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Abstract

In an era where maritime infrastructures are paramount supports of societies, the

need for advanced maritime situational awareness solutions has become increasingly

important. Existing ship monitoring procedures, such as the Automatic Identification

System (AIS), have limitations, suffer from delayed updates and are vulnerable to cy-

berattacks. Other technologies, such as satellite imagery and radar, face challenges in

real-time applications due to delays in acquiring and processing data. The use of opti-

cal camera systems and image processing can improve situational awareness, allowing

real-time usage of maritime infrastructure footage. However, the number of video

streams available poses a challenge for maritime operators, who could be helped by

summarized spatial information of recognized ships, irrespective of their size and type,

and presented on a map in real-time. This motivates the development of automated

ship recognition and georeferencing technologies. Moreover, the deployment of such

camera systems, equipped with an embedded device, allows for local data processing

on the edge to minimize network demand, energy usage, decrease latency, cut costs,

and enhance data protection.

This thesis, integrating six of my publications, presents a comprehensive investi-

gation into leveraging deep learning and computer vision to advance the research in

real-time ship recognition and georeferencing for the improvement of maritime situ-

ational awareness. I present a novel dataset for ship recognition and georeferencing,

ShipSG, which facilitates the development and validation of recognition and georefer-

encing methodologies. The dataset contains 3505 images and 11625 ship masks with

their corresponding class, geographic position and length. Through a series of stud-

ies of state-of-the-art deep-learning-based object recognition algorithms, I introduce a

custom real-time segmentation architecture, ScatYOLOv8+CBAM. This architecture

was created and optimized for the NVIDIA Jetson AGX Xavier as embedded system.

ScatYOLOv8+CBAM incorporates the 2D scattering transform, a novel addition that

enhances YOLOv8 in real-world applications such as ship segmentation. Additionally,

the performance is further improved with the integration of attention mechanisms.

The proposed architecture exceeds in more than 5% the performance of state-of-the-

art methods, achieving a mean Average Precision (mAP) of 75.46%. The inference

speed, once the customized architecture is deployed on the embedded system using

TensorRT, is of 25.3 ms per frame. Furthermore, I address the need for precision in

recognizing small and distant ships and their real-time processing of full-resolution



images on embedded systems, with an enhanced slicing mechanism that performs

batch inference and merges predictions, achieving mAP improvements ranging from

8% to 11%. The recognized ships are georeferenced using my proposed method, which

automatically calculates the georeferencing pixel of the recognized ships, and uses

homographies to provide the geographic position of ships from single images, with-

out prior camera knowledge. In the quantitative analysis, the georeferencing method

achieved a positioning error of 18 𝑚 ± 10 𝑚 for ranges inside the port basin (up to

400 𝑚) and 44 𝑚 ± 27 𝑚 outside (from 400 𝑚 to 1200 𝑚). The main findings reveal

significant advancements in maritime situational awareness with the practical demon-

stration of the applicability of the methodologies in real-world scenarios, such as the

detection of abnormal ship behaviour, camera integrity assessment and 3D reconstruc-

tion. The approach not only outperforms existing methods in terms of accuracy and

processing speed but also provides a framework for seamlessly integrating recognized

and georeferenced ships into real-time systems, enhancing operational effectiveness

and decision-making for maritime authorities. The integration of these methodologies

into embedded systems represents a pivotal advancement in the domain, offering a

scalable and efficient solution for improving maritime situational awareness and re-

sponse capabilities. This thesis contributes to the maritime computer vision field by

establishing a benchmark for ship segmentation and georeferencing research, demon-

strating the viability of deep-learning-based recognition and georeferencing methods

for real-time maritime monitoring.
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Zusammenfassung

In einer Ära, in der maritime Infrastrukturen von größter Bedeutung für Gesellschaften

sind, ist der Bedarf an fortschrittlichen Lösungen zur maritimen Lageerkennung zuneh-

mend wichtiger geworden. Bestehende Verfahrung zur Schiffsbeobachtung wie das Au-

tomatic Identification System (AIS) haben Einschränkungen, leiden unter verzögerten

Aktualisierungen und sind anfällig für Cyberangriffe. Andere Technologien, wie Sa-

tellitenbilder und Radar, haben Schwierigkeiten bei Echtzeitanwendungen aufgrund

von Verzögerungen bei der Erfassung und Verarbeitung von Daten. Der Einsatz von

optischen Kamerasystemen und Computer Vision kann das Situationsbewusstsein ver-

bessern, indem sie die Echtzeitnutzung von Aufnahmen direkt an marititmen Infra-

strukturen ermöglichen. Die große Anzahl verfügbarer Videostreams stellt jedoch eine

Herausforderung für maritime Betreiber dar, die durch zusammengefasste, räumliche

Informationen über erkannte Schiffe, unabhängig von ihrer Größe und Art, auf einer

Karte in Echtzeit unterstützt werden könnten. Dies motiviert die Entwicklung au-

tomatisierter Technologien zur Schiffsidentifikation und Georeferenzierung. Darüber

hinaus ermöglicht der Einsatz von Kamerasystemen zusammen mit Embedded Sys-

tems, die lokale Datenverarbeitung in situ, um den Netzwerkbedarf zu minimieren,

den Energieverbrauch zu senken, die Latenz zu verringern, die Kosten zu senken und

den Datenschutz zu verbessern.

Diese Dissertation, die sechs meiner Veröffentlichungen bündelt, präsentiert eine

umfassende Untersuchung zur Nutzung von Deep Learning und Computer Vision,

um die Forschung zur Echtzeit-Schiffsidentifikation und Georeferenzierung zur Ver-

besserung des maritimen Situationsbewusstseins voranzutreiben. Ich präsentiere einen

neuartigen Datensatz für die Schiffsidentifikation und Georeferenzierung, ShipSG, der

die Entwicklung und Validierung von Identifikations- und Georeferenzierungsmetho-

den erleichtert. Der Datensatz enthält 3505 Bilder und 11625 Schiffsmasken mit ent-

sprechenden Klassen, geografischer Position und Länge. Durch eine Reihe von Studi-

en zu den neuesten Objekterkennungsalgorithmen basierend auf Deep-Learning stel-

le ich eine neuartige Echtzeit-Segmentierungsarchitektur vor, ScatYOLOv8+CBAM.

Diese Architektur wurde speziell für den NVIDIA Jetson AGX Xavier als einge-

bettetes System entwickelt und optimiert. ScatYOLOv8+CBAM integriert die 2D-

Streutransformation, eine neuartige Ergänzung, die YOLOv8 in realen Anwendun-

gen wie der Schiffsegmentierung verbessert. Zudem wird die Leistung durch die In-

tegration von Attention-Mechanismen weiter gesteigert. Die vorgeschlagene Architek-



tur übertrifft neueste Methoden um mehr als 5% und erreicht eine Mean-Average-

Precision (mAP) von 75.46%. Die Inferenzlaufzeit beträgt 25.3 ms pro Frame, sobald

die angepasste Architektur auf dem eingebetteten System mit TensorRT bereitgestellt

ist. Darüber hinaus gehe ich auf die Notwendigkeit der Präzision bei der Erkennung

kleiner und entfernter Schiffe und ihrer Echtzeitverarbeitung von Bildern in voller

Auflösung auf eingebetteten Systemen ein. Hierzu betrachte ich einen verbesserten

Slicing-Mechanismus, der Batch-Inferenz durchführt und Vorhersagen zusammenführt,

was letztlich in mean Average Precision (mAP)-Verbesserungen von 8% bis 11% re-

sultiert. Die erkannten Schiffe werden mittels meiner vorgeschlagenen Methode geo-

referenziert. Dazu wird automatisch das Georeferenzierungspixel der erkannten Schif-

fe berechnet und Homographien verwendet, um die geografische Position der Schiffe

aus Einzelbildern ohne vorherige Kamerakenntnisse zu bestimmen. In der quantitati-

ven Analyse erreichte die Georeferenzierungsmethode einen Positionierungsfehler von

18 𝑚 ± 10 𝑚 für Entfernungen innerhalb des betrachtetetn Hafenbeckens (bis zu 400

𝑚) und 44 𝑚 ± 27 𝑚 außerhalb (von 400 𝑚 bis 1200 𝑚). Die Hauptresultate zeigen

erhebliche Fortschritte im maritimen Situationsbewusstsein, welche anhand von prak-

tischen Beispielen der Anwendbarkeit der Methoden in realen Szenarien demonstriert

werden. Zu diesen Beispielen gehören die Erkennung von abnormalem Schiffsverhal-

ten, die Bewertung der Kameraintegrität als auch die 3D-Rekonstruktion von Schiffen.

Der Ansatz übertrifft nicht nur bestehende Methoden in Bezug auf Genauigkeit und

Laufzeit, sondern bietet auch ein Framework für die nahtlose Integration erkannter

und georeferenzierter Schiffe in Echtzeitsysteme, wodurch die operative Effizienz und

Entscheidungsfindung für maritime Behörden verbessert werden kann. Die Integrati-

on dieser Methoden in eingebettete Systeme stellt einen entscheidenden Fortschritt

in diesem Anwendungsbereich dar und bietet eine skalierbare und effiziente Lösung

zur Verbesserung des maritimen Situationsbewusstseins und der Reaktionsfähigkeiten.

Diese Dissertation trägt zum Bereich der maritimen Computer Vision bei, indem sie

eine Benchmark für die Forschung zur Schiffssegmentierung und Georeferenzierung

etabliert und die Machbarkeit von auf Deep-Learning basierenden Erkennungs- und

Georeferenzierungsmethoden für die Echtzeitüberwachung maritimer Umgebungen de-

monstriert.
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Chapter 1
Introduction

Maritime infrastructures are an essential component towards the support of soci-

etal needs, economic activities, mobility, and the advancement of renewable energy

sources [1]. This highlights the reason why their security, integrity, and operational

safety are crucial. In response, maritime research is aiming at developing, testing, and

validating systems to thoroughly assess and operate these infrastructures [2]. Such

initiatives aim to cultivate a proactive and informed understanding of maritime con-

texts, essential for accurately determining the protection status of infrastructures in

real-time and enabling prompt action against various threats, including major ac-

cidents, natural disasters, and organized crime [1]. Maritime situational awareness,

facilitated by advanced technologies and data integration, is critical for a proactive

and informed understanding of maritime environments [3]. It encompasses real-time

monitoring and drives innovative solutions to enhance the security, safety, structural

integrity, and operational reliability of infrastructures against various threats [4].

In the improvement of maritime situational awareness the introduction of advanced

instruments and sensors plays a key role, which should be designed not only to rec-

ognize elements of interest but also to suggest practical measures to both users, for

operational decisions, and authorities, for regulatory compliance and emergency re-

sponse [5]. Enhancing maritime situational awareness with technology represents a

significant advancement for smart ports, exemplifying the potential for improved mar-

itime operations [6].

The International Maritime Organization (IMO) mandates that vessels exceeding

300 gross tonnage are equipped with Automatic Identification System (AIS) transceivers,

which broadcast crucial data including identification numbers, type, position, course,

and speed through encoded radio messages [7]. This system is pivotal for Vessel Traffic

1
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Services (VTS) and nearby vessels, facilitating marine traffic awareness, critical oper-

ations such as collision avoidance, and search and rescue missions. AIS transmissions

occur at intervals ranging from 2 to 10 seconds when ships are underway, which can

be extended by up to 6 minutes when stationary1. Such intervals may leave gaps in

real-time monitoring, highlighting the need for systems capable of analyzing situations

with a significantly shorter interval to aid in the prevention and response to potential

maritime complications [8]. Furthermore, the open standards employed by the AIS

exposes it to various cyber threats, including spoofing, hijacking attacks, and denial

of service, underscoring the vulnerability of the system [9–13]. Therefore, despite sig-

nificant efforts, real-time ship monitoring for improved maritime situational awareness

only using AIS continues to pose a challenge for VTS [14].

Other available sources for the improvement of maritime situational awareness

are satellite imagery and radar systems [15]. However, their processing for real-time

maritime situational awareness faces challenges due to the time-sensitive nature of

data acquisition, periodic satellite overpasses, and processing delays (∼15 minutes per

data cycle), impacting the immediacy and utility of the information [16]. Moreover,

revisit times of satellites can range from hours to days.

Optical camera systems, on the other hand, due to their accessibility, cost-efficiency,

and ease of deployment, are key in rapidly assessing ship traffic, enhancing maritime

situational awareness through views of the infrastructure from strategic positions [17].

The vast number of video streams available can present a challenge for operators [18].

The efficiency of real-time recognition is significantly boosted by image processing

technologies applied to optical monitoring [17]. This motivates the use of computer

vision and deep learning to automatically recognize and locate geographically (georef-

erence) ships on a map, irrespective of their type or size. This process can support

the operational decision-making procedures of maritime authorities by providing them

with spatial information in a timely manner [19].

Early detection of potential threats and the prevention of accidents are significantly

enhanced by employing optical cameras when used at full-resolution, ensuring detailed

and precise imagery for monitoring purposes [20, 21]. Therefore, a key challenge in

maritime monitoring is the recognition of small and distant ships, which is crucial for

safety and security at maritime infrastructures, as it helps in early threat detection

and accident prevention [20].

Object georeferencing involves linking physical objects to specific locations on the

Earth’s surface for spatial integration and analysis, a process that can extend to ob-

1https://www.navcen.uscg.gov/ais-messages
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Figure 1.1: Conceptual representation of ship detection, segmentation and georefer-
encing from maritime footage. (a) Tanker being detected. Point 1 represents the
bounding box center, and 2, the bottom-center point. (b) Tanker being segmented.
Point 3 represents the intersection of the navigation antenna with the water. (c) Rep-
resentation of the goereferenced tanker displayed on a map. The georeference from
the mask, 3, provides the most accurate ship location of the three points.

jects captured within an image [22]. For the improvement of maritime situational

awareness, once ships are recognized in real-time from monitoring images, the display

of their geographical positions on maps using georeferencing enables a better spatial

understanding of the situation [19].

Ship detection methods which use monitoring footage to present a bounding box

surrounding the detected ship, can be used to improve maritime situational aware-

ness [23, 24]. However, ship segmentation provides a more accurate georeference for

the ships using the segmented masks, as shown in Figure 1.1. The georeferenced pixel

can be better inferred from the segmented mask of an object than from a surround-

ing bounding box, which usually contains unnecessary background. The center and

bottom-center of the bounding box, given the perspective of the image, provide a

more erroneous georeference compared to the point that lies at the intersection point

between the ship hull and the water below the bridge or wheelhouse, where the naviga-
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tion antenna is located. This rationale motivates the exploration of ship segmentation

methods beyond bounding box detection, and paves the way for the development of a

method to automatically identify the pixel for georeferencing within this thesis.

Furthermore, the processing using embedded devices powered with a Graphics

Processing Unit (GPU), equipped with monitoring cameras and placed at maritime

infrastructures, represents a step forward in maritime situational awareness [25, 26].

These systems can enable on-site deep-learning-based ship recognition, offering sig-

nificant advantages such as reduced network bandwidth and energy usage, minimized

latency, and enhanced security [27]. The local processing of images using embedded

systems directly at the infrastructure facilitates the spatial understanding of the mar-

itime situation [28]. Recognized and georeferenced ships using an embedded system

can then be seamlessly integrated into web services, allowing their display (e.g. on

maps) within the situational awareness system [19]. This enhances real-time visu-

alization and enriches the overall situational awareness by providing operators with

accurate and timely spatial information [19].

Real-time and accurate ship recognition, classification, and georeferencing are es-

sential, not just for improved spatial visualization. Beyond visualization, its combi-

nation with other data sources, such as AIS, satellite imagery and radar systems can

further enhance the overall situational understanding [19]. Therefore, the faster the

image processing occurs, the better it supports the creation of a comprehensive real-

time situational picture by fusing with additional maritime data, thereby elevating

the operational effectiveness of maritime situational awareness efforts [19].

We have seen, that in the context of enhancing maritime situational awareness,

optimized real-time processing is paramount. The objective, therefore should be to

ensure that the developed ship recognition and georeferencing system operates with

the highest possible accuracy and the shortest inference times on embedded systems.

This dual focus on speed and accuracy is critical for facilitating the fusion of the

developed methodologies with other sensor data and services, thereby enabling safer,

more secure, and more efficient maritime operations.

This thesis presents a compilation of explorations, methods and results proposed

in the publications shown in Chapter 10, which will be referenced throughout the

manuscript from [BCP-I] to [BCP-VI]. The goals and contributions of this thesis,

achieved within these publications, are summarized as follows:

• Production of a real-world maritime dataset for ship recognition and georeferencing,

advancing the research field of maritime situational awareness.
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Contribution: Creation and publication of the ShipSG dataset, which pro-

vides a comprehensive set of annotated images for ship recognition and georeferenc-

ing [BCP-II].

• Investigation and development of a ship recognition architecture that seeks for en-

hanced real-time ship recognition, able to run in real-time embedded systems.

Contribution: In-depth study of state-of-the-art methods for ship recognition,

using ShipSG and other datasets [BCP-I][BCP-II][BCP-III][BCP-IV].

Contribution: Introduced ScatYOLOv8+CBAM, an innovative ship recogni-

tion architecture optimized for real-time processing on embedded systems [BCP-V].

• Proposal of an efficient solution for processing full-resolution images on embedded

systems, allowing the recognition of small and distant ships.

Contribution: Introduced an improved slicing method that enables the pro-

cessing of full-resolution images for the recognition of small and distant ships on

embedded systems [BCP-VI].

• Innovation in the field of ship georeferencing using monocular images by developing

a methodology that does not rely on prior camera knowledge.

Contribution: Developed a novel ship georeferencing methodology using ho-

mographies that operates without requiring prior camera calibration [BCP-I][BCP-

II][BCP-V].

• Optimization of real-time ship recognition and georeferencing methodologies for

their deployment on embedded systems, balancing performance with computational

efficiency.

Contribution: Further improvement of the ScatYOLOv8+CBAM architecture

for efficient deployment on embedded systems, balancing computational efficiency

with high performance [BCP-VI].

• Demonstration of the practical application of the methodologies by integrating them

into systems for improved maritime situational awareness in a variety of applications.

Contribution: Successfully integrated the developed methodologies into ap-

plications such as ship georeferencing displays including map-based visualization,

abnormal ship behavior detection, camera integrity assessment, and 3D ship recon-

struction, showcasing their effectiveness in enhancing maritime situational aware-

ness [BCP-I][BCP-II][BCP-III][BCP-IV][BCP-V].
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The remaining chapters of this thesis are organized as follows:

Chapter 2 Fundamentals of Modern Object Recognition

This chapter dives into the technical background of modern object recognition,

introducing key concepts. It explores how deep learning has transformed com-

puter vision for object recognition and how it can be leveraged.

Chapter 3 Relevant State of the Art

This chapter focuses on relevant state-of-the-art, highlighting areas in ship recog-

nition and georeferencing where current research falls short. The chapter presents

maritime datasets and object recognition methods essential for this thesis as well

as potential improvements, prior ship georeferencing research and deployment

on embedded systems.

Chapter 4 ShipSG: Ship Segmentation and Georeferencing Dataset

This chapter presents the creation of ShipSG2, a novel dataset for ship recogni-

tion and georeferencing. ShipSG provides the foundation for this thesis, enabling

the development and evaluation of the methods presented in the subsequent

chapters.

Chapter 5 Ship Recognition for Improved Maritime Awareness

This chapter shows the initial exploration of deep-learning-based methods for

ship detection and segmentation, revealing their potential applications, such

as ship georeferencing, abnormal ship behavior detection, camera integrity as-

sessment, and 3D ship reconstruction. The study of state-of-the-art instance

segmentation methods sets the stage for the custom developments and analysis

proposed in subsequent chapters.

Chapter 6 Advanced Ship Recognition for Real-time Operation

This chapter addresses the need for fast and accurate algorithms on embedded

systems for real-world use. While ship detection was proven to perform well, de-

ploying instance segmentation (better for ship georeferencing) on embedded sys-

tems was shown to be a significant challenge. This chapter addresses this gap by

proposing a customized real-time segmentation method (ScatYOLOv8+CBAM),

deployed on an embedded system. It also proposes a method to improve the

segmentation accuracy for small and distant ships by processing full-resolution

images, crucial for better maritime situational awareness.

2https://dlr.de/mi/shipsg
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Chapter 7 Ship Georeferencing for Maritime Situational Awareness

This chapter focuses on the georeferencing of the ships recognized using monoc-

ular cameras to improve maritime situational awareness. This involves the de-

velopment of a method to present ships on a global scale using only single images

without prior camera knowledge. The chapter first explains homographies and

then details the proposed method for georeferencing ship bounding boxes, along

with the calculation of ship heading direction from optical flow. Finally, the

chapter quantitatively analyses how this monocular ship georeferencing improves

maritime situational awareness.

Chapter 8 Summary and Conclusion

This chapter summarizes the contributions and key findings of this thesis, and

concludes the outcome of the produced results.

Chapter 9 Future Work

This chapter presents the challenges encountered throughout the thesis and pro-

poses new research lines to approach future work.

Chapter 10 Publications by the Author for this Thesis

This chapter presents the list of publications used in this compilation thesis and

includes a short summary of my contributions to each publication.
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Chapter 2
Fundamentals of Modern Object
Recognition

As motivated in Chapter 1, the combination of computer vision and deep learning offers

a potent solution for automatic ship recognition using optical monitoring cameras.

This chapter provides a technical overview of concepts to understand modern object

recognition, starting with the role of supervised learning in computer vision, and

followed by the use of deep learning for the two computer vision tasks of interest in

this thesis, object detection and instance segmentation.

2.1 Supervised Learning in Computer Vision

Computer vision is a discipline within Artificial Intelligence (AI) that allows machines

to process and interpret visual data. By harnessing algorithms and data, computer

vision systems can identify and classify objects, and make decisions based on visual

inputs similar to the way humans do [29]. The field of computer vision has sig-

nificantly advanced with deep learning, a subfield of machine learning, particularly

through the use of Convolutional Neural Networks (CNNs) [29]. Preceding computer

vision approaches relied on hand-engineered feature extraction. Deep learning, on the

other hand, utilizes vast amounts of visual data to train hierarchical structures of

neurons that excel at identifying patterns to therefore perform automatic feature ex-

traction [30]. Thanks to the use of GPUs, deep learning with CNNs have significantly

surpassed the performance of traditional algorithms in tasks like image classification,

object detection, and instance and semantic segmentation [31]. The computational

power of GPUs, due to the parallel processing capabilities, enabled the training of
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deep networks with millions of parameters, allowing for the extraction of complex

features from large datasets.

Machine learning algorithms are commonly categorized into supervised learning,

which requires labeled data for training, unsupervised learning, which operates on un-

labeled data to find patterns, and semi-supervised learning, which uses a combination

of labeled and unlabeled data to train models [32]. In certain real-world applica-

tions, supervised learning is preferred for training models with real-world annotated

datasets, ensuring accurate identification and categorization of objects represented in

the data [33].

In supervised learning, models are trained on datasets labeled by human ex-

perts [34]. During training, the supervised model adjusts its parameters by measuring

the deviation from the actual labels [32]. Therefore, the annotation process involves

pairing each training sample with its corresponding output labels, serving as a learning

guide for the model. In computer vision tasks, such as image classification, labeled

training images are used to predict classes on validation images [35]. In object detec-

tion tasks, the annotations and training extends for the classification and localization

of objects in the image within bounding boxes. Segmentation tasks demand detailed

annotations, labeling each pixel by class [36].

In summary, supervised learning has greatly advanced computer vision tasks, while

also highlighting the continuous need for models that can learn effectively from anno-

tated data.

2.2 Deep-Learning-Based Object Recognition

Object recognition in computer vision involves identifying and classifying objects in

images [29]. Two main tasks in the field are object detection and instance segmen-

tation, which are essential for machine interpretation of visual data and widely used

in autonomous driving, monitoring, surveillance and medical imaging applications,

among others [33, 36]. Figure 2.1 depicts the difference between object detection and

instance segmentation.

Object Detection aims to locate and classify objects within an image, including

the determination of their presence and exact location within bounding boxes.

Instance Segmentation advances beyond detection with bounding box by iden-

tifying each object instance in an image at the pixel level, delineating its shape with

a mask. Unlike semantic segmentation, which classifies each pixel within the image

10
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Figure 2.1: Example of object detection and instance segmentation on an image. Ob-
ject detection involves bounding box localization and classification, whereas instance
segmentation goes beyond that to provide a mask outlining the exact shape of each
individual object instance. Adapted from [37].

as belonging to a certain class, instance segmentation recognizes each object instance

separately and the rest is considered background.

2.2.1 Standard Architecture Description

Modern deep learning architectures for detection and segmentation tasks extensively

use CNNs, featuring a combination of a backbone, a neck and head structure [29].

Figure 2.2: Standard deep learning object recognition architecture. See text for details.

Figure 2.2 illustrates a standard deep learning object recognition architecture. In

CNN-like architectures, a feature map is the output of one filter (also known as kernel)

applied across the previous layer to detect specific features [29]. In the case of an ob-

ject recognition architecture, the backbone focuses on extracting features by learning

to recognize task-relevant patterns in visual data, performing changes in feature map

resolution (width, height and channel number). The arrows in Figure 2.2 represent the

flow of data through the network layers. As data progresses through the backbone,
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the resolution typically decreases to reduce the spatial dimensions while increasing

the depth (number of channels) to create more abstract and complex feature repre-

sentations [29]. Conversely, in the neck, the resolution can either decrease or increase.

Typically, in object detection and instance segmentation tasks, the neck often includes

upsampling to increase spatial information, allowing a more accurate location of ob-

jects of interest [29]. The neck fuses and aggregates features from different resolutions,

acting as a bridge between the backbone and the head. The head performs specific

tasks based on these features, such as detection, segmentation, and classification. Al-

though they are different tasks, detection and segmentation share similarities in terms

their architecture, with each head designed to perform the desired task. However, the

design of backbone and neck can be tailored to perform better for the task of interest.

As illustrated by Figure 2.2, deep learning architectures for object recognition that

use CNNs typically comprise blocks that represent combinations of structured layers to

process the visual data. These blocks include include a combination of convolutional,

pooling, upsampling, activation and regularization layers [38].

Figure 2.3: Illustration of a standard convolution operation, taken from [39]. The
input volume has dimensions 𝐻×𝑊 ×𝑀 (height, width, and number of channels). A
filter, also named kernel, of size 𝐾×𝐾×𝑀 is convolved with the input, producing an
output volume of dimensions 𝐻×𝑊×𝑁 , where 𝑁 is the number of filters. This process
involves sliding the filter over the input and computing the dot products between the
filter weights and local regions of the input.

Convolutional layers apply filters (kernels) to the input to create feature maps.

These filters contain learned weights, which are adjusted during training to optimize

feature extraction (see Figure 2.3). The convolution operation involves sliding the filter

over the input to compute dot products between the filter weights and local regions

of the input, generating feature maps that capture different aspects of the input data.

Though not depicted in Figure 2.3, to further adjust the output, a learnable bias term

is normally also added to each output element.
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Figure 2.4: Illustration of max pooling and average pooling operations with a 2×2 pool
size, taken from [39]. Max pooling selects the maximum value from each 2 × 2 block,
while average pooling computes the average value from each 2× 2 block, reducing the
spatial dimensions of the input feature maps.

Pooling layers perform a fixed operation to reduce the spatial dimensions of the

feature maps, down-sampling the input to reduce computational load and enhance

invariance to small translations. As seen in Figure 2.4, there are two common types

of pooling: max pooling and average pooling. Both types of pooling effectively reduce

the spatial dimensions while preserving important spatial features. Moreover, pool-

ing layers reduce the spatial resolution of feature maps to combat overfitting, which

happens when a model memorizes training data, failing to generalize to new, unseen

data.

In contrast to pooling, upsampling layers perform the opposite operation by in-

creasing the spatial dimensions of the feature maps. Upsampling can be achieved

through various methods, such as nearest-neighbor interpolation, bilinear interpola-

tion, or transposed convolutions [29]. Upsampling layers are used to increase resolution

when finer detail is necessary.

Activation layers introduce non-linearity, enabling the network to capture complex

patterns [38]. Typical activation functions include Rectified Linear Unit (ReLU) and

Sigmoid-Weighted Linear Unit (SiLU). The ReLU, given by 𝑓(𝑥) = max(0, 𝑥), function

provides a linear output that is zero for negative inputs and linear with a slope of 1

for positive inputs. SiLU, given by 𝑓(𝑥) = 𝑥 · 𝜎(𝑥), incorporates a sigmoid function,

described as
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𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.1)

allowing it to handle negative inputs more dynamically by scaling the output in a

non-linear fashion.

Regularization layers, such as dropout and batch normalization, are also integrated

into CNN architectures. Dropout randomly omits neurons during training to enhance

generalization, while batch normalization scales the output of a layer to have a mean

of zero and a variance of one, which can expedite training and improve overall perfor-

mance [38].

State-of-the-art deep learning architectures, such as those that will be described

in Chapter 3, often combine the above-presented layers in innovative ways to enhance

model performance and efficiency. For instance, methods like ResNet, normally used

as backbone in object recognition architectures, introduce skip connections that al-

low gradients to flow more easily through very deep networks, facilitating training

[40]. Other advancements involve combining the layers in specific configurations to

achieve desired properties. For example, Feature Pyramid Networks (FPNs) employ

a combination of convolutional and upsampling layers to create feature maps at dif-

ferent scales, allowing the model to better handle objects of varying sizes within an

image [41]. Additionally, various forms of attention mechanisms (see Section 2.2.2)

can be integrated using these building blocks to selectively focus on relevant parts of

the feature maps, leading to improved performance [42]. In summary, the combina-

tion of layers are foundational and their interactions is crucial for the advancements

in contemporary deep learning models.

2.2.2 Attention Mechanisms

Neural networks use attention mechanisms to allow models to dynamically focus on

the most relevant parts of the input data, enhancing their ability to process complex

information [42, 43]. Initially introduced in Natural Language Processing (NLP) for

tasks like language translation [43], attention mechanisms have since become integral

to various deep learning applications, including computer vision. At the core of these

mechanisms are attention weights, learned during training, which determine the im-

portance of different parts of the input [44]. For example, in language translation, this

results in an 𝑛× 𝑛 attention matrix or map, where 𝑛 is the number of words [43].

The implementation of attention mechanisms involves the calculation of the at-

tention weights using a score function [43]. This is achieved by applying the input
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to a learned weighted matrix that computes relevance scores using functions like dot

product [42], or pooling operations (e.g., max pooling, average pooling) [45]. These

scores create an attention map, highlighting the importance of different input parts.

The network uses this map to prioritize crucial information, learning to distribute

focus effectively across the input data.

In computer vision, the term attention translates to individual pixels attending to

other pixels, or patches of pixels attending to other patches, leading to an attention

map that captures the relationships across different regions of the image [46]. However,

this poses significant computational challenges. To address these challenges, various

strategies have been proposed in the literature:

• Dimensionality reduction with convolutional layers and pooling operations

are often used to reduce the dimensions of the input before applying attention,

decreasing the computational load by working with smaller feature maps [45, 47].

• Hierarchical attention mechanisms apply attention at different scales or hi-

erarchies, allowing the model to first focus on broad, coarse details and progres-

sively refine its attention to finer details, thus significantly reducing complex-

ity [48].

• Local attention restricts the attention mechanism to a local neighborhood

around each pixel, limiting the number of interactions and thereby reducing the

computational burden [49].

• Spatial attention mechanisms identify important spatial locations within an

image, thus allowing the model to concentrate on critical regions [50].

• Channel attention mechanisms focus on identifying important feature chan-

nels within a CNN, thereby improving the model’s feature representation [47].

Attention mechanisms are, therefore, used to enhance the ability of models to

focus on key parts of an image. Specifically for computer vision tasks, they have

been incorporated to CNNs to improve performance in large-scale image classification

tasks [47, 51]. Additionally, they have been applied in object detection and instance

segmentation tasks by incorporating spatial and channel-wise attention, which im-

proves feature representation and accuracy [45, 47, 52, 53].
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2.2.3 Object Classification and Postprocessing

To accurately classify objects, after they are detected or segmented, the final layer

of the head, usually a fully connected layer [30], provides a confidence score for each

potential prediction, which reflects the likelihood that a recognized object belongs to

a specific class. Multiple prediction proposals (bounding boxes or masks) for the same

object require further postprocessing beyond the head to enhance the accuracy and

reliability of a prediction. Standard object recognition architectures include postpro-

cessing after the head to refine the bounding boxes or segmentation masks recognized

by the model and to eliminate redundant predictions [29]. A key component of this

postprocessing phase is Non-Maximum Suppression (NMS) [54], a technique designed

to eliminate redundant bounding boxes or segmentation masks that pertain to the

same object. Essentially, NMS ensures that each detected object is represented exclu-

sively by the single, most accurate bounding box or mask, thereby preventing clutter

and providing a clearer output.

To decide which bounding boxes or masks to keep and which to discard, NMS

relies on the confidence scores of the predictions, together with a metric known as

Intersection over Union (IoU). This metric measures the overlap between two areas—in

this case, the area of overlap between a predicted bounding box or mask and the

ground truth, as shown in Figure 2.5. The IoU helps in determining the accuracy

of the predictions by quantifying how closely the predicted bounding boxes or masks

align with the actual objects in the image.

Figure 2.5: Joint illustration of Intersection over Union calculation for boxes and
masks. On the left, the ground truth, and predicted bounding boxes and masks are
shown. In the middle, the IoU for the bounding box is visualized. On the right, in
the case of instance segmentation, the IoU for the mask is calculated.

Mathematically, 𝐵𝐼𝑜𝑈 (bounding box) and 𝑀𝐼𝑜𝑈 (mask) can be denoted as:
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𝐵𝐼𝑜𝑈 =
area(𝐵𝑝𝑟𝑒𝑑 ∩𝐵𝑔𝑡)

area(𝐵𝑝𝑟𝑒𝑑 ∪𝐵𝑔𝑡)
(2.2) 𝑀𝐼𝑜𝑈 =

area(𝑀𝑝𝑟𝑒𝑑 ∩𝑀𝑔𝑡)

area(𝑀𝑝𝑟𝑒𝑑 ∪𝑀𝑔𝑡)
(2.3)

This ratio ranges from 0 to 1, where 0 indicates no overlap and 1 indicates perfect

overlap. In practice, an IoU threshold is set (e.g., 0.5 or 50%) to classify predictions

as true positives or false positives. The NMS filters the best final prediction from

the possible proposals, represented as 𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑁𝑀𝑆(𝑃, 𝑆, 𝜏), for a set of predictions

𝑃 (either masks or bounding boxes) with associated confidence scores 𝑆 and an IoU

threshold 𝜏 .

Following the discussion of object recognition architectures and postprocessing, it

becomes relevant to address the practical aspects of implementing these frameworks.

PyTorch [55] is a popular deep learning library for computer vision, valued for its

dynamic computation graph and efficient GPU memory management. Its straightfor-

ward syntax simplifies the implementation of supervised CNNs, making it ideal for

research and development. This thesis leverages PyTorch to develop models for ship

recognition.

2.2.4 Training Process

Figure 2.6: Schematic of the Convolutional Neural Network (CNN) Training Process.
An input image is passed through the CNN during the forward pass, resulting in a
predicted output (𝑦𝑝𝑟𝑒𝑑). The prediction is compared to the true value (𝑦) using a loss
function (𝐿(𝑦𝑝𝑟𝑒𝑑, 𝑦)), and the error is propagated back through the network during
backpropagation to adjust and improve the model weights.

The training process of CNNs for object detection and segmentation includes for-

ward and backward propagation, as illustrated by Figure 2.6.
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During forward propagation, the input data is fed through the network to output

a prediction. The choice of loss function is crucial for model performance. Commonly

used loss functions for different tasks include Binary Cross-Entropy Loss, Focal Loss,

Bounding Box Loss, Objectness Loss, and Pixel-wise Cross-Entropy. Each of these

loss functions addresses specific aspects of the prediction problem, such as class im-

balance (Focal Loss) or spatial localization accuracy (Bounding Box Loss). These loss

functions, sometimes used in combination or with other loss functions, help the model

learn from its mistakes and achieve optimal performance [31]. Further description and

mathematical definitions of these loss functions can be found in reference [29].

Backward propagation, based on a loss function, then adjusts the network weights

to minimize discrepancies between the predictions and the ground truth [38]. This

adjustment process involves calculating gradients of the loss function with respect to

the network parameters. These gradients indicate the direction and magnitude of the

changes needed to reduce the loss.

Optimization algorithms use these gradients to update the network parameters

iteratively. Common optimization algorithms include Stochastic Gradient Descent

(SGD), Adam, RMSprop, and AdaGrad [30]. Each algorithm has its strengths and

is chosen based on the specific requirements of the task. The goal is to minimize the

loss function, thereby improving the performance of the model. The learning rate, a

key factor in this process, determines the size of the updates. Optimization involves

multiple passes through the dataset, known as epochs, where the network parameters

are refined to achieve better accuracy and generalization [30].

2.2.5 Evaluation Metrics

Evaluating the performance of object recognition models is critical to understanding

their effectiveness and accuracy. The mean Average Precision (mAP) is a commonly-

used metric to evaluate object detection and segmentation performance [56]. Ex-

pressed in percentage, it is calculated as the mean of all the Average Precisions (AP)

for all classes present in the dataset at a given IoU threshold. This is, mathematically:

𝑚𝐴𝑃𝜏 =
1

𝐶

𝐶∑︁
𝑐=1

𝐴𝑃𝜏,𝑐 (2.4)

Here, 𝑚𝐴𝑃𝜏 represents the mAP at an IoU threshold 𝜏 , calculated by averaging

the AP values across all 𝐶 classes. For the calculation of AP for each class, true

positives are counted when the IoU of the prediction exceeds the given threshold 𝜏 . In

the case of object detection, a true positive is confirmed when the IoU of the predicted
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bounding box exceeds the IoU threshold. For instance segmentation, true positives

are based on the overlap between the predicted mask and the ground truth mask at

the IoU threshold. This distinction in true positive calculation signifies the different

evaluation approaches between object detection and instance segmentation.

It is common in the field of object recognition to refer to mAP as a short form

of 𝑚𝐴𝑃0.5:0.95 [29]. The 𝑚𝐴𝑃0.5:0.95 accounts for mAP values at IoU thresholds that

range from 0.5 to 0.95, in increments of 0.05. The formula would therefore be defined

as:

𝑚𝐴𝑃 =
1

𝑁

0.95∑︁
𝜏=0.5

𝑚𝐴𝑃𝜏 (2.5)

Where 𝑁 represents the number of thresholds, which is 10 in the case of the

range 0.5 : 0.95. This comprehensive evaluation across several IoU thresholds provides

insights into the performance of the model at different levels of strictness in object

localization against the ground truth.

Additionally, the mAP can accomodate objects of varying sizes by further catego-

rizing it based on the pixel area of the detected objects [56]:

• 𝑚𝐴𝑃𝑠 (small) if 𝑎𝑟𝑒𝑎 ≤ 322 pixels

• 𝑚𝐴𝑃𝑚 (medium) if 322 < 𝑎𝑟𝑒𝑎 ≤ 962 pixels

• 𝑚𝐴𝑃𝑙 (large) if 𝑎𝑟𝑒𝑎 > 962 pixels

This distinction per object size allows for a more detailed analysis of performance,

especially in datasets with a wide range of object sizes, by highlighting its ability to

detect small, medium, and large objects.

In order to compare results with existing standards, datasets such as COCO [56],

with over 330,000 images and detailed annotations, are used as a resource for training

and evaluating computer vision models in object detection and instance segmenta-

tion. Its diverse image collection makes it a valuable resource for researchers and

developers. In the literature of experimental general purpose object recognition, it is

a standard practice to evaluate general-purpose object recognition models performance

using COCO as a benchmark [29] with the mAP as metric.
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Chapter 3
Relevant State of the Art

Expanding on the foundations of Chapter 2, this chapter identifies key limitations

in approaches to maritime situational awareness prior to this thesis. Specifically, this

chapter reviews existing maritime datasets, real-time ship recognition algorithms, geo-

referencing techniques and gives an overview of the technologies available for deploy-

ment on embedded systems. By analyzing limitations, this chapter lays the ground-

work for the studies and developments of a novel approach presented in later chapters.

3.1 Real-world Maritime Datasets

The accuracy of a supervised learning model is greatly dependent on the quality and

volume of the annotated data it is trained on, especially for real-world applications [34].

As deep-learning-based ship detection and segmentation rely on supervised learning,

it is necessary to use domain-specific training datasets [33]. The training set and an-

notations must accurately represent the variety of ways objects can appear in different

conditions [57].

Real-world maritime monitoring requires image data with precise annotations for a

broad range of ships and ship classes [58]. General-purpose detection and segmentation

datasets, such as COCO [56] or PASCAL VOC [59], therefore, do not suit the task

of ship recognition and georeferencing as benchmark datasets for maritime awareness.

Relevant datasets in the literature for ship detection on video monitoring cameras

are the Singapore Maritime Dataset (SMD) [17], Seaships7000 [60], and a dataset

introduced by Chen et al. [61]. Moreover, other private datasets exist [62, 63], however

the restricted access makes the experimental validation using them not possible. The

accessible datasets, lack a variety of ship classes in their annotations and do not provide

ship masks, necessary for ship georeferencing. The MarSyn dataset [64] is a synthetic
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ship dataset that contains images rendered from synthetic 3D scenes for instance

segmentation in six ship classes, without georeference from the ships annotated.

A literature review on ship detection and localization [65] highlights the fact that

while annotations for ship datasets should include more complex data such as latitude

and longitude of the ship, available datasets primarily focus on the object classes and

bounding boxes, without masks or geographic positions. However, as motivated in

Chapter 1, ship segmentation provides a more suitable solution for georeferencing.

Therefore, we find the need for a publicly available real-world dataset, for ship seg-

mentation and georeferencing, that includes footage of a maritime infrastructure as

well as mask and georeferencing annotations of several classes of ships. This dataset,

should aim towards the advancement and evaluation of ship recognition methods for

the improvement of maritime situational awareness.

3.2 Ship Recognition Using Maritime Monitoring Footage

To enhance maritime situational awareness, it is crucial to use methods that perfom

ship recognition on maritime footage [17]. However, these methods should not only

recognize ships but also allow the gathering of essential information about them, such

as their class and geographic location (georeference). It is vital to present this infor-

mation in a simplified format to maritime operators for quick and effective decision-

making [19]. Additionally, deploying an embedded system, with a monitoring camera

on board, enables deep-learning object recognition directly on-site. This approach

reduces network bandwidth, minimizes latency, improves security, and offers cost-

efficiency [27], but comes with the trade-off of lower computational power compared

to high-end systems [25]. To address these complexities effectively, it is important

that ship recognition methodologies not only ensure high accuracy across various ship

sizes and types but are also optimized for the constraints of embedded hardware. Fur-

thermore, the inference speed of video-based ship segmentation is paramount, as it

significantly contributes to the improvement of data fusion with other sensor data,

leading towards more cohesive maritime situational awareness systems [19].

These challenges underline the need to search for effective object recognition meth-

ods in the literature. The following list provides a brief overview of state-of-the-art

object detection and instance segmentation methods that are particularly relevant:

• YOLOv4-CSP [67]. The You-Only-Look-Once (YOLO) algorithm was intro-

duced for real-time object detection [68]. It divides the image into a grid and

predicts bounding boxes and class probabilities for each grid cell, based on pre-
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defined anchors that act as reference points. These anchors are calculated by ap-

plying k-means clustering [32], and serve a set of provisional bounding boxes for

the object detection task. YOLOv4-CSP presented a substantial enhancement

in speed and accuracy by leveraging two main innovations. The first innovation

is the use of CSPDarknet53 [69] as backbone, based on CSP network [70]. The

CSP network partitions the feature map into two parts: one part is processed

through a series of layers while the other part bypasses these layers, ensuring

better gradient flow and capturing patterns more effectively [70]. The second

innovation is the Bag of Freebies technique, which includes data augmentation,

label smoothing, and additional regularization methods. These improvements

reached a detection mAP of 47.5% on COCO.

• Faster R-CNN [71] and Mask R-CNN [72]. Mask R-CNN is a two-stage

instance segmentation method that was developed as an extension of the ob-

ject detector Faster R-CNN. They use the Region Proposal Network introduced

in [71] to identify object candidates and then refine these detections by classify-

ing them and fitting precise bounding boxes. In Mask R-CNN, a fully convolu-

tional network was added to regress the mask from the detected bounding boxes,

reaching a mask mAP of 39.8% on the COCO dataset with the ResNeXt-101

backbone [73].

• DetectoRS [74] is a multi-stage instance segmentation method that enhances

the use of recursive feature pyramid network [41] and feedback connections [75]

for improved performance. It features an atrous convolution, a type of dilated

convolution used to expand the receptive field, allowing it to capture larger areas

of the input [76]. DetectoRS uses ResNet-50 [40] as its backbone, and achieves

a 44.4% mask mAP on the COCO dataset.

• YOLACT [77] emerged as one of the first real-time instance segmentation

approach, operating in one-stage. It generates prototype masks through an in-

dependent fully convolutional network [78] and computes coefficients for adjust-

ing these masks to the predicted bounding boxes. After suppressing overlapping

detections with Non-Maximum Suppression (NMS), it filters the masks using an-

chor boxes. With a ResNet-101 backbone [40], YOLACT attains a mask mAP

of 34.1% on the COCO dataset.

• Centermask-Lite [79] is a one-stage instance segmentation method, optimized

for real-time applications. It utilizes a spatial attention-guided mask branch
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within a fully convolutional object detector [80] to refine proposed regions. It

incorporates a novel backbone, VoVNet [81], which enhances feature map in-

tegration and, with VoVNet-39, achieves a 36.3% mask mAP on the COCO

dataset.

• YOLOv5 [82], developed within Ultralytics framework1, builds on YOLOv4

but utilizes PyTorch and introduces the AutoAnchor algorithm to automatically

fine-tune anchor boxes over multiple iterations. It achieves a detection mAP of

50.7% on COCO.

• YOLOv8 [66], also developed by Ultralytics, builds upon previous YOLOv5.

With a focus on real-time applications, this version supports a full range of

vision tasks, including detection and instance segmentation. In this thesis,

YOLOv8 plays a central role in the customized instance segmentation archi-

tecture proposed in [BCP-V] and improved in [BCP-VI], ScatYOLOv8+CBAM

(Section 6.2). Therefore, YOLOv8 is described further than the previous state-

of-the-art methods. The YOLOv8 architecture is divided into three main parts:

Backbone, Neck, and Head, as illustrated in Figure 3.1. The model uses the back-

bone CSPDarknet53 [69] as previous YOLO versions, but includes the novel C2f

module (Figure 3.1(a)). The blocks found in the backbone are:

– Conv Block (Figure 3.1(b)): Each Conv block includes a 2D convo-

lution, followed by batch normalization and a Sigmoid-Weighted Linear

Unit (SiLU) activation function. This block reduces the spatial dimensions

(width and height) and increases the number of channels.

– SPPF Block (Figure 3.1(c)): The Spatial Pyramid Pooling Fast (SPPF)

block performs multiple max-pooling operations at different scales, concate-

nates the results, and then applies a convolution. This block maintains the

number of channels.

– C2f Module (Figure 3.1(d)): This module contains a series of con-

volutional layers, a channel split operation, and a CSPbottleneck. The

CSPbottleneck splits the input feature map into two parts: one part goes

through a series of convolutional layers (bottleneck), while the other part

bypasses these layers. The outputs are then concatenated, which helps

in maintaining gradient flow and reducing computational load. This de-

1https://github.com/ultralytics/
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sign enhances feature extraction and learning efficiency. The C2f module

increases the number of channels.

The neck of YOLOv8 (Figure 3.1(a)) is designed to generate feature pyramids

that help the model handle objects at different scales. Further blocks of the neck

are:

– Upsample: This block increases the spatial dimensions (height and width)

of the feature maps.

– Concat: The Concat blocks merge feature maps from different stages,

increasing the number of channels.

The head (Figure 3.1(a)) is responsible for producing the final output of the

model. It includes the following:

– Segment Block (Figure 3.1(e)): This block consists of a series of con-

volutional layers and generates segmentation masks and classifies each de-

tected object. The postprocessing of YOLOv8, not shown in Figure 3.1,

combines the output of both the pixel-level masks and class labels for each

object.

YOLOv8 also offers five model sizes, these being, from the lightest and fastest to

the deepest and most accurate: YOLOv8𝑛, YOLOv8𝑠, YOLOv8𝑚, YOLOv8𝑙,

and YOLOv8𝑥. It achieves a detection mAP of 53.9% and a mask mAP of

43.4%.

The above-listed methods were originally designed by their authors using COCO [56]

as benchmark dataset, serving this as a way of identifying robust and real-time models

in the literature that could be suited for ship recognition tasks.

An effective object recognition method for ship recognition should offer potential

for integration with additional tasks, such as georeferencing, which, is vital for en-

hancing maritime situational awareness [19]. This necessitates a move beyond the uti-

lization of existing state-of-the-art object detection and segmentation models, towards

developing an advanced approach. Such an approach must be lightweight enough for

embedded system deployment while maintaining or enhancing precision and speed.

This highlights the need for innovative, efficient solutions capable of meeting the strin-

gent demands of both performance and practicality in maritime situational awareness.

To tackle the challenges mentioned and boost performance in real-world scenarios

with scarce data, real-time ship recognition can be improved by leveraging advanced
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methods like attention mechanisms and techniques from other fields, such as the 2D

scattering transform. The 2D scattering transform, which uses wavelets, has been

widely used in signal processing tasks such as speech recognition, time series analysis,

astrophysics, and geosciences [83–86]. Prior research has utilized wavelets in the com-

puter vision field to perform multi-resolution geometric processing, multi-scale oriented

filtering and image denoising [29]. In combination with deep learning and computer vi-

sion, the scattering transform has been used for image classification tasks [87], proving

to provide a deep systematic understanding of how invariant features can be captured

and utilized. It captures the essence of geometric and structural properties, which are

crucial for recognizing complex patterns under various conditions [88]. The integra-

tion of the 2D scattering transform and attention to an object recognition method

should aim to enhance ship recognition performance, offering an efficient and targeted

solution to the previously outlined challenges. The technicalities of the 2D scattering

transform are given in Chapter 6.

Enhancing the performance of ship recognition systems through the integration

of advanced techniques represents a significant step forward in maritime situational

awareness. However, the practical application of these advancements in real-world

monitoring scenarios brings to the forefront additional challenges, particularly in the

recognition of small and distant ships. The effective recognition of small and distant

ships ensures protection at the infrastructure by enabling early threat detection and

accident prevention at maritime infrastructure [20]. Using images at their original

full-resolution, or even high-resolution cameras, is essential for this task [21]. How-

ever, deep learning techniques for object recognition on high-resolution images con-

sume significant memory and necessitate larger neural networks, which complicates

their real-time deployment [89]. Moreover, high-resolution processing on embedded

systems with limited memory presents additional challenges, impacting performance

and latency [90]. Image super-resolution, which consists of the synthetic increase of

the input image resolution, has been used in the literature [21]. In reference [91],

their work introduced additional blocks and layers using transformers, which leverage

self-attention extensively [92] for better small object accuracy from aerial views [91].

These solutions increase computational complexity beyond the capacity of embedded

systems for real-time operation. The Slicing Aided Hyper Inference (SAHI) method,

introduced in reference [93], splits high-resolution images into slices, enabling detec-

tion and segmentation of small objects. Slicing mechanisms, therefore, allow the pro-

cessing of high-resolution images on embedded systems by dividing the images into

manageable sections, thus reducing the computational load and memory requirements.
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However, SAHI lacks native batch inference processing, and instead, processes slices

sequentially. This highlights the need for a slicing method which can benefit real-time

applications such as small ship segmentation, as proposed in this thesis.

3.3 Georeferencing of Recognized Ships

The field of object georeferencing from images extends across various domains, from

aerial vehicle tracking using airborne cameras [94] to the vehicle geolocation in urban

environments for autonomous driving [95]. These methods, while effective within their

respective ranges of operation (dozens of meters), require positioning systems on board

for calibration. The method proposed by [96] introduced an alternative that estimates

georeferences from surveillance camera videos by aligning video frame points with

geographic locations using a homography transformation to project the camera space

onto orthophoto maps, which are geometrically corrected aerial photos, and Digital

Elevation Models (DEMs). However, the application of high-resolution orthophotos

and DEMs for maritime environments presents significant challenges, as these methods

primarily model terrestrial elevations and are less effective for water surfaces, where

the dynamic nature of water and its reflective properties complicate the creation of

DEMs that could be used for ship georeferencing.

Table 3.1: Ship georeferencing accuracy in existing literature. Note: Some entries lack
reported uncertainty values for the positioning error.

Source System Range to Object Error (m)
[97] Radar Antenna + GPS* 1000 m 6.5
[98] Synthetic Aperture Radar 800 km 13 ± 23
[99] Opt. Remote Sensing 36000 km 165 ± 109
[24] Opt. Camera + GPS + IMU** 400 m 20

*Global Positioning System, **Inertial Measurement Unit

To transition from terrestrial to maritime applications, as discussed in Chapter 1,

ship georeferencing is a critical aspect. This process involves the assignment of ge-

ographic coordinates to ships detected in various data sources. Table 3.1 shows a

summary of ship georeferencing accuracies in the literature using different technolo-

gies. Radar technologies have been a cornerstone in this field, providing real-time

georeferencing at a speed of 1 Hz, as detailed in [97]. Despite their accuracy, radar

systems often involve high costs and complex deployment requirements. Parallel to

radar, satellite technologies including optical remote sensing [99] and synthetic aper-
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ture radar (SAR) [98], extend georeferencing capabilities over larger coverage areas.

However, the effectiveness of these methods is constrained by their data cycle times

(∼minutes) and the satellite revisit schedules, limiting their temporal resolution. Re-

cent advancements have explored the use of video sequences for ship georeferencing.

The work in [24] proposed a method which relies on the pinhole camera model cali-

bration matrix [100] to georeference ships detected in video frames. This approach,

while innovative, requires prior knowledge of camera calibration, and its application

has been limited to controlled conditions with a single video sequence of two small

ships.

The methodologies and technologies reviewed reveal a landscape where accuracy,

range, and cost are in constant negotiation. While radar and satellite methods offer

comprehensive coverage, their practical deployment is often hindered by high costs and

technical complexities. Conversely, camera-based approaches present a cost-effective

alternative but are limited by the need for prior calibration or additional sources,

such as orthophotos or DEMs. A solution that uses cameras without pose calibration

would facilitate scalability in the deployment of the georeferencing method to existing

monitoring cameras at the maritime infrastructure.

3.4 Deployment on Embedded Systems

Utilizing a Graphics Processing Unit (GPU) on an embedded system, equipped with a

monitoring camera, can allow for on-site deep-learning object recognition, streamlin-

ing the process significantly [25]. Processing images directly on the embedded system,

rather than transferring them to a cloud or server, produces notable reduction in net-

work bandwidth and latency, alongside cost savings and enhanced security [27]. This

integration facilitates real-time access to recognized and georeferenced ships through

web services, enabling their display on maps for operators, boosting maritime moni-

toring [19].

Table 3.2: Comparison of NVIDIA GPU modules, with focus on the Jetson family
and high-end GPU-powered systems.

System Type Module CUDA Cores Memory
Max Power
Consumption

Edge Computing Device
Jetson Nano 128 4 GB 10 W
Jetson TX2 256 8 GB 15 W

Jetson AGX Xavier 512 16GB 30 W

High-End Device
GV100 5120 32 GB 250 W
A100 6912 80 GB 400 W
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Within the spectrum of embedded systems widely utilized for deep learning and

computer vision, the NVIDIA Jetson family2 stands out in the literature, offering both

mobile and energy-efficient embedded GPU-systems [101]. Table 3.2 shows a compar-

ison of three modules of the Jetson family compared against high-end server-based

GPU systems to contextualize their capabilities. We observe that the Jetson modules

provide optimized balance between performance and energy efficiency, marking them

as an optimal solution for vision-based systems where the on-site deployment is a re-

quirement. Larger servers, are typically used for the training of the models that are

later deployed on the Jetson.

Jetson modules allow the use of GPU computing for deep learning models devel-

oped with PyTorch. Additionally, to enhance deep learning efficiency, models can be

converted into optimized engines using TensorRT [102], a practice recommended for

deploying models on NVIDIA hardware, which leads to faster inference speeds [103].

TensorRT is an NVIDIA library designed for high-performance deep learning inference,

which includes optimizations for NVIDIA hardware.

The transition to export weights from PyTorch-trained models to TensorRT in-

volves converting the trained deep learning models into a format that is optimized for

inference on NVIDIA GPUs. This process begins with the trained model in PyTorch.

The model is then exported to an intermediate representation, often using Open Neu-

ral Network Exchange (ONNX)3, which standardizes the model format for use across

different deep learning frameworks [104]. Once in ONNX format, the model is ready

to be optimized by TensorRT, which analyzes the network to fuse layers, optimize

kernel selection, and apply other enhancements that reduce memory footprint. The

optimization process is automatically tailored to the unique architecture of the GPU,

making it more effective when it is performed directly on the intended target system.

By converting PyTorch models to TensorRT, deep learning models can achieve faster

inference times, reduced memory usage, and the ability to choose precision formats

(such as FP16 or INT8) that balance speed and accuracy.

Several studies have leveraged NVIDIA Jetson modules for deploying deep learning

models in various computer vision applications. For instance, in [26], the Jetson TX2

is employed for ship detection, showcasing the utility of Jetson modules in maritime

object detection. The work in [105] explored a comparison of marine object detection

methods using the SMD dataset [17] on the NVIDIA Jetson Xavier AGX. In the field

of instance segmentation, the work in [106] utilized the NVIDIA Jetson AGX Xavier

2https://developer.nvidia.com/embedded/jetson-modules
3https://github.com/onnx/onnx
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for real-time instance segmentation in driving traffic videos, showing the capability of

the module to handle complex vision tasks in real-time scenarios.

While the NVIDIA Jetson modules have been effectively utilized in various ob-

ject detection and recognition tasks, there is a notable absence of research focusing

on tailored architectures for real-time ship segmentation deployable on these embed-

ded systems. This highlights a significant opportunity for innovation in developing

efficient, real-time processing solutions specifically designed for maritime monitoring

applications.
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Chapter 4
ShipSG: Ship Segmentation and
Georeferencing Dataset

In Chapter 3, we explored the current state of maritime situational awareness, high-

lighting the critical need for robust and efficient ship recognition methodologies and

the challenges associated with georeferencing ships using maritime monitoring footage.

This exploration underlined the limitations of existing datasets in supporting the de-

velopment and evaluation of advanced ship recognition and georeferencing techniques.

Motivated by these insights, the creation of a comprehensive dataset that includes

precise annotations for ship segmentation and accurate georeferencing has become

paramount. This chapter presents ShipSG, a novel dataset for ship segmentation and

georeferencing using images from a fixed oblique perspective at maritime facilities.

ShipSG serves as a foundational component of this thesis, enabling the evaluation of

existing instance segmentation methods as detailed in Chapters 5 compared against

the custom architecture proposed in 6. Additionally, the dataset has been instrumen-

tal in the quantitative assessment of our georeferencing approaches, as outlined in

Chapter 7. A further description of the dataset is given in [BCP-II]. The dataset

was made public and is accessible upon request1.

4.1 Dataset Overview

The ShipSG dataset dataset was introduced in [BCP-II] for the development and

evaluation of instance segmentation and georeferencing methods using computer vision

and deep learning, thus advancing the research field of ship recognition for maritime

1https://dlr.de/mi/shipsg
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situational awareness. Some samples of ShipSG with annotated ship masks can be

seen in Fig. 4.1. The dataset contains:

• 3505 images (2028 × 1520 pixels) from two cameras with static oblique view to

the Doppelschleuse, Bremerhaven, Germany.

• 11625 annotated ship masks grouped in seven classes (see Fig.4.3) with COCO

format [56].

• 3505 geographic positions, consisting of the latitude and longitude of one of the

masks within each image.

• 3505 Automatic Identification System (AIS) ship types2, one per geographic

position annotated.

• 3505 ship lengths, one per geographic position annotated.

Figure 4.1: Visualisation of ShipSG dataset samples with annotated ship masks,
classes, and one ship position per image. Reprinted from the dataset site with per-
mission from German Aerospace Center (DLR).

The dataset was split into two sets: training and validation. The training set

contains 80% of the dataset, with 2804 images, and the remaining 20% is used for

validation, with 701 images.

2https://coast.noaa.gov/data/marinecadastre/ais/VesselTypeCodes2018.pdf
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4.2 Acquisition and Annotation

The ShipSG dataset was collected through two strategically positioned cameras at

the Fischereihafen-Doppelschleuse in Bremerhaven, Germany, aiming to cover a broad

view of the lock’s entrance and adjacent Weser river area (see Fig. 4.2). With a height

above water level of 23 meters, these cameras captured the dynamic maritime activities

within the port basin, ranging distance up to 400 meters from the cameras, and on a

distance of up to 1200 meters on the Weser river. The images were captured under

various weather conditions including sunny, cloudy, windy, and rainy days during

Autumn 2020. The dataset also ensures privacy by anonymizing non-relevant entities

like vehicles and people. This comprehensive collection approach ensures a diverse

and realistic dataset for maritime research.

Figure 4.2: View of each camera and identification of important elements in the scene.
(a) View of first camera. (b) View of second camera. (c) Notable elements in the
scene (OpenStreetMap [107]). Modified from [BCP-II] (CC BY 4.0).

The dataset utilized AIS data to identify ships in each image, accessing real-time

positional and static information from ships to annotate images accurately. This in-

cluded both the exact locations and lengths of the ships. By matching the timestamps

of AIS messages with those of captured images, the dataset ensures high precision in

ship positioning, limiting the time offset to 100 ms to achieve a close correspondence.
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The recommended speed within the port of Bremerhaven is 10 knots (18.5 km/h) to

ensure safe and efficient navigation, in accordance with the guidelines provided by the

port authority [108], which means a displacement of approximately 0.5 m in 100 ms.

Therefore, the impact of the time offset between AIS and image capture can be con-

sidered negligible for the precision of the dataset ground truth. This approach allowed

for the annotation of 3505 images using accurate AIS data.

Figure 4.3: Examples extracted from the dataset that show the seven ship classes.
Each class contains a variety of sizes and orientations of the ships. (a) Cargo, (b) Tug,
(c) Special 1, (d) Tanker, (e) Law Enforcement, (f) Passenger/Pleasure, (g) Special 2.
Reprinted from [BCP-II] (CC BY 4.0).

By providing AIS ship types with the dataset, we enable users to create their own

tailored classes. In our case, we categorized seven ship classes (see Figure 4.3) for the

dataset based on an observation of their purpose and visual similarities:

• Cargo: All types of cargo ships.

• Law Enforcement: Police watercrafts and coast guard ships.

• Passenger/Pleasure: Ferries, yachts, pleasure and sailing crafts.

• Special 1: Crane vessels, dredgers and fishing boats.

• Special 2: Research and survey ships, search and rescue ships and pilot vessels.

• Tanker: All types of tankers.

• Tug: All types of tugboats.
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To train and validate instance segmentation algorithms, ship masks were manually

annotated in each image, identifying the ships and their classes using the LabelMe

software [109]. Moreover, ShipSG can also be used not only for the development of

ship segmentation but also ship detection algorithms, by considering the surrounding

bounding box of annotated masks.

4.3 Summary and Discussion

Featuring 3505 images, 11625 ship masks and the corresponding georeferences, a novel

dataset, ShipSG, for ship segmentation and georeferencing using a static oblique view

of a port has been presented. This dataset contains images with mask annotations of

ships present, and their corresponding class, position and length.

ShipSG stands as a pivotal contribution to the field of maritime research, setting a

new benchmark for ship segmentation and georeferencing. The validation of innovative

methodologies using ShipSG lays the groundwork for future advancements in maritime

situational awareness.

The creation and use of ShipSG is an essential pillar for this thesis, as it allowed

the validation of the recognition methods proposed in Chapters 5 and 6. Our proposed

georeferencing methods are also quantitatively validated using ShipSG, as presented in

Chapter 7. In total, ShipSG has been used in publications [BCP-II], [BCP-III], [BCP-

V] and [BCP-VI].

While methods trained on ShipSG were cross-validated with other similar datasets

in [BCP-II] to study generalizability to other maritime scenes (see Sec. 5.2), a key

limitation is its reliance on only two views of the same area, coupled with the high

costs and logistical challenges of new image capture and manual annotation. Therefore,

improvements of the dataset will focus on introducing a broader spectrum of data,

crucial for mitigating issues caused by the limited variability in real-world annotated

data.

Moreover, future iterations of ShipSG could enhance ship recognition algorithms

by leveraging AIS data for annotating ship heading, in addition to the ship lengths.

The incorporation of this, combined with further annotations such as ship cuboids

or keypoints, would offer valuable insights into the development of algorithms that

automatically recognize ship heading and dimensions.
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Chapter 5
Ship Recognition for Improved Maritime
Awareness

We now delve into the initial exploration of deep learning techniques for ship detection

and instance segmentation, that allowed further development of tailored solutions for

ship recognition in the maritime domain as discussed in subsequent chapters.

Firstly, Section 5.1 shows that ship detection serves as a proof of concept for the fea-

sibility of using deep-learning-based object detection and georeferencing. This proof of

concept reveals its potential to be applied to existing problems, as proposed in [BCP-

I], [BCP-III] and [BCP-IV]: abnormal vessel behaviour detection, camera integrity

assessment and 3D reconstruction. Secondly, the chapter continues with the journey

through standard instance segmentation methods shown in 5.2, performed in [BCP-II],

setting the stage for the custom developments for real-time ship segmentation and geo-

referencing provided in Chapter 6 and 7. Therefore, this chapter outlines the impact

of ship detection and segmentation in the development of advanced methodologies for

the improvement of maritime situational awareness.

5.1 Ship Detection for Maritime Applications

In this section we navigate through the implementations for this thesis in the field of

ship detection from monitoring video and images as proposed in [BCP-I], [BCP-III]

and [BCP-IV]. We explore how the automatic recognition of the bounding box of ships

provides information that can be used by further processes for three different appli-

cations. The first application is the detection of abnormal vessel behavior, which is

crucial for maritime safety and security, as it enables early identification and mitiga-
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tion of potential threats or navigational hazards [110]. The second is the assessment

of optical camera obstruction using ship detection, vital to maintain the reliability

of surveillance systems, ensuring consistent monitoring quality under various envi-

ronmental conditions [111]. Finally, the third application discussed in this section is

3D reconstruction of detected ships, which plays a pivotal role in enhancing situa-

tional awareness by offering three-dimensional visualizations which improve available

semantic information of the situation [112].

5.1.1 Abnormal Vessel Behaviour from Video [BCP-I]

Figure 5.1: Framework proposed in [BCP-I] for maritime anomaly detection from
video, including my contributions (Vessel + Motion Detector and Geovisualization).
The framework interprets the anomalies using the detections and georeferences for the
geovisualization. Reprinted from [BCP-I]. ©2021 IEEE.

The proof of concept for ship detection and georeferencing as tool to support mar-

itime situational awareness, paving the way for this thesis, was conceived in [BCP-I].

The publication presents a framework (see Figure 5.1) for detecting and geovisualiz-

ing abnormal vessel behavior using video. This framework aims to enhance maritime

situational awareness by offering a tool that leverages Artificial Intelligence (AI) for

monitoring and interpreting anomalous vessel activities, thereby improving safety and

security in maritime environments.
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In my contribution to [BCP-I], the focus was on ship detection, motion analy-

sis, and georeferencing, to facilitate global geospatial localization and visualization of

abnormal behavior (in latitudes and longitudes). The georeferenced ships are then

represented on a real-world coordinate map, and the motion is used to represent the

direction of movement in the form of ship heading. Details for the motion and georef-

erencing are given in Chapter 7. The anomaly detection module, which was not part of

my contribution, uses a Generative Adversarial Network (GAN) for the identification

of abnormal behavior. The behaviour is interpreted by combining the output of the

anomaly detector with the ship detections, motion and georeferencing. The abnormal

vessel behavior was defined by categorizing anomalies based on significant vessel fluxes

and depletions, thereby establishing a nuanced criteria that captures a wide range of

anomalous patterns without relying on supervised training. Both anomaly detection

and ship detection model were trained and validated on an optical sequence video with

a resolution of 1280 × 720 pixels and high density of vessels at the port of Sydney.

The scene can be seen in Figure 5.2.

Figure 5.2: Inference of the YOLOv4-CSP based vessel detector. The orange bounding
boxes correspond to the detected vessels. Reprinted from [BCP-I]. ©2021 IEEE.

Focusing this section on the object detector used for the framework (motion and

georeferencing are explained in 7.2), I defined a custom dataset from the video using

75 random frames for training and 20 for validation. Then, the ships bounding boxes

were annotated manually. Given the high density of vessels in each frame, this lead to a

total of 4922 and 1387 bounding boxes on the training and validation set, respectively.
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The object detector selected was YOLOv4-CSP [67], with CSP-Darknet53 back-

bone [67], to train and validate with the generated custom dataset. After 234 epochs,

the model achieved a peak mean Average Precision (mAP) of 75.86%. Figure 5.2

shows the inference of vessels with the resulting model on a frame that was not part

of either the training or validation set for the ship detector. Among the configura-

tion parameters for training, there was the need to increase the image resolution to

1536 × 1536 pixels to obtain meaningful results with small ships or those located far

away from the camera (see Figure 5.2), to the detriment of real-time performance. The

goal of the publication was the proof of concept for a framework for ship detection and

georeferencing for the identification of abnormal behaviour. Therefore, real-time pro-

cessing was not a concern and all modules were run on high-end servers in an off-line

manner.

The vessel detector presented in [BCP-I] plays a key role within the framework.

It identifies vessels and ships in video data, enabling further analysis such as motion

detection through optical flow and accurate mapping of vessel locations using georef-

erencing. This process allows for the identification of vessel movements and anomalies

on maps using web services, crucial for improving maritime safety and security. The

methodology of bounding box georeferencing and optical-flow based course calcula-

tion, which form a significant part of the contribution of [BCP-I], are discussed in

Chapter 7.

Moreover, while the presented framework demonstrates promising results in a con-

trolled setting, transitioning to a real-time, real-world application remained unexplored

in [BCP-I]. This thesis further explores solutions to bridge this gap with regards to the

recognition and georeferencing of ships. As motivated in Chapter 1, georeferencing

results are evidently superior when using the mask of ships rather than the bounding

box, due to the unnecessary background included within bounding boxes and the in-

accuracies of using the bounding box center as the georeferencing point. Selecting an

incorrect pixel from the bounding box for georeferencing introduces more error, lead-

ing to the consideration of instance segmentation over object detection in the following

chapters of this thesis, aiming for more precise georeferencing.

5.1.2 Ship Detection for Integrity Assessment of Camera Obstruction [BCP-

III]

The study presented in [BCP-III], focuses on evaluating the resilience and reliability of

maritime object detection algorithms under conditions of partial camera obstruction.

The work is based around the ShipSG dataset, to explore the effects of various simu-
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lated obstructions on detection performance. An obstruction is defined as a physical

anomaly, mostly static in nature, that obstructs the camera in close proximity to the

lens, potentially requiring intervention to remove or clean. The goal was to quantify

the detrimental impact on the system’s ability to detect maritime objects correctly,

treating the obstruction as a type of fault to investigate its effects on object detection

performance.

Figure 5.3: Examples of a ship with different synthetic partial obstruction profiles. (a)
No obstruction; (b) 30% bright obstruction at the bottom; (c) 30% dark obstruction
at the center; (d) 60% gray obstruction at the right. Reprinted from [BCP-III]. ©2023
IEEE.

My contributions to [BCP-III] lie in the use of ShipSG dataset and the detection

of ships, that allow an investigation on how the obstructions affect false positive,

misclassification, and false negative ratios, along with the detection score distributions.

The work employs Faster R-CNN [71] as the object detector for ship detection. While

not specifically designed for real-time applications, its robust architecture offers a

strong foundation for object detection tasks. Faster R-CNN was trained on the seven

different ship classes of the dataset, using 80% of images for training and 20% for

validation, with 1333 × 800 pixel resolution with the ResNeXt-101 backbone [73].

The training was initiated using pre-trained COCO weights [56] and after additional

training on ShipSG of 11 epochs, the model achieved a mAP of 82.6%.

The work of [BCP-III] aligns with the expectations, that true positives (correct

detections) decrease and false negatives rise linearly with obstruction. False positives

peak from 50 to 60% obstruction, and beyond 60%, as the occlusion covers most of

the ship, the detector often fails to recognize any object, leading to an increase in

false negatives. Incorporating an obstruction detection step can support maritime

stakeholders in identifying camera faults, saving operational time and the subsequent

costs.
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Further advancements will employ instance segmentation instead of object detec-

tion to offer significant integrity assessment improvements, as it allows for precise

delineation of ship contours, minimizing background noise in detections. Therefore,

segmentation could provide deeper insights into how lens obstructions specifically af-

fect the visibility and classification of ships, by isolating the object from obstructive

elements more effectively than bounding boxes. Moreover, more realistic obstructions

should be used to increase the understanding of their impact in the recognition.

5.1.3 Ship Detection for 3D Reconstruction [BCP-IV]

Figure 5.4: Framework proposed in [BCP-IV] for 3D reconstruction of ships using
synthetic stereo images. Reprinted from [BCP-IV]. ©2023 Springer.

The work in [BCP-IV] proposes a novel experimental framework (see Figure 5.4)

for real-time 3D reconstruction of a detected ship, using synthetic stereo images, and

is deployed on an NVIDIA Jetson AGX Xavier. The goal is to enhance maritime situ-

ational awareness by processing 2D video data for display into a single consistent 3D

display using an embedded system. This transformation from 2D videos into 3D dis-

plays provides an intuitive, comprehensive maritime environment understanding with

enhanced visualization. The framework is validated using a synthetic and controlled

environment created with Blender3D [113], that represents a simulated sequence of

a tugboat. It introduces a pipeline prototype for dynamic 3D reconstruction using

virtual stereoscopic cameras on a Graphics Processing Unit (GPU)-accelerated em-
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bedded device, where object detection plays the role of locating the tugboat on the

frames.

Figure 5.5: Object detection example for 3D reconstruction. (a) Four samples of the
rendered dataset for object detection training. (b) An example of tugboat detection
using YOLOv5 on one frame of the synthetic sequence for reconstruction. Reprinted
from [BCP-IV]. ©2023 Springer.

As part of my contributions to [BCP-IV], YOLOv5 [82] was selected as object de-

tector, in its lightest configuration (nano or 𝑛). It was trained on a custom synthetic

dataset of a tugboat in various sizes and perspectives (see Figure5.5 (a)), for 50 epochs

with an image resolution of 640 × 640 pixels. For inference, the object detector was

deployed, using Pytorch weights, on an NVIDIA Jetson Xavier AGX for real-time pro-

cessing, using Pytorch [55], achieving a speed of 74 ms per frame and a mAP of 90.7%.

The tugboat detector, the fast and accurate detection, enables the framework to focus

the rest of the pipeline on the content of the bounding box, therefore supporting the

subsequent 3D reconstruction process.

Testing this framework on a synthetic dataset presents challenges in extrapolating

results to real-world scenarios. Real-world deployment faces issues such as varied

lighting conditions, diverse ship designs, and environmental factors like sea state and

weather, which can significantly impact detection and reconstruction accuracy. We

observe that the high mAP (90.7%) is a result of the dataset just being constituted

by the same boat throughout the whole sequence, with no other boats or classes

being present. Addressing these challenges requires robust algorithmic improvements

and real-world datasets to ensure the framework’s effectiveness in practical maritime

monitoring and safety applications.

Moreover, exploring instance segmentation instead of object detection for future

work could yield benefits, particularly for accurate 3D reconstruction, where ship seg-

mentation is essential. After the tugboat detector, the framework relies on traditional
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segmentation techniques, due to the absence of a real-time capable segmentation so-

lution using deep learning deployable on the NVIDIA Jetson AGX Xavier at the

time of the implementation of [BCP-IV]. This underscores the potential of real-time

instance segmentation developments deployed on embedded systems shown in Chap-

ter 6. For example, the framework presented in Chapter 6, a deep-learning-based

instance segmentation method could provide a more unified approach, enhancing 3D

reconstruction efficiency and potentially accuracy.

5.2 Standard Ship Segmentation Using ShipSG [BCP-II]

Building on the foundational work of this thesis in ship detection and its implications

for maritime applications, as outlined in the preceding sections, we look now into the

experimental evaluation of standard instance segmentation methods on the ShipSG

dataset, as presented in [BCP-II]. The use of instance segmentation is motivated by

the significant enhancement that it would provide in applications such as abnormal

vessel behavior detection with more accurate georeferencing, integrity assessment of

camera obstruction with more accurate analysis, and 3D reconstruction of detected

ships with the unification of parts in the pipeline.

The creation of the ShipSG dataset (see Chapter 4), provided a comprehensive

basis to perform an evaluation of robust instance segmentation methods like Mask R-

CNN [72] and DetectoRS [74], as well as real-time methods including YOLACT [77]

and Centermask-Lite [79]. The latter evaluations seeking real-time performance in-

volved configurations that sought to balance inference speed with mAP. Therefore,

two configurations for each were selected, one deeper and another one lighter, as can

be seen in Tables 5.1 and 5.2. All methods initiated training on ShipSG with COCO

pre-trained weights. It is notable that in [BCP-II], inference speed was measured using

the NVIDIA GV100, a high-end GPU, boasts Tensor Cores for AI acceleration, 32 GB

of memory, and over 5000 Compute Unified Device Architecture (CUDA) cores for

unparalleled computational performance. Embedded system based deployment will

be discussed in Chapter 6.

As shown in Table 5.2, the robust methods, Mask R-CNN and DetectoRS, demon-

strated superior mask mAP across all categories when compared to their real-time

counterparts. DetectoRS, in particular, achieved the highest overall mAP, underscor-

ing its effectiveness in accurate ship segmentation, however at the highest computa-

tional cost, even when using a high-end server.
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Table 5.1: Configurations during training for each instance segmentation method eval-
uated in [BCP-II]. (CC BY 4.0)

Method Input Size (Pixel) Backbone Number of Epochs

Mask R-CNN 1333 × 800 ResNeXt-101 11

DetectoRS 1333 × 800 ResNet-50 11

YOLACT550 550 × 550 ResNet-50 18

YOLACT700 700 × 700 ResNet-101 16

Centermask-LiteV19 800 × 600 Vovnet-19 17

Centermask-LiteV39 800 × 600 Vovnet-39 17

Table 5.2: Resulting instance segmentation APs and inference speed per method eval-
uated. Inference times are measured on a high-end NVIDIA GV100 GPU. Adapted
from [BCP-II] (CC BY 4.0).

Method mAP (%) mAPs (%) mAPm (%) mAPl (%) Inference (ms)

Mask R-CNN 73.3 50.3 75.2 77.2 117

DetectoRS 74.7 55.6 75.7 79.2 151

YOLACT550 52.7 8.6 51.5 70.9 28

YOLACT700 58.2 14.0 58.2 75.1 36

Centermask-LiteV19 63.5 45.5 64.0 65.7 24

Centermask-LiteV39 64.4 46.1 64.8 66.1 28

For real-time applications, Centermask-Lite showcased better mAP performance,

especially in handling small and medium-sized objects, while YOLACT was more

adept at segmenting larger objects. However, we observe that small-sized objects are

segmented with a significant lower performance than the rest of object sizes for all

methods. As explained in Chapter 1, small ship segmentation a critical problem in

maritime monitoring and it will be tackled by this thesis in Chapter 6.

While Centermask-Lite in its deeper form exhibits the best trade-off in mAP and

inference speed, deployment of instance segmentation on an embedded system, re-

mained open. This fact highlights the ongoing challenge of optimizing for both speed

and accuracy in maritime object detection and segmentation. The challenge stemmed

from framework incompatibilities with GPU-powered embedded systems, such as the

NVIDIA Jetson AGX Xavier. Notably, this system utilizes an architecture based

on ARM (Advanced Reduced Instruction Set Computing Machine) [114]. Memory

constraints and the ARM-specific architecture compounded the difficulty of deploying

Centermask-Lite. The effective deployment of our custom real-time ship segmentation

on the edge using an embedded system to fill this gap is shown in Chapter 6.
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Figure 5.6: Annotated masks on existing datasets to study the generalization of our
models. (a) Annotated examples of the Singapore Maritime Dataset (SMD). (b) An-
notated examples of Seaships7000. (c) Annotated examples of the dataset by Chen et
al. Reprinted from [BCP-II] (CC BY 4.0)

The generalization capability of models trained on ShipSG is crucial for deploying

these models in diverse real-world maritime environments, where conditions and sce-

narios can vary significantly. To assess the generalizability of the instance segmentation

models presented in this section, I tested their performance on a mini-dataset of 100

images derived from other maritime datasets, namely the SMD [17], Seaships7000 [60],

and the dataset by Chen et al [61]. These datasets, which only used for testing in this

work, provide a diverse range of maritime scenarios and vessel types to challenge the

ability of the models to accurately segment ships in different conditions. Since these

datasets did not contain mask annotations, ship masks were annotated on the 100

images manually (see Figure 5.6). With DetectoRS leading the mAP with 48.6%, the

test revealed that models trained on the ShipSG dataset could predict ships from other

datasets with reasonable accuracy, given the complex diversity of the mini-dataset.

The work presented in this section underpins the importance of instance segmenta-

tion in enhancing maritime safety and security applications. By providing a detailed

evaluation of different segmentation methods, it paves the way for the next research

focus on optimizing instance segmentation models for real-time applications while de-

ployed on an embedded system, which is tackled in Chapter 6. Moreover, georeferenc-

ing from the resulting masks of the evaluated methods of this section is quantitatively

analyzed in Chapter 7.
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5.3 Summary and Discussion

This chapter showcased the initial exploration in applying deep learning techniques

for ship detection and instance segmentation within maritime applications for the

improvement of situational awareness, presented in [BCP-I], [BCP-II], [BCP-III] and

[BCP-IV]. Along the chapter, the pivotal role of ship detection in facilitating a range of

applications has been highlighted, from abnormal vessel behavior detection or camera

integrity assessment to 3D ship reconstruction. Moreover, it underscored the enhanced

capabilities that instance segmentation offers over bounding box detection, particularly

in extracting detailed ship features crucial for applications like georeferencing, which

is specially interesting for this thesis to improve maritime situational awareness.

Despite the demonstrated potential of bounding box ship detection and success in

controlled [BCP-I] or synthetic [BCP-IV] settings, several challenges and open tasks

remain. For example, the improvement of georeferencing and integrity assessment

using segmented masks instead of bounding boxes or to unify detection and segmen-

tation in the case of our 3D reconstruction framework. Therefore, this opens the way

to use instance segmentation instead of bounding box detection.

In the initial exploration of standard instance segmentation techniques on the

ShipSG dataset, we studied the precision of ship feature extraction, crucial for the

various maritime applications. This highlights the challenges associated with real-

time processing. The evaluation of real-time methods on the NVIDIA GV100 GPU

revealed that the best trade-off between computational efficiency and segmentation

accuracy, was given by Centermask-Lite.

Though deployment of YOLOv5 (bounding box) using Pytorch weights is re-

ported in [BCP-IV] (see Sec. 5.1.3), the deployment of instance segmentation on

GPU-powered embedded systems was not reported in [BCP-II] (see Sec.5.2). De-

ployment challenges arose from the incompatibility between deep learning and the

ARM architectures of GPU-powered embedded systems like the NVIDIA Jetson AGX

Xavier. This highlights the need for adaptable methods to enable advanced on-board

instance segmentation processing. The move towards embedded systems is essential

for practical deployment in dynamic maritime environments, where processing speed

and accuracy are paramount. This transition to real-time instance segmentation on

embedded systems is addressed in Chapter 6.

Another critical aspect discussed is the importance of instance segmentation for

accurate georeferencing of ships. We motivated in Chapter 1 that while ship detection

provides valuable insights for several maritime applications, instance segmentation of-
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fers a more detailed analysis crucial for precise georeferencing. The ability to extract

exact ship contours rather than relying on bounding boxes allows for more accurate po-

sitioning of vessels. This capability is explored further in Chapter 7, which delves into

the application of the methods proposed for improving maritime situational awareness

through enhanced georeferencing.

Furthermore, the initial instance segmentation study shown in this chapter, while

promising, highlighted a precision decrease in segmenting small or distant ships. This

issue is particularly pertinent for maritime situational awareness, where the ability to

accurately identify all vessels, independent their size and within the proximity of the

port area is crucial. Chapter 6, Section 6.4, addresses this by introducing a solution

that enhances the segmentation of small ships, thereby filling this gap in the initial

methodology.

In essence, while the initial exploration into ship detection and instance segmen-

tation revealed significant potential for enhancing maritime situational awareness, it

also uncovered several challenges and areas for further development. Specifically, the

need for real-time processing on embedded systems, improved detection of small or

distant ships, and the utilization of instance segmentation for accurate georeferenc-

ing. The subsequent chapters of the thesis aim to address these gaps, presenting

custom-tailored solutions that bring these advanced computer vision techniques closer

to practical deployment in the maritime domain.
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Chapter 6
Advanced Ship Recognition for
Real-time Operation

In Chapter 5, we explored the impact of ship detection and segmentation in the im-

provement of maritime situational awareness and how the development of advanced

methodologies can further improve results. Moreover, the deployment of such algo-

rithms on embedded systems has been proven important for practical deployment in

dynamic maritime environments, where processing speed and accuracy are paramount.

We discussed the applicability of ship detection when deployed on an embedded sys-

tem, as reported in [BCP-IV]. However, in the case of instance segmentation, task

required for more accurate ship georeferencing, deployment on GPU-powered em-

bedded systems remained open. The deployment of instance segmentation methods

highlighted the need for adaptable methods to enable advanced on-board processing.

We investigate in this chapter the proposed improvements for real-time ship seg-

mentation proposed in this thesis, as introduced in [BCP-V], [BCP-VI]. First, I present

the ScatBlock, a 2D Scattering-transform-based block to be used in the proposed tai-

lored deep-learning architecture. Second, I delve into the design of the custom ar-

chitecture, ScatYOLOv8+CBAM, that integrates the ScatBlock and attention mech-

anisms, and demonstrate its superior performance using ShipSG. Thirdly, I propose

an optimization to the architecture, followed by the deployment with TensoRT on

the embedded system to measure inference times for real-time applicability. Lastly,

I address and propose a solution to the precision decrease in segmenting small and

distant ships discussed in Chapter 5 and essential for improved maritime situational

awareness.
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6.1 The ScatBlock [BCP-V]

The ScatBlock, introduced in [BCP-V], is a custom designed 2D scattering-transform-

based block that is key for the novel and tailored architecture for ship segmentation

developed in this thesis. The 2D scattering transform is a specialized operator that

extracts invariant feature representations by decomposing the input image data into

a set of scattering coefficients. Each coefficient is a translation-invariant feature map

representation that captures spatial and angular variations in an image.

Mathematically, the scattering transform is computed using a set of dilated and

rotated versions of a mother wavelet 𝜓 and a low-pass filter 𝜑𝐽 , with 𝐽 being the

spatial scale of the transform. The process involves convolving the input image with

a predefined filter bank, followed by an element-wise complex modulus operation:

𝑈𝜆 =
⃒⃒
(𝑥 * 𝜓𝜆)

⃒⃒
(6.1)

where 𝑥 represents the original input image, and 𝜓𝜆 denotes the mother wavelet

filter at a specific scale and orientation determined by 𝜆. The output is obtained with

a smoothing operation using the low-pass filter 𝜑:

𝑆𝜆 = 𝑈𝜆 * 𝜑𝐽 (6.2)

where 𝑆𝜆 are the scattering coefficients after the smoothing operation, which cap-

ture the invariant and descriptive features of the original image. The total number of

scattering coefficients (feature maps), 𝐽 × 𝐿 + 1, is determined by 𝐿, the number of

orientations or rotations of the mother wavelet 𝜓, and 𝐽 the scale, or also known as

order.

Figure 6.1: Examples of commonly used 2D wavelets. From left to right: Gabor,
Morlet, Daubechies and Symlet wavelets.

Commonly used 2D wavelets [115] are represented in Figure 6.1. When used in

the 2D scattering transform, Gabor wavelets, though computationally expensive, are
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very sensitive to spatial frequencies and variations in textures. Morlet wavelets are

characterized by their sinusoidal shape and can perform better with periodical pat-

terns. Daubechies wavelets, can be useful for images with specific geometric patterns.

Lastly, Symlet wavelets offer symmetry to preserve features and minimize distortion,

which prevents artifacts in the scattering coefficients.

Figure 6.2: Scattering coefficient decomposition of an image 𝑥, showing low-pass filter-
ing to obtain 𝑆0 and wavelet modulus operations at orientations 0°, 45°, 90°, and 135°
for scale 21 to produce first-order coefficients 𝑆𝜆1 . Higher-order coefficients 𝑆𝜆1,𝜆2,...

are obtained at scale 2𝐽 .

An illustrative example of the multi-scale decomposition in a scattering network is

shown in Fig. 6.2. The input image 𝑥 is subjected to a low-pass filtering to produce

𝑆0, and to 𝐺𝑎𝑏𝑜𝑟 wavelet convolutions with four orientations at the first scale 21. The

modulus of each convolved image is taken, followed by another low-pass filtering to

yield the first-order scattering coefficients 𝑆𝜆1 . This process is repeated iteratively to

produce higher-order coefficients 𝑆𝜆1,𝜆2 , with wavelet convolutions at increasing scales

2𝐽 , capturing progressively coarser image features. The network cascades through

multiple scales to extract robust, invariant features for image analysis. We observe

that each scattering coefficient is a translation-invariant feature map representation

that captures spatial and angular variations in the input image.

To incorporate the scattering transform, the ScatBlock architecture (see Fig. 6.3)

begins by upsampling the input image to counteract the resolution decrease inherent

to the 2D scattering transform, which typically downsamples the input image by a

factor of 2𝐽 to reduce computational complexity across scales. Specifically, the in-

put image 𝑥 is upscaled to (2 × 𝐻) × (2 ×𝑊 ), ensuring the output dimensionality
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Figure 6.3: ScatBlock, as conceived in [BCP-V], contains an upsample operation, fol-
lowed by the scattering layer and a Rectified Linear Unit (ReLU) activation. Adapted
from [BCP-V]. ©2023 IEEE.

aligns with the input image size, a requirement for subsequent processing layers in the

backbone. These sparse feature maps resulting from the scattering transform are then

forwarded to a ReLU activation function. The ScatBlock conceived in [BCP-V] uses

the first-order coefficients (𝐽 = 1). Although the computation of subsequent orders

is achievable by incorporating more layers, the first-order coefficients hold significant

information for mainstream tasks [87]. In this case, the first order was found to be

sufficient to enrich the capability of the model to discern and segment ships while

maintaining fast computation time.

Regarding implementation, the ScatBlock developed in [BCP-V] uses the approach

developed in reference [116] to achieve the scattering transform, using the open-

source Python module 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠1. The scattering transform implementa-

tion in 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠 is based on the Dual-Tree Complex Wavelet Transform

(DTCWT). The DTCWT, initially introduced by [117], computes the scattering trans-

form with enhanced efficiency while ensuring theoretical consistency with the tradi-

tional approach. The DTCWT, employs wavelet trees for signal decomposition in

frequencies, facilitating information capture and directional selectivity. This decom-

position allows for a detailed analysis of the isolated frequency content across both

horizontal and vertical dimensions of the image, revealing textures and patterns. The

approach proposed by [116] in 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠 to achieve the scattering transform

not only enhances efficiency on GPUs due to the DTCWT fast convolution capabilities

and suitability for parallel processing, but also ensures the robustness and invariance

of the extracted scattering coefficients. A detailed technical description of how the

DTCWT is used for a faster scattering transform can be found in [116].

Another option to implement the 2D scattering transform is the package Kyma-

tio [118], which closely mirrors the traditional scattering transform in its approach

but falls short in computational speed compared to 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠. The use of

DTCWT by the latter for GPU-optimized computations significantly accelerates per-

1https://github.com/fbcotter/pytorch wavelets/
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formance, making 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠 the preferred choice for the scattering transform

implementations of the ScatBlock due to its efficiency.

As introduced in Chapter 3, the work proposed in [87] demonstrated that the

features extracted by the scattering transform are quite meaningful for Convolutional

Neural Networks (CNNs). The motivation drawn in [87] lies in the ability of the

transform to provide a deep systematic understanding of how invariant features can

be captured and utilized for improved deep-learning-based image classification. This

approach is particularly relevant for maritime awareness, where the recognition of ships

across diverse sizes and types, under varying lighting and weather conditions, demands

a robust feature extraction mechanism that can handle the complexities of real-world

scenarios. The scattering transform using wavelets are particularly suited for ship

recognition because the output coefficients excel at capturing multi-scale geometric

and structural features, and the relatively uniform water background provides a good

contrast for highlighting ships against the static background. Having this in mind, the

ScatBlock has been designed to capture the shape of ships by extracting their inherent

geometric and structural properties, and will be added to the custom architecture for

ship recognition explained in the following section.

6.2 ScatYOLOv8+CBAM [BCP-V]

To conform the customized ship segmentation architecture presented in [BCP-V],

named ScatYOLOv8+CBAM, two additions were implemented.

Firstly, the ScatBlock was blended (Section 6.1) at the beginning of the backbone

of YOLOv8 to enhance the input image for instance segmentation, replacing the first

convolutional block of YOLOv8. This was motivated by [88]. In their work, the

authors explore the efficiency of using the scattering transform to preprocess images

before feeding them into CNNs, showcasing how this technique can significantly en-

hance the quality of feature representations. The relevance of the findings of [88] to the

ScatBlock lie in the practical application of the scattering transform to streamline the

processing pipeline for real-time instance segmentation and object recognition tasks.

The advantage of YOLOv8-like architectures is their deployability on GPU-powered

embedded systems, which enables deployment of the custom architecture as well.

The second addition to the network is the CBAM. Introduced by [45], this mod-

ule advances CNNs by embedding attention mechanisms with minimal computational

overhead. It is structured around two key components (see Fig. 6.4). The channel

attention module, being the initial component, discerns the importance of each fea-
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Figure 6.4: Convolutional Block Attention Module (CBAM) module introduced
by [45], depicting the channel and spatial attention mechanisms. Adapted from [BCP-
V]. ©2023 IEEE.

Figure 6.5: Diagram of each attention sub-module in CBAM, taken from [45]. The
channel attention module (top) uses both max-pooling and average-pooling operations,
followed by a shared Multi-layer Perceptron (MLP), to generate channel attention.
The spatial attention module (bottom) applies max-pooling and average-pooling across
the channels, then uses a convolutional layer to generate spatial attention.

ture channel, effectively determining “what” is significant in the given feature map

and enhancing these channels while suppressing less relevant ones. This is achieved

using global average pooling and max pooling, which aggregate information efficiently

without heavy computation. The channel attention map 𝑀𝑐 is computed as follows:

𝑀𝑐(𝐹 ) = 𝜎(𝑊1 · (ReLU(𝑊0 · AvgPool(𝐹 ))) +𝑊1 · (ReLU(𝑊0 · MaxPool(𝐹 )))) (6.3)

where 𝐹 is the input feature map, AvgPool(𝐹 ) and MaxPool(𝐹 ) are the global average

pooled and global max pooled feature maps, 𝑊0 ∈ R𝐶/𝑟×𝐶 and 𝑊1 ∈ R𝐶×𝐶/𝑟 are the
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shared weight matrices of the fully connected layers, ReLU is the Rectified Linear Unit

activation function, and 𝜎 is the sigmoid activation function.

The subsequent component, the spatial attention module, focuses on crucial spa-

tial regions within the feature map, identifying “where” the important information is

located. It applies average pooling and max pooling across the channels, followed by

a convolutional layer, which is computationally light. The spatial attention map 𝑀𝑠

is computed as follows:

𝑀𝑠(𝐹 ) = 𝜎(𝑓 7×7([AvgPool(𝐹 ); MaxPool(𝐹 )])) (6.4)

where 𝐹 is the input feature map, AvgPool(𝐹 ) and MaxPool(𝐹 ) are the average pooled

and max pooled feature maps across the channel dimension, [; ] denotes the concate-

nation operation along the channel axis, 𝑓 7×7 represents a convolution operation with

a filter size of 7 × 7, and 𝜎 is the sigmoid activation function.

By sequentially applying these attention mechanisms, CBAM refines the feature

representation. The efficiency of CBAM comes from its simple yet effective design

that avoids complex operations, ensuring fast processing and minimal computational

overhead. Since the attention maps of CBAM are broadcast and applied element-wise,

they do not alter the height, width, or number of channels of the input feature map.

Through the fusion of channel and spatial attention mechanisms with the YOLOv8

backbone and the 2D scattering transform, the CBAM enables the network to concen-

trate on pertinent spatial areas while highlighting critical channels, enhancing feature

depiction and localization accuracy. According to [45], integrating CBAM into various

deep learning frameworks has yielded notable enhancements across a wide array of clas-

sification and detection tasks. Specifically, in tasks related to instance segmentation,

the CBAM has been instrumental in refining object perimeters and improving the pre-

cision of segmented individual objects in images [45]. The integration of CBAM into

ScatYOLOv8+CBAM at the head enhances feature extraction through both channel

and spatial attention mechanisms. These mechanisms leverage scattering transforms

to concentrate on significant regions and features, thereby improving the capability to

precisely segment ships within intricate maritime settings.

The proposed ScatYOLOv8+CBAM, as illustrated in Figure 6.6 (a), substitutes

the initial convolutional block of the YOLOv8 backbone with a ScatBlock. Unlike the

original first 𝐶𝑜𝑛𝑣 block of CSPDarknet53 [69] (YOLOv8 backbone), the ScatBlock

employs the first-order 2D scattering transform. The ScatBlock is operated only in

forward mode, since the rotated wavelets and low-pass filter are fixed, and it does

not allow for the backpropagation and filter parameter updates during the training
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phase. Following the insights from [119], which applied CBAM to enhance the head of

YOLOv5 for aerial object detection, the CBAM block is integrated after the C2f blocks

(see C2f block explanation in Section 3.2) within the YOLOv8 neck. This integration

serves a dual purpose: assisting the network in identifying areas of interest, specifically

ships, and utilizing these identified regions as inputs for subsequent blocks in the head.

Figure 6.7: Visualization of 2D Wavelet Filters used in the ScatBlock. The first on
the left shows the low-pass filter. The rest display the oriented filters, generated by
combining and rotating to represent different directional sensitivities of the Symlet
wavelet.

As explained in Section 6.1, the implementation of the ScatBlock (see block number

0 of Figure 6.6 (a)) uses the 2D Wavelet transformations by [116], with the open-source

Python module 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠, which has CUDA support for GPU operations.

With regards to feature map resolution and channel number changes in the pro-

posed architecture, changes in resolution occur primarily due to the Conv blocks,

which reduce the height and width, and the Upsample blocks, which increase them.

The other blocks (ScatBlock, C2f, SPPF, CBAM, and Segment) do not alter the height

and width resolution. Regarding the number of channels, Conv blocks increase the

number of channels, while CBAM blocks decrease them. The ScatBlock increases

the number of channels (output scattering coefficients). The SPPF and CBAM block

maintain the number of channels. The Concat blocks increase the number of channels

by merging feature maps, and the Segment block adjusts the number of channels to

match the number of output classes.

To evaluate ScatYOLOv8+CBAM, in [BCP-V], the ShipSG dataset was used. Fol-

lowing the common practice in the field and for comparison with the results obtained

in Section 5.2, mean Average Precision (mAP) was reported as performance metric.

For a fair comparison with the state-of-the-art, YOLOv8 and ScatYOLOv8+CBAM

models were trained using an NVIDIA A100 GPU with random weight initialization

for all models. The number of training epochs was 300, with the default settings

provided by YOLOv8 [66]. The input size used for all models is 640 × 640 pixels.

In the example of ship segmentation inference on ShipSG, as illustrated in Fig. 6.8,

it is observable that the inclusion of the ScatBlock enhances the ships within the
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Figure 6.8: Instance segmentation process of ScatYOLOv8+CBAM on ShipSG. (a)
ShipSG input sample image. (b) Output of the ScatBlock (here, for visualization, the
mean of output channels without 𝑆0). (c) Output of CBAM (module number 21 in
Fig. 6.6). (d) ShipSG image with segmented and classified ships using the proposed
architecture ScatYOLOv8n+CBAM. Reprinted from [BCP-V]. ©2023 IEEE.

image. This enhancement significantly improves the clarity and visibility of the ship

edges, leading to a more defined and distinct outline of the ships present. Regarding

the CBAM output, it is noted that the implemented attention mechanisms (both

channel and spatial) effectively complement the scattering transform. The attention

maps enhance the location of ships within the image while minimizing background

influence.

In [BCP-V], I focused on the lightest version of YOLOv8 for the implementation

ScatYOLOv8+CBAM, version 𝑛, due to its potential for real-time operation. As seen

in Table 6.1, the baseline YOLOv8n shows improvement compared to the mAP of

previous real-time approaches for ship segmentation on ShipSG studied in Chapter 5,

YOLACT and Centermask-Lite. Yet, it does not show advantage against more robust
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Table 6.1: Comparison of state-of-the-art segmentation performances on ShipSG with
YOLOv8n and ScatYOLOv8n+CBAM. Adapted from [BCP-V]. ©2023 IEEE.

Segmentation model mAP (%)
Mask R-CNN 73.3
DetectoRS 74.7
YOLACT700 58.20
Centermask-Lite𝑉 39 64.40
YOLOv8n 70.15
ScatYOLOv8n + CBAM 75.46

methods like Mask R-CNN and DetectoRS. ScatYOLOv8n+CBAM achieves 5.31%

improvement with respect to standard YOLOv8n, 11.06% improvement compared to

Centermask-Lite and 0.76% with respect to the most robust of the previous study, De-

tectoRS. While the mAP increase is modest when compared to DetectoRS, DetectoRS

provided an inference time of 151 ms using a high-end GPU. As discussed in Chap-

ter 5, the deployment of instance segmentation on GPU-powered embedded systems

was not reported for the methods presented in the initial study due to the incom-

patibility between deep learning and the Advanced Reduced instruction set computer

Machine (ARM) architectures of GPU-powered embedded systems. The advantage

of YOLOv8-like architectures, such as ScatYOLOv8+CBAM, is the deployability on

embedded systems. In [BCP-V], the NVIDIA Jetson AGX Xavier was selected as

the target embedded system for deployment. The ScatYOLOv8+CBAM model was

deployed using native Pytorch weights. This allow us to measure inference times of

the new architecture on the system, which will show a great advantage against the

previously studied instance segmentation methods.

Table 6.2: Ablation study of YOLOv8 segmentation models and ScatY-
OLOv8+CBAM additions after training on ShipSG and inference times on the
NVIDIA Jetson AGX Xavier. Reprinted from [BCP-V]. ©2023 IEEE.

Segmentation model mAP (%) Inference (ms)
YOLOv8n 70.35 - 28.7 -
YOLOv8s 71.99 (↑1.64) 32.2 (↑3.5)
YOLOv8m 74.84 (↑4.49) 72.4 (↑43.7)
YOLOv8l 75.89 (↑5.54) 127.1 (↑98.4)
YOLOv8x 76.45 (↑6.10) 196.6 (↑167.9)
ScatYOLOv8n 74.42 (↑4.07) 58.2 (↑29.5)
YOLOv8n + CBAM 70.75 (↑0.40) 29.9 (↑1.2)
ScatYOLOv8n + CBAM 75.46 (↑5.11) 59.3 (↑30.6)
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In assessing the inference times on the embedded system for the proposed enhance-

ments within ScatYOLOv8+CBAM, specifically the ScatBlock and CBAM, their in-

dividual impacts were also examined in the ablation study presented in Table 6.2.

The first part of the table outlines the performance metrics of each YOLOv8 model

variant. The second part provides the individual and combined contributions of the

enhancements introduced in this work. The increments are noted in comparison to

the baseline performance of the YOLOv8n model. It can be seen in Table 6.2 that the

addition of CBAM produces an increased mAP at a very minimal computational cost.

The proposed architecture ScatYOLOv8+CBAM, in the lightest version 𝑛, provides

a mAP comparable to the deeper and heavier YOLOv8l (75.46% vs 75.89%). How-

ever, the proposed model demonstrates a substantially faster inference speed (59.3

ms versus 127.1 ms) on the NVIDIA Jetson AGX Xavier. This marks a significant

improvement over the preliminary findings discussed in Chapter 5, Section 5.2.

It has been shown that ScatYOLOv8+CBAM enables the efficient handling of

images in maritime environments deployed on embedded systems, facilitating faster

and more accurate real-time ship segmentation by leveraging the capabilities of CNNs

with the added robustness provided by the scattering transform and attention mecha-

nisms. This indicates its potential viability to enhance real-world maritime situational

awareness applications.

It is important to note that one of the goals of this thesis is the improvement

of maritime situational awareness leveraging ship segmentation for accurate georef-

erencing. Therefore, to further validate the ScatYOLOv8+CBAM architecture, the

output masks of this architecture are evaluated for ship georeferencing Chapter 7, Sec-

tion 7.3, as presented in [BCP-V]. This evaluation shows, with higher segmentation

mAP, consistent results for georeferencing compared to the georeferencing evaluation

of the standard segmentation methods studied in Chapter 5, Section 5.2.

6.3 Optimized ScatYOLOv8+CBAM [BCP-VI]

As it was motivated in Chapter 1, to enhance maritime situational awareness, opti-

mizing for real-time processing capabilities is key. Therefore, ship recognition should

operate with the highest possible accuracy and the shortest inference times on em-

bedded systems. This section studies optimizations to ScatYOLOv8+CBAM for a

more time-efficient ship segmentation, by circumventing redundancies in the original

ScatBlock.
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As shown in Section 6.1, the 2D scattering transform typically downsamples the

input image by a factor of 2𝐽 to reduce computational complexity across scales. For

the ScatBlock, which uses only first-order coefficients, this translates to an output

resolution that is half the input resolution. To address this, the ScatBlock upsamples

the input image to (2 ×𝐻) × (2 ×𝑊 ) (see fig. 6.3). This ensures that the output di-

mensions match the size of the input image, which is crucial for the compatibility with

subsequent YOLOv8 backbone blocks. However, the sequential upsampling and down-

sampling in image resolution increases computational burden. Furthermore, while the

deployment on the NVIDIA Jetson AGX Xavier was documented in [BCP-V] (Sec-

tion 6.2) using Pytorch weights, the potential for model optimization with TensorRT

to achieve more efficient real-time inference was not investigated. The contributions

of [BCP-VI] address these areas of improvement, by optimizing the custom archi-

tecture ScatYOLOv8+CBAM and performing a comprehensive evaluation for ship

segmentation with all model sizes, focusing on real-time processing on the embedded

system.

The main optimization focuses on the ScatBlock. As explained in Section 6.1, the

ScatBlock was implemented using the open-source Python module 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠

[116] to achieve the 2D scattering transform. In the optimization, the initial step

involves removing the downsampling associated with the scattering transform. This

refinement is achieved by bypassing, within the 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠 package, the divi-

sion of the image into distinct frequencies and considering all frequency components

simultaneously. Following this, the downsampling step of the scattering transform is

omitted. The absence of quadrant division means that downsampling would inappro-

priately cause a mismatch in resolution by presupposing a quadrant-based reduction.

As a result, the enhanced ScatBlock does not need the upsample to retain the original

resolution in its output feature map. This ensures the preservation of vital image de-

tails crucial for accurate segmentation, while simultaneously boosting inference speed.

The optimization of the ScatYOLOv8+CBAM architecture introduced [BCP-V]

was presented in [BCP-VI], which removes the upsample from the Scatblock (see up-

sample in Fig. 6.3) and the downsampling operation eliminated from the 𝑝𝑦𝑡𝑜𝑟𝑐ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠

package [116]. To examine the optimization, the original ScatYOLOv8+CBAM serves

as a benchmark for comparison, as well as standard YOLOv8 (see Fig. 6.9). The

newly optimized ScatYOLOv8+CBAM was trained across all model sizes (𝑛, 𝑠, 𝑚,

𝑙, 𝑥), employing the original parameters specified in [BCP-V]. This includes using an

input size of 640 × 640 pixels, initializing weights randomly, and setting the training

period to 300 epochs. To measure inference times, the duration from when an image is
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inputted to when predictions are obtained is recorded, now using TensorRT-exported

weights on the Jetson AGX Xavier. The approach in [BCP-VI] of using TensorRT

contrasts with the prior utilization of Pytorch weights in [BCP-V] (Section 6.2).

Figure 6.9: mAP vs TensorRT inference times on NVIDIA Jetson AGX Xavier, show-
ing the improved performance speed of the optimized ScatYOLOv8+CBAM relative
to the predecessor. Reprinted from [BCP-VI]. ©2024 IEEE.

A comparison of mAP for ship segmentation and TensorRT inference times on the

Jetson AGX Xavier can be seen in Figure 6.9. The comparison covers the optimized

ScatYOLOv8+CBAM, its predecessor, and the standard YOLOv8. The optimized

ScatYOLOv8+CBAM 𝑛 model provides comparable precision compared with the ear-

lier version and the larger 𝑙 model of YOLOv8, with mAPs of 75.39%, 75.46%, and

75.89%, respectively. Yet, the optimized model is much faster, with an inference time

of 25.3 ms versus 39.9 ms and 77.5 ms for the other models. This shows that the

𝑛 model of the optimized ScatYOLOv8+CBAM is 36.5% faster than its predecessor

with a minor drop in mAP compared to the original ScatBlock-equipped architecture

(0.06%). Additionally, the 𝑠 and 𝑚 models exceed in mAP over the largest YOLOv8𝑥

but offering quicker inference.

The optimized ScatYOLOv8+CBAM speeds up inference against its predecessor,

making it more suitable for real-time use. Although the 𝑙 and 𝑥 sizes of the optimized

model lead in mAP, their slower inference speeds limit their real-time deployment.

In summary, the optimized ScatYOLOv8+CBAM has achieved faster inference

speeds on the NVIDIA Jetson AGX Xavier with TensorRT, outpacing the previous

version. Moreover, it surpasses standard YOLOv8 models in mAP. However, while
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shallower models demonstrate significant improvements in accuracy and speed com-

pared to state-of-the-art ship segmentation on ShipSG, deeper and larger models ex-

hibit a noticeable slowdown. This slowdown suggests an increase in computational

complexity within the CNN when it processes scattering coefficients in larger models,

opening room for further improvements that will be discussed in Section 6.5.

6.4 Enhanced Small Ship Segmentation Using Higher Reso-

lution Images [BCP-VI]

In Chapter 5, we observed a mAP decrease in segmenting small and distant ships,

especially for the initially considered as real-time methods (see Table 5.2). As mo-

tivated in Chapter 1, the recognition of small and distant ships in maritime footage

holds significant implications for navigation, safety, and security. Typically, object

detectors and instance segmentation methods reduce image size for quicker inference,

losing critical details in the image. On the other hand, high-resolution deep learning

approaches strain memory and computational resources, particularly on embedded sys-

tems with limited capacity. Innovating segmentation architectures for such systems

is crucial to overcome these challenges. In [BCP-VI], the proposed batch-processed

Slicing Aided Hyper Inference (SAHI), combined with the optimized version of ScatY-

OLOv8+CBAM, advance the state-of-the-art in small ship segmentation using em-

bedded platforms.

Existing deep-learning approaches use image super-resolution or incorporate addi-

tional network blocks [21, 91], which is not ideal for embedded systems due to memory

constrains. The SAHI framework [93] improves the recognition of small objects in

high-resolution images by dividing images into overlapping patches that retain their

original size. Then, object detection or segmentation is performed in sequentially on

the patches using a compatible method, such as YOLOv8. The resulting detections

are then merged with Non-Maximum Suppression (NMS). In the case of the segmented

masks, they are merged using NMS and then combined appropriately with a logical

OR operator.

The sequential inference of SAHI limits speed, suggesting batch inference integra-

tion could boost efficiency on the embedded system. The work in [BCP-VI] modifies

the SAHI framework2 by adding batch processing for the inference stage, addressing

the original sequential slice processing constraint as documented in [93]. By enabling

ScatYOLOv8+CBAM (and YOLOv8) to infer masks on multiple slices simultaneously

2https://github.com/obss/sahi/
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(𝑏𝑎𝑡𝑐ℎ = 𝑁𝑠𝑙𝑖𝑐𝑒𝑠), the inference phase is made more resource-efficient. Preprocessing

(slicing) and postprocessing (merging) within SAHI remain unchanged.

Splitting an image into slices, to form a batch, optimizes both memory usage and

computational efficiency, especially on embedded systems with limited GPU memory.

Performing object recognition on the high-resolution images may exceed GPU memory

capacity if processed as a whole, leading to out-of-memory errors. By splitting the

image, each slice can be processed independently within memory constraints. Batch

processing these slices allows the GPU to handle multiple slices concurrently, lever-

aging its parallel processing capabilities. This approach balances the need to manage

memory effectively while maximizing computational throughput, making it ideal for

resource-constrained environments like the NVIDIA Jetson AGX Xavier.

Additionally, the slicing mechanism was used for model fine-tuning, with slices of

the full-resolution ShipSG images as new training set. This allows the model to focus

on improving the ability to segment small ships from full-resolution image slices of

the dataset. By incorporating batch inference for inference and targeted fine-tuning

during training, the optimized ScatYOLOv8+CBAM with SAHI not only maintains

quality for small ship segmentation but also boosts real-time performance on embedded

systems.

For the fine-tuning process, a new training dataset comprising 33648 slices from

ShipSG images was created, each of 640 × 640 pixels and incorporating a 20% over-

lap between slices. This overlap guarantees that sufficient contextual information is

retained for objects at the edges, yielding the most favorable experimental outcomes.

Per image of full-resolution in ShipSG (2028× 1520 pixels), the total number of slices

of 640 × 640 pixels is 12. This augmented dataset facilitated the training of the op-

timized ScatYOLOv8+CBAM model, initiating as pre-trained weights the models of

Section 6.3, and extending with an extra 30 epochs of training. Analogously, this fine-

tuning approach was applied as well to standard YOLOv8 models for comparative

analysis.

At the inference stage, the SAHI preprocessing includes the real-time slicing of

the image from which ships are being segmented. This means that inference times

when using SAHI encompass the total time from inputting an image to obtaining

predictions, with all processing steps, using TensorRT-exported weights on the Jetson

AGX Xavier. For inference, the framework uses the same slicing parameters as during

the fine-tune training stage, that is, 12 slices of 640 × 640 pixels per full-resolution

image, with 20% overlap.
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Figure 6.10: Small ship segmentation on ShipSG. (a) Original ShipSG image,
with a small ship zoomed in for visualization. (b) Inference using the optimized
ScatYOLOv8𝑥+CBAM, where the small ship has been undetected. (c) Inference us-
ing the proposed optimized ScatYOLOv8𝑥+CBAM with SAHI, where the small ship
appears segmented, at a high confidence score. Reprinted from [BCP-VI]. ©2024
IEEE.

We can see in Figure 6.10 the effectiveness of the SAHI approach, illustrating

how a small ship, undetected without SAHI, is accurately segmented, highlighting its

significance in boosting maritime situational awareness. Furthermore, the enhanced

confidence scores for larger ships in the same figure underscore the robustness of SAHI.
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Table 6.3: Comparison of mAP scores for small objects with all model sizes using
standard YOLOv8, our proposed optimized ScatYOLOv8+CBAM, and the addition
of SAHI. Reprinted from [BCP-VI]. ©2024 IEEE.

Model
mAP small objects (%)

n s m l x

YOLOv8 39.9 40.8 41.8 42.9 43.4
Opt. ScatYOLOv8+CBAM 45.8 47.1 47.2 47.9 48.0

YOLOv8 & SAHI 53.1 54.2 55.0 55.4 55.7
Opt. ScatYOLOv8+CBAM & SAHI 54.7 55.6 56.7 57.9 58.9

Figure 6.11: mAP vs TensorRT inference times on NVIDIA Jetson AGX Xavier.
ScatYOLOv8+CBAM with SAHI provides the best accuracy for ship segmentation.
Reprinted from [BCP-VI]. ©2024 IEEE.

Table 6.3 presents the results of the analysis on small ship segmentation across

different model sizes. The optimized ScatYOLOv8+CBAM outperforms the stan-

dard YOLOv8 for small objects across all sizes. SAHI significantly boosts perfor-

mance for both standard YOLOv8 and the optimized ScatYOLOv8+CBAM, showing

gains between 8% and 11% over configurations without SAHI. Specifically, the op-

timized ScatYOLOv8+CBAM with SAHI achieves the highest mAP improvements

for small objects, ranging from 1.4% to 3.2% over standard YOLOv8 equipped with

SAHI. Moreover, the advantage of integrating our optimized model with SAHI be-

comes more pronounced with model depth, highlighting a scalable improvement in

small ship segmentation with increased network complexity. When comparing to the
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small ship segmentation performance provided in Chapter 5, Table 5.2, the optimized

ScatYOLOv8+CBAM with SAHI in model size 𝑠 onwards performs as good or better

than the best one from the initial study, DetectoRS. It is important to recall that

DetectoRS was not compatible with embedded system deployment, which underlines

another superiority of the customized architecture.

Figure 6.11 compares the overall mAP (all mask sizes) of models using batch-

processed SAHI against those without it on the Jetson AGX Xavier. The ScatY-

OLOv8+CBAM model with SAHI outperforms all standard YOLOv8 models in ship

segmentation accuracy. The ScatYOLOv8+CBAM 𝑛 with SAHI not only achieves

higher mAP than the largest YOLOv8𝑥 with SAHI but also performs substantially

faster, sparing resources of the embedded system even on full-resolution images.

Compared to its own non-SAHI version, the optimized ScatYOLOv8+CBAM with

SAHI in 𝑛 size shows equivalent mAP to a the 𝑚 model without SAHI, albeit with

increased computation time of ∼170 ms, significantly enhancing small ship segmenta-

tion by 7.5%, as shown in Table 6.3. This shows that the benefits of SAHI in densely

populated maritime areas where monitoring small, distant ships in real-time is crucial

for safety and security, carry considerable associated computational costs.

During the tests, it was measured that 25% of the processing time during SAHI

batch-inference goes to slicing and merging the masks form the slices, suggesting room

for optimization.

6.5 Summary and Discussion

This chapter presented an advancement in the field of real-time ship segmentation with

the design of ScatYOLOv8+CBAM. In lightest version 𝑛, the architecture demon-

strated its capability on ShipSG with a mAP of 75.46%, 5% higher than baseline,

comparable to the performance of larger baseline models but at half inference speed

per frame (59.3 ms). We analyzed an optimization of the architecture, that removes

the upsampling and downsampling from the ScatBlock to save computing time, and

deployed it with TensoRT on the Jetson AGX Xavier to measure inference times for

real-time applicability. The optimized ScatYOLOv8+CBAM in model size 𝑛 performs

36.5% faster than its predecessor, achieving 25.3 ms per frame. Finally, I proposed

a batch-processed SAHI to increase the segmentation of small and distant ships that

is able to run within embedded system resources. Though bringing along increased

computation, the mAP for small ships increased in ranges from 8% to 11% in com-

parison with the baseline without SAHI. The work presented bridges the transition
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from standard methods to real-time instance segmentation on embedded systems, and

addresses the ability to accurately identify all ships, independent from their size, and

within the vicinity of the port area.

Additionally, the chapter has uncovered various areas for enhancement. Further

research could focus on improving ScatYOLOv8+CBAM and advancing the perfor-

mance of SAHI. As seen in Section 6.3, shallower models show notable improvements in

both accuracy and speed over the standard ship segmentation models explored with

ShipSG. However, larger models become slower. This indicates that larger models

face increased computational demands when handling scattering coefficients, hinting

at potential strategies for refinement to be explored.

One possible strategy is making the scattering transform learnable. This would

involve introducing adjustable parameters within the wavelet filters (parametrization)

by merging deep learning adaptability with theoretical wavelet analysis. However,

this is a challenging task due to the complicated balance between maintaining the

translation and deformation invariant properties of the transform while allowing for

sufficient flexibility to learn from data.

The second possible strategy is enhancing the transform with learnable downsam-

pling and attention mechanisms for a more practical approach for real-time use. For

example, learnable downsampling, such as strided convolutions with batch normaliza-

tion, can compress scattering coefficients while learning to preserve key information.

On the other hand, attention mechanisms focus computational resources on significant

features, improving processing efficiency. An example is the integration of transform-

ers, that are based on attention and could enable models to combine the invariant

feature extraction of the scattering transform with the transformer contextual learn-

ing, offering a focus on the most relevant features for the segmentation.

Moreover, it was measured during the experiments that 25% of the processing time

during SAHI batch-inference is dedicated to the slicing (preprocessing) and merging of

the masks after segmentation (postprocessing). In the pursuit of enhancing SAHI, by

using parallel processing, the slicing and merging tasks could be improved. An example

is the division of the workload with multi-threading or a pool of processes to enable

concurrent execution of slicing and merging, optimizing computational resources and

improving efficiency.

Given the slowdown in larger models, is pertinent to address how potential prac-

titioners and users of ScatYOLOv8+CBAM should select the size of the architec-

ture (from 𝑛 to 𝑥), and the use of SAHI, in their specific application. The decision

should consider the critical balance between real-time processing demands and compu-
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tational limitations. The optimized ScatYOLOv8+CBAM, with its SAHI adaptation

for small and distant ships, serves as a guide for such selections. Users should weigh

the operational complexity, the necessity for rapid data processing, and accuracy re-

quirements against the computational resources available. By aligning architecture

choices with these considerations, practitioners and users can ensure the an effective

deployment tailored to their unique application needs. For instance, the optimized

ScatYOLOv8+CBAM in smaller configurations (𝑛 and 𝑠) is ideal for scenarios de-

manding rapid response with considerable accuracy, such as real-time port surveil-

lance or navigation aid systems. Additionally, though optional, the use of SAHI,

could enhance access to small and distant ships approach the maritime infrastructure,

when the application requires higher levels of responsiveness. Conversely, in scenarios

where computational resources are less constrained, larger configurations (𝑚, 𝑙 and 𝑥)

could be leveraged for enhanced precision. This choice underscores the necessity for a

strategic approach in deploying these technologies, where understanding the specific

maritime application context and corresponding computational trade-offs guides the

optimal use of the architecture.

Integrating the methodologies presented in this chapter with other processing

chains and sensors can also further enhance maritime situational awareness. This

could include displaying real-time georeferenced ships on maps through web services,

merging various data sources such as ship tracking, 3D reconstruction and anomaly

detection or information from other sensors as thermal imaging or radar.

In conclusion, the results presented in this Chapter establish a new standard for

maritime monitoring on embedded systems and create a foundation for future work

aimed at enhancing real-time, high-resolution processing within the limits of resource-

restricted settings.
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Chapter 7
Ship Georeferencing for Maritime
Situational Awareness

In Chapters 4, 5 and 6, we explored the creation of a custom maritime dataset, the

impact of ship recognition on maritime applications, and the advancements and opti-

mizations for real-time processing on embedded systems with a customized architec-

ture, even with higher resolutions to enhance detail in small ship recognition. Building

on these foundations, this chapter studies the georeferencing of recognized ships using

monocular images. The aim is the implementation of a method that provides mean-

ingful information from the recognized ships to the situational awareness picture for

a better semantic understanding of the maritime situation. This process involves the

development of methods for the representation of the recognized ship on a global scale

using single images and without prior knowledge of the camera. We call this ship

georeferencing.

First, we delve into understanding the concept of homographies for georeferencing,

which serves as fundamental for the ship georeferencing techniques proposed.

Then, this chapter presents my proposed ship bounding box georeferencing method

and calculation of ship heading direction from optical flow, which form a signifi-

cant part of my contributions to [BCP-I], in addition to what has been presented

in Sec. 5.1.1.

Moreover, I expand upon the georeferencing methodology and show an in depth

quantitative studies of the use of homographies for ship georeferencing using ShipSG

and the results from Sec. 5.2 and Sec. 6.2, based on [BCP-II] and [BCP-V], respectively.
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7.1 Homographies for Image Georeferencing [BCP-II]

Homography [120] is a mathematical concept widely used in the fields of computer

vision and image processing to describe the transformation of points between two

planes (see Fig. 7.1). This transformation, encapsulated by the homography matrix,

allows for the conversion of coordinates between these two planes, highlighting the

essence of homography in linking different spatial perspectives.

Figure 7.1: Homography between two planes. Plane 𝑃 and 𝑃 ′ represent two different
surfaces or image planes. The point 𝑝 on 𝑃 and 𝑝′ on 𝑃 ′ illustrate a pair of points
that are related by a homography (𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝐻)), showcasing how a point in one
plane can be mapped to another plane through a projective transformation (dashed
arrow).

Essentially, a homography is represented by a 3 × 3 matrix:

𝐻 =

⎡⎢⎢⎣ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 1

⎤⎥⎥⎦ (7.1)

When the H matrix is multiplied by a point in homogeneous coordinates, it maps

it from one plane to another. It offers a powerful tool for projective transformations,

allowing for the mapping of the geometric correspondence between points 𝑝 and 𝑝′ in

different planes, such that

𝑝′ = 𝐻 · 𝑝 (7.2)
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where 𝑝 =

⎡⎢⎢⎣𝑥𝑦
1

⎤⎥⎥⎦ and 𝑝′ =

⎡⎢⎢⎣𝑥
′

𝑦′

1

⎤⎥⎥⎦, as seen in Fig. 7.1.

The creation of a homography matrix requires the identification of correspondences

between points in the two planes, typically two images. Once a sufficient number of

point pairs (usually at least four non-collinear points) is established, the homography

matrix can be solved using linear algebra techniques. The process involves setting up

a system of equations based on the point correspondences and solving for the eight

unknowns of the homography matrix (the ninth element is conventionally set to 1 for

normalization).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑦1 1 0 0 0 −𝑥′1𝑥1 −𝑥′1𝑦1
0 0 0 𝑥1 𝑦1 1 −𝑦′1𝑥1 −𝑦′1𝑦1
𝑥2 𝑦2 1 0 0 0 −𝑥′2𝑥2 −𝑥′2𝑦2
0 0 0 𝑥2 𝑦2 1 −𝑦′2𝑥2 −𝑦′2𝑦2
𝑥3 𝑦3 1 0 0 0 −𝑥′3𝑥3 −𝑥′3𝑦3
0 0 0 𝑥3 𝑦3 1 −𝑦′3𝑥3 −𝑦′3𝑦3
𝑥4 𝑦4 1 0 0 0 −𝑥′4𝑥4 −𝑥′4𝑦4
0 0 0 𝑥4 𝑦4 1 −𝑦′4𝑥4 −𝑦′4𝑦4
...

...
...

...
...

...
...

...

𝑥𝑛 𝑦𝑛 1 0 0 0 −𝑥′𝑛𝑥𝑛 −𝑥′𝑛𝑦𝑛
0 0 0 𝑥𝑛 𝑦𝑛 1 −𝑦′𝑛𝑥𝑛 −𝑦′𝑛𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ11

ℎ12

ℎ13

ℎ21

ℎ22

ℎ23

ℎ31

ℎ32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1
𝑦′1
𝑥′2
𝑦′2
𝑥′3
𝑦′3
𝑥′4
𝑦′4
...

𝑥′𝑛
𝑦′𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.3)

To solve the homography, these equations are stacked for all correspondences to

form a system 𝐴ℎ = 𝑏. Typically, Direct Linear Transformation (DLT), Random

Sample Consensus (RANSAC), or Least Squares (LS) are employed to find the optimal

homography matrix that minimizes the re-projection error between the observed and

predicted points. LS provided the most accurate results for this application and so

was exclusively considered for the remainder of this work. The LS solution to 𝐴ℎ = 𝑏

is given by minimizing ‖𝐴ℎ− 𝑏‖2, which leads to the solution:

ℎ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏 (7.4)

where ℎ is the vector containing the eight unknown elements of 𝐻. Finally, ℎ is

reshaped back into the 3 × 3 homography matrix 𝐻.

Once the homography matrix 𝐻 is created, it can be used as shown in Eq. 7.2.

In computer vision, homography has been extensively utilized across a range of appli-
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cations. These include image stitching in panoramic photography, feature matching,

camera calibration, 3D reconstruction, augmented reality for overlaying virtual objects

onto real-world scenes, motion estimation in video sequences, and perspective correc-

tion for rectifying images of planar surfaces. In the field of Geographic Information

System (GIS), it has been used to map ground surfaces in surveillance video frames to

topographies that are small enough (few hundred meters range) to be approximated

as a plane [121, 122]. However they do not provide quantitative assessments of their

accuracy.

The ship georeferencing methodology proposed in this thesis also treats the Earth’s

surface observed by the camera as a planar area for simplification. For example, in

the case of ShipSG, given the 23 meter altitude of the cameras and considering the

georeferencing range of up to 1200 meters on the Weser river, the curvature of the

Earth introduces a minimal height difference. This difference can be approximated by

ℎ ≈ 𝑑2

2𝑟
, where 𝑑 is the horizontal distance between two points on the Earth’s surface,

and 𝑟 is the radius of the Earth. This formula derives from the geometric properties

of a circle, where the Earth’s curvature over a small distance can be represented

as the segment height (ℎ) of a circular segment with radius 𝑟. For the observation

range of 1200 meters, this formula gives the height difference due to curvature to

be approximately 0.113 meters. This value is significantly small, especially when

compared to the elevation of the camera and and length of the ships. Consequently,

we simplify the water surface visible from the cameras as the tangent plane to the

Earth’s curvature.

By establishing correspondences between known geographic points on the water

surface (e.g., buoys, landmarks [BCP-I], or Automatic Identification System (AIS)

signals from ships [BCP-II]) and their representations in the image frame, a homog-

raphy matrix can be computed. This matrix then allows for any point captured on

the water surface to be mapped to geographic coordinates. This method not only

facilitates the accurate mapping of static water surfaces but also paves the way for

dynamic georeferencing applications, such as real-time ship recognition. By leveraging

the homography matrix, ships on the water can be precisely georeferenced, offering

valuable insights for maritime situational awareness and bridging the digital and phys-

ical worlds.

The static view of a monitoring camera allows the water surface captured in the

image, with pixel coordinates, to be transformed to the water surface with geographic

latitude and longitude coordinates. Homography offers therefore a potent solution

that enables ship georeferencing without the need for detailed camera calibration (i.e.,
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intrinsic or extrinsic parameters). The work in [BCP-I] explores the homography-

based method, and an experimental analysis of the method is presented in [BCP-II]

and [BCP-V]. A significant advantage of the proposed georeferencing method, lies in

its applicability to any existing camera setup, provided there are identifiable reference

points on the surface to create the homography.

In the following sections of this chapter, we explore my proposed method to use ho-

mography for the mapping of ships on water surfaces captured by monitoring camera

images. We will delve into the detailed methodologies for recognizing and georefer-

encing ships on the water, further illustrating the practical implications and benefits

of homography in real-world scenarios.

7.2 Ship Detection and Georeferencing Using Homographies [BCP-

I]

As discussed in 5.1.1, the vessel detector plays a key role within the anomaly detection

framework presented in [BCP-I] as it identifies vessels and ships in video data, enabling

accurate mapping of vessel locations using georeferencing. The motion detector lever-

ages the ship’s bounding box and uses optical flow for motion detection. Optical flow

analyzes pixel intensity changes between sequential frames to quantify displacement

vectors, indicating motion. I use this displacement to indicate the course of the ship

(heading).

Once the vessels are detected per video frame using YOLOv4-CSP [67] (see Sec.

5.1.1), the pixel-based locations and course estimations (heading) are translated to

a geographic coordinate system using a homography. This georeferencing process

allows for further analytics pursuing vessel abnormal behavior interpretation and for

visualization on the situational awareness tool in [BCP-I].

Given that the video used in [BCP-I] has a static perspective, the pixels repre-

senting the water surface within its field of view can be treated as a planar area (as

discussed in Section 7.1), where all detections of vessels occur. The generation of H

from these two planes is done with selected visual landmarks as reference points (see

red pins in Fig.7.2), that are used to solve the linear system specified by Eq. 7.3. These

references are pixel coordinates from the camera view and latitudes and longitudes, in

decimal degrees, of the geographic coordinate system. Once the homography is solved,

by taking the center of the bounding boxes provided by the YOLOv4-CSP detector,

the georeferencing of vessel positions is possible. The georeferencing, together with
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Figure 7.2: Representation of the two planes used to create the homography of publi-
cation [BCP-I]. Left: camera view. Right: geographic coordinate system. The white
surfaces show the same water plane on both views. The red pins correspond with the
selected points on both planes to calculate our homography matrix H. The yellow pin
shows the location of the camera. Modified from [BCP-I]. ©2021 IEEE.

the YOLOv4-CSP object detector, allows the geo-location of observed anomalies in

the scene and the calculation of vessel heading for their display on a map.

As discussed in Chapter 5, an additional contribution to [BCP-I], along with vessel

detection and georeferencing, is the calculation of the heading direction of the vessels.

The course of a vessel is defined by its steering direction with respect to the geographic

north pole, also called the heading angle.

In the framework presented in [BCP-I], Brox’s optical flow [123] is calculated to

train the Generative Adversarial Network (GAN) that performs unsupervised anomaly

detection. The optical flow was used to determine the direction of the displacement

vectors of the detected bounding boxes, represented by blue arrows in Fig. 7.3 (left).

This allows the estimation of the angle of the course of the vessels (heading) using

georeferencing. From the displacement vectors, the main direction of motion is de-

termined from the median of all displacement directions within the bounding box,

represented in Fig. 7.3 by the green arrow. The homography created is then multi-

plied by the bounding box center and the tip of the displacement arrow to obtain their

corresponding geographic coordinates. The tip of the arrow is defined by the cutting

point of the median displacement direction with the bounding box edge. Once the

two points (center and tip) are georeferenced, the heading angle (𝜃) is calculated to

obtain the course of the vessel using:
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Figure 7.3: Illustrative representation of detected and georeferenced vessel with head-
ing performed in [BCP-I]. Left: example of detection using YOLOv4-CSP. The blue
arrows represent displacement vectors (optical flow) with respect to the previous frame,
and the green arrow the median direction within the bounding box. The red dots rep-
resent the georeferenced points and are defined by the median direction, from the
center to the cutting point with the bounding box edge. Right: geographic represen-
tation (OpenStreetMap [107]) of the vessel heading angle with respect to north using
the created homography.

𝜃 = atan2 (sin ∆𝜆 · cos𝜑2, cos𝜑1 · sin𝜑2 − sin𝜑1 · cos𝜑2 · cos ∆𝜆) (7.5)

where (𝜑1, 𝜆1) and (𝜑2, 𝜆2) represent the coordinates of the georeferenced points

(latitude and longitude, respectively), and ∆ represents difference.

For display purposes, each vessel detected and georeferenced, is converted to an

isosceles triangle, centered around the detection coordinate and whose vertex is point-

ing in the direction determined by the heading angle. Lastly, the three vertices are

provided to a web service for map visualization (see Fig. 7.4).

This section completes my contributions to [BCP-I]. These include vessel detec-

tion using YOLOv4-CSP (see Sec.5.1.1), vessel heading calculation using optical flow

and georeference for map visualization using a homography. These contributions are

paramount to contextualize the identification of the abnormal vessel behaviour, pro-

viding useful geographic and spatial information regarding the anomaly.

Since ground truth latitudes and longitudes of the vessels present in the video

were not available, the quantitative georeferencing error of the methodology was not

reported in [BCP-I]. The results, therefore, serve as a qualitative proof of concept of

how ship recognition and georeferencing can improve maritime situational awareness.

79



Ship Georeferencing for Maritime Situational Awareness

Figure 7.4: Visualization of detected and georeferenced vessels with heading. The
vessels detected are provided to a web service map (WorldWind [124]) in the form
of triangles pointing towards their motion direction. Vessels for which the motion
displacement was near zero are represented by circles. The rest of the figure represents
the anomaly detection and visualization pipeline presented in [BCP-I]. The red cell
represents the interpreted area in which the anomalous ship is navigating. Reprinted
from [BCP-I]. ©2021 IEEE.

The lack of availability of ground truth for vessel geographic positions motivates the

creation of ShipSG (see Chapter 4), where vessel geographic positions (using AIS)

were collected together with the images. The quantitative analysis of homographies

for ship georeferencing is shown in the following section.

7.3 Analysis of Ship Segmentation and Georeferencing Using

Homographies [BCP-II] [BCP-V]

As motivated in Chapter 1, georeferencing results are superior from the mask of ships,

due to the unnecessary background of bounding boxes as well as the inaccurate geo-

referencing result when using the bounding box center.

I expand upon the georeferencing methodology of the Section 7.2 and show in depth

quantitative studies of the use of homographies for ship georeferencing using ShipSG.

These studies use the resulting masks from Sec. 5.2 and Sec. 6.2, based on [BCP-II]

and [BCP-V], respectively.

In Section 5.2, we have seen the results of an initial evaluation of different segmen-

tation methods for the recognition of ships on the ShipSG dataset. The annotation,
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using AIS, of latitudes and longitudes of ships present in the images allow to discuss

now the evaluation of georeferencing from the resulting masks provided in [BCP-II].

Following the same principle presented in Section 7.2, the ships, after being seg-

mented, are georeferenced to provide their location to the situational awareness system

in the form of latitude and longitude. Since the views of the cameras on ShipSG are

static, we can perform a transformation between the camera pixel coordinates (𝐶𝑥, 𝐶𝑦)

and Earth’s geographic latitude and longitude (𝜑, 𝜆) in decimal degrees using a ho-

mography.

I took 200 samples of the training set of ShipSG to create the homographies for

the two camera views, and solved Equation 7.3 to obtain H. The validation set is later

used to quantitatively analyse how well the georeferencing performs. The separation

of homographies by high or low tides was not found to provide a significant improve-

ment in results. Likewise, the correction of lens distortion prior to the homography

calculation did not show an experimental improvement of the method. Therefore, due

to their negligible impact, both tidal conditions and lens distortion were excluded from

consideration in [BCP-II] and [BCP-V].

Upon the creation of the homographies, I proposed a method to automatically

determine the pixel (𝐶𝑥, 𝐶𝑦) from the masks that most accurately represents the geo-

graphic position of the ship.

Figure 7.5: Example of segmented ship mask with calculated pixel to be georeferenced
(in red, enlarged for visualization). Reprinted from [BCP-II] (CC BY 4.0).

The pixel to be georeferenced represents the intersection between the ship’s hull

and the waterline, located beneath the bridge or wheelhouse where the navigation

antenna is positioned. This is achieved by identifying the bottom-most pixel within

the ship mask in the vertical direction (Y) that corresponds to the statistical mode

along the horizontal axis (X) (see Fig. 7.5). Then, this pixel is georeferenced using
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the homography transformation defined in Equation 7.2, facilitating the conversion of

image pixel coordinates into real-world latitudes and longitudes.

For the evaluation, [BCP-II] uses the resulting masks of DetectoRS, which was the

method that provided the best mAP result during the initial study (74.7%).

The true latitudes and longitudes obtained via AIS (𝜑𝐴𝐼𝑆, 𝜆𝐴𝐼𝑆) on the validation

set of ShipSG, were quantitatively compared with those georeferenced via homography

(𝜑𝐻 , 𝜆𝐻). To facilitate this comparison, both sets of latitudes and longitudes were

converted from decimal degrees to Universal Transverse Mercator (UTM) coordinates,

allowing for all results to be expressed in meters. Among the metrics employed for

the quantitative assessment in [BCP-II], the Georeferencing Distance Error (GDE)

is the one that best represents the accuracy of the method as it directly measures

the distance in meters between the actual and estimated positions. Therefore, the

GDE measures the distance between true (AIS) and georeferenced (H) positions. The

haversine equation (Eq. 7.6) is used instead of euclidean distance to take into account

the radius (R) of the Earth

𝐺𝐷𝐸 = 2 ·𝑅 · arcsin

√︂
sin2 |𝜑𝐴𝐼𝑆 − 𝜑𝐻 |

2
+ cos𝜑𝐴𝐼𝑆 · cos𝜑𝐻 · sin2 |𝜆𝐴𝐼𝑆 − 𝜆𝐻 |

2
(7.6)

where 𝜑𝐴𝐼𝑆 and 𝜑𝐻 represent the longitudes from the ground truth and georeferenc-

ing method using homography, respectively, 𝜆𝐴𝐼𝑆 and 𝜆𝐻 correspond to the latitudes,

and R is the Earth’s radius at Bremerhaven.

Figure 7.6: Georeferencing distance error per ship length. GDEs and their uncertain-
ties fall within the bounds of the ship length. Reprinted from [BCP-II] (CC BY 4.0).
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The GDE, given as 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 in meters, reaches 22 𝑚 ± 10 𝑚 for

ranges inside the port basin (up to 400 m to the camera) and 53 𝑚 ± 24 𝑚 on the river

(from 400 m to 1200 m). In Chapter 4 it was described that ship lengths along with the

ship positions from AIS messages were collected and are used to observe how the GDE

changes with ship length and range. As seen in Fig. 7.6, for the smallest ship lengths

(0 to 20 m), the GDE within the port basin and river are similar. This demonstrates

that the accuracy of pinpointing the georeferenced pixel of the mask increases with

the decrease in ship size, regardless of the distance between the ship and the camera.

Distance to the ship from the camera is the primary factor influencing the GDE.

For ships longer than 20 meters, a marked rise in GDE occurs at distances beyond

400 meters (on the river). In contrast, at distances shorter than 400 meters (within

the port basin), the length of the ship has a smaller effect on the GDE compared

to distances on the river beyond 400 meters. Despite the challenge of identifying

the precise pixel of the mask for georeferencing increasing with the distance to the

ship, where each pixel spans a broader geographical area, the GDE remains consistent

within uncertainties for each ship length. This suggests that the method provides

estimations with a level of accuracy that can be considered contextually appropriate,

when the specific operational contexts allow a a deviation of this magnitude within

acceptable safety or operational thresholds.

Figure 7.7: Segmented and georeferenced ships using ScatYOLOv8+CBAM and ho-
mographies to improve maritime awareness. (a) ShipSG image with segmented and
classified ships using the ScatYOLOv8n+CBAM architecture presented in [BCP-V].
(b) Georeferenced ships displayed on OpenStreetMap [107] using the homography-
based method of [BCP-II] on segmented masks. Reprinted from [BCP-V]. ©2023
IEEE.
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An additional quantitative georeferencing exploration, was done in [BCP-V] with

the resulting masks of the proposed ScatYOLOv8n+CBAM (see Sec. 6.2). The geo-

referencing of the masks resulting from ScatYOLOv8+CBAM, studied in [BCP-V],

follows the same procedure to automatically identify the pixel to be georeferenced,

and with the same homographies calculated in the previous evaluation with standard

methods. The GDE yielded by the masks predicted with ScatYOLOv8+CBAM was

of 18 𝑚 ± 13 𝑚 within the port basin (up to 400 m range). On the river (range from

400 m to 1200 m), the measured GDE using ScatYOLOv8+CBAM was 44 𝑚 ± 27 𝑚.

These results confirm the applicability of the optimized model allowing the benefits

described in 6 without any degradation in georeferencing performance. As seen in

Figure 7.7, when the georeferenced masks are accessed using web services, this work

can support real-time decision making, thus improving maritime awareness.

It is important to note the lack of complex operations in the georeferencing method,

which allows an easy deployment on an embedded system. Specifically, these georef-

erencing steps were measured 0.5 ms on average on the NVIDIA Jetson AGX Xavier,

a stark contrast to the inference times of the instance segmentation. This shows that

the bulk of the computation time is devoted to mask segmentation. The subsequent

pixel searching and coordinate transformation using a homography adds a minimal

amount of time to the overall procedure.

Table 7.1: Comparison of the proposed method for ship georeferencing accuracy with
existing works.

Source System Range to Object Error (m)
[97] Radar Antenna + GPS 1000 m 6.5
[98] Synthetic Aperture Radar 800 km 13 ± 23
[99] Opt. Remote Sensing 36000 km 165 ± 109
[24] Opt. Camera + GPS + IMU 400 m 20

[BCP-II] Opt. Camera 400 m 22 ± 10
[BCP-II] Opt. Camera 1200 m 53 ± 24
[BCP-V] Opt. Camera 400 m 18 ± 10
[BCP-V]* Opt. Camera 1200 m 44 ± 27
*Value not reported in [BCP-V] but calculated for this table.

Given the absence of directly comparable methodologies that simultaneously ad-

dress the use of monocular cameras without prior camera pose knowledge for fast ship

georeferencing, this approach establishes a benchmark in the literature. A compari-

son of the obtained results with existing ship georeferencing accuracies that use other

technologies can be seen in Table 7.1, which is an updated version of Table 3.1 for ship
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georeferencing. The most comparable set-up and result is given by [24], that utilizes

prior knowledge of camera calibration, and its application was limited to controlled

conditions with a single video sequence of a two small ships. Our method obtains

similar positioning error, however providing a much more comprehensive study: re-

sults using two views, longer ranges, uncertainties, a large variety of ships of different

categories and sizes, and does not need prior camera pose knowledge.

In this section, I expanded upon the georeferencing methodology of Section 7.2

to show quantitative results of the use of homographies for ship georeferencing on

ShipSG, based on [BCP-II] and [BCP-V]. The results prove that the approach provides

useful information from the segmented ships to the situational awareness picture. This

information involves the representation of the ship on a global scale using single images

and without prior knowledge of the camera, standing out in the literature.

7.4 Summary and Discussion

Ship georeferencing using maritime footage, as discussed in this chapter, stands as a

pivotal element in improving situational awareness. We have seen an in-depth explo-

ration of ship georeferencing techniques using single images for enhancing maritime

situational awareness, as presented in [BCP-I], [BCP-II] and [BCP-V].

This chapter started with a foundational understanding of homographies, essential

for the proposed method and quantitative studies of ship georeferencing. Through

the utilization of homographies, we could qualitatively and quantitatively explore the

mapping of recognized ships from monocular images to geographic coordinates without

previous knowledge about the camera. This is a significant benefit for its versatility;

it can be applied any existing camera setup, as long as there are identifiable reference

points on the surface to create the homography. This fundamental understanding pro-

vided the basis for subsequent discussions on ship detection, heading calculation using

optical flow, and the quantitative analysis of ship segmentation and georeferencing

using the ShipSG dataset.

We have seen the practical application of ship detection, georeferencing and head-

ing to support abnormal behaviour detection in the maritime domain. The process

allows, using a created homography from static camera view, to subsequently map ship

locations to geographic coordinates and obtain the heading direction for visualization.

Bounding boxes, while useful for detection, introduce unnecessary background

noise and inaccuracies, particularly when the center of the bounding box is used for

georeferencing. Masks, on the other hand, delineate the precise contours of ships, pro-
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viding a more precise representation for geospatial mapping. This precision is crucial

for applications requiring exact geolocated data for improved situational awareness,

such as assisted navigation, maritime monitoring or maritime safety and security op-

erations. Therefore, the complete pipeline first segments ships from images, yielding

precise ship masks. The segmentation is followed by the automatic search of the pixel

within the mask that intersects the ship hull and the water below, at the point where

the navigation antenna is located on the ship. The pixel coordinates are then trans-

formed into real-world geographic coordinates through a homography transformation.

Quantitative analyses of ship segmentation and georeferencing using ShipSG un-

covered promising accuracy, with a positioning error of 18 𝑚 ± 13 𝑚 m in range

of up to 400 m and 44 𝑚 ± 27 𝑚 from 400 m to 1200 m. The computational

time for the pixel search and homography multiplication, averaging 0.5 milliseconds,

is remarkably low in comparison to the instance segmentation inference times. This ef-

ficiency contrasts with the time-intensive nature of instance segmentation inference on

an embedded system, highlighting that the major computational demand lies in mask

segmentation. The need for faster and more accurate ship segmentation was addressed

by the proposed advanced methodologies for ship segmentation in Chapter 6.

The analyses underscored the reliability and efficiency of the proposed georeferenc-

ing methods, laying the ground for their integration into a real-time maritime situa-

tional awareness system. The georeferenced latitudes and longitudes of ships derived

from this pipeline can be integrated into web services for real-time decision-making,

significantly bolstering maritime situational awareness. This integration facilitates the

dynamic monitoring of maritime traffic, enabling prompt responses to navigational

hazards, environmental risks, and security threats.

In light of the state-of-the-art methodologies in ship georeferencing prior to this

research, the proposed method stands out by diverging from traditional reliance on

complex camera calibration, high-resolution orthophotos, or Digital Elevation Models

(DEMs). The proposed approach provides a scalable, camera-agnostic solution that

significantly advances applicability of maritime situational awareness technologies.

Looking ahead, future work in ship georeferencing could delve into further refining

accuracy by incorporating additional ship annotations from the ShipSG dataset, such

as keypoints and cuboids. These annotations could facilitate a more nuanced con-

sideration of ship dimensions in the georeferencing process, potentially reducing error

margins by accounting for the ship’s length. Moreover, the exploration of cuboids in

conjunction with ShipSG annotations opens new avenues for calculating ship orien-

tations without relying on optical flow calculations. This approach could eliminate
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the need for sequential image analysis in anomaly detection, which demands higher

frame rates, thereby streamlining the process of determining ship headings and ori-

entations. Future research could also benefit from analyzing sequences of images or

videos and different camera perspectives of the same maritime scene, enhancing the

depth and accuracy of situational awareness beyond the capabilities demonstrated

with the ShipSG dataset. Moreover, further fusion of the proposed image-based real-

time ship georeferences with data and processes from multiple sensors, e.g. infrared

imaging, radar and AIS, will provide a more comprehensive understanding of maritime

situations. Overall, ship georeferencing represents a critical component in enhancing

maritime situational awareness, with significant potential for further development and

integration into maritime surveillance systems.
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Chapter 8
Summary and Conclusion

This compilation thesis addresses the enhancement of maritime situational awareness

through advanced ship recognition and georeferencing methodologies. With the cre-

ation and utilization of the ShipSG dataset, we have established a benchmark in the

field, which facilitates the development of recognition and georeferencing methodolo-

gies for maritime applications. This work is driven by the intuition that the integration

of deep-learning-based object recognition methods, ship georeferencing and embedded

systems can significantly advance the state of real-time maritime monitoring. The

chapters within this thesis offer a progression from the creation of a foundational

dataset to the implementation and deployment of real-time recognition (detection and

segmentation) and georeferencing methods, following strategies to overcome the lim-

itations of the previous existing literature. The key findings from each chapter are

summarized below:

Chapter 4 shows the creation of a novel dataset, ShipSG, for ship segmentation

and georeferencing with two views of a maritime infrastructure. The dataset contains

3505 images and 11625 ship masks with their corresponding class, position and length.

ShipSG marks a significant advancement in the field by setting a new standard for

ship segmentation and georeferencing research. Moreover, it plays a crucial role in

validating innovative methodologies for maritime situational awareness presented in

this thesis. The dataset has facilitated the verification of recognition methods dis-

cussed in the chapters dedicated to ship recognition and advanced ship recognition,

along with the quantitative validation of the proposed georeferencing methods. The

contribution of ShipSG is underscored with its use in publications [BCP-II][BCP-

III][BCP-V][BCP-II], evidencing its importance and utility in pushing the boundaries

of maritime situational awareness research.
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Chapter 5 showcased the initial investigation in applying deep learning techniques

for ship detection and segmentation within maritime applications to enhance situa-

tional awareness, underscoring the pivotal role of these methods in facilitating a range

of applications, such as abnormal vessel behavior detection [BCP-I], camera integrity

assessment [BCP-III] and 3D ship reconstruction [BCP-IV]. Despite the demonstrated

potential and success for ship detection in controlled or synthetic settings, the ex-

ploration of standard ship segmentation methods [BCP-II] was highlighted for the

superiority of instance segmentation over traditional bounding box detection in ex-

tracting detailed ship features crucial for applications like georeferencing. Challenges

remained, notably in the precision, real-time processing, and the deployment of these

technologies on GPU-powered embedded systems. The initial studies also pointed

out a decrease in precision when segmenting small and distant ships, emphasizing the

need for improved detection methods. Overall, while significant potential for enhanc-

ing maritime situational awareness has been revealed in this chapter, this exploration

also uncovers the need for further development in real-time ship segmentation, the

recognition of small and distant ships, and deployment on embedded systems, with

subsequent chapters aiming to address these gaps through custom-tailored solutions

for practical deployment in the maritime domain.

Chapter 6 builds advances in the field real-time ship segmentation with the de-

sign of a customized architecture, ScatYOLOv8+CBAM [BCP-V], and demonstrated

its enhanced performance on ShipSG (mAP 75.46%). The chapter analyzed an opti-

mization of the architecture [BCP-VI], that removes the upsampling and downsam-

pling from the ScatBlock to save computing time, and deployed it with TensoRT on

the Jetson AGX Xavier to measure inference times for real-time applicability, which

brought an acceleration of 36.5% of the inference speed. Moreover, the chapter pro-

posed a batched-processing SAHI to increase the segmentation performance of small

and distant ships that is able to run on embedded systems, emphasizing on the use of

high-resolution images for a better understanding of the maritime situation. The mAP

in small ship segmentation compared to the baseline achieved an improvement of 8%

to 11%, however resulted also in a slowdown in inference speed. Choosing the opti-

mal ScatYOLOv8+CBAM model size and incorporating SAHI depends on balancing

real-time processing needs with computational capabilities. For critical applications

like port surveillance, smaller configurations offer quick, accurate responses. However,

larger models improve precision both in general and specifically in small and distant

ships. Understanding specific needs and computational trade-offs is key to effective

deployment. The presented advances bridge the transition from standard methods to
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real-time instance segmentation on embedded systems, and addresses the ability to

accurately identify all ships, independent from their size, and within the proximity of

the port area.

Chapter 7 identifies ship georeferencing using maritime footage as a pivotal ele-

ment for enhancing maritime situational awareness. This is done through the appli-

cation of the ship georeferencing method developed in [BCP-II] and further validated

in [BCP-V]. The chapter begins with a foundational understanding of homographies,

crucial for the method, followed by qualitative and quantitative analysis of ship lati-

tude and longitude positions from monocular images to geographic coordinates without

prior camera knowledge. The qualitative analysis was used in a practical application;

abnormal behavior detection in the maritime domain, where georeferences where used

for ship positioning and heading direction, leveraging optical flow. In the quanti-

tative analysis, the georeferencing, using ScatYOLOv8+CBAM masks, achieved a

positioning error of 18 𝑚 ± 10 𝑚 for ranges inside the port basin (up to 400 m) and

44 𝑚 ± 27 𝑚 on the river (from 400 m to 1200 m), which improves upon existing

results in the literature. Moreover, the measured average time for the georeferencing,

0.5 ms per frame on the Jetson AGX Xavier, is not significant when compared to the

instance segmentation timings. The versatility of this approach and its applicability

to any camera setup with identifiable surface reference points, sets a solid groundwork

for further work on ship recognition and georeferencing, where the ShipSG dataset

can be used as a benchmark. The real-world applicability of georeferenced ship coor-

dinates to support real-time decision-making processes, alone or in combination with

other sensors and processes, shows the significant potential of this research to enhance

maritime situational awareness.

The outcome of this thesis reflects a significant advancement in maritime situ-

ational awareness through the deployment of novel methods both for real-time ship

segmentation and georeferencing that are able to run on an embedded system. The in-

troduction of the ScatYoloV8+CBAM architecture, optimized for the ShipSG dataset,

demonstrates improved performance metrics over existing methodologies. Focusing on

precise ship recognition and georeferencing regardless of class and size, the research

has yielded a framework that, when applied, enhances the situational awareness of

maritime stakeholders by displaying accurately located ships on digital maps, thereby

consolidating knowledge into a user-friendly format which is easy to interpret and

act upon. The methodological choices have been centered on maximum accuracy and

minimal processing times on embedded systems. This balance of speed and precision
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facilitates the integration with other sensor data and services, ultimately advancing

maritime operations to be safer, more secure, and efficient. This rationale ensures

that the presented work has tangible impacts. This thesis has thus contributed to the

body of knowledge with validated approaches that aim to facilitate monitoring in the

vicinity of maritime infrastructures. Moreover, the methods and findings presented

here offer a solid foundation for future research directed at refining high-resolution,

real-time processing in resource-limited maritime contexts.
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Chapter 9
Future Work

The outcomes and challenges presented in this thesis suggest several areas that are

worth further research.

With regards to the ShipSG dataset, future iterations of the dataset will focus on

expanding its diversity by incorporating images from various cameras, and including

higher resolution images, for more detailed analysis. This initiative aims to address the

current limitations related to the variability and detail of maritime scenes, including

more adverse weather conditions. Moreover, further improvements will involve lever-

aging AIS data for annotating ship heading, and enriching the dataset with additional

annotations like ship cuboids or keypoints. These advancements will support the de-

velopment of more sophisticated algorithms for automatically recognizing ship heading

and dimensions, significantly benefiting maritime situational awareness research.

Focusing on improvements of ScatYOLOv8+CBAM and the overall performance

of ship segmentation, key areas for advancement include refining the architecture to

manage computational demands of larger models more effectively. Potential strategies

for improvement involve making the ScatBlock learnable by introducing adjustable

parameters within the wavelet filters, or enhancing the ScatBlock by adding learnable

modules, such as strided convolutions and integration of transformers, to focus on

significant features more efficiently. Additionally, optimizing the slicing and merging

tasks in batch-inference processes through parallel processing techniques like multi-

threading could significantly enhance efficiency when processing high-resolution images

for small ship recognition.

Future work in ship georeferencing should focus on enhancing accuracy by using

additional annotations on the ShipSG dataset, specifically keypoints and cuboids, to

refine the georeferencing process by considering ship dimensions. Exploring cuboids

93



Future Work

alongside ShipSG annotations could also streamline ship orientation calculations, po-

tentially eliminating the need for high frame-rate sequential image analysis in anomaly

detection pipelines.

Finally, by integrating the methodologies presented in this thesis with additional

processing chains and sensor data, we could contribute to the production of a broad

and further enhanced situational awareness picture. This involves creating real-time

visualizations of georeferenced ships using web services. For example, a dynamic map

where ship positions update constantly, providing a clear picture of maritime situation.

Furthermore, by merging diverse data sources such as ship tracking, 3D reconstruc-

tion, anomaly detection, and information from other sensors and data sources like

thermal imaging, radar or AIS, we can gain a more comprehensive understanding of

the maritime environment. This fusion of data will help authorities identify potential

hazards, improve navigation safety, and optimize resource allocation for search and

rescue operations.
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Chapter 10
Publications by the Author for this
Thesis

This chapter presents a chronological list of the publications used for this compilation

thesis, together with my shares on the works and a short summary of my contributions

to each publication.

[BCP-I]

E. Solano, B. Carrillo-Perez, T. Flenker, Y. Steiniger, and J. Stoppe, ”Detection

and Geovisualization of Abnormal Vessel Behavior from Video,” in 2021

IEEE International Intelligent Transportation Systems Conference (ITSC), 2021, pp.

2193–2199.

My share on this publication is 35%. Summary of contributions as 2𝑛𝑑 author:

• Training and validation of YOLOv4 using custom dataset.

• Implementation of pipeline for ship detection and georeferencing from Sydney

harbour video sequence.

• Development of a homography for ship georeferencing and adapted it for the

pipeline.

• Calculation of ship course estimation of detected ships using optical flow and

homography.

• I advised and participated in the writing of the manuscript.
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• Outcome: Proof of concept for ship detection and georeferencing to improve

maritime situational awareness.

• Next step: Quantitative analysis of the georeferencing method was not reported.

Achieved in [BCP-II] and [BCP-V].

[BCP-II]

B. Carrillo-Perez, S. Barnes, and M. Stephan, ”Ship Segmentation and Geo-

referencing from Static Oblique View Images,” Sensors, vol. 22, no. 7, p. 2713,

Apr. 2022.

My share on this publication is 90%. Summary of contributions as 1𝑠𝑡 author:

• Creation and publication of novel dataset for ship recognition and georeferencing

(ShipSG).

• In-depth study of four state-of-the-art real-time ship segmentation methods, us-

ing ShipSG.

• Quantitative analysis of the homography-based ship georeferencing method, us-

ing ShipSG.

• Preparation of the manuscript.

• Outcome: Definition of a pipeline for ship segmentation and georeferencing for

ship display on situational awareness maps.

• Next step: Deployment on embedded system was not reported. Achieved in

[BCP-IV], [BCP-V] and [BCP-VI].

[BCP-III]

F. A. Costa de Oliveira, B. Carrillo-Perez, A. Garćıa-Ortiz, and F. Sill-Torres,

”Integrity Assessment of Maritime Object Detection Impacted by Partial

Camera Obstruction,” in 2023 IEEE International Conference on System Reliabil-

ity and Safety (ICSRS), Nov. 2023, pp. 474–480.

My share on this publication is 20%. Summary of contributions as 2𝑛𝑑 author:

96



Publications by the Author for this Thesis

• Training and validation of Faster R-CNN for ship detection using ShipSG. The

study of obstructions impact was also validated using ShipSG.

• I advised and participated in the writing of the manuscript.

• Outcome: ShipSG dataset impacts other applications for the improvement of

maritime situational awareness such as camera integrity assessment.

[BCP-IV]

F. Sattler, B. Carrillo-Perez, S. Barnes, K. Stebner, M. Stephan, and G. Lux, “Em-

bedded 3D reconstruction of Dynamic Objects in Real Time for Maritime

Situational Awareness Pictures,” The Visual Computer, Springer, pp. 1–14, 2023.

My share on this publication is 15%. Summary of contributions as 2𝑛𝑑 author:

• Training and validation of YOLOv5 for ship detection on synthetic dataset.

• Deployed detector on NVIDIA Jetson AGX Xavier, using Pytorch weights.

• I advised and participated in the writing of the manuscript.

• Outcome: Deployment of ship detector (bounding box) on embedded system for

maritime situational awareness applications.

• Next step: Deployment of instance segmentation (mask) on embedded system

with fast inference speed and high accuracy on real dataset (ShipSG). Achieved

in [BCP-V] and [BCP-VI].

[BCP-V]

B. Carrillo-Perez, A. Bueno Rodriguez, S. Barnes, and M. Stephan, ”Improving

YOLOv8 with Scattering Transform and Attention for Maritime Aware-

ness,” in 2023 IEEE International Symposium on Image and Signal Processing and

Analysis (ISPA), 2023, pp. 1–6.

My share on this publication is 90%. Summary of contributions as 1𝑠𝑡 author:

• Improved YOLOv8 for ship segmentation with the novel addition of 2D scatter-

ing transform and attention mechanism to conform ScatYOLOv8+CBAM. The

model was validated on ShipSG.
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• Analysis of georeferencing results on ShipSG with the novel proposed architec-

ture.

• Deployment of instance segmentation on embedded system (NVIDIA Jetson

AGX Xavier).

• Preparation of the manuscript.

• Outcome: Faster and more accurate ship segmentation and georeferencing, de-

ployed on embedded system.

• Next step: Optimize architecture further and use higher image resolutions, spe-

cially for small or distant ship segmentation. Achieved in [BCP-VI].

[BCP-VI]

B. Carrillo-Perez, A. Bueno Rodriguez, S. Barnes, and M. Stephan, ”Enhanced

Small Ship Segmentation with Optimized ScatYOLOv8+CBAM on Em-

bedded Systems,” 2024. IEEE International Conference on Real-time Computing

and Robotics (RCAR), 2024, pp. 1–6. (Accepted)

My share on this publication is 90%. Summary of contributions as 1𝑠𝑡 author:

• Optimization of ScatBlock for faster inference with ScatYOLOv8+CBAM.

• Comprehensive analysis of the use of ScatYOLOv8+CBAM for all model sizes.

• Improvement of the slice prediction method (SAHI) to perform inference in

batches, focusing on small or distant ship segmentation using ShipSG.

• Weight serialization with TensorRT for Deployment on NVIDIA Jetson AGX

Xavier, allowing faster inference.

• Preparation of the manuscript.

• Outcome: More efficient deployment of ScatYOLOv8+CBAM on embedded sys-

tem and improved the small and distant ship segmentation accuracy.
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