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• Transfer of the behavior tree concept into the energy sector: energy
management in a residential heating system.

• Exploitation of the potential of behavior trees via proposal of a super-
ordinate behavior tree based control strategy.

• Validation of a dynamic strategy, which results from inserting a decision
tree; its sensitivity to demand profiles, energy standard and heating
season.

• In-depth investigations on the basis of a part-load capable heat pump
model including domestic hot water and space heating.
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Abstract

Behavior trees are a proven concept in the creation of complex task-
switching control and artificial intelligence for robotic systems and non-player
characters in the computer games industry. Requirements such as flexibility,
maintainability, reusability of functionalities or expandability also apply to
the control of decentralised energy systems. Despite this, there is a notice-
able research gap regarding the application of behavior trees in that sector.
Based on a foundational heating system, including thermodynamic modelling
of a part-load capable heat pump with TESPy, tree structures for its control
are created using the Python library py trees for implementation.
With a view to minimising the annual operational performance indicators
electricity price and CO2 emissions, which reflect the optimal use of renew-
able shares, several control strategies are compared. We identify and illus-
trate the principal limitations of decision trees, mixed-integer linear optimi-
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sation performed with oemof-solph, as well as a classic rule-based approach.
The proposed higher-level behavior tree combines the strengths of such ap-
proaches whilst pursuing the additional target of reducing the start-up and
associated wear of the heat pump without significantly increasing the com-
putation time.

Keywords: Behavior Tree, Decision Tree, CART, Optimisation, MILP,
Heat Pump, Energy Management, Machine Learning

Acronyms

AI artificial intelligence

BT behavior tree

CART Classification and Regression Trees

DT decision tree

ENaQ Energetisches Nachbarschaftsquartier

ES energy system

FSM finite state machine

HP heat pump

KPI key performance indicator

MILP mixed integer linear programming

MPC model predictive control

oemof open energy modelling framework

TES thermal energy storage

TESPy Thermal Engineering Systems in Python
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Symbols

ATES surface area (TES)

DHI diffuse horizontal irradiance

DNI direct normal irradiance

ETES energy content (TES)

Eth thermal energy

PHP, el electrical power input (HP)

QHP,max nominal, i. e. maximum heat output (HP)

QHP actual heat output (HP)

Qdem heat demand

Tmax upper temperature limit (TES) with respect to Tref

Tmin lower temperature limit (TES) with respect to Tref

Tref reference temperature (TES, ETES = 0)

VTES volume (TES)

∆TTES temperature spread (TES)

∆tex period between two control activation steps

∆tupd period between regressor updates

β lossrate (TES)

Q̇loss heat loss flow (TES)

ρ density

τ time increment of loss (TES)

θamb ambient temperature

εHP coefficient of performance, COP (HP)
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ael, grid amount of electrical energy (grid supply)

cE normalized CO2 emissions associated with heating

cP normalized heating price

cel,E specific CO2 emissions (grid supply)

cel,P specific price (grid supply)

cp specific heat capacity

non start ups per day (HP)

rxy correlation

u thermal transmittance (TES)
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1. Introduction

Decentralisation and digitisation of our energy system pose major chal-
lenges to us, notably the rise in actors and the shift from consumers to pro-
sumers, leading to increasingly complex systems. Furthermore, the inherent
intermittency and unpredictability of renewable energies present fundamental
issues. This creates a significant demand for flexibility in technologies and
their control options, emphasizing the importance of system interpretabil-
ity, along with considerations for maintainability and expandability (Perger
et al., 2022; Razmi and Lu, 2022).

Proposing a potential solution to address above requirements of future
system and component control, the concept of behavior trees (BTs) stands
out. BT enable a structure for switching between different tasks in an au-
tonomous agent. They are characterized by high modularity, particularly in
the reusable nature of individual subtrees or behaviors, and clarity, along
with a high reactivity to changing environmental conditions (Biggar et al.,
2020b). In this context, behavior trees established themselves since the mid-
2000s in the computer game industry for non-player character control. Pio-
neered by the works of Mateas and Stern (2002) as well as Isla (2005) and
Champandard (2007), the concept has seen numerous extensions for creating
artificial intelligence (AI) behavior (Rabin, 2013; Colledanchise and Ögren,
2018). Especially the possibility to easily extend behavioral patterns offers
a great advantage over the otherwise widespread control with finite state
machines (FSMs).

With an increasing number of scientific publications outside industry,
further application areas have been opened up for the use of BTs. Example
fields, beyond the gaming realm, are humanoid robotics (Marzinotto et al.,
2014), automation of production (Guerin et al., 2015) and support in brain
surgery (Hu et al., 2015).
Only recently, their utility has also been proposed for application in the en-
ergy sector, more specifically in the control of smart grids (Perger et al., 2022)
and the operation of microgrids (Jingsong, 2023). Again, the focus is on en-
suring stable and economic operation under a wide range of environmental
and working conditions. As the demand for control solutions in decentral-
ized energy systems continues to grow, the theoretically well-researched and
in diverse fields practically proven concept of behavior trees emerges as a
promising candidate.

5



One relevant application alongside the above-mentioned can be found in
the electrification of domestic heating systems using heat pumps (HPs). In
view of the growing proportion of renewable energies, smart energy manage-
ment seeks to reduce not only the price of heat provision but also associated
emissions. Moreover, a component-friendly mode of operation should be
aimed for in order to reduce environmental costs. The described advantages
of BTs motivate to use them for such a purpose.
Our notable contributions, expanding on previous research, are as follows.

• Investigations on the basis of a part-load capable HP model including
domestic hot water in addition to space heating,

• Validation of a dynamic DT strategy, its sensitivity to demand profiles,
energy standard and heating season,

• Proposal of a superordinate BT control strategy, combining strengths
of MILP operation optimisation, DT and static, rule-based hysteresis
control,

• Consideration of CO2 emissions and number of HP start ups as perfor-
mance indicators in addition to electricity price.

The rest of this study is structured as follows: Section 2 contains rele-
vant information on the methodology, including a description of the energy
system model and data basis as well as a detailed explanation of the control
structures applied. In section 3, simulation results of different control strate-
gies from two sample years are shown, comprising the influence of varying
demand characteristics on HP operation. Finally, the transition to a resilient
approach based on BT is justified here. Key findings and further research
opportunities are concluded in the last section 4.
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2. Methodology

This section first presents project information, data basis and the energy
system model. An important part is concerned with the optimisation tool
used and the development of specific control structures based on BT.

2.1. Background - Energetisches Nachbarschaftsquartier

Simulation data from the project Energetisches Nachbarschaftsquartier
(ENaQ) was used as a basis. Within ENaQ possibilities for energy distribu-
tion between producers and consumers in the immediate vicinity have been
investigated (Grimm et al., 2021; Schmeling et al., 2022; Schönfeldt et al.,
2022). The project is linked to the construction of a real neighbourhood on
the former airbase in Oldenburg. Following considerations comprise a total
of approximately 140 residential units.

2.2. Data Basis

The simulation process that was conducted to determine realistic heat
load profiles and specific emissions is described by Schmeling et al. (2022).
Note that both seasonal space heating and rather season-in-dependent do-
mestic hot water consumption were taken into account. Two distinct sets
of hourly data have been used for validating resilience of subsequent control
systems:

• 2017: lower efficiency standard with a more balanced daily profile,

• 2020: higher efficiency standard but with larger load peaks, see fig.
A.15.

An overview of the full demand profiles is given in Fig. 1 (a) and of the
specific CO2 emissions cel,E of the German energy market in Fig. 1 (b). A

reduction in cumulative demand from 642 to 389MWha
−1

for the later year
can be observed. This corresponds to a daily heat consumption of 12.6 kWh
resp. 7.6 kWh, which is realistic for energy-efficient buildings (Wirth, 2023).
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Figure 1: Hourly data basis: cumulative spacial heating and domestic hot water demands
(a), specific CO2 emissions of the German electricity mix (b) and ambient temperature
(c).

Apart from the variation in the assumed energy standards and profiles,
an explanation for the significant difference in cummulative heating demand
can be given with respect to the applied weather data tab. 1 and fig. 1 (c)
(Deutscher Wetterdienst, 2023, Measurement station Bremen, ID: 691). Lower
temperature extrema and a mean difference of approximately one degree Cel-
sius, but also the higher overall irradiation were assumed to have an influence
on the heating behavior.
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Table 1: Overview of utilized weather data: ground level ambient temperature, direct and
diffuse solar irradiance (Deutscher Wetterdienst, 2023), specific CO2 emissions reflecting
the share of renewable energy production in Germany (Schmeling et al., 2022).

Data Minimum Maximum Mean
2017 2020 2017 2020 2017 2020

θamb [°C] -10.0 -5.8 30.2 33.8 10.1 11.1

DNI [Wm
−2
] - - 831.0 794.0 46.5 63.6

DHI [Wm
−2
] - - 614.0 536.0 64.4 61.1

cel,E [t/MWh] 0.19 0.15 0.78 0.73 0.53 0.41

Furthermore a clear shift of emissions can be seen, which is confirmed by
the trend of the German electricity mix (Umweltbundesamt, 2022). Using
electricity at times when these are low favours the optimal use of renewable
energies and increases their share in the heating sector. The fixed specific
prices cel,P used for subsequent calculations, on the other hand, hardly differ,

2017: 29.28 ct kWh
−1
, 2020: 31.81 ct kWh

−1
(Bundesregierung Deutschland,

2023).

2.3. Energy System and Component Modelling

The energy system (ES) under consideration, fig. 2 consists of a grid
connected HP, a thermal energy storage (TES) and a fixed heating demand
Qdem that can be covered by either of them. Flexibility is only allowed in
the form of excess, e.g. in case of a full TES. Through the introduction of
storage, it is conceptually the smallest system with a sensible application of
energy management.

Our choice of sizing was mainly based on an example from the work of
Schmeling et al. (2022) where a case study on the above described neighbour-
hood was conducted. The size of the HP and the TES were adopted directly:
QHP,max = 400 kW, VTES = 20m

3
. However, note that it is only one solution

for the optimisation of sizing in that paper. Further assumptions are made
below.

2.3.1. Heat Pump

In simplified terms, the HP is merely a converter between electricity part
and heating part system as seen in fig. 2. A key characteristic of the heat
pump is its coefficient of performance εHP = QHP/PHP, el, which is primarily
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Figure 2: Bus representation of the considered Heating System.

temperature dependent. To obtain such dependency, component based mod-
elling with Thermal Engineering Systems in Python (TESPy) by Witte and
Tuschy (2020) was carried out. The full thermodynamic model corresponds
to the components of figure A.16. Associated input properties are concluded
in tab. 2.

Table 2: Heat pump specification used to obtain εHP(θamb, QHP) values from the TESPy
model.

Type air - water
Working fluid R290
Feed temperature 67.5

◦
C

Return temperature 62.5
◦
C

θamb range -10. . . 35
◦
C

QHP range 0.2. . . 0.4MW

Now, in addition to the influence of the ambient temperature, part load
behavior of the single components can be taken into account for the design
range of operating power, fig. 3. Note that TESPy generic data was used for
the characteristic line of the isentropic efficiency of the compressor. To use
this model for a MILP optimizer a linearization needed to be performed. It
was found that fitting with a negative offset (corresponding to a constant base
load of the system) matches the TESPy results especially for lower tempera-
tures. Efficiency differences of up to 13% for constant ambient temperatures
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are reproduced very well, while the position of the maximum deviates for
higher temperatures. Linearization without offset leads to a significantly less
computationally intensive optimization (see fig. 4), however corresponds less
well to the model.
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Figure 3: HP characteristics: It can be seen, that a linearisation with offset of the com-
pressor power (a) approaches the TESPy results well, while deviation of the actual εHP

maximum (⋆) gets larger for higher ambient temperatures (b).

2.3.2. Thermal Energy Storage

The energy content of the TES can be calculated with respect to the heat
capacity of the storage medium using the specifications from tab. 3, Eth =

ρcpVTES∆TTES = 814.7 kWh.
A fairly basic approach for the storage loss was adopted, according to

which the energy content of a subsequent time step ETES(t + ∆t) can be
calculated as follows, eq. 1.

ETES(t +∆t) = ETES(t)(1 − β)
∆t
τ (1)

However, fixed absolute and relative losses were neglected. A time sen-
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Table 3: Specifications for the TES.

medium water

cp 4.19 kg kJK
−1

VTES 20m
3

∆TTES 35K
β (τ = 1h) 1.0%

sitive loss rate β results in exponential behavior, approximating heat flow
losses through the surface of the water tank Q̇loss = uATES(∆TTES − Tref).
Assuming a number of smaller storage units and u of 1.21 (Cruickshank and
Harrison, 2010), β was estimated at an upper 1.0% for τ = 1h.

2.3.3. Performance Indicators

Normalized price cP and emissions cE are calculated as key performance
indicators (KPIs) in the following. As the introduced ES only procures elec-
tricity from the grid as single external source, those values can be calculated
from cel,E and cel,P respectively. The amount of utilized electrical energy per
time step is denoted by ael, grid.

Ci = ∑
t

Ci(t) = ∑
t

cel, i(t)ael, grid(t) (2)

ci = Ci/∑
t

Qdem(t) (3)

Another relevant quantity will be the average number of starts of the HP
per day non. This indicator is particularly important as the overall service
life of the HP largely depends on that of the compressor, a. o. its number of
cycles (Grassi, 2018).

2.4. Model Based Optimisation

The ES model above gives rise to a mixed-integer linear optimization
problem, when trying to minimise the described costs. In this work the open
energy modelling framework (oemof) (Hilpert et al., 2018) package solph by
Krien et al. (2020) was applied.
With a view to computational costs, i. e. fig. 4, the performed optimisations
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were split into clusters of either 24 h or 72 h and processed separately. This
exceeds the cycle time of the TES. In addition, the assumption of perfect
foresight for optimisation in this temporal range should be somewhat closer to
reality, e. g. in a MPC approach. The increase in complexity when optimising
HP operation with varying part load efficiency as done here vs. constant εHP

at a given ambient temperature can be seen in fig. 4.
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Figure 4: Exemplary measurement of the computation time for two different HP models.
εHP(θamb) vs. εHP(θamb, QHP).

2.5. Derivation of Control Structures

As described in the introduction, BT posses the main advantages of be-
ing reactive and easily expandable (Biggar et al., 2020a; Colledanchise and
Ögren, 2018). The general framework and control structures realised with BT
should now be introduced. There is a wealth of documentation on the basic
working principle of BT (Rabin, 2013; Marzinotto et al., 2014; Colledanchise
and Ögren, 2018; Colledanchise and Natale, 2021). An overview of the node
types and their signal processing can be found in tab. A.8. As commonly
used, the organisation of following graphic representations corresponds to
execution from left to right and top (root of the tree) to bottom. Final im-
plementation was carried out with the help of the Python package py trees
(Stonier, 2023).
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2.5.1. Superordinate Behavior Tree Structure

The superordinate control system sequentially (→→) addresses the three
ES components, see fig. 5. As decisions are only to be made actively for
the HP, the following passive update of the TES and grid is realised here.
However, in actual applications those leaves could conveniently be used e. g.
for status checks.

⇉⇉

Data to

BB
→→

HP control

tree ?

TES

supply
TES

feed in

Grid

supply

Figure 5: Superordinate BT structure for the conducted simulations. The HP control
node is to be extended by various subtrees.

A regular query of environment and system variables is achieved by an
upstream parallel node (⇉⇉) that checks for new data but otherwise has no
influence on the main activities. Therefore the execution frequency of the
BT is not limited to the data frequency, hence the last existing data point
is used to perform a control step. Information exchange between different
parts, i. e. behaviors of the tree runs via a simple key/value storage, the so
called blackboard. Typical execution frequencies of up to 500Hz in other
domains (e.g. robot operating systems) are easily achieved computationally,
but are more relevant to simulation time than to the actual application.
In the following only the active HP control will be discussed and expanded.
The complete tree structures then result from insertion into the associated
node in fig. 5.
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2.5.2. Hysteresis Control

The BT realisation of a simple hysteresis control for the HP, based on a
fixed set of temperature thresholds Tmin, Tmax is shown in fig. 6.

?

→→

TTES ≤

Tmin

HP

start up

→→

TTES ≥

Tmax

HP

turn off

✓

Figure 6: Realisation of a simple HP hysteresis controller using a BT.

As soon as one of the lowest level conditions returns a success feedback,
the respective HP action (start up/ turn off) is performed. For a TES temper-
ature within the predefined boundaries current operation is to be maintained.
This can be achieved using a success decorator (✓).

2.5.3. Decision Tree Control

Another option resembling the dynamic operating strategy of Luo et al.
(2021) is the replacement of the HP control node by a decision tree (DT).
In contrast to hysteresis, this allows for decisions to be made on partial
loads increasing the system flexibility. Here, on the other hand the major
drawback of missing information back flow in DTs is emphasised. Without
observing further boundaries, the coverage of demand cannot be guaranteed.
One option to avoid this is the introduction of safety thresholds, such that the
decision making is limited with respect to demand Qdem and actual storage
content ETES, i. e. temperature, eq. 4.

QHP = min{Qdem +
ETES, tot − ETES

∆t
,

max {QHP,DT, Qdem −
ETES

∆t
}}

(4)
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For DTs there exist very mature training algorithms, as concluded by Som-
vanshi et al. (2016). One that is able to create a DT regressor for continuous
data is the so called Classification and Regression Trees (CART) algorithm
introduced by Breiman et al. (1984). Here the python package scikit-learn
(Pedregosa et al., 2011) was used for implementation with a mean-squared
error loss function.
As features for training of the DT regressor we used storage content and
heating demand, hour of the day and ambient temperature. For the analysis
of system emissions, the electricity day-ahead price was furthermore taken
into account (correlation with emissions of the energy market 2017/2020: rxy
≈ 0.7). Optimization results from previous, i. e. known time periods could
then be used for the regression. Details are presented in section 3.

Exclusive use of a DT for HP control causes difficulties as soon as higher
activation frequencies are required (e. g. non > 130 for ∆tex = 60 s). Rapid
fluctuation between tasks as a downside of reactivity is well known from other
applications (Biggar et al., 2020b).

2.5.4. Combined Operating Strategy

We propose the following combined operating strategy, fig. 7, to investi-
gate the possibility of resilient integration. Now, the DT is inserted into the
above hysteresis control, fig. 6. Hence, the HP is definitely started or turned
off at the respective condition, while the exact power output is defined by
the DT and demand coverage is ensured.

There are two options for the actual creation of the DT regressor. Either
the system is pre-trained using a reasonable amount of historic data (e. g.
of previous years) or it is updated on a regular basis. The latter can be
achieved using an upstream selective node (‘?’), as seen in fig. 7. Optimi-
sation during run time but no demand predictions are required in that case.
As a consequence the computational advantage vanishes, a sensible choice of
parameters for the regressor update is inevitable. In the same manner, tem-
perature limits can be derived from the optimisation, using the scipy-signal
module (Virtanen et al., 2020) for averaged local minima and maxima of the
TES.
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DT Regr.

condition
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update
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TTES ≤

Tmin

HP

start up

DT

...
True

...
False
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TTES ≥

Tmax

HP
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Figure 7: Complete proposed control structure for the HP using a combination of super-
ordinate BT with decision making DT sub tree. The update of regressor and temperature
thresholds is associated with a MILP optimisation using past (known) demand time series.

3. Results

In this section the proposed control strategies should be applied to the
introduced ES model to thoroughly examine their functionality. The follow-
ing comparisons are based on the introduced KPI, see. sec. 2.3.3. In 3.1 and
3.3 annual operation of different simulation runs will be considered, while in
3.2 comparison periods vary.

3.1. Hysteresis and MILP Optimisation

A control system was implemented in correspondence to the explanations
in sec. 2.5.2, varying temperature limits of the TES between 1K and 10K
for the lower threshold Tmin and between 5K and 35K (2K steps) for the
upper Tmax with respect to Tref (storage minimum). Activation frequency
∆tex of the BT was set to 60 s. For the optimisation, however, the choice of
an hourly resolution and the application to sliced data proved appropriate
with regard to computational limitations, see. sec. 2.4.
Figures 8 and 9 conclude the results of both years, 2017 and 2020. For the
optimisation and best hysteresis runs, load duration curves without temporal
profile of HP and TES are shown additionally.
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Figure 8: Results for cE vs. cP for annual operation of different hysteresis controllers
(♦, +) with 2017 heat demands. Merged operation from optimisation of 24 h intervals (⋆)
for comparison. The “feasible” range of starts was defined as non ≤ 1.1non,optimisation.

In 2017 the 1K/13K hysteresis presents the best option with respect to
price as well as CO2 emissions, while in 2020 the picture is more diverse.
Note, that the selection of feasible parameters was linked to the switching
behavior for comparability, i. e. non(hyst.) ≤ 1.1non(opti.). The results of
optimisation and hysteresis are very close to each other, for 2017 operation
of the latter even undercuts the lower resolution optimisation. At first, there
are two reasons for this:

• Split of the optimisation: storage content is forced to a predefined value
(here 30% or 10.5K) at the transition. An estimate of the impact of
different split lengths can be derived from table 4 for 2020, i. e. the
difference between 24 h and 72 h intervals. However, the assumption of
perfect foresight is if at all more realistic in this time range.

• Optimisation is limited to hourly load decisions, while BT hysteresis
adapts to its environment by the minute.

The best results are concluded in table 4. A number of conclusions can
be drawn from that.
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Figure 9: Results for cE vs. cP for annual operation of different hysteresis controllers
(♦, +) with 2020 heat demands. Merged operation from optimisation of 72 h intervals (⋆)
for comparison. The “feasible” range of starts was defined as non ≤ 1.1non,optimisation.

• In 2017, cP and cE show an exclusively linear dependency. The higher
overall demand is connected to more operating hours of the HP, where-
by an averaging effect is more pronounced. As a consequence storage
losses are more decisive for the result of both price and emissions. A
lower TES temperature level (limited by requirements for non) is aimed
for, which can also be seen in the duration curves of price optimisation
and best hysteresis.

• Decoupling in 2020, in contrast, can be explained by the overall lower
demand and less operating hours of the HP. Full exploitation of the
storage is favorable to lower emissions, although the effect is compara-
tively small.

• Average temperature thresholds of the price optimisation resemble that
of the best hysteresis. Higher values connected to higher storage losses
are accepted in the emission optimisation in order to provide flexibility
at time dependent ecological costs cel,E.
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Table 4: Results of the MILP and hysteresis optimisation of price and CO2 emissions.
Note that temperature thresholds were inherently fixed for the latter, while average values
are given for the first.
KPI optimisation hysteresis (∆tex = 60 s)

2017 (24 h) 2020 (24 h) 2020 (72 h) 2017 2020

Price [ct kWh
−1
] 12.24 13.25 13.10 12.17 (−0.6%) 13.14 (+0.3%)

Tmin/Tmax [K] 2.0/12.8 2.1/12.6 1.8/13.8 1/13 1/13
start ups [/d] 4.97 3.22 2.97 4.76 2.96

CO2 Em. [g kWh
−1
] 217.15 162.07 158.55 226.33 (+4.2%) 173.81 (+9.6%)

Tmin/Tmax [K] 4.8/18.5 4.7/18.0 4.2/19.3 1/13 1/29
start ups [/d] 4.11 2.86 2.61 4.76 1.32

• This results in a comparatively higher potential for reducing emissions.

Ultimately, the results presented are intended to serve as benchmark val-
ues for further analyses. It should be mentioned that the selection of the
best hysteresis already represents a form of optimisation, i. e. of the TES
temperature thresholds.

3.2. Hourly Decision Tree Control

For the simulation results shown below, DT decisions were introduced
into the control system as described in sec. 2.5.3. Essentially, the heating
output is decided as soon as new data is available, i. e. once an hour, instead
of being fixed to nominal as in the hysteresis.
Here it was crucial to determine time periods for training of the respective
DT. In each case, the optimisation results of that period (likewise in hourly
resolution) served as the basis. Two approaches were investigated:

• Subsequent training, i. e. comparison periods of one month and DT
regression using the previous 14, 28 or 56 days.

• Training with 2017 optimisation and comparison within the same date
range of 2020.

Maximum depth of the DT regressor was also varied between 20 and 40
(∆ = 5). Figure 10 shows the results of subsequent training using 2017 de-
mand data.
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Figure 10: Strategy of subsequent training (14, 28 or 56 days) and comparison (full month):
Hourly DT operation (varied max. depth) is compared to static 1K/13K hysteresis and
emission optimisation for 2017. Absolute values (a) and relative deviation from optimisa-
tion (b).

It can be seen that during summer (June to August) the strategy might
be favorable, as optimisation results can be approached. The difference to
the hysteresis results is mainly due to the lower heating demand, promoting
part load operation of the HP. Sensible decisions on QHP will have a higher
influence compared to winter months. At lower θamb, the maximum efficiency
furthermore approaches operation at nominal load, see fig. 3, thus making
the hysteresis more competitive resp. advantageous.
Extending the training period leads to more stable results that are fairly in-
dependent of the max. tree depth and even closer to the optimisation results
during summer months.

Repeating those simulations for the different demand profiles and higher
building efficiency standard of 2020, see sec. 2.2, draws a completely different
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picture, as shown in fig. 11.
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Figure 11: Strategy of subsequent training (14, 28 or 56 days) and comparison (full month):
Hourly DT operation (varied max. depth) is compared to static 1K/29K hysteresis and
emission optimisation for 2020. Absolute values (a) and relative deviation from optimisa-
tion (b).

Now extension of the regression period is proving to be disadvantageous
and cE of operation during summer months much higher when compared to
the hysteresis. This can only partially be explained by the different hys-
teresis benchmark (1K/29K) and possibly higher weather fluctuations. The
stronger peaks in the demand profile, see. fig. A.15 are probably the main
reason for the deviating results.

As a consequence also the second strategy of using pre-trained DT with
optimisation results of the lower efficiency standard 2017 data shows oper-
ation of mixed quality, see. fig. 12. Especially for the shorter periods (≤ 4
months) and for the beginning of both years CO2 emissions clearly exceed
that of the optimal hysteresis. This indicates high influence of the varying
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weather conditions (see fig. 1). Furthermore the max. depth of the tree has
an unpredictable effect. With a maximum of training data, one full year,
hysteresis results are barely approached.
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Figure 12: Strategy of training and comparison in different years: Hourly DT operation
(varied max. depth) is compared to static 1K/29K hysteresis and emission optimisation
for 2020. Absolute values (a) and relative deviation from optimisation (b). The regression
period is varied within 2017.

The results show, that the application of pure DT to the presented control
problem can have a positive influence on the KPI of emissions in the system.
This in principal matches results obtained by Luo et al. (2021) for a similar
ES. On the other hand, efficiency standard, demand profile characteristics
and season may have a significant impact, making the proposed strategies
rather volatile. As an additional problem, switching behavior of pure DTs
at higher execution frequency was already mentioned in section 2.5.3. The
question remains if such temporary advantages can nevertheless be employed
in a more versatile control?
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3.3. Behavior Tree based Strategy of Higher Frequency

In the above consideration, pure DT proofed to be advantageous during
certain periods at least partially when using training resp. comparison data
in succession, here from the same year. The hysteresis itself represents a
reasonable choice at a higher execution frequency ∆tex. A major difficulty in
application could be setting of the temperature thresholds in advance. Here,
finally both approaches should be combined, corresponding to sec. 2.5.2.
In principal the BT parameterization, i. e. tempertures and DT regressors is
updated at constant intervals based on the optimisation with known data (no
“predictions” allowed). Different strategies, extracting different parameters,
were investigated, as concluded in tab. 5.

Table 5: Parametrisation for different strategies using the BT framework with and without
DT resp. variable TES thresholds.

Strategy Tmin Tmax DT
S1 variable variable x
S2 fixed (1K) variable x
S3 fixed (1K) fixed (13K or 29K) ✓
S4 fixed (1K) variable ✓

Referring to the investigation of hourly activated DT the regression pe-
riod was varied between one and eight weeks (7, 14, 28, 56 d) and update
frequency 1/∆tupd either every day or every ten days. ∆tex for the full BT
was 60 s as in sec. 3.1. The results regarding CO2 emissions as well as start
up behavior based on 2017 data can be seen in fig. 13.

First, it becomes evident that none of the tested strategies is able to
undercut optimal hysteresis let alone optimisation results for cE. An im-
provement, with respect to these benchmarks, using longer training periods
is present but rather low. Here, also the shorter period ∆tupd of 1 d tends
to have a small negative effect. Despite that a significant reduction of starts
non was observed. This key strengths is particularly apparent in in S2 and
S4 as concluded in tab. 6. Both possess the additional advantage, that the
upper TES storage threshold does not need to be fixed in advance. In that
sense also the application of S1 might be a sensible choice, although showing
lower reduction in non. It appears, that the introduction of a DT decision on
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Figure 13: Results of the different strategies from tab. 5 run on 2017 data and based on
emission optimisation. Although cE of the hysteresis is not improved (top), a reduction of
non is distinct (bottom). ∆tupd was set to 1 d (+) or 10 d (♦).

the actual heat output results in a trade-off between cE and non, which can
be explained by less efficient but more continuous part load operation.

Table 6: Results of two strategies seen in fig. 13 compared to that of the corresponding
optimisation for emissions and hysteresis. Based on 2017 demand data, 7 d regression
period.

Strategy 2 ( ) cf. opti./best hyst. Strategy 4 ( ) cf. opti./best hyst.

cE [kgMWh
−1
] 228.25 +5.1%/+0.8% 233.46 +7.5%/+3.2%

non [d
−1
] 3.33 −19.0%/−30.0% 3.07 −25.3%/−35.5%

Results for similar simulations based on the emission optimisation in 2020
are concluded in fig. B.17. However, due to the overall lower heating demand
in 2020 at unchanged ES dimensions non is lower from the outset, see. tab.
4. A further reduction, especially of non = 1.32 for the 1K/29K hysteresis,
does not posses reasonable advantages. Instead, the size of the HP could be
questioned in this case.
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The examination of strategies from tab. 5 can also be applied with a focus
to price, using the cP optimisation base. Corresponding operation results for
2020 are shown in fig. 14. cP results are again very close for S1 and S2, resp.
S3 and S4. Some detailed results for the latter in each case and regression
period of 14 d are concluded in tab. 7.
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Figure 14: Results of the different strategies from tab. 5 run on 2020 data and based on
price optimisation. Heating price (top) and HP start ups (bottom) compared to hysteresis
and optimisation results. ∆tupd was set to 1 d (+) or 10 d (♦).

Table 7: Results of two strategies seen in fig. 14 compared to that of the corresponding
optimisation for price and hysteresis. Based on 2020 demand data, 14 d regression period.

Strategy 2 ( ) cf. opti./best hyst. Strategy 4 ( ) cf. opti./best hyst.

cP [ct kWh
−1
] 13.22 +0.9,%/+0.6% 13.65 +4.2%/+3.9%

non [d
−1
] 2.78 −6.4%/−6.1% 2.69 −9.4%/−9.1%

The part load capable approaches S3 and S4 using the DT subtree are
not able to assert themselves significantly here. Nevertheless, the optimal cP
values are approximated again with a reduction of the static parameters and
without predictions. This is confirmed by similar results for 2017 demands,
shown fig. B.18.
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4. Conclusion

The development of BT as a conceptual extension of classic FSM is moti-
vated by the need for interpretable and maintainable control structures with
the ability for implementation of complex behavior patterns (Colledanchise
and Ögren, 2018). This holds true not only for traditional fields of appli-
cation such as robotics or gaming, but also for the control requirements of
decentralised ESs. Here, a strategy based on a superordinate BT structure
was developed to obtain resilient dynamic management of a foundational
heating system including thermal energy provision (HP) and storage. Our
method combines the optimisation capabilities of oemof-solph with the tool of
DT, in particular using the CART algorithm. Weaknesses of these individual
approaches were highlighted and addressed in the BT design:

• No utilization of predictions as in purely optimisation based approaches,
i. e. MPC and initially lower computation costs,

• Feedback from the environment in contrast to pure DT, reducing sen-
sitivity for different energy requirements and demand profiles,

• Reduction of static control parameters that must be set beforehand.

On the other hand their advantages could be exploited as follows:

• Pattern recognition of optimal operation and its integration,

• Mature and fast training algorithms for associated DT,

• Resilience through interpretable hysteresis-like envelope.

Particularly, the presented control strategy promises to increase lifetime
of the HP based on reduction of compressor start ups and associated wear
and tear. At the same time it remains competitive to optimized hysteresis
and MPC-like optimisation based results with respect to the introduced KPI,
price and CO2 emissions.

The shown results are merely an example for the expected high potential
of using BT in ES for superordinate task switching, with modularity as a
decisive advantage. Their opportunities lie, among other things, in the com-
bination of different approaches as a connecting element between higher-level
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decision-making and subordinate component control. Possible applications
in the energy sector, as otherwise suggested by (Perger et al., 2022) or (Jing-
song, 2023), are thereby expanded.

A number of improvements might benefit the above shown performance
outputs or result in better understanding of it. Especially low resolution and
overall amount of demand data represents a relevant limitation. Here an
extension of the data set to several years should be considered. An increase
in resolution, e.g. to 15min data, should however be viewed with caution
in consideration of the computational effort as a main boundary. Further
potential lies in the fine tuning of hyper parameters, here specifically also
in the exploitation of extensive knowledge and tools for DT (Pre Pruning,
Random Forests etc.).

More general further research options include direct learning of BT using
for example genetic programming as proposed by Iovino et al. (2021) and
the influence of expansion or enlargement of the ES. How can BT actually
be extended in that case and how could the problem of synchronisation be
tackled if several components or systems use a similar or the same control
implementation?
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Appendix A. Methodology
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Figure A.15: Three exemplary days for winter (left) resp. summer (right) of the simulated
demand profiles. Different principal load structures despite similar ambient temperatures
(plots below) become visible.
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Figure A.16: Thermodynamic model for the simulated HP. Ambient temperature is set
at the evaporator, connection 11, feed and return temperature at the condenser, 22, 21
respectively. Taken from Witte (2024).

Table A.8: Node types that a BT can be build of with conditions for their respective feed-
back. Control flow nodes process the feedback of their children. Based on Colledanchise
and Ögren (2018).

Node type Succeeds Fails Running
Control flow feedback from children
Sequence →→ All succeed One fails One running
Fallback ? One succeeds All fail One running
Parallel ⇉⇉ ≥ M succeed > N −M fail else
Decorator Custom Custom Custom

Execution
Action Upon completion If impossible During compl.

Condition If true If false -
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Appendix B. Results
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Figure B.17: Results of the different strategies from tab. 5 run on 2020 data and based
on emission optimisation. Heating price (top) and HP start ups (bottom) compared to
hysteresis and optimisation results. ∆tupd was set to 1 d (+) or 10 d (♦).
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Figure B.18: Results of the different strategies from tab. 5 run on 2017 data and based on
price optimisation. Heating price (top) and HP start ups (bottom) compared to hysteresis
and optimisation results. ∆tupd was set to 1 d (+) or 10 d (♦).
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