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Abstract –The outer boundary of the plasmasphere, the plasmapause, is characterized by a sharp electron
density gradient that changes under varying space weather conditions. We developed a new model, called
the Neustrelitz/ESOC PlasmaPause Model (NEPPM), for providing plasmapause location in terms of
L-shell utilizing electron density measurements from the Van Allen Probes from 2012 to 2018 and the
IMAGE satellite data from 2001 to 2005. Both datasets were preprocessed, and algorithms were developed
for the automatic detection of plasmapause location Lpp where L denotes the McIlwain parameter. The sug-
gested model provides a simple ellipse-based approach determined by the semi-major axis, the eccentricity,
and the orientation angle of the semi-major axis. The modelled Lpp varies as a function of the Dst index and
magnetic local time MLT . The NEPPM results are compared with the Global Core Plasma Model (GCPM).
The plasmapause bulge in the evening hours follows the level of geomagnetic activity. The NEPPM will
complete the NPSM (Neustrelitz PlasmaSphere Model), which was derived from dual-frequency GPS
measurements onboard the CHAMP satellite mission.
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1 Introduction

The plasmasphere and its upper boundary region, the
plasmapause, are important parts of the near-Earth space envi-
ronment (cf. Darrouzet et al., 2009). The co-rotating plasma
extends from the ionosphere up to the plasmapause character-
ized by a sharp decrease of the electron density towards the
non-co-rotating magnetosphere (e.g. Carpenter, 1963). Mainly
driven by the dynamics of the solar wind and the geomagnetic
field conditions, the plasmapause position and shape are highly
variable. The plasmasphere is refilled after geomagnetic storm-
induced erosion by ionospheric ions, primarily protons, up to
the plasmapause at about 5–7 Earth radii (RE) in the geomag-
netic equatorial plane (cf. Lemaire & Gringauz, 1998). Under
perturbed conditions, the enhanced magnetospheric convection
electric field causes a strong contraction of the plasmasphere
measurable as an inward motion of the plasmapause position
Lpp down to about L ¼ 2 (cf. Obana et al., 2019 and references
therein).

The plasmasphere is not only of interest for studying solar-
terrestrial relationships but also for space-based applications in

communication, navigation and remote sensing. A better under-
standing of its behaviour will enhance the accuracy and reliabil-
ity of these applications, e.g., by estimating total electron content
(TEC) induced range errors in applications of Global Navigation
Satellite Systems (GNSS) as reported e.g. by Lunt et al. (1999),
Yizengaw et al. (2008) and Jakowski & Hoque (2018).

Early plasmapause models by Carpenter & Anderson (1992)
and Gallagher et al. (1988, 2000) addressed this behaviour by
referring to the geomagnetic Kp index (Matzka et al., 2021).
The Carpenter & Anderson (1992) plasmapause model, based
on whistler measurements (Carpenter and Smith, 1964), has
been largely used for radiation belt studies over many years
(cf. Ripoll et al., 2022). Gallagher et al. (2000) established a uni-
fied model, the so-called Global Core Plasma Model (GCPM),
which is based on comprehensive previous studies and consid-
ers the space weather impact by relying on the geomagnetic Kp
index. Different geomagnetic indices such as Kp, Dst and AE
have been used by O’Brien & Moldwin (2003) to present an
empirical model based on 900 Combined Release and Radiation
Effects Satellite (CRRES) electron density profiles. Unfortu-
nately, the methodology to define reliable plasmapause profiles
remains unclear. It is worth mentioning thatDst has been shown
to correlate slightly better than Kp.*Corresponding author: Daniela.Banys@dlr.de
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Considerable progress has been made in theoretical and
empirical modelling of the plasmasphere and plasmapause posi-
tion in the recent two decades (cf. Ripoll et al., 2022 and refer-
ences therein). Reinisch et al. (2009) subjected the augmentation
of empirical plasmasphere models by the inclusion of data from
IMAGE (Imager for Magnetopause-to-Aurora Global Explo-
ration) and Cluster. Pierrard et al. (2009) investigated the perfor-
mance and progress of physics-based models in terms of
modelling approaches, behaviour at geomagnetic storms and
couplings of the plasmasphere to ionosphere and magneto-
sphere. Heilig & Lühr (2013) analyzed more than 20,000
plasmapause crossings obtained from the CHAllenging Min-
isatellite Payload (CHAMP). Their model depends on magnetic
local time MLT and Kp. Liu et al. (2015) developed a dynamic
plasmapause model based on the Time History of Events and
Macroscale Interactions during Substorms (THEMIS) data from
2009 to 2013, including 5878 crossing events over different
MLT sectors. The model utilizes 5 different parameters having
a high correlation with Lpp. Huba & Krall (2013) simulated for
the first time the 3D plasmasphere with the first-principles
physics-based model SAMI3, with a special focus on plasmas-
pheric behaviour during storms investigating the evolvement of
plumes. Zhelavskaya et al. (2017) have developed a Plasma
density in the Inner magnetosphere Neural network-based
Empirical (PINE) model for reconstructing the plasmasphere
density distribution and its dynamics for 2 � Lpp � 6 at all
local times. The neural network utilizes a wide variety of input
parameters such as geomagnetic indices, solar wind data and
solar wind coupling functions. A New Solar Wind driven
Global Dynamic Plasmapause (NSW-GDP) model has been
developed by He et al. (2017) based on a large database utiliz-
ing multiple sources from 1977 to 2015 covering four solar
cycles. The model refers to solar wind parameters as well as
geomagnetic indices. Guo et al. (2021) have developed a neural
network model of the plasmapause location using Van Allen
Probes data obtained during the period from 2012 to 2017.
The model achieves good results when using only AE or
Kp indices as input parameters. Botek et al. (2021) applied the
Space Weather Integrated Forecasting Framework (SWIFF)
Plasmasphere Model (SPM), a 3D kinetic plasmasphere model,
to Van Allen Probes data in order to improve the model’s
plasma trough equations and compared the results, among
others, with Arase data. The plasmapause model developed
by Ripoll et al. (2022) utilizes NASA Van Allen Probes data
and Integrated Science measurements for extracting the plasma-
sphere boundaries during 2012–2019. The gradient method
for locating the plasmapause is equivalent to the 100 cm�3

density thresholds for the plasmasphere outer edge (L100). The
L100 boundary starts varying with MLT for Kp > 2.

The Neustrelitz/ESOC PlasmaPause Model (NEPPM) pre-
sented here has been developed to serve as a robust and easy-
to-use background model in operational space weather services.
For detecting the plasmapause position, an effective automatic
procedure is proposed by formulating clear conditions for elec-
tron density gradient shapes. The newly applied criteria for
automated filtering and subsequent model fitting shall be illus-
trated in the paper by using IMAGE and Van Allen Probes data.
The database is explained in Section 2. The therein-introduced
conditions for automatically selecting reliable profile data are
described in detail. Applying this procedure is expected to

obtain a conveniently restricted set of electron density profiles
as input for building the plasmapause model. Section 3
describes the ellipse-based modelling approach assumed for
the NEPPM. The ellipse-based Lpp-function is embedded in a
3D modelling algorithm allowing to fit of the function parame-
ters directly from observed plasmapause torus position vectors
~Rpp. In addition, this way of 3D modelling allows accounting
for a non-dipole Earth magnetic field. Section 4 summarizes
the results obtained with the NEPPM and compares them with
other modelling approaches, in particular the GCPM, before
concluding the paper in Section 5. Attached are two annexes:
Annex A details formulae developments of algorithms needed
for the 3D plasmapause modelling, and Annex B provides an
efficient coordinate transformation between geographic and
solar-magnetic (SM) coordinates.

2 Database and preparation

For developing the NEPPM, over 3000 plasmapause cross-
ings have been utilized. The selected electron density data have
been recorded during plasmapause crossings onboard the
IMAGE satellite (cf. https://image.gsfc.nasa.gov/) and the Van
Allen Probes (https://www.nasa.gov/van-allen-probes).

2.1 IMAGE RPI data

On 25 March 2000, NASA launched the IMAGE (Imager
for Magnetopause-to-Aurora Global Explorer) satellite, which
operated successfully until 18 December 2005. The Radio-
Plasma Imager (RPI) on board took passive in-situ plasma wave
measurements suitable for reconstructing electron densities and
deriving plasmapause positions. Detailed information on the
instrument is given in Reinisch et al. (2001a, 2001b, 2009)
and Goldstein et al. (2003). The passive observations can be dis-
played as a function of frequency over time, i.e., a dynamic
spectrum (cf. Galkin et al., 2004). Considering the upper-hybrid
band, the continuum edge, and band emissions, a semi-
automatic fitting technique in the dynamic spectra was then
applied to derive electron density values from the dynamic
RPI spectrogram (Gerzen et al., 2014). Data in the Level Zero
Telemetry L0 format is limited to the beginning of 2001 until
the end of 2005. This summarizes over 200,000 individual elec-
tron density values together with their respective observation
time, location, and L-shell distance. For further information,
we refer to Denton et al. (2012), Gerzen et al. (2014), and the
website of the Space Science Lab of the University of
Massachusetts Lowell (UML, http://ulcar.uml.edu/rpi.html).
Our NEPPM model is based on these electron densities derived
from the passive RPI data, their respective geographic position
vectors and times, and furthermore, the equivalent Van Allen
Probes data, detailed in the next section.

2.2 Van Allen Probes reconstructed electron density
data

The Van Allen Probes, Radiation Belt Storm Probes RBSP-
A and B, were launched on 20 August 2012 and operated for
over 7 years. Onboard, the EMFISIS instrument suite (Electric
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and Magnetic Fields Instrument Suite and Integrated Science;
Kletzing et al., 2013) provided electric field measurements in
the frequency range of 10–487 kHz, so that the upper hybrid
resonance band could be identified allowing precise electron
density estimations. The NEPPM uses the electron densities,
position vectors, and times that are provided by the NURD
(Neural-network-based Upper Hybrid Resonance Determina-
tion) algorithm published in Zhelavskaya et al. (2016). The
feedforward neural network NURD was trained on the Van
Allen Probes data to derive the upper hybrid resonance
frequency and finally the electron number density. The database
consists of over 24,000,000 single electron density values for
Van Allen Probes RBSP-A and over 16,000,000 for RBSP-B.
To ensure a reliable database, we only use orbits with a quality
flag of 1, representing good quality, while disregarding orbits
with questionable or missing data.

2.3 Plasmapause detection

Due to the highly eccentric orbits of IMAGE and the Van
Allen Probes, one can relate electron density measurements to
the altitude. For retrieving distinguished electron density pro-
files, in particular, for IMAGE, the measurements are split, first,
at gaps larger than 5 min, and second, at their global maxima
and minima in case these are not at the beginning or end of
the respective time series. Each section obtained this way is con-
sidered physically plausible and is treated as an electron density
profile. Nevertheless, too short profiles may produce unwanted
artefacts. We hence only use profiles with at least 10 measure-
ment points, considering a common IMAGE profile of about
50 measurements.

Many publications suggest looking for density drops of
factor 5 within an interval of 0:5L (Moldwin et al., 2002; Liu
et al., 2015; Guo et al., 2021). However, this is quite a conser-
vative criterion excluding rapid density fluctuations during
active conditions (Moldwin et al., 2002). Also, this bound will
not detect smaller but well-shaped plasmapause gradients. For
including these potentially valuable profiles, we use a refined
set of criteria based on averaging to a comparable step size
and relative bounds.

Predefinitions
To avoid outliers, raw electron density measurements No

e are
generally replaced by smoothed measurements via a 3-point
moving average approach

Ne lkð Þ :¼ 1
3

X1

i¼�1
No

e lkþið Þ; ð2:1Þ
where lk runs through the profile on which Lpp is considered.
Since the provided electron density profiles of the Van Allen
Probes are of higher resolution than the IMAGE ones, we are
furthermore reducing the resolution of Ne to an average of 50
values per profile in total in order to apply the same plasma-
pause detection algorithm.

The point

L :¼ argmin
l

@l logNeðlÞ ð2:2Þ

shall represent the position of the steepest slope and possible Lpp

(cf. red dot in Fig. 1a–f), where the derivative is defined via
central differences

@l logNe lkð Þ :¼ logNe lkþ1ð Þ � logNe lk�1ð Þ
lkþ1 � lk�1

: ð2:3Þ

Now, all of the following conditions must be satisfied to regard
L as Lpp. Measurements that are in conflict with one or more of
them are excluded. Typical profiles for each condition are
shown in Figure 1.

Condition 1
At the L value of the steepest decrease, the derivative must be
much smaller than for the remainder, i.e.

@l logNe Lð Þ < @l logNe � 2r @l logNeð Þ; ð2:4Þ

where � stands for the arithmetic mean and r �ð Þ for the standard
deviation (cf. the small gradients in Fig. 1b and c).

Condition 2
The absolute change of Ne is expected to be small in relation to
the other changes, so we assume

� logNe Lð Þ < � logNe � 2rð� logNeÞ ð2:5Þ

with � logNe lkð Þ :¼ logNe lkð Þ � logNe lk�1ð Þ being the
difference of the neighboring values (see Fig. 1b and d). This
covers more global aspects than the very local Condition 1
and is attributed mainly to the fact that we are stuck with an
inhomogeneous grid.

Condition 3
Finally, we ensure that there is only one distinctive peak in
negative slopes, i.e. a unique Lpp. Still, a certain amount of noise
is normal and acceptable. To this end, L shall be the largest
interval containing L so that Condition 1 is valid for all points
inside.

Then for all local minima l outside ofL, a sharpened rever-
sal of Condition 1 shall be satisfied, i.e.,

@l logNe lð Þ � @l logNe � 1:5 r @l logNeð Þ: ð2:6Þ

If there are two separate peaks or the data is too noisy, Condi-
tion 3 is not fulfilled (see Fig. 1e and f). However, a plateau or
two very close peaks—so that the second minimum is contained
in L —will be counted as one (deformed) peak.

Thus, a good profile showing a plasmapause position Lpp is
given by a single sharp gradient and change in Ne by meeting
all 3 conditions, such as presented in Figure 1a. By this method,
over 500 plausible plasmapause crossings for IMAGE, over
1500 for Van Allen Probes RBSP-A and over 1100 for Van
Allen Probes RBSP-B are extracted and used as the basis for
our model.

3 Modelling approach

As mentioned before, the plasmapause location depends on
a broad spectrum of geophysical and external space weather
conditions and is, therefore, highly dynamic. As O’Brien &
Moldwin (2003) have shown, Lpp correlates quite well with
several geomagnetic indices such as Kp, AE or Dst. The best
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Figure 1. Sample profiles obtained from IMAGE demonstrating the use of the different conditions for Lpp detection (red dots): Each case a-f
shows the original profile in blue and its average in black (upper left), condition 1 (upper right), condition 2 (lower left), and condition 3 (lower
right). The red dotted lines represent the mean values � for each condition, the red dashed lines the standard deviation 2r �ð Þ of conditions 1 and
2, and the orange dashed lines indicate the standard deviation 1:5 r �ð Þ of condition 3. The orange dots are the next local minima. Condition 3
requires that they are above the orange dashed line if they are outside of L (indicated green).
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correlation was obtained with Dst. Perhaps this result might be
explained by the fact that Dst is a prominent measure of the ring
current intensity. The ring current intensity is closely related to
the driving force, the convection electric field, which essentially
forms the shape of the plasmasphere, including the plasmapause
location. Consequently, we use Dst as the main driver for the
model. With regard to the influence of the Earth’s magnetic field
on the plasmapause torus, we refer to solar-magnetic (SM) coor-
dinates (e.g. Laundal & Richmond, 2016) in the following.
Given the general shape of the plasmapause position in the mag-
netic equatorial plane as shown in many papers (e.g., Carpenter
& Anderson, 1992; Heilig & Lühr, 2013; O’Brien & Moldwin,
2003; Ripoll et al., 2022) we define an ellipse in the equatorial
plane with the Earth residing in one of the two focal points. The
ellipse parameters, i.e. semi-major axis, eccentricity, and orien-
tation of the ellipse in theMLT plane, are described as functions
of the Dst index. Then, this approach enables an easy formula-
tion of Lpp as a function of MLT by estimating the semi-major
axis, the eccentricity, and the alignment of the ellipse with
respect to the MLT axis along the midnight-noon line from
the measurements (Fig. 2). Thereby, the diurnal maximum of
the plasmapause position, Lppmax , typically points to the eve-
ning-afternoon hours and the Earth-nearest point, Lppmin , is
located in the opposite direction. The ellipse radii, among them
Lppmax and Lppmin , are equal to the distances from the focal point
coinciding with the Earth to the ellipse periphery, in L-units.

3.1 Modelling of Lpp by an ellipse approach

As stated above, in our approach, an ellipse is employed to
describe in the geomagnetic equatorial plane the principal
plasmapause shape in terms of Lpp, whereby one ellipse focal
point coincides with the centre of the Earth and the ellipse
maximum radius points into the direction of the plasmapause
bulge. Size (semi-major axis), shape (eccentricity), and orienta-
tion (orientation angle of the line of apsides) of the ellipse is, in
turn, described as functions of Dst andMLT . For the anticipated
task, the Lpp-ellipse is modelled with the formula describing the
orbital radius of a satellite (e.g., Escobal, 1965)

Lpp ¼ a � 1� e2ð Þ
1þ e � cos t ; ð3:1Þ

where
a . . . semi-major axis,
e . . . eccentricity,
t . . . true anomaly.

In the above formulation, the bulge location coincides then with
the orbital apogee, i.e. t ¼ 180�. For the application, Lpp the
true anomaly is expressed as

t ¼ xþ -; ð3:2Þ
where
x . . . magnetic local time expressed in radians, i.e.
x ¼ p

12 h �MLT ,
- . . . orientation angle to align the ellipse line of apsides
t ¼ 0�; 180�ð Þ to the bulge direction in the MLT system,
i.e. w.r.t. the direction of the Sun (midnight-noon line),
Figure 2.

Due to the eccentricity, the progress of true anomaly along
the ellipse periphery is not linear, while MLT is. However, with
regard to the low eccentricities to be dealt with in Lpp modelling,
this effect is neglected here, and the sum described by equation
(3.2) is considered sufficient. Substitution of equation (3.2) into
equation (3.1) leads to equation (3.3):

Lpp ¼ a � 1� e2ð Þ
1þ e � cos xþ -ð Þ : ð3:3Þ

The orientation angle - can then be interpreted as follows,
Figure 2: When viewing from the North Pole, MLT is counted
counter-clockwise from midnight via noon (direction to the
Sun) back to midnight. In that system, the bulge peak appears
typically around MLT ¼ 18 h (in Fig. 2 around MLT ¼ 16 h,
enhanced solar activity). On the other hand, in the ellipse
system, the apogee, corresponding to the bulge location, is
achieved at t ¼ 180�. And the task of the orientation angle -

Figure 2. Meaning of the orientation angle -, the semi-major axis a, Lppmax and Lppmin .
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is to get t ¼ 180� coinciding with a given bulge location, in
Figure 2 at M ¼ 16 h. Thus, the relation between - and M is

- ¼ p
12 h

� 12 h�Mð Þ; ð3:4Þ

where
M . . . MLT of bulge.

At low to moderate solar activities, the bulge is typically located
in the evening hours while moving more and more into the early
afternoon hours when solar activity increases. However, the
bulge will never appear in the morning and forenoon hours,
i.e. M > 12 h, and thus - is always negative, with decreasing
magnitude at increasing solar activity.

Different Dst levels were defined, and then for each Dst
level, a set of ellipse parameters a; e;-ð Þ was fitted to the
plasmapause values obtained from the plasmapause detection,
Section 2.3, whereby - ¼ - MLTð Þ. The selected Dst levels
were, in Table 1:

For Dst > �10 nT, the shape of the plasmapause in the
equatorial plane is almost circular (as will be shown in Section 4).
Therefore, the eccentricity and direction of the ellipse can no
longer be determined properly. Hence, this range is not consid-
ered in the fitting process of aðDstÞ, eðDstÞ, and MðDstÞ in
Section 3.3, but is nonetheless presented in the overall results
of Section 4. Due to the lack of strong geomagnetic storms (here
indicated with�500 nT < Dst < �100 nT) and extreme events
(given by Dst < �500 nT), which would prevent proper fitting,
Dst level 6 has been given an overlap with the richer level 5.
Hence, level 6 should be regarded with caution.

3.2 Fitting Lpp-parameters with a 3D modelling
approach

The IMAGE and Van Allen Probes recorded 3D plasma-
pause positions in the SM system. Of these, Lpp-values were
derived, indicating corresponding plasmapause locations in the
geomagnetic equatorial plane. Both 3D plasmapause positions
and derived Lpp-values are listed in the IMAGE and Van Allen
Probes data records. It is not fully clear how the Lpp were pro-
jected from higher latitudes to the equatorial plane, probably by
applying the dipole assumption Lpp ¼ Rpp= cos2 um. Here um is
the geomagnetic latitude, counted from the geomagnetic
equator, positively along the local geomagnetic meridian
towards the northern geomagnetic pole, and negatively towards
the southern geomagnetic pole. Thus, a 3D approach, that will
be described in the following, has been introduced, which
embeds the Lpp-function, equation (3.3), and allows to fit its
parameters directly from observed plasmapause torus position
vectors ~Rpp. This allows to account for a non-dipole geomag-
netic field and avoids a projection of nonzero latitudinal
measured radii Rpp into the geomagnetic equatorial plane
according to the Lpp ¼ Rpp= cos2 um rule, i.e., assuming a
dipole, where um is the geomagnetic latitude. In this way, rela-

tions of the physics in the background can be captured. The
attempt presented in the following is initially derived for the
dipole case but can very easily also be applied to a non-dipole
field, as will be shown later.

McIlwain (1961, 1965) proposes the following set of 2D
coordinates for displaying phenomena in the geomagnetic field:

1. the magnitude of the geomagnetic field vector ~B
�� ��,

2. the invariant I ¼
I Q0

Q
Pjj ds.

I is an invariant along a magnetic field line, and states that
charged particles spiral forth and back, i.e., they oscillate along
the field line between two mirror points Q and Q0. The quantity
P jj is a momentum which, if no force acts from the exterior to
the system, will not change. Thus, also the invariant I remains
constant between the two mirror points. At the geomagnetic
equator, ~B

�� �� is minimal along a field line, and the mirror points
coincide. At the same time, typically, Q and Q0 are located
symmetrically and equidistantly on both sides of the equatorial
plane. Therefore, ~B

�� ��; I� � ¼ const establishes rings along lati-
tude circles, of which mirrored rings share the same value pairs,
delimiting the oscillation along the magnetic field lines. These
lines are lying on shells, represented by the parameter L.

Since I is too cumbersome for practical use, a new coordi-
nate L ¼ F ~B

�� ��; I� �
was introduced by McIlwain (1961) instead.

For the computation of L, McIlwain (1961, 1965) used polyno-
mial representations based on coefficient tables listing required
numbers according to the best available geomagnetic field
model at the time of his publications. For practical applications,
O’Brien et al. (1962) and McIlwain (1965) defined the so-called
invariant latitude

um ¼ arccos

ffiffiffi
1
L

r !
: ð3:5Þ

It is obtained by solving the relation Lpp ¼ Rpp= cos2 um for the
geomagnetic latitude um with a unit radius R ¼ 1, and can
therefore be considered as a geomagnetic latitude, too. Laundal
& Richmond (2016) employ similar definitions in some of their
coordinate systems. While with the invariant latitude formula, a
latitude value is computed for a given L-value, in the application
here Lpp values are determined during plasmapause detection,
cf. Section 2, and a cos2 um term is computed now with a given
~B vector (dipole or non-dipole). In this way, both approaches,
invariant latitude and modifying the cos2 um term, are somehow
equivalent ways to take the non-dipole aspect into account.

In the 3D modelling approach, the full 3D position vectors
~Rpp, obtained from the plasmapause detection are taken as
observables. Regarding the above considerations, the vectorised
dependency between latitude-determined and equatorial radii
can be written with spherical coordinates um;Kð Þ induced by
the SM system and radius based on the McIlwain (1961)
L-parameter as

Table 1. Dst levels and their ranges used for ellipse parameters fitting.

Dst level 1 2 3 4 5 6

Dst range ½nT� [�10, �20] [�20, �30] [�30, �40] [�40, �50] [�50, �70] [�50, �500]
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~R ¼ L|{z}
ð1Þ

� cos2 um|fflfflfflffl{zfflfflfflffl}
ð2Þ

�
cosum � cosK
cosum � sinK

sinum

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð3Þ

; ð3:6Þ

where

~R . . . 3D Cartesian vector indicating a geocentric plas-
maspheric position in the SM,

L . . . L-shell value at plasmaspheric position,
um . . . geomagnetic latitude,
K . . . solar longitude, i.e., longitude in the plane of the

geomagnetic equator relative to the longitude of
the Sun.

When plotting ~R vectors with constant L over an equidistant
grid of SM latitudes and longitudes um;Kð Þ, one obtains a
torus-like object (see Fig. A1 in Annex A).

Equation (3.6) consists of three factors (1)–(3). The last,
braced term (3) is the unit vector~e ¼ ~R ~R

� �� pointing to the posi-
tion in space, and the other two are scalar quantities. When
describing the plasmapause position ~Rpp, the first factor (1) is
substituted by Lpp according to equation (3.3). In principle,
any Lpp function could be put in here. The same holds true
for the cosine term in the middle (2), but we here opted to com-
pute it from the geomagnetic field vector’s components via

um ¼ arctan
�0:75�Bzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5625�Bz

2þ0:5� Bx
2þBy

2ð Þp ffiffiffiffiffiffiffiffiffiffiffiffi
Bx

2þBy
2

p
� 	

with

~B ¼
Bx

By

Bz

8><
>:

9>=
>; ð3:7Þ;

an ansatz that is developed in detail in Annex A. Principally, a~B
vector from any dipole and non-dipole field could be used here,
for instance, computed with the International Geomagnetic

Reference Field (IGRF, https://www.ngdc.noaa.gov/IAGA/
vmod/igrf.html) at the position indicated by ~Rpp and related
epoch. However, the~B vector components need to be converted
into the SM system before entering into equation (3.7) since the
Lpp-function (3.3) is referred to SM (see Annex B).

In order to fit the ellipse parameters of the Lpp-function,
equation (3.3), from plasmapause position vectors, per observed
~Rpp, three component-wise observation equations are set up
from equation (3.6)

see equation (3.8) at bottom of this page

Expressed in matrix form, a set of 3n observation equations can
be established for n observed ~Rpp vectors based on equations
(3.8),

see equation (3.8) at bottom of this page

where for the non-linear fit

�~Rpp ¼ ~RppObs �~RppMod ¼ ~RppObs � LppMod � cos2 um �~epp,
~RppObs . . . plasmapause position vector detected from

the IMAGE & Van Allen Probes data, Sect.
2.3,

LppMod . . . Lpp-value computed with equation (3.3) using
some initial values for a; e; -,

cos2 um . . . computed from ~B vector, equation (3.7),
~epp . . . unit vector of ~RppObs,
v . . . fitted correction to the observable,
@Lpp
@a j0 . . . partial of Lpp w.r.t. semi-major axis a, evalu-

ated with initial values,
�a . . . estimated correction to initial value of a,
@Lpp
@e j0 . . . partial of Lpp w.r.t. eccentricity e, evaluated

with initial values,
�e . . . estimated correction to initial value of e,
@Lpp
@- j0 . . . partial of Lpp w.r.t. orientation angle -, eval-

uated with initial values,
�- . . . estimated correction to initial value of -.

�Rx þ vx ¼ @Lpp
@a j0 ��a � cos2 um � ex þ @Lpp

@e j0 ��e � cos2 um � ex þ @Lpp
@- j0 ��- � cos2 um � ex;

�Ry þ vy ¼ @Lpp
@a j0 ��a � cos2 um � ey þ @Lpp

@e j0 ��e � cos2 um � ey þ @Lpp
@- j0 ��- � cos2 um � ey ;

�Rz þ vz ¼ @Lpp
@a j0 ��a � cos2 um � ez þ @Lpp

@e j0 ��e � cos2 um � ez þ @Lpp
@- j0 ��- � cos2 um � ez :

ð3:8Þ

�Rx1

�Ry1

�Rz1

..

.

�Rxn

�Ryn

�Rzn

2
666666666664

3
777777777775

þ

vx1
vy1
vz1

..

.

vxn
vyn
vzn

2
666666666664

3
777777777775

¼

@Lpp1
@a j0 � cos2 u1 � ex1

@Lpp1
@a j0 � cos2 u1 � ey1

@Lpp1
@a j0 � cos2 u1 � ez1

@Lpp1
@e j0 � cos2 u1 � ex1

@Lpp1
@e j0 � cos2 u1 � ey1

@Lpp1
@e j0 � cos2 u1 � ez1

@Lpp1
@- j0 � cos2 u1 � ex1

@Lpp1
@- j0 � cos2 u1 � ey1

@Lpp1
@- j0 � cos2 u1 � ez1

..

. ..
. ..

.

@Lppn
@a j0 � cos2 un � exn

@Lppn
@a j0 � cos2 un � eyn

@Lppn
@a j0 � cos2 un � ezn

@Lppn
@e j0 � cos2 un � exn

@Lppn
@e j0 � cos2 un � eyn

@Lppn
@e j0 � cos2 un � ezn

@Lppn
@- j0 � cos2 un � exn

@Lppn
@- j0 � cos2 un � eyn

@Lppn
@- j0 � cos2 un � ezn

2
666666666666664

3
777777777777775

�
�a

�e

�-

2
64

3
75 ; ð3:9Þ
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A 3D plasmapause position computation with the NEPPM
can be summarized as follows. The user has to provide the geo-
graphic latitude u and longitude k, epoch T and Dst, for which
a 3D plasmapause position ~Rpp is requested. Then the computa-
tion is conducted in the following steps (see also Annex B):

1. Set transformation parameters geographic � SM.

2. Compute geographic position unit vector~eg ¼
cosu � cos k
cosu � sin k

sinu

8<
:

9=
;:

3. Transform~eg from geographic into SM � unit vector~epp.
4. Compute MLT ¼ K � 12 hp þ 12 h, with K ¼ arctan

eppy
eppx


 �
.

5. Compute cos2 um term for dipole from the components of
~epp via

cos2 um ¼ eppx
2 þ eppy

2

eppx
2 þ eppy

2 þ eppz
2
:

6. The fitted Lpp function is evaluated with equation (3.3).
7. The dipole position ~Rpp is computed with equation (3.6),

where term (3) is here~epp.
8. With the IGRF (or another non-dipole model) a ~B vector

is computed at the position indicated by dipole position
vector~Rpp and for the requested epoch T, transform~B into
the SM system.

9. Compute from the non-dipole ~B vector components an
improved cos2 um term, equation (3.7).

10. Compute non-dipole ~Rpp vector, again by using equation
(3.6), but now with the non-dipole cos2 um term obtained
from Step 9).

11. Transform non-dipole~Rpp vector from SM � geographic.

3.3 Fitting of empirical functions to ellipse parameters

Per Dst level listed in Table 1, a least squares fit was run
with the Lpp-function, equation (3.3), in combination with the
3D modelling scheme, equation (3.9), to get one set of ellipse
parameters a; e;-ð Þ for that Dst level. In order to obtain repre-
sentations of each ellipse parameter in dependency of Dst,
empirical exponential functions f Dstð Þ were fitted to the ellipse
parameters

f Dstð Þ ¼ A � exp Dstmed
Dscal

� 	
þ C; ð3:10Þ

where

Dstmed . . . median Dst of considered Dst level repre-
sented by a certain Dst range, Table 1,

Dscal . . . Dst scaling factor,
A . . . amplitude to be fitted,
C . . . boundary value fixed for extreme storms by

assuming Dstmed ! �1.

It turned out, that exponential functions are best suited to repre-
sent the ellipse parameters in dependency of Dst. This approach
has the advantage that besides the fitting using the available data
set, extreme storms that have never been observed can be con-
sidered in a plausible way. It is evident that the boundary values

fixed for all three fits are not approved by observations. We
have defined these values following plausible indications of
observations and physical arguments. Consequently, the given
boundary values might be slightly modified using an extended
database in future studies. Because such a modification has a
negligible impact on the model approach for weak and moderate
storms (i.e., Dst > �100 nT ) the model is applicable in com-
mon operational services. Besides Dscal and strength A
obtained by least squares fitting, also the estimated boundary
values C are listed in Table 2. For the semi-major axis, the
eccentricity, and the orientation angle of the ellipse.

While fitting the strength A of the f ðDstÞ function, the input
Dst values had to be scaled by an empirical Dscal quotient.
This procedure converted the range of Dst values into a reason-
able argument range for the exponential function. Similar to the
boundary values for extreme storms, Ca ¼ 1:7RE; Ce ¼
0:27; CM ¼ 12 h, Table 2, also boundary values for Dst ¼ 0
had to be defined, which were 5RE; 0; 24 h for semi-major
axis, eccentricity and MLT of bulge, respectively. Then, with
the aid of Dscal, the original Dst scale had to be adapted to
an argument scale, such that the exponential function was able
to cover the required bandwidths appropriately. Only the blue
points in Figure 3 could enter into the fit, and their distribution
is so linear, that Dscal had to be fixed manually. An exponential
fitting of Dscal together with the amplitude turned out not fea-
sible. Thus, only A could be determined by fitting.

Figure 3a shows the NEPPM representation for the semi-
major axis a. The zoom indicates the range where data are avail-
able from the data set analyzed in this study. Unfortunately,
only a few data for strong and extreme storms (i.e.,
Dst < �100 nT ) are available, therefore, such individual cases
are not statistically significant. Moreover, the aurora observa-
tions (1)–(3) cited below suffer from the fact that it is often
not clear, under which aspect angle these auroras have been
seen. So, the points displayed in magenta in Figure 3a for the
semi-major axis a are best effort values, also considering the
ellipse eccentricity estimates (further explanations see below).
These three reference points (1)–(3) indicated in Figure 3a are
described below to illustrate the estimation procedure and our
exponential fit.

1. Cliver & Svalgaard (2004) have considered largest geo-
magnetic storms based on Dst between 1932 and 2002.
The peak value of the Dst-index observed at the extreme
storm on 13/14 March 1989 is given by Dst ¼ �584 nT.
Polar lights have been observed at 29�N geomagnetic lat-
itude that would correlate with Lppmin 	 1:4 and a 	 1:9,
respectively.

2. For the great space weather event in February 1730
Hayakawa et al. (2019) estimated a Dst value in the order
of Dstmin 	 �1200 nT or even less. Auroras have been
observed down to 27� magnetic latitude in the Northern
sky meaning that the location of the aurora occurred at
ionospheric heights in the range of 29� � 32�N magnetic
latitude, associated with a 	 1:85.

3. Tsurutani et al. (2003) have estimated the Dst peak value
as Dst 	 �1760 nT for the Carrington Event 1859 that is
related to a plasmapause position at around Lppmin ¼ 1:3,
based on aurora locations analyzed by Kimball (1960).
In relation to the eccentricity of the ellipse approach at
great storms (see Fig. 3b) we estimate a value of about
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1:7 for the semi-major axis, which is considered the
boundary value for describing extreme storms by
NEPPM. Although there remain uncertainties, it is
believed that NEPPM represents aurora observations quite
well when using this boundary value.

Besides the semi-major axis a also the eccentricity e is a key
parameter of the ellipse. It is connected with Lpp by the relations

Lppmin ¼ a � ð1� eÞ ð3:11Þ
and

Lppmax ¼ a � 1þ eð Þ: ð3:12Þ
Thus, the difference between both extreme plasmapause posi-
tions is given by

Lppmax � Lppmin ¼ 2a � e: ð3:13Þ
Considering the available data set, the boundary value for the
eccentricity was fixed at e ¼ 0:27 for the fitting procedure.
Higher values would considerably increase the difference
between Lppmax and Lppmin towards unrealistic values. The esti-
mate of the semi-major axis, as shown in Figure 3a, is closely
related to equation (3.11). To complete the model approach,
an expression for the direction of the model ellipse is still
needed (see Fig. 3c). It is well-known that a plasma bulge is
created in the evening hours due to the superposition of
the co-rotation electric field and the solar wind-controlled
convection electric field. The enhanced plasma density leads
to an outward motion of the plasmapause characterized by
Lppmax . Considering the poor database for extreme storm events,
the definition of a boundary value remains speculative to a
certain extent. It is evident that the boundary value must be

bigger than MLT ¼ 12 h. Here, the boundary value is set as
CM ¼ 12 h. As with the other boundary values Ca and Ce

too, the fixed values can be modified if it is required by results
obtained from an extended database.

4 Results and comparisons

The NEPPM clearly demonstrates the torus-shaped plasma-
pause, as can be seen in Figure 4, which divides the dense
co-rotating plasma driven by the electric field and the outer
tenuous magnetospheric plasma. Figure 4 illustrates the overall
compression of the plasmapause during storm activities, indi-
cated by strongly negative Dst values (red) and an expansion
during quiet periods (blue). Moreover, we can clearly see the
plasmapause bulge during storm conditions appearing at noon
(in the direction of the positive x-axis), indicated by the
increased distance from the Earth for the inner red curve. During
quiet conditions (outer blue curve), the torus looks equally
balanced in distance from the Earth.

For direct comparison, we use the Global Core Plasma
Model (GCPM) by Gallagher et al. (2000). The GCPM is a
composition of different region-specific models for the core
plasma density with smooth transitions in value and derivative.
Intended to match the overall physical appearance, certain spe-
cifics of some regions may not be included in high detail.
Allowing the estimation of electron densities in a larger region
throughout the inner magnetosphere, it considers the space
weather impact by relying on the geomagnetic Kp index. In
contrast, the NEPPM depends on the Dst index, which has been
shown to have better correlations with Lpp than Kp (cf. O’Brien
and Moldwin, 2003). Nevertheless, for direct comparisons, the
subfigures of Figure 5 are drawn on Dst scale, as we are simply

Figure 3. Semi-major axis (a), eccentricity (b), and orientation angle (c) of the Lpp ellipse as a function of Dst (blue lines). The blue dots
denote the fitted ellipse parameters for each Dst level. Additional aurora observations for (a) are shown in magenta.

Table 2. Empirical functions f(Dst) fitted to represent the three ellipse parameters: semi-major axis a, eccentricity e, andM denoting theMLT of
the plasmapause bulge as obtained by reformulating equation (3.4).

Ellipse parameter Dscal A C

a(Dst) 100 3.298712e+00 ± 6.097334e�02 1.7 RE

e(Dst) 80 �2.690941e�01 ± 1.684832e�02 0.27
M(Dst) 80 1.002079e+01 ± 7.918819e�01 12 h
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Figure 4. Results of the modelled Lpp values obtained by NEPPM in SM coordinates depending on the Dst index varying from quiet (blue) to
disturbed (red) conditions: (a) for hourly MLT between 12 h and 24 h and (b) in the noon-midnight meridional plane (i.e. y ¼ 0).

Figure 5. Results of the NEPPM (left) and GCPM (right) shown for all Dst levels (lines, coloured by the six corresponding Dst levels:
[�10, �20], [�20, �30], [�30, �40], [�40, �50], [�50, �70], [�50, �500]), with the extracted Lpp values coloured by Dst (dots) in the
equatorial plane (top) and via Lpp over MLT (middle), and its RMS over MLT (bottom).
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running the GCPM for the same dataset with the associated Kp
values but plotting the corresponding Dst values of the given
data by IMAGE, and Van Allen Probes.

Figure 5 shows all extracted Lpp values from IMAGE and
Van Allen Probes as well as the modelled Lpp values for
NEPPM (left) and GCPM (right), in the equatorial plane (top)
as well as by Lpp over MLT (middle), and its corresponding
RMS (bottom). The Lpp values are generally located between
L ¼ 3 and L ¼ 6, and are evenly distributed in MLT . Both
models show a plasmapause bulge in the afternoon sector.
During high solar activity, the bulge moves towards noon (i.e.
westward towards the Sun), and during quiet conditions towards
midnight.

However, the size of the bulge is visibly different in the two
models. The significant bulge in GCPM is striking, which is
considerably less pronounced in NEPPM. As we can see in
the bottom panels of Figure 5, the deviation of NEPPM is
generally lower than the one of GCPM. While NEPPM shows
a mean RMS of about 0:5RE, GCPM shows a higher mean
RMS of 0:9RE. The large overestimation of the bulge by the
GCPM is again shown in the afternoon-evening hours
(cf. Fig. 5, bottom right).

An additional illustration of extracted and modelled Lpp

values per Dst level reveals more information. Figure 6 shows
for each Dst level, the extracted Lpp values next to the resulting
mean Lpp computed with both the NEPPM (black) and the
GCPM (grey). At all Dst levels, GCPM reveals a consistent

overestimation of the extracted Lpp values. This overestimation
expands even further with strongly negative Dst levels. The
bulge in GCPM is generally higher than the extracted Lpp values
indicate. Overall, the bulge, which is given by the ellipse in
NEPPM, is less pronounced and gets smaller with increas-
ingDst index. Moreover, for Dst > �10 nT, the ellipse in
NEPPM becomes almost circular in shape. Unfortunately,
during quiet periods, there is a wide scattering of data at all
MLT values making a good fitting of the model difficult, i.e.
for Dst > �30 nT.

Figure 7 displays the specific deviations of the two models
from the IMAGE and Van Allen Probes data with respect to Dst
and MLT . NEPPM displays the highest RMS in the afternoon
for Dst < �50 nT. GCPM shows two higher RMS values,
one in the afternoon for very low Dst values and another one
in the evening hours for Dst > �40 nT. Furthermore, the over-
all dayside shows enhanced RMS values for GCPM, which are
not seen for NEPPM. Since we used IMAGE and Van Allen
Probes data to build the NEPPM, our model performs well.
Certainly, further data is necessary to validate our approach.
As we can see, GCPM does not represent the recent data prop-
erly, though it was a good and, most importantly, consistent
global approach back then.

Meanwhile, much more detailed data has become available
for improved accuracy and higher resolution. Various plasma-
pause models were proposed, and especially neural net-
works (NN) are becoming of higher interest as proposed by

Figure 6. NEPPM (black) and GCPM (grey) for each Dst level, cf. Table 1. The extracted Lpp values are marked by dots in red (IMAGE), and
blue (RBSP).
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Guo et al. (2021). A comparison of the RMS with this NN
model shows similar results. Both NEPPM and NN models
show the highest RMS values of about 0:9RE around the bulge
at 19MLT and the lowest RMS values with 0:4RE between
2 and 3MLT . However, in addition to small fluctuations, Guo
et al. (2021), Figure 7a, exhibit a peak in RMS at 24MLT . This
behaviour is similar to other models (Moldwin et al., 2002;
O’Brien & Moldwin, 2003) also shown there. In comparison
to this, the NEPPM shows a broader but consistent deviation
in RMS from 16 to 20MLT with only minor fluctuations. Fur-
thermore, the small RMS at 24MLT there unveils a better suit-
ability of the NEPPM compared to others.

Also note that we use different Lpp data sources for the RMS
calculations. So, the pre-selection of our Lpp values is crucial for
a good model with a small RMS. Due to the different conditions
for plasmapause detection introduced in this paper, we are using
a reliable Lpp database without any multiple plasmapause cross-
ings within a profile.

In some cases, still under investigation, a plasma plume may
separate from the co-rotating plasma, thus forming a separate
plasma structure at even greater radial distances. The current
version of the NEPPM does not cover such structures. The
NEPPM describes the average plasmapause behaviour related
to the fundamental bulge formation process as well as possible
in a robust way. This shortcoming is acceptable because the

NEPPM has been developed to support, in particular, the cur-
rent plasmasphere model Neustrelitz PlasmaSphere Model
(NPSM) developed at DLR for operational space weather ser-
vices (Jakowski & Hoque, 2018). Plasma dynamics creating
plasma plume structures make it difficult to extract a clear ori-
entation of the ellipse from the data, as can be seen in Figure 6
(Lpp outliers between about 5 and 6 in the afternoon sector) and
Figure 5 (enhance RMS in the afternoon sector). Nevertheless, it
is evident that with increasing storm intensity, the major ellipse
axis turns towards noon in the equatorial plane. This indicates
the growing impact of the convection electric field that com-
petes with the co-rotating electric field.

5 Summary and conclusions

In this paper, we present a new approach for modelling the
plasmapause position. The database is formed by two compre-
hensive datasets, the electron densities derived from the passive
IMAGE RPI data from 2001 to 2005 and the electron densities
provided by the NURD data of the Van Allen Probes between
2012 and 2018. To determine the plasmapause position Lpp,
detecting a sharp gradient of the electron density is essential.
Naturally, some measurements do not fulfill the requirements
for reliable Lpp estimations e.g. if a profile is too short or too

Figure 7. RMS (top) and relative RMS (bottom) for NEPPM (left) and GCPM (right).
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noisy. Moreover, different data sources offer different resolu-
tions (in time and space), so uneven grids have to be compared
reasonably. Due to the amount of data, an automated detection
algorithm has been established considering these uncertainties.
Unsuitable parts of the data are filtered out in accordance with
well-founded constraints that guarantee the identification of a
clear and pronounced plasmapause position. By this, over
3000 plasmapause crossings have been found, which formed
the basis for creating our own model.

The presented NEPPM is an ellipse-based approach to
model the plasmapause location as a function of the geomag-
netic Dst index and the Magnetic Local Time MLT . In this
approach, one focal point coincides with the location of the
Earth, and the semi-major axis, eccentricity, and orientation of
the ellipse are least-squares fitted to the obtained plasmapause
locations. By relating an observed 3D plasmapause position
vector ~Rpp to a Lpp-function, the possibility to account for a
non-dipole geomagnetic field can be established in a very easy
way. In addition, NEPPM allows the user to directly compute
3D positions on the plasmapause torus for a given latitude, lon-
gitude, epoch, and Dst. Due to its short computation times, the
NEPPM is an ideal background model in operational space
weather services. In the first step, the NEPPM will be integrated
into the NPSM so that their currently fixed plasmapause posi-
tion of Lpp ¼ 5 will be replaced with our dynamic and robust
empirical approach. In a second step, the NEPPM will be com-
bined with the three-dimensional Neustrelitz Electron Density
Model (NEDM, Hoque et al., 2022), covering the entire iono-
sphere/plasmasphere systems on a global scale under all space
weather conditions. The operational use of such an empirical
model requires a synthesis of simplicity and robustness in han-
dling, sufficient accuracy, and fast computation. Considering
this, the plasmapause model NEPPM does not claim to provide
a comprehensive description of physical processes contributing
to the plasmapause. However, the model should agree with cur-
rent physical knowledge of the plasmapause behaviour and pro-
vide an accuracy that is basically comparable with those
obtained by state-of-the-art models. The NEPPM is fed by the
geomagnetic index Dst and is easily accessible for operational
applications via https://wdc.kugi.kyoto-u.ac.jp/dstdir/ (Nose
et al., 2015). Furthermore, Dst can be predicted up to 24 h in
advance, as described by Park et al. (2021). The predictability
and the hourly resolution of Dst fit quite well with current needs
in operational services.

Nevertheless, we still lack data for strong and extreme storm
events. Therefore, further Lpp observations are required to vali-
date the proposed empirical model, especially during extreme
storm conditions. A direct comparison with the GCPM illus-
trates the closer representation in our model. Moreover, compar-
ing the RMS with the NN model shows similar errors, both
ranging between 0:4 and 0:9RE. So, our simple approach can
compete with such machine learning models and is also based
on physical constraints such as limits for the dimension via
the semi-major axis a and the bulge location viaM (cf. Table 2).
Finally, it should be noted that all models presented suffer the
largest errors in the afternoon/evening sector between 16 and
20MLT . This can be attributed to “detached” plasma plumes,
commonly observed in this MLT sector (Darrouzet et al.,
2008), a phenomenon that still needs further investigation. An
extended analysis with additional data is foreseen to capture

the cause and development of such structures. Regardless, it
is not critical for radio system applications because plasma
plume densities do not contribute noticeably to TEC. Hence,
the NEPPM serves the aim of supporting operational space
weather services.
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Annex A

Plasmapause positions are described in the solar-magnetic
(SM) system in terms of Cartesian plasmapause position vectors
~Rpp that obey the representation equation (3.6). When comput-
ing them with a constant Lpp value in an equidistant grid, a plot
of these~Rpp would display a torus-like picture, blue in Figure A1
below, corresponding to the dipole assumption inherent in the
definition of L-shells.

In case the plasmapause modelling shall be conducted in a
dipole geomagnetic field, the projection term can be directly
computed from the position vector components as

cos2 um ¼ Rx
2 þ Ry

2

Rx
2 þ Ry

2 þ Rz
2 with ~Rpp ¼

Rx

Ry

Rz

8><
>:

9>=
>; ; ðA:1Þ

whereas it must be linked to the geomagnetic field vector ~B if,
like in the IGRF, a non-dipole field is the base. For this,~B has to
be computed with the selected geomagnetic field model at the
position indicated by ~Rpp and the related epoch, and it must
be transformed into the SM system to be consistent with the
plasmapause modelling. This annex aims to give the foundation
for the resulting equation previously presented in equation (3.7).

At first sight, the formulae for calculating cos2 um from ~B
are once more derived from ~Rpp, i.e. for a dipole. Nevertheless,
as will be shown below, the components from a non-dipole ~B
vector can enter these, too. The procedure may somehow be
comparable with the principle of osculating Keplerian elements
in orbit modelling, where at each orbital point another slightly
varying set of Keplerian elements is valid. Here, this might be
translated into a kind of osculating dipole, always being repre-
sented by a dipole magnetic field line put through the direction
of the actually used non-dipole~B vector at that point in the mag-
netic field.

First, reformulate equation (3.6) to

~Rpp ¼ Lpp �
cos3 um � cosK
cos3 um � sinK
cos2 um � sinum

8><
>:

9>=
>; ðA:2Þ

and determine the first derivative of ~Rpp w.r.t. the geomagnetic
latitude. By this, one has the tangent vector

~T pp ¼ @~Rpp

@um
¼ Lpp �

�3 � cos2 um � sinum � cosK
�3 � cos2 um � sinum � sinK
�2 � cosum � sin2 um þ cos3 um

8><
>:

9>=
>;;

ðA:3Þ
which always points tangentially northwards along the dipole
field line, i.e., into the same direction as ~B. The geometry
behind ~Rpp and ~T pp is visualized in Figure A1. The left image

shows a cut through the dipole torus (or one dipole loop) with
both vector types in their correct lengths. In the right-hand plot,
the torus in space is shown, but with tangents drawn as unit
vectors, as otherwise the picture would appear too distorted.

Since always ~T pp "" ~B, analogously to spherical latitude
computation from Cartesian coordinates, one can build the ratio

T zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x

2 þ T y
2

q ¼ Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bx

2 þ By
2

q with ~T pp ¼
T x

T y

T z

8><
>:

9>=
>;; ~B ¼

Bx

By

Bz

8><
>:

9>=
>;:

ðA:4Þ
In this way, the different magnitudes of both vectors are neutra-
lized. Next, the dependence on longitude K will be eliminated.
Substituting the components as given in (A.3) and applying the
trigonometric Pythagoras law cos2 Kþ sin2K ¼ 1, see e.g.
Sigl (1977), the denominator of the left-hand side in (A.4)
can be condensed toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T x
2 þ T y

2
q

¼ 3 � cos2 um � sinum: ðA:5Þ
Thus, linking the dipole ~B and um, we get

Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bx

2 þ By
2

q ¼ � 2 � cosum � sin2 um

3 � cos2 um � sinum

þ cos3 um

3 � cos2 um � sinum

¼ � 2
3
� tanum þ 1

3
� 1
tanum

; ðA:6Þ

where the definition tanum ¼ sinum= cosum, again Sigl
(1977), supports further simplification.

Multiplying the outermost identity of equation (A.6) with
tanum and bringing all terms on one side gives a quadratic
equation in x ¼ tanum

tanumð Þ2 þ 3
2
� Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bx
2 þ By

2
q

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p

� tanumð Þ � 1
2|{z}
q

¼ 0: ðA:7Þ

This can be solved according to the p-q-formula with

x1;2 ¼ � p
2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2


 �2
� q:

r
ðA:8Þ

Leading to

tanumð Þ1;2 ¼ � 3
4
� Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bx
2 þ By

2
q 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16

� Bz
2

Bx
2 þ By

2 þ
1
2

s
:

ðA:9Þ
As will be demonstrated in Annex A1 below, the positive solu-
tion of equation (A.9) is always the correct one. Thus equation
(A.9) gives rise to equation (3.7), which is optimized for being
processed with the atan2ðx; yÞ function available in many pro-
gramming languages.

ForBz ¼ 0 the dipole loop reaches itsmaximal/minimal eleva-
tion above/below the geomagnetic equator, i.e. tanumð Þ1;2 ¼

1

ffiffiffi
2

p
, corresponding to um;max=min ¼ 
35�: 264389682754654.
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In analogy to equations (A.6), (A.7), a quadratic equation
can also be established in cotum.

A1 Rigorous proof that the positive square root is the
one sought-after

For this proof, the components of the tangent vector ~T pp

have to be expressed as a function of the components
Rx Ry Rzf g of the plasmapause position vector ~Rpp. There-

fore in equation (A.3) the cosine and sine terms are formulated
as functions of the plasmapause position vector components

cosum ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2 þ Rz

2
q ; sinum ¼ Rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rx
2 þ Ry

2 þ Rz
2

q ;

;

cosK ¼ Rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q ; sinK ¼ Ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q : ðA:10Þ

After having substituted equations (A.10) into equation (A.3),
one obtains after some simple algebra

~T pp ¼ Lpp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2 þ Rz

2
q
 �3 �

�3 � Rz � Rx

�3 � Rz � Ry

�2 � Rz
2 þ Rx

2 þ Ry
2

8><
>:

9>=
>;:

ðA:11Þ
Whereby for describing purely the direction of ~T pp the braced

term
�
..
.
 of equation (A.11) is sufficient.

With the expression of the tangent vector components in
terms of Cartesian components of the plasmapause position vec-
tor, equation (A.11), it is now possible to conduct in a rigorous
mathematical proof, which of the two square roots of equation
(A.9) provides the sought-after tanum. A plasmapause position
vector~Rpp is computed for a given geomagnetic latitude um and
solar longitude K according to equation (A.2). Reversely, um
can be computed from the ~Rpp Cartesian components in a back-
wards transformation

tanum ¼ Rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q : ðA:12Þ

The proof starts with equation (A.9), in which, due to equation
(A.4), the ~B vector components can be replaced by the tangent
vector ~T pp components. This approach will, after some algebra,
allow to express equation (A.9) in terms of the~Rpp vector Carte-
sian components and finally lead to tanum formulae giving both
um solutions of the quadratic equation as a function of
Rx Ry Rzf g. Thus equation (A.9) is now expressed in terms

of the ~T pp components T x T y T zf g

tanumð Þ1;2 ¼ � 3
4
� T zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T x
2 þ T y

2
q 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16

� T z
2

T x
2 þ T y

2 þ
1
2

s
:

ðA:13Þ
In an intermediate step, the square root term of equation (A.13)
is reformulated



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16

� T z
2

T x
2 þ T y

2 þ
1
2

s
¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16

� T z
2

T x
2 þ T y

2 þ
8
16

� T x
2 þ T y

2

T x
2 þ T y

2

s

¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � T z

2 þ 8 � T x
2 þ 8�T y

2
q

4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x

2 þ T y
2

q :

ðA:14Þ
Substituting equation (A.14) into (A.13)

tanumð Þ1;2 ¼ � 3
4
� T zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T x
2 þ T y

2
q 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � T z

2 þ 8 � T x
2 þ 8�T y

2
q

4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x

2 þ T y
2

q

¼
�3 � T z 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � T z

2 þ 8 � T x
2 þ 8�T y

2
q
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x

2 þ T y
2

q : ðA:15Þ

Figure A1. The vector fields ~Rpp (blue) and ~Tpp (red) in a 2D meridional cut (left) and as a 3D illustration (right).
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Now, the expressions of T x T y T zf g in terms of
Rx Ry Rzf g, equation (A.11), must be substituted into

equation (A.15). Thereby the term

Lpp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2 þ Rz

2
q
 �3

of equation (A.11)

is an overall scaling factor which cancels when establishing a
ratio between ~T pp components (similar to equation (A.4)), as
given in equation (A.15). Therefore, it is sufficient to write here

T x ¼ �3 � Rz � Rx;

T y ¼ �3 � Rz � Ry ;

T z ¼ �2 � Rz
2 þ Rx

2 þ Ry
2:

ðA:16Þ

Equation (A.15) needs the squares of the equation (A.16) terms

T x
2 ¼ 9 � Rz

2 � Rx
2;

T y
2 ¼ 9 � Rz

2 � Ry
2;

T z
2 ¼ �2 � Rz

2 þ Rx
2 þ Ry

2
� �2

¼ 4 � Rz
4 þ Rx

4 þ Ry
4 � 4 � Rz

2 � Rx
2 � 4 � Rz

2 � Ry
2 þ 2 � Rx

2 � Ry
2:

ðA:17Þ
Thus is (numerator square root term of equation (A.15)):

9 � T z
2 þ 8 � T x

2 þ 8�T y
2 ¼ 36 � Rz

4

þ 9 � Rx
4 þ 9 � Ry

4 � 36 � Rz
2 � Rx

2 � 36 � Rz
2 � Ry

2

þ 18 � Rx
2 � Ry

2 þ 72 � Rz
2 � Rx

2 þ 72 � Rz
2 � Ry

2

¼ 9 � þ2 � Rz
2 þ Rx

2 þ Ry
2

� �2
:

Compare with equation (A.17) for T z
2 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 � T z
2 þ 8 � T x

2 þ 8�T y
2

q
¼ 3 � 2 � Rz

2 þ Rx
2 þ Ry

2
� �

: ðA:18Þ
Substituting T z from equation (A.16) and equations (A.17) and
(A.18) into equation (A.15)

tanum1;2 ¼
�3 � T z 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � T z

2 þ 8 � T x
2 þ 8�T y

2
q
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x

2 þ T y
2

q
¼ �3 � �2 � Rz

2 þ Rx
2 þ Ry

2
� �
 3 � 2 � Rz

2 þ Rx
2 þ Ry

2
� �

4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � Rz

2 � Rx
2 þ 9 � Rz

2 � Ry
2

q
¼ 6 � Rz

2 � 3 � Rx
2 � 3 � Ry

2 
 6 � Rz
2 
 3 � Rx

2 
 3 � Ry
2

12 � Rz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q :

ðA:19Þ
Now the two um solutions of the quadratic equation (A.9) in
tanum, as function of Rx Ry Rzf g, can finally be computed:
Positive square root

tanum1 ¼
6 � Rz

2 � 3 � Rx
2 � 3 � Ry

2 þ 6 � Rz
2 þ 3 � Rx

2 þ 3 � Ry
2

12 � Rz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q

¼ Rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q ; ðA:20aÞ

Negative square root

tanum2 ¼
6 � Rz

2 � 3 � Rx
2 � 3 � Ry

2 � 6 � Rz
2 � 3 � Rx

2 � 3 � Ry
2

12 � Rz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q

¼
� 1

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q
Rz

¼ � 1
2
� 1
tanum1

: ðA:20bÞ

When comparing equations (A.12) and (A.20a), one can see
that the positive square root provides the sought-after solution.

And obviously between the two solutions the following rela-
tion holds

tanum1 � tanum2 ¼ � 1
2
: ðA:20cÞ

A2 Meaning of the negative square root solution

For completeness, also the plasmapause position vector
~Rpp2 , corresponding to the negative square root of equation
(A.9), shall be explained. It can be obtained by putting um2,
equation (A.20b), into equation (A.2). However, it can also be
expressed in terms of the plasmapause position vector~Rpp. Tak-
ing tanum2

from equation (A.20b) and regarding the following
trigonometric relations (e.g. Sigl, 1977)

sinum2
¼ tanum2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 um2

q ; cosum2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 um2

q ;

ðA:21Þ
one gets by substituting the expression (A.20b) for tanum2

sinum2
¼

� 1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rz

2 þ 1
4 � Rx

2 þ Ry
2

� �q ;

cosum2
¼ Rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rz
2 þ 1

4 � Rx
2 þ Ry

2
� �q : ðA:22Þ

And since ~Rpp and ~Rpp2 are lying on the same dipole loop, they
share the same meridian, having the same solar longitude K, i.e.
the cosK and sinK expressions provided by equations (A.10)
hold also for ~Rpp2 . Thus, by substituting equations (A.22) and
(A.10) into equation (3.6) one obtains, after some algebra,
~Rpp2 as a function of the ~Rpp components

~Rpp2 ¼ Lpp � Rz
2

Rz
2 þ 1

4 � Rx
2 þ Ry

2
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rz

2 þ 1
4 � Rx

2 þ Ry
2

� �q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

q �
Rz � Rx

Rz � Ry

� 1
2 � Rx

2 þ Ry
2

� �
8><
>:

9>=
>;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2Þ

:

ðA:23Þ
Thereby term (1) in equation (A.23) gives the ~Rpp2 magnitude,
1ð Þ ¼ Lpp � cos2 um2

, compare with equation (A.22), bottom,
and term (2) is the unit vector of ~Rpp2 , 2ð Þ ¼~epp2 . When com-

D. Banyś et al.: J. Space Weather Space Clim. 2024, 14, 36

Page 17 of 20



puting the magnitude of the rightmost braced vector term
�
..
.


in
(2) one recognizes that this magnitude is identical to the product
of the denominators of the two preceding terms in (2), i.e. the
product of all three terms in (2) results in the unit vector~epp2 .

By the relation Lpp ¼ Rpp= cos2 um1
and equation (A.1), also

Lpp can be expressed as a function of the ~Rpp components

Lpp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2 þ Rz

2
q
 �3

Rx
2 þ Ry

2 : ðA:24Þ

Thus with equation (A.24) ~Rpp2 can be fully formulated as a
function of the ~Rpp components. Starting from equation
(A.23) by merging the two reciprocal square roots of the term
(2) with the term (1), some algebra leads to

~Rpp2 ¼ Rz
2 � Rx

2 þ Ry
2 þ Rz

2

Rx
2 þ Ry

2
� � � Rz

2 þ 1
4 � Rx

2 þ Ry
2

� �� � !3
2

�
Rz � Rx

Rz � Ry

� 1
2 � Rx

2 þ Ry
2

� �
8<
:

9=
;: ðA:25Þ

And in an analogous exercise also a formula for the angle
enclosed by ~Rpp and ~Rpp2 can be established, by using the unit
vectors~epp and~epp2 ,

cos# ¼ ~epp �~epp2
� � ¼

1
2
� Rz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx

2 þ Ry
2

Rx
2 þ Ry

2 þ Rz
2

� � � Rz
2 þ 1

4 � Rx
2 þ Ry

2
� �� �

s
: ðA:26Þ

By an appropriate exchange of signs of the ~Rpp and ~Rpp2 com-
ponents, these two vectors can also be mirrored symmetrically
to other points on their magnetic loop as well as on the opposite
– and perpendicular loops, as far as the magnetic field is consid-
ered to be perfect dipole.

The ~Rpp vs. ~Rpp2 behaviour has been investigated in some
detail. However, a complete presentation of the outcome would
be out of the scope of this paper. Nevertheless, the most essen-
tial results, found so far, can be summarized in short as follows:

1. The angle # enclosed by ~Rpp and ~Rpp2 ranges between
70�:5 at um ¼ 
35�:3 ¼ arctan 
1

ffiffiffi
2

p� �
and 90� at

um ¼ 0�;
90�.
2. um ¼ 
90� is a singularity point. Here the dipole curve

passes through the geocentre and the plasmapause posi-
tion vectors vanish.

3. ~Rpp2 ¼~0 when ~Rpp is pointing to the equator Rz ¼ 0ð Þ.
Thus um ¼ 0� has been skipped in ~Rpp2 computation.

4. If ~Rpp has a negative z-component Rz, the resulting ~Rpp2 ,
computed with equation (A.25), is pointing into the
opposite dipole loop. To get in this case ~Rpp2 into the
correct dipole loop, it has simply to be turned in sign,
i.e. this problem can be overcome by multiplying with
sign Rzð Þ.

5. Also cos#, computed with equation (A.26), has to be
turned in sign when Rz is negative, i.e. by multiplying
with sign Rzð Þ, due to the same reason as for Point 4.

6. When equation (A.20b) is solved with the atan function
instead of atan2, the obtained ~Rpp2 latitude is always
correct, also due to the same reason as for Point 4.

Annex B

This annex describes an efficient transformation between
SM – and geographic coordinates, working without the need
to explicitly set up rotation matrices and also without the trans-
formation into geomagnetic coordinates as an intermediate
step. The method is based on the three unit vectors indicating
the coordinate axes of the SM system. These vectors must
be known in the geographic system as well as in the SM sys-
tem. To compute them, the following input parameters are
needed:

1. Geographic latitude uM and longitude kM of the northern
geomagnetic pole (e.g., v. Biel, 1990).

2. Geographic direction to the Sun, Annex B1.

Then the required unit vectors are established (whereby in the
SM system, the geomagnetic dipole axis coincides with the
SM z-axis, Laundal & Richmond, 2016):

Geographic system

~eMgg ¼
cosuM � cos kM
cosuM � sin kM

sinuM

8><
>:

9>=
>;; ~eY gg ¼

~eMgg �~eSgg
~eMgg �~eSgg
�� �� ; ~eXgg ¼~eY gg �~eMgg ;

ðB:1aÞ
where

~eMgg . . . geocentric unit vector pointing to the geographic posi-
tion of the northern geomagnetic pole,

~eSgg . . . geocentric unit vector pointing into the geographic
direction of the Sun,

SM system

~eMSM ¼
0

0

1

8><
>:

9>=
>;; ~eY SM ¼

0

1

0

8><
>:

9>=
>;; ~eXSM ¼

1

0

0

8><
>:

9>=
>;: ðB:1bÞ

In the SM system, the position vector of the Sun is by the way

~esSM ¼
cosumS

0
sinumS

8<
:

9=
; as per SM definition the Sun’s SM longi-

tude is always zero

where

umS
. . . geomagnetic latitude of the Sun, which can be com-

puted from the geographic unit vectors as

sinumS
¼ ~eSgg �~eMgg

� �
; cosumS

¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 umS

:
q

To transform a given position vector ~R from one system
into the other, its projections onto the unit vectors are
computed in the system in which it is given, and then the unit
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vectors in the other system are scaled by these projec-
tions to obtain the components of ~R in the other system:

Geographic � SM
~RSM ¼ ~eXgg �~Rgg

� � �~eXSM þ ~eY gg �~Rgg

� � �~eY SM þ ~eMgg �~Rgg

� � �~eMSM :

ðB:2aÞ
SM � geographic

~Rgg ¼ ~eXSM �~RSM

� � �~eXgg þ ~eY SM �~RSM

� � �~eY gg þ ~eMSM �~RSM

� � �~eMgg :

ðB:2bÞ
Regarding that the unit vectors in the SM system consist only
of Ones and Zeros, equations (B.2a) and (B.2b)) can be
simplified as follows:

Geographic � SM

~RSM ¼ ~eXgg �~Rgg

� � � 1

0

0

8><
>:

9>=
>;þ ~eY gg �~Rgg

� � � 0

1

0

8><
>:

9>=
>;

þ ~eMgg �~Rgg

� � � 0
0
1

8<
:

9=
; ¼

~eXgg �~Rgg

� �
~eY gg �~Rgg

� �
~eMgg �~Rgg

� �
8><
>:

9>=
>;; ðB:3aÞ

SM � geographic

~Rgg ¼
1

0

0

8><
>:

9>=
>; �

RSMx

RSMy

RSMz

8><
>:

9>=
>;

0
B@

1
CA �~eXgg þ

0

1

0

8><
>:

9>=
>; �

RSMx

RSMy

RSMz

8><
>:

9>=
>;

0
B@

1
CA �~eY gg

þ
0
0
1

8<
:

9=
; �

RSMx

RSMy

RSMz

8<
:

9=
;

0
@

1
A �~eMgg ¼ RSMx �~eXgg þ RSMy �~eY gg þ RSMz �~eMgg :

ðB:3bÞ

B1 Simplified computation of geographic Sun unit
vector

In Annex B1, a very simple way of geographic Sun direc-
tion computation is worked out, which is considered accurate
enough when applying the NEPPM.

Similar to the unit vector of the northern geomagnetic pole
in the geographic system, equation (B.1a), left, the geographic
unit vector pointing into the direction of the Sun can be com-
puted if the Sun’s geographic latitude uS and longitude kS are
known. To conduct the four computation steps below, the user
has to provide the following parameters as input:

� His/her geographic longitude k
� Modified Julian Date (MJD) epoch, incl. day-fractional,
for which the Sun direction is requested (e.g., http://
www.csgnetwork.com/julianmodifdateconv.html)

Computation steps:

1. Compute local time, and from that solar time, from
the user’s longitude k and MJD (MJD always refers to
Universal Time, i.e., to the local time of the zero meridian;

thus, the user’s geographic longitude k has to be added onto
MJD to obtain the user’s local time)

LT ¼ mod MJD; 1ð Þ � 24 hþ k=15� hours½ � : ðB:4Þ
where

mod MJD; 1ð Þ. . . modulo operation, in this case, return-
ing the day-fractional of MJD.

The local time obtained by equation (B.4) is the mean solar
time, referring to the uniformmotion of a fictitious Sun. What
is needed here is the location of the true Sun, i.e., true solar
time. The difference between both solar times can, depending
on the season, be up to 17 min and is caused by 1) the Earth’s
elliptic motion around the Sun and 2) due to the Earth’s rota-
tion axis tilt w.r.t. the ecliptic plane. This periodically varying
offset between true solar time and mean solar time is
described by the equation of time (e.g., https://adsabs.har-
vard.edu/full/1989MNRAS.238. 1529H). Davies (1990) pro-
vides the following simple formula giving the equation of
time (ET) with an accuracy of 2 min

ET ¼ 7:75 � sin 0:9856 � doy � 3:0ð Þf g
�9:94 � sin 1:971 � doy � 80:7ð Þf g minutes½ �; ðB:5Þ

where
360�=365:25 ¼ 0:9856 . . . conversion factor from
days½ � to degrees½ �,
1.971=2�0.9856,
doy . . . day-of-the-year days½ �, can be computed from

MJD, should be doy-fractional,
3.0 . . . doy of 3 January, i.e. perihelion transit,
80.7 . . . doy of 21/22 March, i.e. vernal equinox.

Tests revealed that the result of equation (B.5) has to be sub-
tracted from the LT value computed with equation (B.4) to
get the true solar time ST

ST ¼ LT � ET =60 hours½ �; ðB:6Þ
where ET , as provided by equation (B.5), has to be con-
verted from minutes½ � to hours½ � in equation (B.6).

2. Compute the Sun’s geographic longitude

kS ¼ k� ST � 12 hð Þ � 180�12 h degrees½ � : ðB:7Þ
3. In addition, Davies (1990) provides a low-precision

formula for the solar declination, by which, for the applica-
tion here, the Sun’s geographic latitude can be approxi-
mated as

dS ¼ 23�:44 � sin 0:9856 � doy � 80:7ð Þf g degrees½ � ;
ðB:8Þ

where
23�:44 . . . obliquity of the ecliptic (low-precision

value),
360�=365:25 ¼ 0:9856 . . . conversion factor from
days½ � to degrees½ �,
doy . . . day-of-the-year days½ �, can be computed from

MJD, should be doy-fractional,
80:7 . . . doy of 21/22 March, i.e. vernal equinox.
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4. Here dS can be set equal to the Sun’s geographic latitude
uS , and the Sun’s low-precision geographic longitude kS
was computed with equation (B.7). Therefore, the geo-
graphic direction to the Sun can, for the application here,
be described by the following unit vector with an accuracy
of about 1 degree

~eSgg ¼
cos dS � cos kS
cos dS � sin kS

sin dS

8><
>:

9>=
>;withuS 	 dS : ðB:9Þ
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