given that a
cloud was detected) for each phase separately (in colour) and their
weighted average (in black) as a function of the certainty parameter.
FAR for (c) cloud and (d) phase detection. (e) Number of occur-
rences of certainty values. (f) Number of occurrences of certainty
values given that a cloud was detected (in black) and the contribu-
tions from each phase (as classified by DARDAR; in colour).

tainty values; the FAR decreases monotonically with increas-
ing certainty. This means that ProPS tends to overestimate
cloud amount at low certainty values, as also mentioned in
Sect. 8.2, but it has an increased detection accuracy at higher
certainty values. For phase determination, the average POD
increases monotonically with the certainty parameter, while
the average FAR decreases. Hence, the certainty parameter is
a useful tool for deciding whether to trust a result.

From the number of occurrences of certainty values (lower
panels in Fig. 8) and the examples in Fig. 6, we can see that
the most unambiguous cases are clear sky, IC and LQ clouds
(if their spatial extent is large enough to fill whole SEVIRI
pixels). MP, SC and TI clouds have lower certainty values on
average than the other cloud states.

Figure 9. POD (a, b) and counts of occurrences (c, d) of
cloudy (a, c) and clear-sky (b, d) pixels in the SEVIRI disc for the
daytime version of ProPS. The POD and counts were computed in
latitude–longitude bins of 2.5°× 2.5° for the 6 months of validation
data.

8.4 Performance on the SEVIRI disc

To better characterize the performance of ProPS, we evalu-
ate its POD on the SEVIRI disc for the 6 months of vali-
dation data. This evaluation is shown in Figs. 9 and 10 for
cloud detection and phase detection (given a detected cloud),
respectively. Here, we show the results for the daytime ver-
sion; the results for the nighttime version can be found in the
Appendix (see Figs. C1 and C2). The top panels show the
POD of each cloud state, and the lower panels show the cor-
responding distribution of the number of occurrences of each
cloud state according to DARDAR.

Figure 9 shows that cloud detection is most challenging
over deserts, such as those in northern and southern Africa.
Clear-sky detection is most challenging at the ITCZ and
some regions in high latitudes. Looking at the distribution
of occurrences, it can be seen that the regions where cloud
detection and clear-sky detection are most challenging corre-
spond to the regions with the fewest occurrences of each.

The same is mostly true for the detection of TI, MP, SC and
LQ phases (see Fig. 10). For instance, MP and SC have their
highest detection rates in high latitudes, where they occur
most often. The detection of IC clouds, on the other hand, is
uniformly high over the whole SEVIRI disc.

For the nighttime version of ProPS, the POD of clouds is
similar to that for the daytime version, while the POD of clear
sky is slightly lower almost everywhere in the SEVIRI disc
(see Fig. C1). This suggests that ProPS tends to overestimate
cloudiness during the night. The spatial distribution of the
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Figure 10. POD (upper row) and counts of occurrences (lower row) of the different phases in the SEVIRI disc for the daytime version of
ProPS. The POD and counts were computed in latitude–longitude bins of 2.5°× 2.5° for the 6 months of validation data.

POD for the different phases is very similar to that for the
daytime version (see Fig. C2).

9 Conclusions

This study presents ProPS, a new method for cloud detection
and phase determination using SEVIRI aboard the geosta-
tionary satellite Meteosat Second Generation. ProPS distin-
guishes between clear sky, optically thin ice (TI) cloud, op-
tically thick ice (IC) cloud, mixed-phase (MP) cloud, super-
cooled liquid (SC) cloud and warm liquid (LQ) cloud. The
lidar–radar cloud product DARDAR is used as a reference,
and a Bayesian approach is applied to combine the cloud
and phase information from different SEVIRI channels and
prior knowledge. For the probabilities used in the Bayesian
approach, we carefully select SEVIRI channels and their de-
pendencies, which are used as conditions in the probabilities
in order to optimize the information content of the SEVIRI
channels. We implement both daytime and nighttime ver-
sions of the algorithm with combinations of SEVIRI chan-
nels at wavelengths of 0.6, 1.6, 8.7, 10.8 and 12 µm, along
with a texture parameter derived from the 10.8 µm channel.
The result of this Bayesian approach is a probability for each
cloud state (clear sky and the various cloud phases) per SE-
VIRI pixel. This allows us to select the most likely cloud
state as the final result. ProPS effectively transfers the ad-
vanced cloud and phase detection capabilities of DARDAR
to the SEVIRI geostationary imager.

We validate the method using 6 months of independent
collocated DARDAR data. Our findings show that the day-
time algorithm successfully detects 93 % of clouds and 86 %
of clear-sky pixels. It also shows good performance in accu-
rately classifying cloud phases compared to DARDAR data,
with probability of detection (POD) values of 91 %, 78 %,

52 %, 58 % and 86 % for IC, TI, MP, SC and LQ, respec-
tively. Distinguishing between MP and SC poses the greatest
challenge in phase classification, as there is a tendency for
MP cloud tops to be classified as SC and vice versa. This
is expected, as SC and MP cloud tops occur in very similar
circumstances (e.g. at similar latitudes and cloud-top tem-
peratures) and can have similar radiative properties if the MP
cloud top consists predominantly of liquid droplets. How-
ever, it should be emphasized that ProPS is capable of dis-
tinguishing between them in more than 50 % of the cases.
The primary challenge for the nighttime version lies in de-
tecting low LQ clouds, particularly when their temperatures
are similar to the surface temperature; the nighttime version
of ProPS tends to overestimate the occurrence of these LQ
clouds. However, the nighttime version of ProPS performs
nearly as well as the daytime version in terms of cloud-phase
detection. This indicates that ProPS is suitable for studying
the complete daily cycle of cloud phases. Nevertheless, the
algorithm is expected to perform best for each location dur-
ing the times of the day corresponding to the overflight pe-
riods where the sza and umu values as well as their combi-
nations (during the daytime) are covered by the DARDAR
data set. Similarly, the prior information used in the retrieval
process is only representative of the specific overflight times.

An advantage of the ProPS method is its ability to assign a
certainty to the results: in the validation, we observe that the
POD of phase detection consistently increases with certainty,
providing a straightforward measure of the reliability of the
results.

Thus, ProPS represents a significant advancement in dis-
criminating cloud-top phases compared to traditional re-
trieval methods. This distinction is crucial for studying ice
in the atmosphere, understanding mixed-phase cloud proper-
ties and investigating the cloud radiative forcing associated
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with phase transitions. The new method enables the study of
microphysical and macrophysical cloud properties of clouds
with different phases, in particular MP and SC clouds, which
have been rarely investigated from geostationary satellites so
far. The geostationary perspective allows the analysis of the
temporal evolution of clouds with different phases as well as
phase transitions. SEVIRI, which has been in operation for
2 decades (2004–2024), provides an extensive data set that
can be used effectively in conjunction with this method to
make valuable statistical comparisons with climate models.
Furthermore, ProPS has the advantage of providing probabil-
ities for each cloud state. This could be a valuable additional
parameter for comparison with climate models. In terms of
further development of the ProPS method, the algorithm can
be extended to other satellites with only a few modifications
– by using for instance the spectral-band adjustment factors
proposed by Piontek et al. (2023) – since similar channels
to those used for ProPS are available in most currently op-
erational polar- and geostationary-satellite passive imagers.
The Flexible Combined Imager (FCI) aboard the satellite fol-
lowing on from MSG (Meteosat Third Generation – MTG,
launched on 13 December 2022; Durand et al., 2015) has ad-
ditional channels in the near infrared which contain informa-
tion on the cloud phase (e.g. the 2.2 µm or 3.8 µm channel)
available. However, in order to incorporate and use channels
that are not available to SEVIRI and contain phase informa-
tion, one first needs to collect a data set of collocated ac-
tive observations to compute the necessary probabilities. In
the future, this could be done with the EarthCARE satellite
(Wehr et al., 2023) (launched in May 2024). Furthermore,
working with a Bayesian approach offers an additional ad-
vantage: the method can be easily adapted to incorporate
input from numerical weather prediction (NWP) models as
prior probabilities (as suggested by Mackie et al., 2010). This
modification would allow the use of NWP-model-derived
probabilities for cloud presence and cloud phases as part of
the method’s framework. This integration promises to im-
prove the accuracy and reliability of the ProPS method in
future applications.
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Appendix A: Examples of probabilities

To provide readers with a visual understanding of the
Bayesian probabilities computed using the kernel density es-
timation (KDE) method, we present additional examples in
Fig. A1. The figure showcases the probabilities for specific
channels (or channel combinations), namely BTD10.8–8.7,
BTD10.8–12, R1.6 and RR1.6/0.6, given the cloud state q (in
different colours). The values for the additional conditions
are displayed in the figure for each channel (or channel com-
bination).

Figure A1. Examples of probabilities for different channels (or channel combinations) computed using KDE.
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Appendix B: Comparison of ProPS and CLAAS-3

In order to better characterize ProPS, we conduct a compari-
son to the CM SAF CLoud property dAtAset using SEVIRI
– Edition 3 (CLAAS-3) product, which was released in 2022
(Meirink et al., 2022). This new edition of the CLAAS prod-
uct offers an extended phase classification system that distin-
guishes between clear sky and liquid, supercooled, and vari-
ous ice cloud types; we condensed the various ice cloud types
into one ice cloud category for simplification.

The CLAAS-3 cloud detection method, called CMA-prob,
shows some similarities to ProPS, especially because it uses
a Bayesian approach based on the CALIPSO/CALIOP (but
not the CloudSat/CPR) cloud mask as the ground truth and
a selection of visible and infrared SEVIRI channels as in-
puts (Karlsson et al., 2017). While a similar probabilistic
methodology is used for ProPS and CMA-prob, their tactics
differ slightly: CMA-prob does not use conditions (except
for surface types) for the probabilities, instead subtracting
pre-calculated image feature thresholds from each channel
(or channel combination). These thresholds are dynamic, de-
pending, for instance, on satellite geometry and atmospheric
conditions. In contrast to ProPS, CMA-prob assumes that the
different SEVIRI channels (or channel combinations) are in-
dependent. Another deviation from ProPS is that CMA-prob
excludes thin ice clouds with optical thicknesses smaller than
0.2 to prevent overfitting. For the pixels classified as cloudy
by the initial procedure CMA-prob, CLAAS-3 employs a
(separated) cloud-top phase determination. This relies on a
series of threshold tests utilizing SEVIRI channels at wave-
lengths of 3.8, 6.3, 8.7, 10.8, 12.0 and 13.4 µm as well as
clear- and cloudy-sky simulated IR radiances and brightness
temperatures. Additionally, consistency with the cloud opti-
cal thickness and particle effective radius retrieval from solar
and NIR channel combinations is demanded (Meirink et al.,
2022).

To compare ProPS and CLAAS-3, we use 12 SEVIRI
scenes sampled in different seasons and at different times
of day. Figure B1 shows one such scene. The circumstances
in which ProPS and CLAAS-3 differ in the figure are sim-
ilar for the other scenes used in the comparison. Figure B2
shows statistics that compare the classifications of CLAAS-3
and ProPS across all 12 scenes. Overall, the figures show
that there is good general agreement between the two meth-
ods. In Fig. B1, the positions and phases of the clouds gen-
erally agree well when looking at the “big picture”. How-
ever, there are differences in the details. For cloud detec-
tion, discrepancies between ProPS and CLAAS-3 could stem
on the one hand from differences in the training data sets
(ProPS employs DARDAR, while CLAAS-3 utilizes data
from CALIPSO). On the other hand, there are some differ-
ences in the selection of SEVIRI channels and the condition-
s/thresholds employed as well as in the implementation of
the Bayesian approach. These nuances likely contribute to
the observed differences in cloud and phase detection.

We find that ProPS classifies more pixels as cloudy than
CLAAS-3: for the 12 scenes, ProPS classified 62 % of all
pixels as cloudy, while CLAAS-3 classified 57 % as cloudy.
The differences between ProPS and CLAAS-3 are often
found at the cloud edges, especially for small-scale warm
cumulus and thin cirrus clouds, both of which are, in gen-
eral, difficult cloud types to detect (e.g. the pink areas in the
tropics and the cumulus deck west of Africa in Fig. B1). The
agreement is better during the day than during the night, as
expected. In particular, low, warm clouds are difficult to dis-
tinguish from the surface using IR channels alone, leading to
the larger discrepancies between ProPS and CLAAS-3 dur-
ing the night compared to the day. During the day, ProPS
and CLAAS-3 agree on the classification of 81 % of all
pixels; during the night, they agree on 78 % of all pixels.
For thin ice clouds, the difference between the two meth-
ods might come (partly) from the exclusion of clouds with
an optical thickness smaller than 0.2 in CLAAS-3. In gen-
eral, ProPS tends to overestimate rather than underestimate
the amount of cloud (as discussed in Sect. 6), i.e. it is a
clear-sky-conservative algorithm, whereas CLAAS-3 seems
to be a cloud-conservative algorithm. Exceptions are ob-
tained for high satellite zenith angles (> 70°) and bright sur-
faces (deserts, ice and snow), where CLAAS-3 has higher
cloudiness values compared to ProPS.

Next, we take a look at the phase categorization of both
methods. ProPS has an additional phase category, namely
MP, which has no direct correspondence in CLAAS-3. We
find that clouds classified as MP by ProPS are mostly cate-
gorized as supercooled by CLAAS-3; almost no ProPS MP
clouds are classified as ice by CLAAS-3. The CLAAS-3
supercooled clouds are also the largest contribution to the
ProPS SC category. The main differences in phase detection
(just as for cloud detection) are found at cloud edges or at the
transition regions between different phases (for instance, at
the transition between supercooled and warm liquid clouds
over the Southern Ocean in Fig. B1). The phase category
of ProPS which differs the most from CLAAS-3 is thin ice
clouds (see the TI bar in Fig. B2): ProPS categorizes more
pixels as thin ice than CLAAS-3 does. In most cases, ProPS
and CLAAS-3 agree on the existence and positions of thin ice
clouds; however, they often have a larger extent in ProPS (see
the yellow regions in Fig. B1 at ice cloud edges). These dif-
ferences might be due to the mentioned exclusion of clouds
with an optical thickness smaller than 0.2 in CLAAS-3. The
high sensitivity of ProPS to thin ice might, however, also lead
to false alarms. CLAAS-3 categorizes parts of the SC and
MP categories of ProPS as warm liquid (the green parts of
the MP and SC bars in Fig. B2), suggesting a tendency to-
wards categorizing clouds as warmer types in the CLAAS-3
classification scheme compared to ProPS.
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Figure B1. Comparison of ProPS with the CM SAF CLoud property dAtAset using SEVIRI – Edition 3 (CLAAS-3) for one example SEVIRI
scene. Panels (a) and (b) show the results from both methods. Panel (c) shows the comparison of the ProPS and CLAAS-3 results.

Figure B2. Statistics from the comparison of ProPS with CLAAS-3
over 12 SEVIRI scenes sampled in different seasons and at different
times of day.

Appendix C: Performance of the nighttime version of
ProPS on the SEVIRI disc

In Figs. C1 and C2, we show the POD for cloud detection
and phase detection (given a detected cloud), respectively,
on the SEVIRI disc for the 6 months of validation data when
using the nighttime version of ProPS. The upper panels show
the POD of each cloud state, and the lower panels show the
corresponding distribution of the number of occurrences of
each cloud state according to DARDAR. The figures show
that the POD of clear sky is worse in the nighttime version
almost everywhere in the SEVIRI disc, except for the desert
regions on the African continent. The POD of clouds, on the
other hand, is similar to that for the daytime version, sug-
gesting that ProPS has a tendency to overestimate cloudiness
during the night. The distribution of the POD across the dif-
ferent phases is very similar to that for the daytime version.
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Figure C1. As Fig. 9 but for the nighttime version of ProPS.

Figure C2. As Fig. 10 but for the nighttime version of ProPS .
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Code and data availability. MSG/SEVIRI data are available from
the EUMETSAT (European Organisation for the Exploitation
of Meteorological Satellites) data centre (https://user.eumetsat.int/
catalogue/EO:EUM:DAT:MSG:HRSEVIRI, EUMETSAT, 2024).
The auxiliary data are available at the Copernicus Climate Change
Service (https://doi.org/10.24381/cds.adbb2d47, (Hersbach et al.,
2018)). The ProPS method uses modified Copernicus Climate
Change Service information for the years 2013 to 2017. Neither
the European Commission nor ECMWF is responsible for any use
that may be made of the Copernicus information or data it con-
tains. DARDAR-MASK data are available from the ICARE Data
and Services Center at https://www.icare.univ-lille.fr/ (last access:
12 January 2023; Delanoë and Hogan, 2010).

The collocated data set, the computed probabilities and the ProPS
algorithm presented in this study are available on request from the
corresponding author.

Author contributions. All authors contributed to the project
through discussions. JM and LB conceived the concept of this study.
JM developed the presented methods and carried out the analysis
with help from LB and valuable feedback from BM. JM and DP im-
plemented the algorithm for the retrieval. CV supervised the project
and provided scientific feedback. JM took the lead in writing the
manuscript. All authors provided feedback on the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Florian Ewald for constructive dis-
cussions and valuable feedback. This research was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation), TRR 301 – Project ID 428312742.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation, TRR 301 – Project ID 428312742).

The article processing charges for this open-access
publication were covered by the German Aerospace Center (DLR).

Review statement. This paper was edited by Alyn Lambert and re-
viewed by two anonymous referees.

References

Ackerman, S. A., Smith, W. L., Revercomb, H. E.,
and Spinhirne, J. D.: The 27–28 October 1986 FIRE
IFO Cirrus Case Study: Spectral Properties of Cir-
rus Clouds in the 8–12 µm Window, Mon. Weather
Rev., 118, 2377–2388, https://doi.org/10.1175/1520-
0493(1990)118<2377:TOFICC>2.0.CO;2, 1990.

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F.,
Baustian, K. J., Carslaw, K. S., Dobbie, S., O’Sullivan, D., and
Malkin, T. L.: The importance of feldspar for ice nucleation
by mineral dust in mixed-phase clouds, Nature, 498, 355–358,
https://doi.org/10.1038/nature12278, 2013.

Baum, B. A., Soulen, P. F., Strabala, K. I., King, M. D.,
Ackerman, S. A., Menzel, W. P., and Yang, P.: Re-
mote sensing of cloud properties using MODIS airborne
simulator imagery during SUCCESS: 2. Cloud thermody-
namic phase, J. Geophys. Res.-Atmos., 105, 11781–11792,
https://doi.org/10.1029/1999jd901090, 2000.

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz,
R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS
Cloud-Top Property Refinements for Collection 6, J. Appl. Me-
teorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-
11-0203.1, 2012.

Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J.,
Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-
SEVIRI-based cloud property data record CLAAS-2, Earth Syst.
Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017,
2017.

Benedetti, A.: CloudSat AN-ECMWF ancillary data interface con-
trol document, technical document, CloudSat Data Processing
Cent., FortCollins, Colo., 2005.

Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., In-
oue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T.,
Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji,
K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H.,
Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to
Himawari-8/9 – Japan’s New-Generation Geostationary Mete-
orological Satellites, J. Meteorol. Soc. Jpn. II, 94, 151–183,
https://doi.org/10.2151/jmsj.2016-009, 2016.

Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones,
C., Meehl, G. A., Predoi, V., Roberts, M. J., and Eyring, V.:
Quantifying Progress Across Different CMIP Phases With the
ESMValTool, J. Geophys. Res.-Atmos., 125, e2019JD032321,
https://doi.org/10.1029/2019JD032321, 2020.

Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A.,
and Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolu-
tion of the DARDAR cloud classification and its comparison to
airborne radar-lidar observations, J. Geophys. Res.-Atmos., 118,
7962–7981, https://doi.org/10.1002/jgrd.50579, 2013.

Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and
Boer, G.: Ubiquitous low-level liquid-containing Arctic
clouds: New observations and climate model constraints
from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804,
https://doi.org/10.1029/2012GL053385, 2012.

Cesana, G., Waliser, D. E., Jiang, X., and Li, J.-L. F.: Multi-
model evaluation of cloud phase transition using satellite and
reanalysis data, J. Geophys. Res.-Atmos., 120, 7871–7892,
https://doi.org/10.1002/2014JD022932, 2015.

Atmos. Meas. Tech., 17, 4015–4039, 2024 https://doi.org/10.5194/amt-17-4015-2024

https://user.eumetsat.int/catalogue/EO:EUM:DAT:MSG:HRSEVIRI
https://user.eumetsat.int/catalogue/EO:EUM:DAT:MSG:HRSEVIRI
https://doi.org/10.24381/cds.adbb2d47
https://www.icare.univ-lille.fr/
https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
https://doi.org/10.1038/nature12278
https://doi.org/10.1029/1999jd901090
https://doi.org/10.1175/JAMC-D-11-0203.1
https://doi.org/10.1175/JAMC-D-11-0203.1
https://doi.org/10.5194/essd-9-415-2017
https://doi.org/10.2151/jmsj.2016-009
https://doi.org/10.1029/2019JD032321
https://doi.org/10.1002/jgrd.50579
https://doi.org/10.1029/2012GL053385
https://doi.org/10.1002/2014JD022932


J. Mayer et al.: Bayesian cloud-top phase determination for Meteosat Second Generation 4037

Cesana, G. V., Khadir, T., Chepfer, H., and Chiriaco, M.:
Southern Ocean Solar Reflection Biases in CMIP6 Mod-
els Linked to Cloud Phase and Vertical Structure Rep-
resentations, Geophys. Res. Lett., 49, e2022GL099777,
https://doi.org/10.1029/2022GL099777, 2022.

Choi, Y.-S., Ho, C.-H., Park, C.-E., Storelvmo, T., and
Tan, I.: Influence of cloud phase composition on cli-
mate feedbacks, J. Geophys. Res.-Atmos., 119, 3687–3700,
https://doi.org/10.1002/2013JD020582, 2014.

Chylek, P., Robinson, S., Dubey, M. K., King, M. D., Fu, Q., and
Clodius, W. B.: Comparison of near-infrared and thermal in-
frared cloud phase detections, J. Geophys. Res., 111, D20203,
https://doi.org/10.1029/2006JD007140, 2006.

Coopman, Q., Hoose, C., and Stengel, M.: Analysis of the
Thermodynamic Phase Transition of Tracked Convec-
tive Clouds Based on Geostationary Satellite Observa-
tions, J. Geophys. Res.-Atmos., 125, e2019JD032146,
https://doi.org/10.1029/2019JD032146, 2020.

Coopman, Q., Hoose, C., and Stengel, M.: Analyzing the
Thermodynamic Phase Partitioning of Mixed Phase Clouds
Over the Southern Ocean Using Passive Satellite Ob-
servations, Geophys. Res. Lett., 48, e2021GL093225,
https://doi.org/10.1029/2021GL093225 , 2021.

Cover, T. M. and Thomas, J. A.: Elements of Information Theory,
John Wiley & Sons, https://doi.org/10.1002/047174882X, 2005.

Delanoë, J. and Hogan, R. J.: A variational scheme for re-
trieving ice cloud properties from combined radar, lidar,
and infrared radiometer, J. Geophys. Res., 113, D07204,
https://doi.org/10.1029/2007JD009000, 2008.

Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-
MODIS retrievals of the properties of ice clouds, J. Geophys.
Res., 115, D00H29, https://doi.org/10.1029/2009JD012346,
2010.

Doutriaux-Boucher, M. and Quaas, J.: Evaluation of cloud ther-
modynamic phase parametrizations in the LMDZ GCM by us-
ing POLDER satellite data, Geophys. Res. Lett., 31, L06126,
https://doi.org/10.1029/2003GL019095, 2004.

Durand, Y., Hallibert, P., Wilson, M., Lekouara, M., Grabarnik, S.,
Aminou, D., Blythe, P., Napierala, B., Canaud, J.-L., Pigouche,
O., Ouaknine, J., and Verez, B.: The flexible combined imager
onboard MTG: from design to calibration, SPIE Remote Sensing,
https://doi.org/10.1117/12.2196644, 2015.

EUMETSAT: High Rate SEVIRI Level 1.5 Image Data – MSG
– 0 degree, EUMETSAT [data set], https://user.eumetsat.int/
catalogue/EO:EUM:DAT:MSG:HRSEVIRI, last access: 28 June
2024.

Ewald, F., Groß, S., Wirth, M., Delanoë, J., Fox, S., and Mayer,
B.: Why we need radar, lidar, and solar radiance observations to
constrain ice cloud microphysics, Atmos. Meas. Tech., 14, 5029–
5047, https://doi.org/10.5194/amt-14-5029-2021, 2021.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ra-
mankutty, N., Sibley, A., and Huang, X.: MODIS Collection
5 global land cover: Algorithm refinements and characteriza-
tion of new datasets, Remote Sens. Environ., 114, 168–182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Gregory, D. and Morris, D.: The sensitivity of climate simulations
to the specification of mixed phase clouds, Clim. Dynam., 12,
641–651, https://doi.org/10.1007/BF00216271, 1996.

Hahn, V., Meerkötter, R., Voigt, C., Gisinger, S., Sauer, D.,
Catoire, V., Dreiling, V., Coe, H., Flamant, C., Kaufmann,
S., Kleine, J., Knippertz, P., Moser, M., Rosenberg, P.,
Schlager, H., Schwarzenboeck, A., and Taylor, J.: Pollution
slightly enhances atmospheric cooling by low-level clouds in
tropical West Africa, Atmos. Chem. Phys., 23, 8515–8530,
https://doi.org/10.5194/acp-23-8515-2023, 2023.

Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther,
A.: A Naive Bayesian Cloud-Detection Scheme Derived from
CALIPSO and Applied within PATMOS-x, J. Appl. Meteo-
rol. Clim., 51, 1129–1144, https://doi.org/10.1175/JAMC-D-11-
02.1, 2012.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., anf Thépaut, J.-N.:
ERA5 hourly data on single levels from 1940 to present, Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS)
[data set], https://doi.org/10.24381/cds.adbb2d47, 2018,

Hogan, R. J., Francis, P. N., Flentje, H., Illingworth, A. J., Quante,
M., and Pelon, J.: Characteristics of mixed-phase clouds. I: Li-
dar, radar and aircraft observations from CLARE’98, Q. J. Roy.
Meteor. Soc., 129, 2089–2116, https://doi.org/10.1256/rj.01.208,
2003.

Hünerbein, A., Bley, S., Horn, S., Deneke, H., and Walther, A.:
Cloud mask algorithm from the EarthCARE Multi-Spectral Im-
ager: the M-CM products, Atmos. Meas. Tech., 16, 2821–2836,
https://doi.org/10.5194/amt-16-2821-2023, 2023.

Intergovernmental Panel on Climate Change (IPCC): Climate
Change 2021 – The Physical Science Basis: Working Group I
Contribution to the Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud,
N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
https://doi.org/10.1017/9781009157896, 2023.

Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink,
J. F., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen,
E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein,
D., Finkensieper, S., Håkansson, N., Hollmann, R., Fuchs, P., and
Werscheck, M.: CLARA-A2: CM SAF cLoud, Albedo and sur-
face RAdiation dataset from AVHRR data – Edition 2, Satellite
Application Facility on Climate Monitoring (CM SAF) [data set],
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002,
2017.

Key, J. R. and Intrieri, J. M.: Cloud Particle Phase Determi-
nation with the AVHRR, J. Appl. Meteorol., 39, 1797–1804,
https://doi.org/10.1175/1520-0450-39.10.1797, 2000.

Kirschler, S., Voigt, C., Anderson, B. E., Chen, G., Crosbie, E. C.,
Ferrare, R. A., Hahn, V., Hair, J. W., Kaufmann, S., Moore, R.
H., Painemal, D., Robinson, C. E., Sanchez, K. J., Scarino, A. J.,
Shingler, T. J., Shook, M. A., Thornhill, K. L., Winstead, E. L.,
Ziemba, L. D., and Sorooshian, A.: Overview and statistical anal-
ysis of boundary layer clouds and precipitation over the western
North Atlantic Ocean, Atmos. Chem. Phys., 23, 10731–10750,
https://doi.org/10.5194/acp-23-10731-2023, 2023.

Knap, W. H., Stammes, P., and Koelemeijer, R. B. A.:
Cloud Thermodynamic Phase Determination from
Near-Infrared Spectra of Reflected Sunlight, J. At-

https://doi.org/10.5194/amt-17-4015-2024 Atmos. Meas. Tech., 17, 4015–4039, 2024

https://doi.org/10.1029/2022GL099777
https://doi.org/10.1002/2013JD020582
https://doi.org/10.1029/2006JD007140
https://doi.org/10.1029/2019JD032146
https://doi.org/10.1029/2021GL093225 
https://doi.org/10.1002/047174882X
https://doi.org/10.1029/2007JD009000
https://doi.org/10.1029/2009JD012346
https://doi.org/10.1029/2003GL019095
https://doi.org/10.1117/12.2196644
https://user.eumetsat.int/catalogue/EO:EUM:DAT:MSG:HRSEVIRI
https://user.eumetsat.int/catalogue/EO:EUM:DAT:MSG:HRSEVIRI
https://doi.org/10.5194/amt-14-5029-2021
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1007/BF00216271
https://doi.org/10.5194/acp-23-8515-2023
https://doi.org/10.1175/JAMC-D-11-02.1
https://doi.org/10.1175/JAMC-D-11-02.1
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1256/rj.01.208
https://doi.org/10.5194/amt-16-2821-2023
https://doi.org/10.1017/9781009157896
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002
https://doi.org/10.1175/1520-0450-39.10.1797
https://doi.org/10.5194/acp-23-10731-2023


4038 J. Mayer et al.: Bayesian cloud-top phase determination for Meteosat Second Generation

mos. Sci., 59, 83–96, https://doi.org/10.1175/1520-
0469(2002)059<0083:CTPDFN>2.0.CO;2, 2002.

Komurcu, M., Storelvmo, T., Tan, I., Lohmann, U., Yun, Y.,
Penner, J. E., Wang, Y., Liu, X., and Takemura, T.: In-
tercomparison of the cloud water phase among global cli-
mate models, J. Geophys. Res.-Atmos., 119, 3372–3400,
https://doi.org/10.1002/2013JD021119, 2014.

Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Law-
son, P., Wang, Z., Williams, E., Abel, S. J., Axisa, D., Bor-
rmann, S., Crosier, J., Fugal, J., Krämer, M., Lohmann, U.,
Schlenczek, O., Schnaiter, M., and Wendisch, M.: Mixed-
Phase Clouds: Progress and Challenges, Meteor. Mon.,
58, 51–550, https://doi.org/10.1175/AMSMONOGRAPHS-D-
17-0001.1, 2017.

Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud opti-
cal thickness and top altitude from geostationary remote sensing,
Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-
7-3233-2014, 2014.

Krebs, W., Mannstein, H., Bugliaro, L., and Mayer, B.: Technical
note: A new day- and night-time Meteosat Second Generation
Cirrus Detection Algorithm MeCiDA, Atmos. Chem. Phys., 7,
6145–6159, https://doi.org/10.5194/acp-7-6145-2007, 2007.

Li, W., Zhang, F., Lin, H., Chen, X., Li, J., and Han, W.: Cloud
Detection and Classification Algorithms for Himawari-8 Im-
ager Measurements Based on Deep Learning, IEEE T. Geosci.
Remote, 60, 1–17, https://doi.org/10.1109/TGRS.2022.3153129,
2022.

Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope,
T., and King, J.: Antarctic clouds, supercooled liquid water
and mixed phase, investigated with DARDAR: geographical
and seasonal variations, Atmos. Chem. Phys., 19, 6771–6808,
https://doi.org/10.5194/acp-19-6771-2019, 2019.

Loveland, T. R. and Belward, A. S.: The IGBP-DIS global 1km land
cover data set, DISCover: First results, Int. J. Remote Sens., 18,
3289–3295, https://doi.org/10.1080/014311697217099, 1997.

Mackie, S., Embury, O., Old, C., Merchant, C. J., and Fran-
cis, P.: Generalized Bayesian cloud detection for satellite im-
agery. Part 1: Technique and validation for night-time im-
agery over land and sea, Int. J. Remote Sens., 31, 2573–2594,
https://doi.org/10.1080/01431160903051703, 2010.

Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.:
MODIS Collection 6 shortwave-derived cloud phase classifica-
tion algorithm and comparisons with CALIOP, Atmos. Meas.
Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016,
2016.

Masiello, G., Serio, C., Venafra, S., DeFeis, I., and Borbas, E. E.:
Diurnal variation in Sahara desert sand emissivity during the dry
season from IASI observations, J. Geophys. Res.-Atmos., 119,
1626–1638, https://doi.org/10.1002/jgrd.50863, 2014.

Matus, A. V. and L’Ecuyer, T. S.: The role of cloud phase in
Earths radiation budget, J. Geophys. Res.-Atmos., 122, 2559–
2578, https://doi.org/10.1002/2016JD025951, 2017.

Mayer, J., Ewald, F., Bugliaro, L., and Voigt, C.: Cloud Top Ther-
modynamic Phase from Synergistic Lidar-Radar Cloud Prod-
ucts from Polar Orbiting Satellites: Implications for Observa-
tions from Geostationary Satellites, Remote Sens., 15, 1742,
https://doi.org/10.3390/rs15071742, 2023.

Meirink, J. F., Karlsson, K.-G., Solodovnik, I., Hüser, I., Be-
nas, N., Johansson, E., Håkansson, N., Stengel, M., Selbach,

N., Marc, S., and Hollmann, R.: CLAAS-3: CM SAF CLoud
property dAtAset using SEVIRI – Edition 3, Satellite Appli-
cation Facility on Climate Monitoring (CM SAF) [data set],
https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V003, 2022.

Menzel, W. P., Baum, B. A., Strabala, K. I., and Frey, R. A.: Cloud
top properties and cloud phase: MODIS Algorithm Theoretical
Basis Document, ATBD-MOD-04, Theoretical Basis Document,
2002.

Merchant, C. J., Harris, A. R., Maturi, E., and Maccallum, S.: Prob-
abilistic physically based cloud screening of satellite infrared im-
agery for operational sea surface temperature retrieval, Q. J. Roy.
Meteor. Soc., 131, 2735–2755, https://doi.org/10.1256/qj.05.15,
2005.

Mioche, G., Jourdan, O., Ceccaldi, M., and Delanoë, J.: Variability
of mixed-phase clouds in the Arctic with a focus on the Svalbard
region: a study based on spaceborne active remote sensing, At-
mos. Chem. Phys., 15, 2445–2461, https://doi.org/10.5194/acp-
15-2445-2015, 2015.

Moser, M., Voigt, C., Jurkat-Witschas, T., Hahn, V., Mioche, G.,
Jourdan, O., Dupuy, R., Gourbeyre, C., Schwarzenboeck, A.,
Lucke, J., Boose, Y., Mech, M., Borrmann, S., Ehrlich, A., Her-
ber, A., Lüpkes, C., and Wendisch, M.: Microphysical and ther-
modynamic phase analyses of Arctic low-level clouds measured
above the sea ice and the open ocean in spring and summer, At-
mos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-
23-7257-2023, 2023.

Nakajima, T. and King, M. D.: Determination of the Opti-
cal Thickness and Effective Particle Radius of Clouds from
Reflected Solar Radiation Measurements. Part I: Theory,
J. Atmos. Sci., 47, 1878–1893, https://doi.org/10.1175/1520-
0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.

Okamoto, H., Sato, K., and Hagihara, Y.: Global analysis of ice mi-
crophysics from CloudSat and CALIPSO: Incorporation of spec-
ular reflection in lidar signals, J. Geophys. Res., 115, D22209,
https://doi.org/10.1029/2009JD013383, 2010.

Pavolonis, M.: GOES-R Advanced Baseline Imager (ABI) Algo-
rithm Theoretical Basis Document For Cloud Type and Cloud
Phase, University of Wisconsin-Madison, 2010.

Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Daytime Global
Cloud Typing from AVHRR and VIIRS: Algorithm Description,
Validation, and Comparisons, J. Appl. Meteorol., 44, 804–826,
https://doi.org/10.1175/JAM2236.1, 2005.

Pavolonis, M. J., Sieglaff, J., and Cintineo, J.: Spectrally En-
hanced Cloud Objects – A generalized framework for auto-
mated detection of volcanic ash and dust clouds using pas-
sive satellite measurements: 2. Cloud object analysis and
global application, J. Geophys. Res.-Atmos., 120, 7842–7870,
https://doi.org/10.1002/2014JD022969, 2015.

Piontek, D., Bugliaro, L., Müller, R., Muser, L., and Jerg, M.: Multi-
Channel Spectral Band Adjustment Factors for Thermal Infrared
Measurements of Geostationary Passive Imagers, Remote Sens.,
15, 1247, https://doi.org/10.3390/rs15051247, 2023.

Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi,
J., and Frey, R.: The MODIS cloud products: algorithms and
examples from terra, IEEE T. Geosci. Remote, 41, 459–473,
https://doi.org/10.1109/TGRS.2002.808301, 2003.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe,
N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz,
R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud

Atmos. Meas. Tech., 17, 4015–4039, 2024 https://doi.org/10.5194/amt-17-4015-2024

https://doi.org/10.1175/1520-0469(2002)059<0083:CTPDFN>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0083:CTPDFN>2.0.CO;2
https://doi.org/10.1002/2013JD021119
https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1
https://doi.org/10.5194/amt-7-3233-2014
https://doi.org/10.5194/amt-7-3233-2014
https://doi.org/10.5194/acp-7-6145-2007
https://doi.org/10.1109/TGRS.2022.3153129
https://doi.org/10.5194/acp-19-6771-2019
https://doi.org/10.1080/014311697217099
https://doi.org/10.1080/01431160903051703
https://doi.org/10.5194/amt-9-1587-2016
https://doi.org/10.1002/jgrd.50863
https://doi.org/10.1002/2016JD025951
https://doi.org/10.3390/rs15071742
https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V003
https://doi.org/10.1256/qj.05.15
https://doi.org/10.5194/acp-15-2445-2015
https://doi.org/10.5194/acp-15-2445-2015
https://doi.org/10.5194/acp-23-7257-2023
https://doi.org/10.5194/acp-23-7257-2023
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://doi.org/10.1029/2009JD013383
https://doi.org/10.1175/JAM2236.1
https://doi.org/10.1002/2014JD022969
https://doi.org/10.3390/rs15051247
https://doi.org/10.1109/TGRS.2002.808301


J. Mayer et al.: Bayesian cloud-top phase determination for Meteosat Second Generation 4039

Optical and Microphysical Products: Collection 6 Updates and
Examples From Terra and Aqua, IEEE T. Geosci. Remote, 55,
502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.

Ricaud, P., Del Guasta, M., Lupi, A., Roehrig, R., Bazile, E., Du-
rand, P., Attié, J.-L., Nicosia, A., and Grigioni, P.: Supercooled
liquid water clouds observed over Dome C, Antarctica: tempera-
ture sensitivity and cloud radiative forcing, Atmos. Chem. Phys.,
24, 613–630, https://doi.org/10.5194/acp-24-613-2024, 2024.

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann,
J., Rota, S., and Ratier, A.: An Introduction to Me-
teosat Second Generation (MSG), B. Am. Meteo-
rol. Soc., 83, 992–992, https://doi.org/10.1175/1520-
0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.

Shannon, C. E. and Weaver, W.: A mathematical model of com-
munication, University of Illinois Press, Urbana, IL, 11, 11–20,
1949.

Silverman, B. W.: Density estimation for statistics and data analy-
sis, vol. 26, CRC press, https://doi.org/10.1201/9781315140919,
1986.

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen,
K., Wang, Z., Illingworth, A. J., O’connor, E. J., Rossow,
W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti,
A., and Mitrescu, C.: THE CLOUDSAT MISSION AND THE
A-TRAIN: A New Dimension of Space-Based Observations of
Clouds and Precipitation, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/BAMS-83-12-1771, 2002.

Strandgren, J., Fricker, J., and Bugliaro, L.: Characterisation of
the artificial neural network CiPS for cirrus cloud remote sens-
ing with MSG/SEVIRI, Atmos. Meas. Tech., 10, 4317–4339,
https://doi.org/10.5194/amt-10-4317-2017, 2017.

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints
on mixed-phase clouds imply higher climate sensitivity, Science,
352, 224–227, https://doi.org/10.1126/science.aad5300, 2016.

Wang, Z.: Level 2 Combined Radar and Lidar Cloud Scenario
Classification Product Process Description and Interface Control
Document, JPL Rep 22, 2012.

Wang, Z., Letu, H., Shang, H., Zhao, C., Li, J., and Ma, R.: A Su-
percooled Water Cloud Detection Algorithm Using Himawari-
8 Satellite Measurements, J. Geophys. Res.-Atmos., 124, 2724–
2738, https://doi.org/10.1029/2018JD029784, 2019.
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