
 

 

DLR-IB-FT-BS-2024-116 
 
Developing an FPGA based 
Redundancy Framework for 
Integrated Modular Avionics 
 
Hochschulschrift 
  
Phillip Nöldeke 
 
Deutsches Zentrum für Luft- und Raumfahrt 
 
Institut für Flugsystemtechnik 
Braunschweig 
 
 

Interner Bericht 



 
 
 
 
 
 

Institutsbericht 
DLR-IB-FT-BS-2024-116 

 

Developing an FPGA based Redundancy Framework for Integrated 
Modular Avionics 

 
Phillip Nöldeke 

 
 

Institut für Flugsystemtechnik 
Braunschweig 

 
 

 138 Seiten 
 24 Abbildungen 
 29 Tabellen 
 13 Referenzen 
 

Deutsches Zentrum für Luft- und Raumfahrt e.V. 
Institut für Flugsystemtechnik 
Abteilung Sichere Systeme & Systems Engineering 
 
Stufe der Zugänglichkeit: I, Allgemein zugänglich: Der Interne Bericht wird 
elektronisch ohne Einschränkungen in ELIB abgelegt. 
 
Braunschweig, den 22.07.2024 
 
 
 

Institutsleitung: Prof. Dr.-Ing. S. Levedag 

Abteilungsleitung: A. Bierig 

Betreuer:in: Prof. Dr. U. Durak 

Verfasser:in: P. Nöldeke 



Master’s Thesis

Developing an FPGA based Redundancy Framework
for Integrated Modular Avionics

Phillip Nöldeke

May 31, 2024

DLR Institute of Flight Systems

Supervisors:
Prof. Dr.-Ing. Stefan Levedag

Institute of Flight Systems, DLR e.V.

Prof. Dr.-Ing. Peter Hecker
Institute of Flight Guidance, TU Braunschweig

Supervisor at DLR:
Prof. Dr. Umut Durak

In cooperation with the German Aerospace Center (DLR e.V.) Braunschweig



Statement of Originality

This thesis has been performed independently with the support of my supervisors. To the
best of the author´s knowledge, this thesis contains no material previously published or
written by another person except where due reference is made in the text. I also confirm
that the electronic version submitted is identical to the printed version.

Braunschweig, May 31, 2024

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

II



Danksagung

Ich möchte mich an dieser Stelle bei Herrn Prof. Dr.-Ing. S. Levedag, Institutsleiter
des Institutes für Flugsystemtechnik am DLR Braunschweig, für die Betreuung dieser
Masterarbeit bedanken.

Weiterhin gilt mein Dank Umut Durak für die fachliche Betreuung und persönliche Un-
terstützung wärend der Bearbeitung.

Darüber hinaus möchte ich mich bei meinen Kolleginnen und Kollegen der Abteilung SSY
und insbesondere der Arbeitsgruppe Avionics Systems für die Unterstützung während
meiner Abwesenheit in den letzten Monaten bedanken.

Schließlich danke ich meiner Familie und meinen Freunden für die mentale Unterstützung
während der Anfertigung dieser Arbeit.

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

III



Abstract

Fault tolerance is a key element in the design of safety-critical avionics systems. According
to ARP4754A, avionics computers must not fail due to a single fault. That is why they
must be capable of enduring a specified number of random component failures, to meet the
stringent safety and reliability requirements. Since the occurrence of a fault leading to a
failure event cannot be ruled out completely, avionics systems are designed and developed
with a combination of fault avoidance and tolerance. The main objective is to preserve
the avionics system functionality even when faults occur in the system. The stages a
fault-tolerant system must provide are fault detection, fault containment and isolation,
as well as reconfiguration or recovery.
Today’s avionics systems are complex and use a combination of fault tolerance techniques
to meet safety and reliability requirements. The complexity of a fault-tolerant design is
further increased by the introduction of the Integrated Modular Avionics (IMA) concept.
Redundancy is primarily used to ensure the integrity and reliability of an avionics system
by replicating avionics computers (channels) and communication paths. This involves
comparing and/or voting of replicas in order to identify faulty channels. The passivation of
a failed channel is a consequence of the avionics system fault containment strategy. These
redundancy management mechanisms result not only in processing overhead, but also
increase the development effort and makes validation of the avionics system challenging.
Because of their specific design for particular applications, the majority of redundancy
management systems additionally pose challenges with reusability.
This thesis presents an approach for a framework that supports the development of an
avionics redundancy management system from system design to integration on the target
hardware. The aim is to provide a generic FPGA-based redundancy management sys-
tem that is configurable according to the safety and reliability requirements of the use
case. The avionics systems hardware and software architecture provide additional con-
figuration inputs to the framework. The presented framework involves multiple steps to
implement the intended functionality. First, it provides an environment where the re-
dundancy architecture and the required fault-tolerance mechanisms are configured. This
includes determining the required number of replicas and defining monitoring, voting,
and consensus metrics. If required, dissimilarity patterns may also be considered in this
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step. The second step employs the assembly of the redundancy management system im-
plementation by utilizing essential building blocks containing generic FPGA logic. The
process is completed by generating the intellectual property component in preparation for
integration into the FPGA part of a system-on-chip processing module.
The thesis outcome shows that the redundancy framework facilitates the development of
redundancy management systems by providing generic patterns for various fault tolerance
techniques. During the configuration process, safety, reliability, and integrity require-
ments, as well as architectural system requirements are considered. In addition, the use
of an FPGA allows separation from application development and significantly reduces the
computational overhead on the target hardware’s processing module.

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

V



Kurzfassung

Fehlertoleranz ist ein Schlüsselelement bei der Entwicklung von sicherheitskritischen
Avioniksystemen. Gemäß ARP4754A dürfen Avionikcomputer nicht durch einen einzigen
Fehler ausfallen. Deshalb müssen sie in der Lage sein, eine bestimmte Anzahl von zufälligen
Ausfällen zu überstehen, um die strengen Sicherheits- und Zuverlässigkeitsanforderungen
zu erfüllen. Da das Auftreten eines Fehlers und der damit verbundene potentielle Ausfall
eines Avionikcomputers nicht vollständig ausgeschlossen werden kann, werden Avionik-
systeme mit einer Kombination aus Fehlervermeidung und -toleranz entworfen. Das we-
sentliche Ziel besteht darin, die Funktionalität des Avioniksystems auch dann zu erhalten,
wenn Fehler im System auftreten. Dazu stellt ein fehlertolerantes System Funktionen zur
Fehlererkennung, Fehlereindämmung und -isolierung sowie Rekonfiguration oder System-
wiederherstellung zur Verfügung.
Die heutigen Avioniksysteme in Flugzeugen sind komplex und verwenden eine
Kombination von Fehlertoleranztechniken, um die Anforderungen an Sicherheit und Zu-
verlässigkeit zu erfüllen. Die Komplexität eines fehlertoleranten Systementwurfs wird hier-
bei durch die Einführung des Integrated Modular Avionics (IMA) Konzepts zusätzlich
erhöht. Redundanz dient dabei in erster Linie dazu, die Integrität und Zuverlässigkeit
eines Avioniksystems zu gewährleisten, indem Avionikcomputer und Kommunikationsele-
mente repliziert werden. Dies beinhaltet den Vergleich und/oder die Abstimmung von
Computern, um fehlerhafte Kanäle zu identifizieren. Die Passivierung eines fehlerhaften
Kanals ist dabei die Folge der Fehlereindämmungsstrategie des Avioniksystems. Diese
Redundanz Management Mechanismen führen nicht nur zu einem Mehraufwand bei der
Programmausführung, sondern erhöhen auch den Entwicklungsaufwand und stellen eine
Herausforderung bei der Validierung des Avioniksystems dar. Aufgrund ihres spezifischen
Designs für bestimmte Anwendungsfälle, erschweren die meisten Redundanz Management
Systeme zudem die Wiederverwendbarkeit in anderen Avionik Systemen.
In dieser Arbeit wird ein Ansatz für ein Framework vorgestellt, das die Entwicklung eines
Avionik-Redundanz Management Systems vom Systementwurf bis zur Integration auf der
Zielhardware unterstützt. Das Ziel ist es, ein generisches FPGA-basiertes
Redundanz Management System bereitzustellen, das gemäß den Sicherheits- und Zuverläs-
sigkeitsanforderungen des entsprechenden Anwendungsfalls konfigurierbar ist. Die Hard-
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und Software-Architektur des Avioniksystems liefert dabei zusätzliche Informationen für
die Konfiguration. Das vorgestellte Framework umfasst mehrere Schritte, um die geforder-
ten Funktionalitäten umzusetzen. Zunächst stellt es eine Konfigurationsumgebung bereit,
in der die Redundanzarchitektur und die erforderlichen Fehlertoleranzmechanismen defi-
niert werden. Dazu gehören die Bestimmung der erforderlichen Anzahl an redundanten
Komponenten sowie die Festlegung von Monitoring-, Voting- und Konsensmetriken. Falls
erforderlich, kann in diesem Schritt auch ein dissimilares Systemdesign berücksichtigt wer-
den. Im zweiten Schritt wird die Implementierung des Redundanz Management Systems
unter Verwendung von generischen FPGA-Bausteinen vorgenommen. Der Prozess wird
durch die Generierung des Redundancy Management Intellectual Property Moduls zur
Vorbereitung der Integration in den FPGA-Teil eines System-on-Chip Prozessor Moduls
abgeschlossen.
Das Ergebnis dieser Arbeit zeigt, dass das Redundanz-Framework die Entwicklung von
Redundanz Management Systemen erleichtert, indem es generische Muster für verschie-
dene Fehlertoleranztechniken bereitstellt. Während des Konfigurationsprozesses werden
Sicherheits-, Zuverlässigkeits- und Integritätsanforderungen sowie Anforderungen an die
Systemarchitektur berücksichtigt. Darüber hinaus ermöglicht die Verwendung eines FPGA
eine Trennung von der Entwicklung der eigentlichen Applikation und reduziert den
Rechenaufwand im Prozessor Modul der Zielhardware erheblich.
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Task Definition

Integrated Modular Avionics (IMA) is a new approach for architecting avionics systems.
An IMA system consists of multiple computing modules, each supporting multiple appli-
cations at different levels of criticality. This leads to design of novel avionics architectures.
However, it also makes it challenging to meet the already stringent reliability and safety
requirements. Avionics system designers use redundancy practices and health monitoring
concepts to build integrity and fault tolerance on top the system at design time to meet
these safety and reliability requirements.
The increasing use of system-on-chip (SoC) modules in IMA platforms provides additional
implementation options for avionics and redundancy system designers. Using the Field
Programmable Gate Array (FPGA) part of such SoCs to host the redundancy manage-
ment logic significantly reduces the computational overhead on the processor and enables
a generic, platform-independent redundancy management implementation.
The demonstrator platform of the redundancy framework is a Flight Control Computer
(FCC) developed by the DLR.

The following aspects will be dealt with in detail:

• Literature review on avionics related development standards and guidelines.

• Identify the possible failures and errors that could occur in an avionics system and
analyze how to mitigate them.

• Development of feasible redundancy architectures and techniques applicable to the
DLR-FCC avionics hardware.

• Conceptual design of an FPGA-based redundancy framework for the DLR-FCC
considering the developed architectures and techniques.

• Implementation of the redundancy framework on an FPGA.

• Perform simulation and hardware-in-the-loop testing of the implementation.

• Discuss the results obtained.
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List of Abbreviations

Notation Description

AMD Advanced Micro Devices

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

B2B Board to Board

BF Byzantine Fault

BR Byzantine Resilience

CC Cross-Channel

CCI Cross-Channel Interface

CL Cross-Lane

CLB Configurable Logic Block

CLI Cross-Lane Interface

CMF Common-Mode Failure

CRC Cyclic Redundancy Check
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DUT Device Under Test

EEPROM Electrically Erasable Programmable Read-Only Memory
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Notation Description

EPROM Erasable Programmable Read-Only Memory

FCC Flight Control Computer

FCR Fault-Containment Region

FiFo First-in-First-out

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

HDL Hardware Description Language

I/O Input/Output

IC Integrated Circuit

IMA Integrated Modular Avionics

INS Inertial Navigation System

IP Intellectual Property

JSON JavaScript Object Notation

LUT Lookup Table

MPSoC Multi Processor System on Chip

MPU Message Processing Unit

MU Management Unit

PCB Printed Circuit Board
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Notation Description

PL Programmable Logic

PLD Programmable Logic Device

PS Processing System

RAM Random Access Memory

RM Redundancy Management

RMC Redundancy Management Channel

ROM Read Only Memory

RPU Real-Time Processing Unit

RTL Register Transfer Level

RX Receive

SDDI Simplex Data Duplex Interface

SDRAM Synchronous Dynamic Random Access Memory

SDSI Simplex Data Simplex Interface

SiL Software-in-the-Loop

SoC System on Chip

SoM System on Module

TMR Triple Modular Redundancy

TX Transmit

VHDL Very High Speed Integrated Circuit HDL

WCET Worst Case Execution Time
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Notation Description

YAML YAML Ain’t Markup Language
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1 Introduction

In modern aircraft, avionics systems are playing an increasingly important role due to
growing digitalization. At the same time, the demands on avionics to perform more tasks
in less time are increasing, adding to the complexity of these systems. In addition, these
systems are required to meet the highest aerospace standards for safety and reliability
during their operation. The key is to detect and contain faults at runtime and maintain
system functionality. This approach is referred to as fault tolerance.
To meet these requirements, avionics computers are replicated so that a standby computer
can maintain system functionality if another computer fails. The occurrence of a fault
is detected by extensive comparison and voting mechanisms between redundant units. It
can be assumed that the more complex the avionics system itself is, the more complex
these redundancy management mechanisms become. The development of such fault tol-
erance measures is based on the system’s safety and reliability requirements identified
through the safety assessment process (see ARP4761A [1]) and is specifically designed for
the system, the hardware, and the software architecture. This means that an individual
redundancy management system must be developed for each avionics system and com-
ponent to implement fault tolerance. Because of the direct interface between the actual
application and the redundancy management at the hardware and software level, the two
development processes are closely coupled. With the increasing complexity of avionics
systems and the introduction of more modern system concepts such as Integrated Mod-
ular Avionics (IMA), the development of fault-tolerant avionics systems is facing major
challenges.

1.1 State of the Art

Conventional avionics systems typically use distributed computing architectures. These
computers are designed and developed for individual functions. To achieve the required
level of fault tolerance, redundancy architectures such as dual-duplex, triplex or quadru-
plex are implemented, depending on the criticality of the system. This applies to both
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computers and communication elements. However, because these systems are individually
designed for each avionics component, they tend to be very inflexible when it comes to
subsequent system adaptations.
In contrast, the Integrated Modular Avionics (IMA) concept, introduced by [2], pro-
poses a modular avionics architecture with generic computer platforms and standardized
communication networks. The resources of IMA platforms are shared by multiple mixed-
criticality applications. Access to shared resources is managed through strict partitioning
and active resource management. The goal is to ensure that hosted applications do not
interfere with each other through unintended behavior [2].
The concept of IMA is only rarely used in current avionics systems and is only used in
low criticality systems [3]. Airbus for example uses Core Processing and Input/Output
Modules (CPIOMs) in the A380 and the A400M whereas Boeing implemented the B777´s
Airplane Information Management System (AIMS) according to the IMA concept [3].

1.2 Scope of the Thesis

This thesis addresses the aforementioned challenges in the development of fault-tolerant
avionics systems and presents a possible solution with the development of a modular
redundancy framework. An avionics computer developed by the German Aerospace Cen-
ter (DLR) is used to demonstrate the system. Based on the identified failure modes and
safety requirements, a redundancy framework is developed to support the implementation
of FPGA-based redundancy management systems for modular avionics platforms. This
thesis documents the structure and approach of the framework and explains the develop-
ment of a generic, FPGA-based redundancy management system. The goal of the work
is to present a first version of the redundancy framework and a redundancy management
system for the DLR dual-lane avionics computer.
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2 Fault-Tolerant Avionics Systems

Avionics systems are safety-critical systems, that are defined by the fact that a fault or
failure of such a system can result in a hazardous or even catastrophic event.
In the context of avionics systems, this includes various components such as flight control
systems, autoland systems, avionics computers, and data communications. In accordance
with ARP4754A, avionics systems are required to have a certain degree of fault toler-
ance to withstand a specified number of random component failures [4, 5]. Therefore,
it is essential to ensure the continuous and safe operation of these systems throughout
their operational duration. This chapter provides an introduction to the concept of fault
tolerance in avionics systems, serving as the foundation for this thesis.
An early approach to the design of safety for avionics computers is the avoidance of
faults [6]. Lala et al. [6] further discovered that this is achieved through strict quality
control and component engineering. However, engineering high reliability into devices
and components results in significant costs.
Furthermore, the occurrence of design errors is unpredictable and their effectiveness in
preventing them is only partial [7]. Moreover, it is not possible to address Byzantine Faults
(BFs) and Common-Mode Failures (CMFs) through fault avoidance measures during the
development process [6].
As noted by Hitt et al. [7], avionics systems must be designed and developed to incor-
porate both fault avoidance and fault tolerance. The objective is to ensure the continued
functionality of the system in the event of faults. However, developing a fault-tolerant
avionics system can lead to increased system complexity and validation challenges. The
necessity for additional hardware and software modules, as well as the introduction of
greater connectivity between system elements, is largely responsible for this [7].
Nevertheless, the possibility of a fault leading to a failure event cannot be entirely ex-
cluded, even if the avionics system is developed in accordance with the highest safety
standards and all conceivable error cases are considered during the development process.
The principal functionalities of fault-tolerant systems are the detection, containment, and
isolation of faults, as well as reconfiguration or recovery [8]. One of the most important
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techniques used to implement these features is redundancy. The replication of function-
ally identical compute modules (called channels) and communication interfaces increases
system reliability and integrity.

2.1 Redundancy

With the introduction of microprocessors, it became more cost effective to design redun-
dant components [6]. As mentioned in [6], the concept of redundancy is employed as a
means of ensuring safety, and this involves a trade-off between the avoidance of faults
and fault tolerance. In addition to the advantage of fault tolerance, redundant systems
present a challenge in terms of validation. Moreover, redundancy does not guarantee fault
tolerance, but it does significantly reduce the rate of fault occurrences. However, this ap-
proach comes at a cost, as fault-tolerant systems can lose up to 50% of their performance
in order to manage redundancy. While initial redundant systems are more susceptible to
failure than simplex systems, redundancy is meanwhile a well-established technique in the
aerospace domain. It is used to meet stringent safety standards with respect to system
availability [6].
The study by Lüttig [3] states that the functionality of a component is classified as either
correct or failed. A component is considered correct when it performs its intended function
as expected. A design error (introduced during the component development process) or
a random fault can cause a component no longer being able to perform its intended
function. Subsequently, the component is then classified as failed. However, it is possible
for a system or component to have both errors and faults without resulting in a failure.
This can happen if, for example, there is a software bug in a disabled feature that would
only manifest itself as a failure when enabled. Similarly, there may be a hardware failure
in an unused component that only causes a failure when activated. This implies that a
component can actually exist in one of three states: correct, passive, or out-of-control.
A component is classified as passive when a failure has been identified and successfully
treated. If a component has a potential failure that has not been identified or treated, it
is classified as out of control. The identification of a failure within a component can be
achieved by comparing the results of two functionally identical components (redundant
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replicas). According to Lüttig [3], this approach is implemented, for example, in the
commanding-monitoring principle.
The first step in implementing fault tolerance in an avionics system is to partition redun-
dant items into Fault-Containment Regions (FCRs) [6]. Lala et al. [6] also describe a
FCR as a collection of components designed to operate correctly even in the presence of
arbitrary or electrical faults outside the region. It is essential that any faults that may
occur within the FCR are prevented from propagating beyond the FCR boundaries and
affecting or compromising other components. Additionally, measures of fault containment
at system level are crucial. Voting mechanisms are therefore used to mask faults at dif-
ferent stages of the fault-tolerant system. The process of using input voting involves the
masking of failed sensor values. Internal computer voting plays a fundamental role in
preventing the propagation of faults from a failed channel to other channels within the
system. The combination of output voting and interlock mechanisms serves to prevent the
outputs of failed channels from propagating beyond the FCR boundaries [6]. An interlock
mechanism can enable or disable the outputs of a channel. The majority of channels
within an avionics system can collectively change the lock state to disable a failed channel
[6]. The presence of multiple redundant channels allows for fault masking, eliminating the
need for immediate fault diagnosis, isolation and recovery. This ensures that the majority
of channels continue to operate, thereby creating a redundant system that is capable of
meeting the stringent real-time response requirements. The implementation of actuator
voting is used to effectively mask errors that may occur within the data transmission
medium. [6]

2.2 Architectural Redundancy Categories

As outlined in [7], redundancy can be classified into three architectural categories: static,
dynamic, and hybrid. A statically redundant system is able to detect and mask faults.
A simple example is the Triple Modular Redundancy (TMR) architecture. The system
consists of three redundant replicas, each of which generates an output that is then voted
on to determine which signal to select. This passive approach is sufficient to prevent fault
propagation through the FCR boundaries. If the replicas are able to detect internal errors,
the system’s overall reliability would be improved, and the number of replicas required
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for the voter would be reduced. It is important to note that the reliability of the system
is strongly dependent on the individual replicas and the reliability of the voters. The
reliability of a voter is defined as the probability that the voter provides correct output
and does not assert an unsafe signal. The voter safety is defined by its reliability and
the probability that the voter will assert an unsafe signal. A redundant system must be
designed with a balance of safety and reliability, as both are interrelated. An increase in
one can lead to a decrease in the other [7].
Figure 2.1 depicts a dynamic redundant system that is capable of reconfiguring in the
event of a failure. The figure shows a triplex redundant system that does not select the
correct output, but uses the majority of the channel outputs to disable a failed channel if
the failure is determined to be persistent.

Channel 1

Channel 2

Channel 3

Selector Select 2

Select 3

Figure 2.1: Dynamic triplex redundancy example [7]

A hybrid redundant system is a combination of static and dynamic fault detection, mask-
ing, and recovery (which may involve reconfiguration) [7]. As introduced by [7], a hybrid
fault-tolerant system includes active and redundant channels, along with a spare channel.
The outcome of each channel output is determined by a central voter. In addition, each
channel is equipped with a comparator unit, which is responsible for verifying that the
channel output is different from the voted output. In the event of a mismatch between
the selected output and the channel output, a switch disables the failed channel output
and replaces it with the backup channel. This functionality ensures that the system re-
mains operational in the event of a channel failure. A failed channel can be restored to
operational status if it is reestablished with the voter for a specified period of time [7].
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2.3 Reliability and Integrity in Redundant Systems

According to Lüttig [3], the configuration of an avionics system with multiple redundant
channels can be approached in two ways: active-standby and all-active. In active-standby
systems, a single channel assumes the operational role. If the active channel fails, one of
the standby channels takes over. In all-active systems, all channels are operational and
interact with external systems (e.g. actuators). Compared to active-standby systems,
all-active redundant systems provide higher reliability. However, with regard to integrity,
double failures and inconsistent failures (Byzantine failures) tend to be the most common.
In this context, active-standby systems have better integrity. While all-active systems
can improve both reliability and integrity, the increased number of redundant modules
requires the implementation of sophisticated mechanisms for inter-channel communication
mechanisms and modifications to the actuators. In this configuration, the actuators are
independently responsible for selecting a channel’s data. In active-standby systems, it is
essential that integrity is maintained independently in each channel. To achieve this goal,
it is necessary to design the channels as duplex modules to avoid common mode errors.
The introduction of inter-module redundancy serves to increase the overall reliability
of the system, which is achieved through the implementation of n-duplex systems. A
fundamental requirement for the effective operation of an active-standby system is the
establishment of a consensus regarding the active status. Each duplex channel must be in
agreement with the others as to which channel is active while all others remain in standby
mode. The implementation of this concept requires the establishment of a highly reliable
inter-channel communication network [3].

2.4 Consensus

In fault-tolerant systems, comparing data from redundant channels is essential to detect
and mask faults [6]. This should allow redundant replicas to reach consensus on their input
and output data [3]. This can reduce the likelihood of erroneous values being transmitted
beyond the boundaries of the FCR [3].
Consensus between redundant replicas is achieved when they agree on each others com-
puted output or received input data. A distinction is made between exact and approximate
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consensus, as explained by Lala et al. [6]. For exact consensus, the compared data must
be bit-wise identical. This method is useful for comparing channel states, for example. To
reach an approximate consensus, the compared data must not deviate from each other by
more than a defined threshold. The approximate consensus principle is useful, for exam-
ple, for comparing measured physical quantities. Determining the appropriate threshold,
however, is a challenging task. The values are often obtained empirically or by experience.
A balance must be achieved so that faults are correctly detected without generating false
alarms [6].
Still, there is always the possibility that the output data is invalid despite consensus if the
replicas agree on identical but incorrect values. Nevertheless, in order to achieve output
consensus, it is at first necessary for the replicas to agree on each other’s input data (input
consensus) [3]. This ensures that all redundant computers receive the same input data
for computation.
Ensuring input validity also involves filtering out grossly misbehaving sensors, especially
since bit-for-bit voting is impractical due to the analog nature of sensor values [6]. As
a result, separate sensor redundancy management algorithms are required to generate a
valid input value for replicated sensors through mid or mean value selection, or averaging
[6].
The comparison of the data is done by a voter or a comparator, depending on the number
of replicas. In addition to the configuration for exact or approximate comparison, the
possible error types must be considered when designing the voter. Fault modes such
as random faults, drifts, constant offsets, or transient pulses must be considered in this
matter [6]. As pointed out in [6], certain conditions must be met in order to perform a
bit-identical comparison between the data of two digital computers. This includes both
replicas being initialized with the same state, having identical input data, and performing
the same sequence of operations. Temporal synchronization of the two components is also
critical to ensure that the two replicas do not drift apart [6].

2.5 Byzantine Faults

One of the primary requirements for the development of fault-tolerant avionics systems is
resilience to BFs, as stated by Lala [6]. A BF manifests itself in the arbitrary behavior of
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a failed component. This can result in a lack of continuity in the execution of a program,
or the transmission of conflicting information to different destinations. Consequently, a
BF causes any behavior within a failed component to corrupt the system [6]. To ensure
the resilience of an avionics architecture prone to BFs, it is necessary to impose a lower
bound on the number of FCRs, as well as to guarantee the connectivity and synchronicity
between them, by implementing specific information exchange protocols [6].
As noted in [6], proving that an appropriate architecture satisfies these criteria is less
expensive and time-consuming than proving that certain failure modes cannot occur with
a probability of, for example, 10−5. Typical triplex and quadruplex system architectures
require a minor redesign of channels and inter-channel communication protocols to achieve
the required Byzantine Resilience (BR). The aforementioned techniques are primarily con-
cerned with the hardware architecture. As a result, Byzantine resilient systems are more
transparent to software programmers. It is possible to develop and validate operating
systems and applications in a simplex environment without worrying about redundant
copies. In addition, hardware redundancy management is transparent from the program-
mer’s perspective. This means that the application layer is separated from the hardware
and software that manages channel and module redundancy. This separation enables in-
dependent validation of redundancy management and application-related hardware and
software [6].

2.6 Common-Mode Failure Tolerance

CMF are the most significant source of failures in safety-critical systems [7].
Unlike random failures, CMFs have the potential to affect multiple FCRs simultaneously,
often due to common causes such as design errors (imperfections in requirements, design
or implementation) or internal hardware and software errors [6].
A single CMF can cause all similar redundant copies to fail. For example, achieving design
diversity through dissimilar replicas is essential to avoid fault propagation through FCR
boundaries [7].
Traditional redundancy approaches have proven to be less effective in avoiding CMFs [6].
Therefore, Lala’s research presented alternative approaches combining fault avoidance
and fault tolerance must be considered. CMF avoidance can be implemented using tools
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that support the development process from the design and requirements phase through
to implementation. The use of standards and formal methods is also appropriate to
achieve consistency and correctness and to reduce errors in specification, design, and
implementation. CMF removal approaches include design reviews, simulations, tests,
and fault injections to identify potential errors. Detection mechanisms such as watchdog
timers and hardware exceptions help identify unwanted hardware and software states to
implement CMF tolerance at runtime. Corrective measures, such as resetting the system
to its last known correct state, may help to handle an identified CMF [6]. This may
require rebooting modules and re-synchronization of redundant channels.

2.7 Dissimilarity

As mentioned above, a dissimilar system design can be used to avoid CMFs in redundant
replicas [7]. For example, in commanding-monitoring architectures and active-standby
systems, dissimilarity is typically used to avoid CMFs or reduce the probability of its
occurrence [3].
Dissimilarity can be implemented at both the hardware and software level to maintain
independence between redundant replicas [3].
At the hardware level, dissimilarity could include the use of electronic components from
different manufacturers. Software dissimilarity could be achieved by using different pro-
gramming languages for redundant replicas. A more general approach is to develop repli-
cas with different development teams, each performing its own development process. Since
these steps can significantly increase the development effort, a trade-off must be made to
determine the appropriate level of dissimilarity and CMF tolerance given the safety and
reliability requirements of the system.
In principle, a dissimilar system architecture can prevent fault propagation across FCR
boundaries [6].
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3 DLR Flight Control Computer

The German Aerospace Center (DLR) developed an avionics Flight Control Computer
(FCC) for an unmanned high-altitude solar-powered aircraft. In addition to many digital
interfaces, the FCC contains a dual-redundant power supply, several air data sensors and
Inertial Navigation Systems (INSs), and two processor cards. In order to meet weight,
space and cost requirements, the FCC is a self-contained avionics unit, making it suitable
for general use in small aircraft.
Within this thesis, the FCC is used as a demonstrator and validation platform for the
developed redundancy management framework.
The following sections describe the FCC architecture, the available interfaces, and the
structure of the processor modules.

3.1 FCC Hardware Architecture

As shown in figure 3.1 the hardware architecture of the FCC consists of a total of five
Printed Circuit Boards (PCBs). The basis is the interface board with connectors for
the external digital interfaces and the power supply. It also includes transceivers and
protection circuitry. Both the power board and the processor boards are connected to the
interface board.

Interface
Board Power Board

Processor Board

Processor Board

Sensor
Board

Figure 3.1: Flight Control Computer architecture
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The power board contains the power stages that convert the external supplied voltage into
5VDC and 3,3VDC for the internal power supply. Both processor lanes are developed
according to a generic design which facilitates interchangeability of lanes. Further, the
lanes have fully physical access to all external data interfaces through the interface board
connectors. The signal routing as well as access permissions are managed in the respective
processor of each lane. Redundancy concepts such as Commanding-Monitoring could be
implemented with these hardware capabilities. The designated configuration is developed
and built during design phase and stored in each processor’s non-volatile memory. The
behavior and permissions of the processor lanes can thus be adapted by reprogramming
the configurations.

3.2 FCC Interfaces

The FCC has electrical and data interfaces, both of which are routed to their designated
connectors on the interface board. The power supply is provided by two independent,
galvanically isolated channels, one of which is sufficient if the other fails. In addition to
the physical air pressure and the two Global Navigation Satellite System (GNSS) ports,
the interface panel also includes several digital communication interfaces (see Table 3.1).

Interface Quantity Protocol Supported Data rate

CAN 2 CAN/CAN-FD 1Mbit/s
RS-232 4 UART 500 kbit/s
RS-485 2 UART 500 kbit/s

Ethernet 2 UDP 1Gbit/s

Table 3.1: Flight Control Computer external data interfaces

3.3 FCC Processing Modules

The processor boards are hosting the processing power of the avionics computer. Each
card is equipped with special Board to Board (B2B) connectors where a 4 cm x 5 cm Sys-
tem on Module (SoM) can be plugged onto. This also supports the interchangeability of
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processing modules, since different SoMs can be installed with the appropriate form factor.
These SoMs include a System on Chip (SoC), oscillators, volatile and non-volatile mem-
ory, interface transceivers, and high-speed B2B connectors to install the SoM on a carrier
board. The SoM used in this project is the TE0821-01-3BE21ML from Trenz Electronic.
It is equipped with a 128MB flash memory for configuration and data storage, 2GB Dou-
ble Data Rate (DDR) Synchronous Dynamic Random Access Memory (SDRAM) and an
internal power switch for the required voltages [9]. The main part of the SoM is the
AMD/Xilinx Zynq Ultrascale+ Multi Processor System on Chip (MPSoC).
It includes a 64-bit quad-core ARM Cortex-A53 processor, a dual-core ARM Cortex-R5
real-time processor, power and memory management, a configuration security unit, DDR4
memory support, multiple general-purpose (CAN, UART, SPI) and high-speed (Ethernet,
PCIe) interfaces, and a programmable FPGA part. The processing related components
such as the Application Processing Unit (APU) and the Real-Time Processing Unit (RPU)
as well as the platform management, memory and communication interfaces make up
the Processing System (PS). The FPGA part with its connectivity interfaces and signal
processing capabilities comprises the Programmable Logic (PL) as shown in Figure 3.2.
The communication interface between both parts is realized by the on-chip Advanced
eXtensible Interface (AXI) data bus [10].
The separation of PS and PL is clearly the advantage of using this chip architecture
for avionics computers. While applications and Operating Systems (OS) are usually
executed in the PS part, a redundancy management system implemented in the PL can
be developed and executed independently. Given the massive computing power of FPGAs,
the computational overhead required to ensure data integrity and consensus is significantly
reduced. An additional advantage is the realization of memory mapped communication
interfaces (internal and external), which allows the assignment of strict access permissions
and thus spatial partitioning between concurrently executed functions.
For this reason, it was decided to implement the redundancy management system in the
FPGA part of the FCCs processing modules.
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Figure 3.2: Zynq Ultrascale+ MPSoC overview [11]
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4 Field Programmable Gate Arrays

Several embedded devices require the use of Integrated Circuit (IC) logic devices to im-
plement static functions. Programmable Logic Devices (PLDs) or Application-Specific
Integrated Circuits (ASICs) are commonly used therefore. However, these ICs require a
lot of development effort and prototyping is quite challenging. Hence, the time-to-market
leads to be long and thus increases the costs.
According to Brown [12], FPGAs are a suitable alternative to the above mentioned IC
technologies to reduce development and production time. The first commercially available
FPGA was developed by Xilinx in 1985. Since then, FPGAs have proven to be particularly
useful for rapid prototyping of hardware logic [12].
Similar to PLDs and ASICs, FPGAs are integrated circuits that can be configured with
digital logic by developers and end users. They consist of a two-dimensional array of
Configurable Logic Blocks (CLBs) (see Figure 4.1). This CLB array is surrounded by a
set of configurable Input/Output (I/O) blocks. A programmable interconnect network
implements the communication between CLBs and I/O blocks [13].
The communication network connects the logic blocks with static wiring segments and pro-
grammable switches. The latter are realized by transistor controlled Random Access Mem-
ory (RAM) cells or Erasable Programmable Read-Only Memory (EPROM)/Electrically
Erasable Programmable Read-Only Memory (EEPROM) transistors [12].
The CLBs consist of two or more logic cells. A logic cell is a basic grain of FPGAs.
It consists of a four-bit lookup table (configured as Read Only Memory (ROM), RAM,
or combinatorial logic). In addition, a carry data path is added for efficient arithmetic
operators, and a D-type flip-flop is added to register the output of the logic cell [13].
Figure 4.2 shows the FPGA logic cell structure.
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Figure 4.1: Generic FPGA architecture [13]

In recent years, modern FPGA design tools and methods have been developed to enable
the implementation of complex logic and functions (e.g. complete digital systems or
hard/soft processor cores such as ARM and MicroBlaze) [13]. These tools are based on
Hardware Description Languages (HDLs) like Very High Speed Integrated Circuit HDL
(VHDL) or Verilog.
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Figure 4.2: FPGA logic cell structure [13]
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The FPGA design flow is divided into the following stages:

• System Level

• Behavioral Level

• Register Transfer Level (RTL)

• Physical Level

Following the work of Monomasson et al. [13], the FPGA designer describes the high-level
circuit specification at the system level. At the behavioral level, the actual functionality of
the circuit/logic algorithm is described by a HDL. Functional correctness can be verified by
simulating the behavioral description in a dedicated test bench. In Register Transfer Level
the behavior is synthesized into a circuit of logical hardware elements. Since the advent
of analog HDLs, a simulation of the circuit is also possible at this level of abstraction.
Performing the signal routing, logic mapping, and optimization results in the physical
level bitstream that configures the FPGA. This last step takes into account the actual
target hardware characteristics [13].
The configured logic is represented by a run-time static hardware circuit inside the FPGA.
Hence, the Worst Case Execution Time (WCET) of an FPGA function is deterministi-
cally verifiable, which is a key requirement for safety-critical avionics. In addition, the
FPGA facilitates the integration of multiple logic modules/functions in parallel, allowing
simultaneous execution of independent functions. This approach also incorporates spatial
partitioning of concurrently executed modules. This qualifies FPGAs as accelerators for
computationally intensive applications such as high-speed communications, digital signal
processing, etc.
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5 Redundancy Management
Framework

In the development of avionics systems, the requirements for reliability and safety play
an important role. The primary metric in this context is fault tolerance, which is the
ability of the system to tolerate certain failures. In the broadest sense, a fault-tolerant
system is expected to continue to perform its required function to some extent even if a
fault occurs in the system. In the context of avionics, this means that an avionics system
must not fail just because a failure occurs in one of its computers. A common practice
to achieve fault tolerance in a system is to use redundancy. This involves instantiating
multiple functionally identical components (replicas) within the system so that one backup
component can take over the tasks of another in the event of a failure. In addition,
redundant instances can be used to compare against each other to detect random faults
in the system. Therefore, the main tasks to ensure fault tolerance are fault detection
and identification, fault containment, and fault recovery or system reconfiguration. These
actions are performed by an active Redundancy Management (RM) system. The RM
system operation is in addition to the actual avionics applications and must be performed
at all times during system runtime. Implementing these functions in an avionics system
is often very complex, requiring significant effort and overhead for application developers.
Furthermore, such systems are rarely reusable because they are typically developed for a
specific use-case or function.
Moreover, the development of redundancy management systems presents further chal-
lenges, particularly for IMA systems. The system flexibility and dynamics required by
the IMA concept are not easily supported by legacy redundancy management systems.
The primary challenges in achieving and guaranteeing fault tolerance are the dynamic
scheduling of partitions on different computers and dynamic reconfiguration.
The objective of this thesis is to present a framework to facilitate the development of fault-
tolerant avionics systems, encompassing both legacy avionics and IMA systems. The in-
tent behind this framework is to minimize the effort required for developers to implement
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fault tolerance mechanisms. For this purpose, the framework provides generic patterns
(see section 5.3) and redundancy management building blocks (see section 5.4) for im-
plementing the necessary fault tolerance measures. Additionally, the framework aims to
provide a flexible and generic foundation so that adapting an avionics computer or even
the entire avionics system does not necessitate a complete redesign of the redundancy
management system. In contrast to conventional redundancy management systems, the
proposed framework provides a range of tools that have been developed for use in complex
and flexible avionics systems. The overall goal is to decouple the application and safety
engineering with providing a redundancy management system transparent to the appli-
cation developers point of view and vice-versa. The system shall be generic and able to
operate independently so that avionics computers or even software developers do not need
to get involved to closely in the redundancy management system development. However,
preventing failures due to design, implementation, and human error is not an objective of
this framework.
The primary objective of the first framework version is to provide a RM system that is
configured and prepared for integration into the DLR FCC presented in section 3. Fur-
thermore, the system shall be capable of adapting to different avionics architectures. The
integration into the DLR FCC is intended to take place in the FPGA part of an Advanced
Micro Devices (AMD) Ultrascale+ SoC. This allows for the implementation of the generic
design and the degree of flexibility required for IMA systems. In addition, implementing
the RM system in an FPGA also strengthens the decoupling from application software
development, since FPGA logic must be developed according to DO-254.

5.1 Requirements

The previous chapter identified several goals and requirements that avionics systems must
meet to achieve fault tolerance. In addition, many of them are mandatory for compliance
with aerospace standards and guidelines. Derived from the chapter 2, this section presents
the requirements derived from the system requirements that the redundancy management
framework must satisfy in order to support the development of a redundancy management
system that enables fault-tolerant behavior. These requirements are further divided into
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general framework related requirements and those related to the implementation of the
redundancy management system Intellectual Property (IP) itself.

5.1.1 Redundancy Framework Requirements

The requirements associated with the redundancy management framework mostly define
the general functionality and workflow of the framework. The requirements primarily con-
cern configurability and flexibility with respect to different avionics architectures, as well
as the generic design of the framework. Moreover, the implementation of fault tolerance
patterns that incorporate specific fault tolerance mechanisms is required. In addition, the
specifications explicitly identify the particular mechanisms and functions that the frame-
work must implement to achieve a given level of fault tolerance. The Table 5.1 contains
some of the most important redundancy framework requirements. The full list can be
found in the appendix section 7.1.

ID Name Text

0-1 Generate Redundancy
Management System IP

The Framework must be able to generate an
avionics redundancy management system imple-
mented in an FPGA IP.

0-2 Avionics Architectures
Support

The framework must be designed generic to sup-
port several avionics architectures.

0-3 Configurability The framework must evolve configurability to
adapt the redundancy management according to
safety requirements.

0-4 Fault tolerance pattern The framework shall provide pattern implement-
ing several fault tolerance mechanisms.

0-11 Fail-Operational behavior The framework must provide support to achieve
fail-operational behavior.

0-23 Redundant channels The framework must provide support for redun-
dant channels within an avionics system.

0-25 Fault containment The framework must provide support to achieve
fault containment within the avionics systems
channels.

Table 5.1: Selection of redundancy framework requirements
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5.1.2 Redundancy Management IP Requirements

Based on the requirements for the redundancy framework, further requirements for the re-
dundancy management IP can be derived. The above requirements describe the functions
and properties that the IP must possess in order to guarantee the overarching functional-
ity of the framework while implementing the required fault tolerance mechanisms. In the
subsequent stages of this work, these requirements will be used in the implementation of
the modules that comprise the redundancy management IP. A selection of redundancy
management IP requirements is presented in Table 5.2. The complete list of redundancy
management IP requirements can be found in the appendix section 7.2 as well.

ID Name Text

1-1 Generic design The RM IP must have a generic and config-
urable design.

1-2 Hardware description language The RM IP shall be developed in VHDL.
1-37 Target hardware The RM IP must be developed to be embed-

ded into the FPGA part of an AMD System-
on-Chip.

1-7 Cross-lane interface The RM IP must have two redundant bidi-
rectional interfaces to communicate between
the processing lanes.

1-9 Simultaneous processing The RM must process all peripheral inter-
faces of a processing lane simultaneously.

1-14 Fault handling The RM must perform channel internal fault
identification and treatment.

1-16 Fault containment The RM must prevent fault propagation
through the channel boundaries.

1-17 Channel passivation The RM must passivate a channel if a failure
is detected.

1-26 Channel activation The RM must switch the channel mode from
standby to active if required.

Table 5.2: Selection of redundancy management IP requirements
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5.2 Framework Concept

The framework is intended to provide a generic tool for developing redundancy man-
agement implementations for different avionics systems, architectures and concepts. The
hardware and software architecture of the avionics system serves as the informational basis
for using the framework. This includes the functional structure of the system, including
avionics computers, communication interfaces/paths, and required software partitions. In
addition, there are safety and reliability requirements which have an impact on the scope
of the redundancy management system. With this information, the framework is intended
to configure and provide an FPGA based redundancy management system for an avionics
system. The implementation on an FPGA allows the redundancy management system
the requisite degree of flexibility and independence from the actual avionics applications.
The proposed framework process is depicted in Figure 5.1.

Avionics Architecture 
(channels, lanes, interfaces, partitions, ...)

&
Safety and Reliability Requirements

  RM-Config[skeleton].yaml

  Pre-Config.yamlDeveloper

Framework

  RM-Config.yamlDeveloper

basic 
information
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generation

detailed 
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Redundancy Management System
IP Block

Framework
RM IP block 

generation

  VHDL building 
  blocks

Figure 5.1: Redundancy management framework process
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5.2.1 Redundancy Management System Configuration

The redundancy management system is created in two steps. First, the framework pro-
vides a configuration environment. The architecture of the avionics system is designed
with the requisite fault tolerance mechanisms incorporated into its structure.
A format is established for the description of the configuration. The configuration de-
scription is presented in a top-down approach. The channels of the avionics system are
defined at the highest level of abstraction. Each channel is assigned an unique identifier,
an initial operational state (active or standby), and a list of external data interfaces.
The external interfaces are also described with an ID, the name of the physical interface,
and its fault tolerance configuration. Furthermore, redundant channels are linked to one
another via their respective identifiers. The descriptions of the lanes are defined within
a channel too. Additionally, each instance is assigned an unique identifier and a status
(either commanding or monitoring) within the configuration file. A link parameter spec-
ifies which lanes form a commanding-monitoring pair. In addition, each lane specifies
which external channel interfaces it can access and with what permission (read-write or
read-only). Communication interfaces between the lanes are also described. Finally, the
software partitions within each lane are defined. Each of these partitions is assigned an
identification number and connected to one of the external interfaces. The parameters for
the description of the communication protocol are also configured at this point. The spec-
ifications for each partition’s input and output consensus are outlined in the configuration,
in accordance with the avionics systems requirements.
A markup/data serialization language, such as JavaScript Object Notation (JSON) or
YAML Ain’t Markup Language (YAML), may be employed as the foundation for the
configuration file. These facilitate the generation of a human- and machine-readable
configuration, rendering them highly suitable for the exchange of information between the
developer and the framework. An example YAML configuration of one avionics channel
with one lane is shown in the following code example.
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1 ---
2 channe l s :
3 - channel 1:
4 id : 1
5 s t a t e : a c t i v e
6 rep l i ca_channe l s : n one
7 ex t e rna l_ in t e r f a c e s :
8 - i n t e r f ace_1 :
9 id : 1

10 pro toco l : u a r t
11 phy s i c a l i n t e r f a c e : r s 4 8 5
12 i n t e r f a c e_con f i g : s i m p l e x
13 l ane s :
14 - lane_1 :
15 id : 1
16 c on f i g : commanding
17 l inked_lane [ ID ] : 2
18 i n t e r f a c e s [ ID ] :
19 - 1
20 a c c e s s : r e ad −w r i t e
21 c ro s s_ lane_in te r f a c e s :
22 - cross_lane_1 :
23 id : 1
24 c on f i gu r a t i on : f u l l −d u p l e x
25 p a r t i t i o n s :
26 - part i t ion_1 :
27 id : 1
28 i n t e r f a c e [ ID ] : 1
29 data_type : f l o a t 3 2
30 message_header_width [ b i t s ] : 16
31 message_payload_width [ b i t s ] : 32
32 message_trai ler_width [ b i t s ] : 16
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33 message_checksum: CRC16
34 consensus : i n p u t / o u t p u t
35 consensus_type : e x a c t
36 ---

Listing 5.1: Example YAML configuration of an avionics channel

The configuration is partially completed by the developer through manual input. In
certain instances, however, patterns provided by the framework can also be employed
by developers, which implement specific fault tolerance techniques (see section 5.3). To
facilitate the configuration process, it is necessary to automate it as much as possible.
Therefore, the framework provides a pre-configuration file into which the developer can
enter the required base-level information:

• Number of available channels

• Number of external interfaces per channel

• Number of lanes per channel

• Number of software partitions per lane

• ID of computing fault tolerance pattern

• ID of general fault tolerance pattern

• ID of interface fault tolerance pattern

The framework generates a skeleton configuration file of the redundancy management
system based on the aforementioned information (see Figure 5.1). This file is already
pre-filled with the basic parameters, as illustrated in the YAML example above. The file
contains the parameter structure for all subsequent descriptions. It is then the responsi-
bility of the developer to enter the missing values. Upon completion of the configuration
file, the framework proceeds with the generation of the redundancy management system
FPGA IP in the second step.
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5.2.2 Redundancy Management System Generation

In the second step, the framework employs the previously constructed configuration to
implement the redundancy management system IP. The generation process is based on
the concept of building blocks. These building blocks are generic VHDL modules that
implement specific functions and fault tolerance mechanisms within a redundancy man-
agement system. Such fundamental building blocks include VHDL code implementing a
redundant high-speed data interface or the comparison of data pairs, for example. The
framework retrieves the configuration parameters from the previously created configura-
tion file, instantiates the required VHDL building blocks within an FPGA project, and
configures them in accordance with the gathered parameters. This process is supposed to
be executed automatically. An unique RM system implementation is generated for each
processing lane.
As illustrated in Figure 5.1 the outcome of this second step is an FPGA IP block in con-
junction with the corresponding source code files. This IP block is designed to handle the
software partitions hosted in the processing lane and implements the defined measures
to achieve fault tolerance. Furthermore, the IP block facilitates both internal and ex-
ternal communication pathways, encompassing communication between partitions, lanes,
and even channels. The generated redundancy management IP block can ultimately be
directly integrated into the FPGA configuration of the SoC on the respective computing
lane.
The development of script-based automation of VHDL IP for the framework is not ad-
dressed in this thesis. All process steps of the framework are initially carried out manually.
The incorporation of automation through the use of shell scripts, for example, is antici-
pated as part of the framework’s ongoing development.

5.3 Fault Tolerance Pattern

The framework provides techniques and mechanisms for implementing fault tolerance in
avionics systems. These mechanisms are provided as patterns. These patterns describe a
variety of fault tolerance mechanisms that can be combined in different ways. Patterns
are defined for various application areas and purposes, including general fault tolerance,
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computational fault tolerance, and interface fault tolerance. The patterns describe the
function or mechanism in a general sense, allowing configuration according to the specific
use case.

5.3.1 Pattern Structure

This section outlines the general structure of a pattern and describes the elements that
must be included to adequately describe a desired function. A pattern must be readable
by both humans and machines to be suitable for the redundancy framework. The basic
requirement for a pattern within the RM framework is its generic structure. This implies
that all patterns are structured in an identical manner and provide the same information.
A pattern is defined as a specific configuration of elements that contains the following
information:

• Name

• ID

• Type (general, computational, interface)

• Required parent pattern (if a high-level pattern is required for this one to work)

• Required child pattern (if a low-level pattern is required for this one to work)

• Description

• Required configuration input

• Output (what does this pattern create, which module is configured by this pattern)

5.3.2 Computational Fault Tolerance Pattern

The primary focus of computational fault tolerance patterns is the way computations
are performed within an avionics system or channel. These patterns primarily involve
different configurations of channels and lanes.
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Commanding-Monitoring Pattern

The commanding-monitoring pattern defines a metric for configuring an avionics channel
lane to either commanding or monitoring mode. For example, the command-monitoring
configuration within a channel is essential for achieving consensus. When the pattern is
applied to a channel configuration, the lane configuration is applied accordingly. In addi-
tion, a VHDL module is generated in which the configuration (commanding/monitoring)
is programmed to facilitate its availability to other modules within the RM system. The
entry in the channel configuration also results in corresponding adjustments to the logic
of other RM modules. The specific modules affected by this are discussed in detail in the
implementation chapter. A summary of the pattern is shown in Table 5.3.

Name Commanding-Monitoring
ID 1
Type computing
Parent pattern none
Child pattern none
Affected component lane
Description This pattern implements a commanding-monitoring

configuration for an avionics channel.
Configuration input • Lane ID and desired configuration

(commanding/monitoring)
Output • VHDL module for each lane programmed with the

configuration
• Entry in the channel and lane configuration
• Adaptations in corresponding RM IP modules

Table 5.3: Commanding-Monitoring pattern

Active-Standby Pattern

The active-standby pattern applies an activity configuration to multiple channels in an
avionics system. Their initial state is set to either active or standby. The state of a channel
may change during runtime. An active channel fully participates in the communication
with peripheral components (compute, send and receive). While a standby channel only
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partially participates in a multi channel system (compute and receive). Applying this
pattern to an avionics system would allow for a hot-redundant configuration where the
standby channels operate simultaneously with the active channel. In the event of a failure
that causes the active channel to passivate, one of the standby channels would change its
activity state and take over the active part. A summary of the pattern is shown in Table
5.4.

Name Active-Standby
ID 2
Type computing
Parent pattern none
Child pattern none
Affected component channel
Description This pattern implements an active-standby configuration for

a channel within an avionics system. The configuration ap-
plies the specific activity state (active or standby) to the
channel. The state of the channel may change during run-
time.

Configuration input • Channel ID and desired initial configuration
(active/standby)

Output • Entry in the channel configuration
• Adaptations in corresponding RM IP modules

Table 5.4: Active-Standby pattern

Reconfiguration Pattern

The reconfiguration pattern provides logic to reconfigure failed (passivated) components
back to a correct state. This can be applied to channels, lanes, or even individual soft-
ware partitions. The reconfiguration logic would trigger a reset routine to restore the
default state after the failed components were identified and passivated. This could in-
clude power cycling a channel or rebooting the processor or individual software partitions.
After restarting the dedicated component(s), they would receive a failed-standby state.
The component works in parallel with the others. Meanwhile, the reconfiguration logic
is responsible for checking the calculated outputs. The trust value of a recovered compo-
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nent is increased if the generated outputs are correct, and decreased if the calculations
are incorrect. Once the component has reached a sufficiently high trust level, it can be
assumed that it is working properly again. Its state is then reset to correct-standby, and
the reconfiguration of the component is complete. The pattern requires the provision of
information about the configuration, specifically, which component is to be reconfigurable
(channel, lane, partition) and how the trust threshold is to be set (the percentage of cor-
rectness required for the component). Accordingly, the pattern generates an appropriate
entry in the configuration and VHDL logic for the component to be reconfigured. This
pattern enables fail-operational behavior in a system with a limited number of channels
or lanes. A summary of the pattern is shown in Table 5.5.

Name Reconfiguration
ID 3
Type computing
Parent pattern none
Child pattern none
Affected component channel, lane, partition
Description This pattern implements a configuration and logic to enable

reconfiguration or failed components (channel, lane, parti-
tion). The logic would reset and restart the failed component
in a standby state decoupled from the rest of the system. If
the component works correctly again with a specified success
rate, it would achieve a correct-standby state. Otherwise, it
remains failed and passivated.

Configuration input • Channel/lane/partition ID
• Required trust value to regain correct state

Output • Entry in the channel/lane/partition configuration
• VHDL reconfiguration logic for dedicated component
• Adaptations in corresponding RM IP modules

Table 5.5: Reconfiguration pattern
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5.3.3 Interface Fault Tolerance Pattern

Interface fault tolerance patterns are designed to configure interfaces on a channel or
lane. These tools are especially helpful when implementing interface redundancy (e.g.,
replicated interfaces). In addition, the system includes logic to ensure the security of data
transmission and the integrity of the data itself.

Simplex Data Simplex Interface (SDSI) Pattern

The Simplex Data Simplex Interface (SDSI) pattern implements a configuration for a
simplex interface that transfers simplex data. This is the simplest configuration and does
not use any form of redundancy or integrity checking. An example would be a single
sensor interface that connects one type of sensor to an avionics computer. A summary of
the pattern is shown in Table 5.6.

Name Simplex Data Simplex Interface
ID 4
Type interface
Parent pattern Cross-Lane Interface, Cross-Channel Interface
Child pattern none
Affected component interfaces
Description This pattern implements a configuration for a simplex inter-

face of a channel and/or lane. The SDSI configuration assigns
a single interface to a corresponding partition. This pattern
does not introduce redundancy or increase data integrity.

Configuration input • Channel, lane ID
• Interface ID
• ID of corresponding partition

Output • Entry in the channel/lane/partition configuration
• Data port in VHDL module to connect the interface

Table 5.6: Simplex Data Simplex Interface pattern
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Simplex Data Duplex Interface (SDDI) Pattern

The Simplex Data Duplex Interface (SDDI) pattern configures a port to drive two repli-
cated hardware interfaces, each representing a simplex interface. Both interfaces are
configured to operate simultaneously in a hot-redundant mode while using the data from
only one interface. Implementing this pattern in an avionics system helps increase the
reliability of the physical transmission and gives the interface fail-operational behavior
in the event of a failed/incorrect transmission in one of the interfaces. Because the data
is still simplex (e.g., one sensor with two interfaces), sensor integrity is not considered
by this pattern. This pattern could be applied to both external and internal (cross-lane)
interfaces. A summary of the pattern is shown in Table 5.7.

Name Simplex Data Duplex Interface
ID 5
Type interface
Parent pattern Cross-Lane Interface, Cross-Channel Interface
Child pattern none
Affected component interfaces
Description This pattern implements a configuration for a duplex inter-

face of a channel and/or lane. The SDDI configuration as-
signs a duplex interface to an appropriate partition. Since
the transmitted data is still simplex, a logic checks the in-
tegrity of both data streams and forwards the data from the
interface whose transmission is correct.

Configuration input • Channel, lane ID
• Interface ID
• ID of corresponding partition

Output • Entry in the channel/lane/partition configuration
• Data port in VHDL module to connect the interfaces
• VHDL logic to determine an incorrect transmission and
data forwarding

Table 5.7: Simplex Data Duplex Interface pattern
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Duplex Data Simplex Interface (DDSI) Pattern

The Duplex Data Simplex Interface (DDSI) pattern implements the configuration of repli-
cated data streams over a simplex interface. An example would be a redundant set of
sensors sharing one data bus. This would increase the data integrity but not the trans-
mission reliability. Since a replicated set of values is transmitted over one medium, the
pattern also implements logic to sample and select the individual values from each source
(e.g., sensor). Cross-checking these two sets would then allow for the detection of incorrect
values. In the case of an avionics channel transmitting data to a duplex set of actors, the
logic would merge both sets of data to prepare for transmission over a simplex interface.
A summary of the pattern is shown in Table 5.8.

Name Duplex Data Simplex Interface
ID 6
Type interface
Parent pattern none
Child pattern none
Affected component interfaces
Description This pattern implements a configuration for a simplex inter-

face of a channel and/or lane that transmits a duplex set of
values. The DDSI configuration assigns a simplex interface
to an appropriate partition. It then samples and selects the
values from each source and provides a replicated set of val-
ues for further review. To transmit duplex data, the pattern
provides logic to merge replicated records for transmission
over a simplex interface.

Configuration input • Channel, lane ID
• Interface ID
• ID of corresponding partition

Output • Entry in the channel/lane/partition configuration
• Data port in VHDL module to connect the interface
• VHDL logic to sample, select and merge replicated
data streams from one interface

Table 5.8: Duplex Data Simplex Interface pattern
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Duplex Data Duplex Interface (DDDI) Pattern

The Duplex Data Duplex Interface (DDDI) pattern supports duplex interfaces that trans-
fer replicated (duplex) data sets to and from multiple peripherals (e.g., sensors, actors).
The pattern configures hardware interfaces to operate hot-redundantly to avoid switching
delays and re-transmission of messages (similar to the SDDI pattern). Each interface
then works on its own with a replicated data set (identical to the DDSI pattern). The
sampling, selection, and merge logic is also provided by the pattern to enable monitor-
ing of replicated data sources. This approach would increase both data integrity and
communication reliability. A summary of the pattern is shown in Table 5.9.

Name Duplex Data Duplex Interface
ID 7
Type interface
Parent pattern none
Child pattern none
Affected component interfaces
Description This pattern implements a configuration for a duplex inter-

face of a channel and/or lane that transmits a duplex set of
values. The DDDI configuration assigns a duplex interface
to an appropriate partition. Both interfaces are configured
to operate hot-redundant. It also samples and selects the
values from each interface source and provides a replicated
set of values for further review. To transmit duplex data,
the pattern provides logic to merge replicated data sets for
transmission over each interface.

Configuration input • Channel, lane ID
• Interface ID
• ID of corresponding partition

Output • Entry in the channel/lane/partition configuration
• Data port in VHDL module to connect the interface
• VHDL logic to sample, select and merge replicated
data streams from one interface
• VHDL logic to determine an incorrect transmission and
data forwarding

Table 5.9: Duplex Data Duplex Interface pattern
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Cross-Lane Interface (CLI) Pattern

The framework is required to support communication and data exchange between lanes
within a channel. This is realized by the CLI pattern. The pattern provides a VHDL
building block for such an interface and configures it according to the information provided
by the developer (message width, data rate, etc.). The basic building block represents a
single bi-directional interface capable of full-duplex communication (sending and receiving
simultaneously). This pattern can be combined with some of the above to create, for
example, a dual-replicated communication interface (combined with the SDDI pattern).
A summary of the pattern is shown in Table 5.10.

Name Cross-Lane Interface
ID 8
Type interface
Parent pattern none
Child pattern SDSI, SDDI, CRC
Affected component lane, interfaces
Description This pattern implements a CLI to enable communication and

data exchange between lanes within a channel. By apply-
ing the pattern, it provides configured VHDL logic that im-
plements the CLI. Optional applied child pattern may ex-
tend the CLI configuration. The basic configuration is a
bi-directional, full-duplex interface (transmit and receive si-
multaneously). It can be configured up to a dual replicated
bi-directional interface to increase module reliability. To en-
sure physical transmission, the pattern could be extended to
include the Cyclic Redundancy Check (CRC) pattern.

Configuration input • Lane ID
• Message width
• Data rate

Output • Entry in the channel/lane configuration
• Data port in VHDL module to connect the interface
• VHDL logic implementing the CLI

Table 5.10: Cross-Lane Interface pattern
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Cross-Channel Interface (CCI) Pattern

To increase the availability of an avionics system, multiple channels could be integrated
into the system to provide computing resources even if one channel fails. However, this
concept requires a reliable communication and data exchange interface between the chan-
nels to transmit failure and passivation events as well as reconfiguration commands. The
Cross-Channel Interface (CCI) pattern provides a VHDL building block for such an inter-
face. Similar to the CLI, the CCI has a bi-directional, full-duplex capable communication
interface that can be configured as a dual-replicated interface if required. A summary of
the pattern is shown in Table 5.11.

Name Cross-Channel Interface
ID 9
Type interface
Parent pattern none
Child pattern SDSI, SDDI, CRC
Affected component channel, interfaces
Description This pattern implements a CCI to enable communication and

data exchange between channels within an avionics system.
By applying the pattern, it provides configured VHDL logic
that implements the CCI. Optionally applied child patterns
can extend the CCI configuration. The basic configuration
is a single, full-duplex, bidirectional interface (transmit and
receive simultaneously). It can be configured up to a dual
replicated bi-directional interface to increase module reliabil-
ity. To ensure physical transmission, the pattern could be
extended to include the CRC pattern.

Configuration input • Channel ID
• Message width
• Data rate

Output • Entry in the channel/lane configuration
• Data port in VHDL module to connect the interface
• VHDL logic implementing the CLI

Table 5.11: Cross-Channel Interface pattern
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Cyclic Redundancy Check (CRC) Pattern

Applying a CRC is a common way to check whether a physical data transmission is correct
or not. This check takes the data being transmitted and calculates a checksum, which
is then appended to the message. The message receiver also calculates the checksum of
the received data and compares it with the received checksum. The data exchange is
considered correct if both calculated checksums are identical. A mismatch would indicate
a transmission error. The pattern supports a 16 bit checksum (CRC16) with reflected
inputs and outputs and requires the developer to configure the CRC polynomial used.
The pattern provides the developer with a configured VHDL logic that implements the
specified CRC algorithm. A summary of the pattern is shown in Table 5.12.

Name Cyclic Redundancy Check
ID 10
Type interface
Parent pattern CLI, CCI
Child pattern none
Affected component interfaces
Description This pattern implements a CRC with reflected inputs and

outputs for a given data communication interface. The CRC
can be used to ensure a correct physical transfer. The pattern
outputs VHDL logic that implements the CRC algorithm.

Configuration input • Channel ID
• Interface ID
• 16 bit CRC polynomial

Output • Entry in the channel/lane configuration
• VHDL logic implementing the CRC algorithm

Table 5.12: Cyclic Redundancy Check pattern

5.3.4 General Fault Tolerance Pattern

General fault tolerance patterns are independent of application partition computing or in-
terface configuration. They focus primarily on consensus, component/module replication,
and dissimilarity.
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Output Consensus Pattern

Channels with multiple lanes can be configured to cross-check each other to detect errors
in internal computations, such as in the commanding-monitoring principle. Before trans-
mitting the calculated data to external systems, it is necessary for the lanes to agree on
their data in order to reach a consensus. Although the result may still be erroneous, it is
unlikely that all lanes will compute the same erroneous result identically. The agreement
on the computed results is called output consensus and is implemented by this pattern.
The developer specifies which components (lane, partition) should be subject to consensus
analysis. The pattern then provides configured VHDL logic to implement the comparison
of the data. A summary of the pattern is shown in Table 5.13.

Name Output Consensus
ID 11
Type general
Parent pattern none
Child pattern Exact Consensus, Approximate Consensus
Affected component lane, partition, interface
Description This pattern implements the necessary procedures to ensure

output consensus. The developer defines which components
(redundant replicas) to check, and the pattern creates the ap-
propriate VHDL logic to compare the values. The consensus
algorithms in the redundant replicas then decide whether or
not the output consensus is reached.

Configuration input • Channel ID
• Replica IDs (lanes, interfaces, partitions)

Output • Entry in the channel/lane configuration
• VHDL logic implementing the output consensus
algorithm

Table 5.13: Output Consensus pattern

Input Consensus Pattern

To ensure the reliability of the calculated data, it is also necessary to achieve consensus on
the input data. This is a necessary prerequisite for achieving output consensus. To reach
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a consensus on the input data, the information from the replica interfaces is compared.
The configuration of the external interfaces plays a significant role in determining the
suitability of replica interface pairing. Configuring replicated interfaces can result in a
variety of different pairings, depending on the interface pattern used.

• In the context of SDSI interfaces, data is compared with the corresponding interface
of the other lane.

• In the case of duplex interfaces (SDDI), both interfaces are compared with those of
the other lane. This comparison is conducted in a manner that A is compared with
A and B is compared with B.

• In the context of DDSI-configured interfaces, the duplex data pairs of both lanes
are subjected to a comparison process.

• In the context of DDDI interfaces, the duplex interfaces of both lanes are cross-
checked with each other (interface A with B and B with A).

Each comparison is performed independently in each lane, and then the results of both
lanes are compared. If the results of both lanes are identical, it can be concluded that the
received input data has been processed accurately. A summary of the pattern is shown
in Table 5.14.
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Name Input Consensus
ID 12
Type general
Parent pattern none
Child pattern Exact Consensus, Approximate Consensus
Affected component lane, partition, interface
Description This pattern implements the necessary procedures to ensure

input consensus. The developer defines which interfaces and
components (redundant replicas) to check, and the pattern
creates the appropriate VHDL logic to compare the values.
The consensus algorithms in the redundant replicas then de-
cide whether or not the input consensus is reached. The
actual implementation depends on the configuration of the
input interfaces and which interface pattern is used (SDSI,
SDDI, DDSI, DDDI).

Configuration input • Channel ID
• Replica IDs (lanes, interfaces, partitions)

Output • Entry in the channel/lane configuration
• VHDL logic implementing the input consensus algorithm

Table 5.14: Input Consensus pattern

Exact Consensus Pattern

When comparing data to demonstrate consensus, the comparison can be either exact or
approximate. This pattern employs an exact (bit-wise) comparison of data. To achieve
consensus, the data must be identical in every bit. This pattern serves as a child pattern
for an I/O consensus pattern, defining the level of detail at which input or output data
should be compared. The proposed methodology extends the comparison logic of an I/O
consensus pattern by incorporating bit-wise comparison. A summary of the pattern is
shown in Table 5.15.
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Name Exact Consensus
ID 13
Type general
Parent pattern Input Consensus, Output Consensus
Child pattern none
Affected component lane, partition, interface
Description This pattern implements an exact (bit-wise) comparison of

data sets. It acts as a child pattern for an I/O consensus pat-
tern and extends the comparison logic by the bit-wise com-
parison.

Configuration input • Channel ID
• Replica IDs (lanes, interfaces, partitions)

Output • Entry in the channel/lane configuration
• VHDL logic implementing the bit-wise data comparison

Table 5.15: Exact Consensus pattern

Approximate Consensus Pattern

Unlike the exact consensus pattern, the approximate consensus pattern allows for some
discrepancy in the data as long as it is within a defined tolerance range or maximum de-
viation. This allows for a more flexible approach to achieving consensus. This approach
is only useful for sensor values that represent physical quantities, which are often not
identical due to the inherent variability of measurement principles. The size of the toler-
ance range depends on the data format, the range of values, and the required accuracy or
precision. However, determining an appropriate tolerance range is a complex process that
is typically based on empirical results and experience (as previously discussed in chapter
2). Like the exact consensus pattern, the approximate consensus pattern functions as
a child pattern for an I/O consensus pattern. It refines the required consensus check
for an interface or partition by allowing a tolerance range or maximum deviation when
comparing data. A summary of the pattern is shown in Table 5.16.
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Name Approximate Consensus
ID 14
Type general
Parent pattern Input Consensus, Output Consensus
Child pattern none
Affected component lane, partition, interface
Description This pattern implements an approximate comparison of data

sets. It acts as a child pattern for an I/O consensus pat-
tern and extends the comparison logic to include approximate
comparison. The maximum tolerated deviation between data
sets must also be defined.

Configuration input • Channel ID
• Replica IDs (lanes, interfaces, partitions)
• Maximal tolerated value deviation

Output • Entry in the channel/lane configuration
• VHDL logic implementing the approximate data
comparison

Table 5.16: Approximate Consensus pattern

Replication Pattern

One of the most common redundancy practices is the replication of redundant (similar)
modules. Instantiating multiple copies of the (functional) same module allows for cross-
checking between modules, or would increase the reliability of a system by using redundant
modules as standby modules to take over the active part when others fail. Replica modules
are functionally identical copies. The replication pattern implements the instantiation
of redundant copies of a given module/component. For example, the developer could
assign the replication pattern to a compute lane, which is then instantiated n-times in
the avionics channel. A summary of the pattern is shown in Table 5.17.
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Name Replication
ID 15
Type general
Parent pattern none
Child pattern none
Affected component channel, lane, partition, interface
Description This pattern implements replication of a specified

module/component to obtain redundant copies of it.
The pattern can be assigned to either channels, lanes,
partitions, or interfaces. It is one of the most important
patterns and defines the overall configuration of the
avionics as well as the redundancy management system.

Configuration input • Component ID (channel, lane, partition, interface)
• Amount of required replications

Output • Entry in the component configuration
• Configuration of the overall redundancy management
system

Table 5.17: Replication pattern

Dissimilarity Pattern

As already discussed in chapter 2, dissimilarity is a key concept in avoiding common-
mode failures in redundant copies (replicas). Therefore, the redundancy management
framework provides a specific pattern to configure dissimilarity in the redundancy man-
agement system. The pattern does not intend to design or implement dissimilarity at the
software partition or avionics hardware level, but for the redundancy management sys-
tem instantiated on the avionics system lanes. This pattern basically defines if the RM
modules for the FPGA are supposed to be implemented in different HDLs. A summary
of the pattern is shown in Table 5.18.
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Name Dissimilarity
ID 16
Type general
Parent pattern none
Child pattern none
Affected component RM system on a lane
Description This pattern allows for dissimilar implementations of redun-

dancy management systems in the avionics lanes. When as-
signed, the pattern configures the RM system on each lane
in which HDL it must be synthesized.

Configuration input • Lane ID of RM system to be configured
• Hardware Description Language (HDL)

Output • Entry in the channel and lane configuration
• Configuration and synthesis of the RM system
in the specified HDL

Table 5.18: Dissimilarity pattern

5.4 Building Block Design

In addition to the configuration environment and patterns, the redundancy management
building blocks represent a crucial component of the redundancy management framework.
These generic VHDL modules serve as the foundation for the framework and are respon-
sible for constructing the desired redundancy management system implementation. In
this work, a generic FPGA-based redundancy management system is developed as a pre-
liminary step in establishing the portfolio of these building blocks. The following sections
address the design, implementation, and verification of building blocks forming a generic
redundancy management system.
Considering the framework requirements (0-10 and 0-24 see section 7.1.1), the initial
iteration of the redundancy management framework supports a redundancy management
system developed for a commanding-monitoring avionics channel. Consequently, within
such channels, there are two lanes that mutually verify each other in order to identify
a calculation fault or a faulty sensor value. Both lanes operate as a self-checking pair,
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meaning that they are functionally identical in principle. In order to verify the accuracy of
the data, each lane transmits its calculated or received data to the other lane. This allows
each lane to compare its own data with that of the other lane, thus ensuring the integrity of
the data as demanded by the requirements 1-30 and 1-31, see section 7.2.1. Subsequently,
both lanes provide feedback on whether the data is in agreement or in disagreement with
one another. In order for a lane to be considered to have interpreted its data correctly,
the results of the checks carried out in both lanes must match exactly. This ensures that
data verification occurs in an equally rigorous manner in both lanes, thereby preventing
the occurrence of a single point of failure. The objective of this process is to achieve
consensus on the input and output data of a channel (requirements 1-21 and 1-22, see
section 7.2.1). Should the data verification process be successful, the commanding lane
will transmit the data via the peripheral interfaces. Conversely, the monitoring lane will
be configured to only receive data.
In this configuration, a channel serves as a fault containment region. The objective of the
RM system is to prevent faults from propagating beyond the boundaries of the channel’s
FCR and affecting or compromising other channels or peripheral systems (requirements
1-14 and 1-16, see section 7.2.1).
The data to be examined is encoded in a message protocol format that is specified by the
use-case avionics system addressed in this thesis. Consequently, a message is 8 bytes (64
bits) in length and comprises a 16-bit header, a 32-bit payload, and a 16-bit checksum.
The precise format of the message is illustrated in Table 5.19.

Byte Bits Field Name Description

8 63 - 56 Label The label indicates the message type
7 55 - 48 Destination ID of message receiver
6 47 - 40 Payload-4 Payload bits 31 - 24
5 39 - 32 Payload-3 Payload bits 23 - 16
4 31 - 24 Payload-2 Payload bits 15 - 8
3 23 - 16 Payload-1 Payload bits 7 - 0
2 15 - 8 CRC-2 CRC bits 15 - 8
1 7 - 0 CRC-1 CRC bits 7 - 0

Table 5.19: Data message protocol format
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Figure 5.2 provides a simplified overview of the SoC configuration of a computing lane.
The upper part of the figure depicts the processing system of the SoC, which includes a
hypervisor runtime environment that hosts the avionics software partitions and a health
monitoring module. The specifics of these software components are not included in this
thesis and are presented here for the sake of completeness.
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Figure 5.2: SoC configuration of an avionics computing lane
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The lower part of the figure represents the FPGA component of the SoC. Alongside the
interface driver modules, this section contains the RM system. The embedding of the RM
system within the FPGA section serves to achieve the desired decoupling between the
RM system and the application partitions. This decoupling permits the execution of the
RM system and the application to proceed independently, thus improving performance.
As illustrated in Figure 5.2, an RM system is comprised of four modules: the Redundancy
Management Channel (RMC), CLI, CCI, and Management Unit (MU). Collectively, these
modules implement the required fault tolerance measures for a computing lane.

5.4.1 Redundancy Management Channel

An RMC within the RM system is responsible for processing the payload data, which is
either produced by an application partition or received from a sensor or other peripheral
system. The processing activities of the system include data buffering, initiating data
exchange with the other lane, comparing replica data, and evaluating this comparison.
Consequently, the role of the RMC is to facilitate consensus on both input and output
data. For each instance of an application partition, the RM system instantiates a sep-
arate RMC module. Consequently, the number of RMCs integrated in parallel within
an RM system is contingent upon the number of application partitions. In this manner,
the redundancy management system facilitates the dynamic reconfiguration of individ-
ual partitions across different lanes or channels. The FPGA’s capability for dynamic
reconfiguration of individual modules through partial bitstreams enables the framework
to facilitate a joint exchange of application partitions and the associated RMC modules.
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Figure 5.3: Redundancy Management Channel architecture

Figure 5.3 depicts the architecture of an RMC. An RMC is comprised of multiple elements,
each of which implements a distinct function. The AXI interface (depicted at the top
of the figure) is designed for interconnecting the application partition with the RMC.
This interface enables bidirectional data communication between the partition within the
processor and the RMC located within the FPGA. This interface facilitates the exchange
of Transmit (TX) and Receive (RX) messages, as well as status information pertaining to
the RMC. The AXI bus employs separate data paths, enabling the interface to operate
in full-duplex mode. All TX messages transmitted by the software are initially stored in
a buffer within the RMC. This prevents message loss due to the asynchronous nature of
the communication between the processor and FPGA (partition and RMC).
The paths for TX and RX messages are also segregated within the RMC, thus enabling
full-duplex operation within the module. Consequently, TX and RX messages can be
processed simultaneously by the RMC. In light of the aforementioned considerations,
it is evident that the RMC also possesses separate buffer memories. Subsequently, the
buffered TX messages are individually subjected to processing by the Message Processing
Unit (MPU). The MPU initiates the required steps for data exchange and comparison with
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the other lane. To this end, the MPU reads a message from the memory and integrates
it into a Cross-Lane (CL) message in accordance with the CLI message protocol.
The CLI module represents a shared resource within the RM system, as it is instantiated
only once and multiple RMCs within the system can access it. For this reason, access
to the CLI is secured by a lock managed by the CLI itself. In order for an RMC to
transmit a CL message, it must first submit a request to the CLI module. Once the CLI
has granted access, the RMC is then allowed to send its message. Upon completion of the
transmission process, the next RMC in the queue is then able to transmit its message to
the CLI.
Simultaneously, the MPU awaits receipt of a corresponding CL message containing the
TX data from the other lane. Once the message is received, the comparison of the TX
data begins. The verification process entails a comparison of the message header, payload,
and checksum. It should be noted that the headers and checksum are always subjected
to an exact consensus principle. This implies that the headers and checksum of both
messages must be identical in every bit. The developer may configure the principle of
verifying the payload data by applying a pattern to each RMC (see section 5.3.4). This
may be done in accordance with either the exact (bit-wise) or approximate consensus
principle. Once both messages have been verified, the MPU transmits the results to the
other lane via the CLI, while simultaneously awaiting the results from the other lane. If
both lanes reach the same conclusion regarding the data, the RMC of the commanding
lane transmits the TX message to the respective interface driver. However, in the event
that both lanes determine that the data does not match or if the results of both lanes
differ, it is not possible to guarantee output consensus, and the transmission of the TX
message is not initiated. In either case, a corresponding status message is transmitted to
the management unit.
In parallel, the RX path of the MPU awaits receipt of an RX message. Once it arrives,
the message is subjected to the same check as in the TX path. Consequently, the RMCs
of both lanes exchange their received data, compare them, and report the results of their
evaluation to each other. If both lanes determine that the received data is identical,
the message is stored in the receive buffer. The application partition is then informed
about the new message and can read it via the AXI interface. In the event that the
verification process is invalid, the data will not be transmitted to the application partition.
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Additionally, a corresponding status message will be sent to the MU. This methodology
enables the implementation of the input consensus principle.
In general, an RMC must be capable of recognizing and accepting specific messages at any
time, without exception. This encompasses TX, RX, and CL messages. The individual
modules in the RM system are not synchronized with each other and are executed simul-
taneously in the FPGA. Consequently, an RMC is unable to predict the arrival of specific
data. Accordingly, when implementing the RMC logic, it is of importance to ensure that
input data can be received and buffered by the module at any time.

5.4.2 Cross-Lane Interface

The CLI is responsible for facilitating communication and data exchange between the
lanes within a channel (requirement 1-7 , see section 7.2.3). In a commanding-monitoring
channel, the data from individual partitions/RMCs must be exchanged between the com-
manding and monitoring lanes. The CLI provides a bidirectional, full-duplex capable
data interface and has two redundant communication paths (CLI channels). The two
CLI channels are operated in a hot-redundant mode, whereby the same data is trans-
mitted over both channels. In the event of a transmission fault in one CLI channel, the
receiver is able to access the data from the second channel directly, without the need to
re-transmit the CL message. This not only enhances the dependability of the interface
but also prevents a performance degradation in the event of a CLI channel failure.
Requirement 1-36 (see section 7.2.4) demands that the redundancy management system
shall not produce a temporal offset resulting from message processing exceeding 10ms.
The serial data communication between the lanes represents a significant bottleneck in
terms of timing, which is why the required performance of the CLI module has a significant
influence on the module design. This becomes of particular significance when a large
number of RMCs are instantiated within the system, which in turn increases the number
of CL messages that must be transmitted per execution cycle.
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Figure 5.4: Cross-Lane Interface architecture

Figure 5.4 depicts the architecture of the CLI module. The CLI implements a bidirectional
interface for each RMC in the system, enabling the exchange of CL messages in both
directions. As explained in the RMC design section (5.4.1), the CLI is a shared resource
utilized by multiple RMCs. While the FPGA implementation would permit the CLI to
receive messages from multiple RMCs in parallel, the physical transmission of CL messages
between the lanes occurs sequentially. Consequently, the serialization of CL messages is a
necessity. In order to reduce the complexity of the CLI, the serialization of CL messages
is implemented at the access to the CLI. In order to prevent the simultaneous access
of multiple RMCs to the CLI, a locking mechanism has been designed. In order for an
RMC to transmit CL messages to the CLI, it must first request access through a lock
request. The CLI module then evaluates the requests and decides, based on a decision
matrix, which RMC is granted access. Once the RMC has received the lock grant, it
will transfer its message, which will then be stored by the CLI in the message queue. It
is of importance that, when developing the decision matrix, only one RMC is permitted
to receive a grant at any given time. Furthermore, it is essential that this grant cannot
be revoked by another RMC while the transmission of a CL message is still ongoing.
Furthermore, the distribution of lock grants should be fair, ensuring that no RMC is
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permanently disadvantaged. However, prioritizing RMCs or partitions may be a viable
option, particularly if they are scheduled with a high frequency and cannot wait long for
a grant due to their short execution time window.
The management of lock requests and the granting of lock grants is the responsibility of
the lock manager. In collaboration with the message queue, the lock manager ensures
the orderly access to the CLI and the correct serialization and buffering of CL messages.
Once the CL messages have been stored in the queue, they are read by the two message
transceivers and transmitted via the physical interface. Simultaneously, the transceivers
receive incoming CL messages from the opposing lane. Upon receipt of a CL message, it is
transmitted to the corresponding RMC. The address of the target RMC can be identified
from the header of the CL message. It is possible for the transmission of the CL message
to the RMC to occur without a request and grant, given that an RMC must be capable
of receiving incoming CL messages at any time.
The physical transmission between the lanes is secured by a CRC checksum, which allows
the detection of multiple transmission errors in individual bits per message. A checksum
is calculated for each CL message within the CLI module and appended to the message.
Similarly, the checksum of received CL messages is verified within the CLI prior to for-
warding the message to an RMC. This functionality enables the CLI to detect transmission
errors and, if necessary, utilize the data from the second CLI channel.
In conjunction with the processing of CL messages, the CLI management logic oversees
the execution and records all status information. This encompasses the recording of any
transmission errors that may have occurred within a CLI channel, including instances of
a faulty CRC, as well as the documentation of any messages that did not arrive or were
not sent at all. The resulting status message is then transmitted to the Management Unit
(MU) for assessment.
As with data messages, a distinct communication protocol is established for CL messages.
Furthermore, CL messages distinguish between CL-request and CL-response messages.
CL-request messages comprise a complete data bus message (see Table 5.19) and are
transmitted to the other lane with the request to verify the data. Upon completion of the
verification process in the other lane, a corresponding CL-response message is generated,
which includes the result of the verification along with an unique identifier to map the
result to the requested data bus message. Both CL message types are comprised of a

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

52



16-bit header and a 16-bit checksum. The header is composed of a message identifier as
well as an RMC identifier. The CL message header serves to indicate the type of CL
message (request or response), whether the message contains TX or RX data, and from
which RMC the CL message originates. In the other lane, the message must then be
forwarded to the corresponding RMC. However, the length of the payload differs between
the two CL message types. Thus, an 8-byte payload is transmitted with a CL-request
message, while a CL-response message carries a 3-byte payload. The structure of both
CL message types is depicted in Table 5.20 and 5.21.

Byte Bits Field Name Description

12 95 - 88 CL message ID Type of CL message:
0x11 = CL-request (TX data)
0x21 = CL-request (RX data)

11 87 - 80 RMC ID ID of originating and destination RMC
10 79 - 72 Payload-8 Data bus message byte 8 (label)
9 71 - 64 Payload-7 Data bus message byte 7 (destination)
8 63 - 56 Payload-6 Data bus message byte 6 (payload-4)
7 55 - 48 Payload-5 Data bus message byte 5 (payload-3)
6 47 - 40 Payload-4 Data bus message byte 4 (payload-2)
5 39 - 32 Payload-3 Data bus message byte 3 (payload-1)
4 31 - 24 Payload-2 Data bus message byte 2 (crc-2)
3 23 - 16 Payload-1 Data bus message byte 1 (crc-1)
2 15 - 8 CRC-2 CRC bits 15 - 8
1 7 - 0 CRC-1 CRC bits 7 - 0

Table 5.20: CL-request message protocol format
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Byte Bits Field Name Description

7 55 - 48 CL message ID Type of CL message:
0x12 = CL-response (TX data)
0x22 = CL-response (RX data)

6 47 - 40 RMC ID ID of originating and destination RMC
5 39 - 32 Payload-3 Data bus message byte 8 (label)
4 31 - 24 Payload-2 Data bus message byte 7 (destination)
3 23 - 16 Payload-1 Verification result
2 15 - 8 CRC-2 CRC bits 15 - 8
1 7 - 0 CRC-1 CRC bits 7 - 0

Table 5.21: CL-response message protocol format

The verification result byte comprises the outcome of the payload data check (bits 7 to
4) and the CRC check (bits 3 to 0). A data acknowledgment (indicating the presence
of correct data) is coded with 0xA, while a data rejection (indicating the presence of
incorrect data) is coded with 0xB.

5.4.3 Management Unit

The Management Unit is responsible for the evaluation of status messages, as well as for
the determination of the state of each RMC, the CLI, and the CCI. The module states
that have been determined are employed by the MU to ascertain the state of the lane
and channel in the subsequent step. The MU classifies each element according to two
distinct state types: functional and activity. The functional state of a module can be
either correct or failed. The activity state indicates whether a module is active, standby,
or passive. The overall state of an element is defined by its functional and activity state.
Consequently, an element may be classified as either correct-active, correct-standby or
failed-passive. This classification is applied to the RM system modules (RMCs, CLI,
CCI), as well as its own lane and the entire channel. The classification is conducted in
the status manager of the MU (see Figure 5.5).
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Figure 5.5: Management Unit architecture

The operational state of an RMC is determined by evaluating its status message. The
status message contains a number of status flags that may indicate a variety of faults.
It is employed by the MU to ascertain the functional state of the RMC. Based on this
assessment, the MU then determines the RMC’s activity state. With regard to the RMC,
the activity state may be either active or passive. It should be noted that a standby
mode is not yet supported, as this would require redundant RMC replicas, which is not
an objective for the first version of the redundancy management framework. Given that
multiple RMCs can be instantiated within the system, it is necessary for the MU to be
capable of processing the status information of all RMCs at any given time.
As with the RMC, the state of the CLI is determined based on its status message. In this
process, the MU examines both CLI channels as well as the entire module. A CLI channel
may be classified as either functional or failed. Its activity state may be determined to
be active, standby, or passive. It is necessary that only a correct CLI channel be active
or standby. A failed one is always considered to be passive. The CLI module is deemed
functional when both CLI channels are operational, or when one channel is operational
and the other is failed. The CLI module is considered to be failed when both channels are
failed. The activity state of CLI modules may be either active or passive. A standby state
is not yet supported, as it would necessitate the existence of a redundant CLI replica.
The MU is responsible for determining the activity state of its own lane, based on the
states of the CLI and RMC. A lane can be designated as either active or passive. Currently,
a standby state is not supported due to the necessity of a third lane in the channel. In
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the event that both the CLI and RMCs are operational, the lane is also considered active.
The potential for an alternate state of the CLI to impact this decision is negated by
the fact that at least one operational and functional CLI channel remains. In the event
that either the RMC or the CLI module transitions to a failed-passive state, the MU
must consider the entire lane to be failed. This also leads to the conclusion that the
channel is, in fact, failed and requires passivation. The transition of a channel from
an active to a passive state would then initiate the fault containment procedure. This
implies that a fault containment region (channel) is isolated from the rest of the avionics
system to prevent the propagation of faults. The fault containment procedure entails
the disabling of all external interfaces, thus preventing the transmission or reception
of messages. This action effectively separates the channel from the avionics system’s
communication network. Provided that the channel is in an active state, the MU enables
the external interfaces to facilitate the sending and receiving of messages.
In order to prevent the MU from inadvertently or prematurely classifying a module as
failed, the developer has the option of configuring the threshold at which an RMC is
considered faulty. The default configuration presumes that an RMC is identified as failed
if it produces three erroneous messages in a row or 10 erroneous messages out of a total
of 1000 messages (requirement 1-18, see section 7.2.2).
The interface of the MU to the CCI serves to receive status information from other
channels within the avionics system and to share its own status information with other
channels. A periodic status message is transmitted by each MU to all channels. This
serves both as a heartbeat signal and as a means of notifying other channels of any
required channel passivation. In the event of channel passivation, a redundant standby
channel would then be required to transition its operational state to active.
The AXI interface depicted in Figure 5.5 is also employed to notify the software layer
within the processing lane regarding the status of the lane and channel.

5.4.4 Cross-Channel Interface

The architectural design of the CCI is illustrated in Figure 5.6. Its internal structure is
in part similar to that of the CLI, with the CCI being less complex. As the management
unit is the only module in the RM system that communicates with the CCI, it follows that
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no further access restrictions need to be considered. Primarily, the CCI module serves
as a driver for communication between multiple channels within an avionics system as
demanded by requirement 1-24 (see section 7.2.3). In this way, status information as well
as the occurrence of failure and passivation events are exchanged between the channels
(requirement 1-19, see section 7.2.1). Furthermore, the interface is employed to facilitate
consensus on the status of the channels (requirement 1-27, see section 7.2.1).

Cross-Channel
Interface

Message Queue

Cross-Channel Manager

Message
Transceiver 1

Message
Transceiver 2

CCI Messages/Status

TX-1RX-1 TX-2RX-2

Figure 5.6: Cross-Channel Interface architecture

The CCI receives Cross-Channel (CC) messages from the management unit. The mes-
sage queue is a necessary component of the system because the MU and CCI are not
synchronized with each other, which could result in the loss of CC messages. The two
interface transceivers in the CCI are responsible for the physical transmission of data. In
a similar fashion to the CLI, the two redundant CCI channels ensure communication reli-
ability in the event of transmission faults in one channel. Furthermore, the transmission
is safeguarded by a CRC to identify any potential transmission faults. The CC Manager
in the CCI is responsible for the management and processing of CC messages originating
from the MU. Its functions include the coding and decoding of CRC checksums and the
subsequent transmission of corresponding status updates back to the MU.
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5.5 Building Block Implementation

This section focuses on the implementation of the generic FPGA modules which compose
the frameworks building block portfolio. The implementation of the FPGA modules takes
place in the AMD Vivado Design Suite. This enables the development and simulation
of individual VHDL modules as well as the integration of the entire FPGA configura-
tion. Vivado also comes with a synthesis toolchain that implements the design flow for
generating an FPGA bitstream following the process explained in chapter 4.
The final redundancy management system is ultimately composed of several generic VHDL
modules. These in turn can consist of several VHDL submodules integrated as instances
into the high level RM module. The assembly of the RM system is performed according
to a hierarchical structure of VHDL modules, which ultimately results in a VHDL IP
block. This IP then contains the redundancy management logic as well as the required
interfaces for the respective computing lane, taking into account the specific configuration
of the developer/framework user. To apply detailed configuration to each VHDL module,
the building blocks contain generic constants that are set by the framework according to
the previously specified configuration file.
As part of this thesis, the FPGA-based redundancy management system is initially being
developed for just one channel. The CCI is therefore not considered in the implementation.

5.5.1 Redundancy Management Channel

The RMC module is the direct interface between an application partition and an external
interface. It is therefore responsible for processing all incoming and outgoing messages of
this partition and is thus directly involved in the implementation of the configured fault
tolerance mechanisms.
As already explained in the RMC design chapter, an RMC consists of an AXI interface,
two separate message buffers, and the message processing unit. Each of these elements is
implemented as a separate generic VHDL submodule and is instantiated into the RMC
module. During instantiation, the configuration parameters and I/O ports of the sub-
module are then linked to the corresponding variables of the main module.
The modules within an RMC are executed simultaneously on the FPGA. Therefore, a
synchronization mechanism is required when there are data dependencies between multiple
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modules. In addition, all modules instantiated in the RMC are supplied by the same clock
signal. This allows synchronization on the rising edge of the clock.

RMC AXI Interface

The RMC AXI interface enables bidirectional data communication between a partition in
the processor and an RMC in the FPGA. This module implements the AXI communication
protocol based on the ARM AMBA on-chip communication interface. The protocol defines
a 3-way handshake for data transmission, which prevents the loss of data packets. The
sender first transmits a send request. When the recipient acknowledges the request, the
data packet is transmitted. Both the data and its destination address are exchanged
according to this principle. AXI represents a multi-channel bus so that communication
can take place in full-duplex operation. The exchange medium for data, addresses, control
and status signals are corresponding registers in shared memory that can be accessed by
the processor and the FPGA. Each AXI module is assigned to an individual base address
inside the shared memory. The individual registers can then be accessed via offsets to the
base address.
On the FPGA side, the operation of the interface is implemented by several VHDL pro-
cesses. These processes include the exchange of addresses, data as well as request and
acknowledgement signals. All processes within this module are executed simultaneously
and are synchronized via the common clock source. The simultaneous design enables full-
duplex operation of the interface. It should be noted that the processes for implementing
the communication protocol were generated automatically by the Vivado design suite.
To connect the AXI interface to the custom user-logic, the RMC AXI module provides a
register set with 10 registers of 32 bits each. These registers can be read in the FPGA to
obtain data from the processor. When data is written to these registers, the data is in
turn sent to the processor. The access permissions (read/write) of the individual registers
are modified in the VHDL module according to the actual purpose.
The status information of an RMC (buffer capacity etc.) is transferred to the software
partition in slv_reg1. This register can only be written by the FPGA. The processor has
read access only. Registers 2, 3 and 4 are available to the partition to transmit a TX
message. The RMC transmits the received RX messages via registers 5, 6 and 7. The
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remaining registers are not currently in use and reserved for future use. Table 5.22 shows
an overview of the registers of the RMC AXI module.

Register Name Offset Address Description

slv_reg0 Reserved 0x00 Reserved
slv_reg1 Status 0x04 RMC status signals
slv_reg2 TX-Data-1 0x08 TX message byte 8 to 7: TX header
slv_reg3 TX-Data-2 0x0C TX message byte 6 to 3: TX payload
slv_reg4 TX-Data-3 0x10 TX message byte 2 to 1: TX CRC
slv_reg5 RX-Data-1 0x14 RX message byte 8 to 7: RX header
slv_reg6 RX-Data-2 0x18 RX message byte 6 to 3: RX payload
slv_reg7 RX-Data-3 0x1C RX message byte 2 to 1: RX CRC
slv_reg8 Reserved 0x20 Reserved
slv_reg9 Reserved 0x24 Reserved

Table 5.22: RMC AXI interface register overview

Additional I/O ports are defined for the connection of RMC signals to the AXI module.
These implement the connection to the message buffer.

Message Buffer

In the RMC, the message buffer modules have the task of buffering incoming TX and RX
messages. This is necessary because the FPGA and the processor operate asynchronously
and no messages must be lost. Separate instances of the message buffer are integrated
into an RMC for the TX and RX paths.
A message buffer module consists of an internal First-in-First-out (FiFo) memory that can
be configured in terms of its word width and depth. The module also has separate ports
for writing and reading data. In addition, the module is equipped with two status ports
that indicate the used buffer capacity (full/empty). The message buffer must be accessed
by setting the corresponding enable signal. In this way, the internal logic recognizes a
read or write access and adjusts the read/write index accordingly. In particular, the logic
enables the memory to be read and written simultaneously. This eliminates the need for
special access restrictions. The logic of the buffer module is implemented in a process
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that is executed on each rising clock edge. The output of data from the current memory
location and the output of status information are implemented concurrently to the process
and can therefore be read by external modules at any time. A control signal can be used
to reset the entire module, including flushing the memory.

Message Processing Unit

The MPU is the central unit in an RMC and is responsible for the processing of incoming
and outgoing messages. It initiates the data exchange with the other lane and compares
the data from both lanes.
As can be seen from the block diagram in section 5.4.1, the MPU exchanges data with
several modules. This is made possible in the VHDL module by appropriate I/O ports.
In order to make the processing of the various tasks as clear and efficient as possible,
several parallel processes are integrated into the MPU module for different purposes. The
processes are synchronized with each other by the common RMC clock signal.
The two main processes for processing TX and RX data are the MP-TX and the MP-
RX processes. Both are internally equipped with a state machine that enables messages
to be processed sequentially. This is required since the FPGA would usually execute
VHDL statements concurrently. Initially, both processes remain in the idle state until
a TX message is available in the buffer or an RX message is received from an external
interface. The MP-TX process then reads the message from the buffer and prepares to
send the CL request message in the next state, simultaneously to the MP-RX process.
As both processes are running in parallel, it can happen that both want to access the
only implemented CLI port at the same time. To prevent this, a separate lock manager
process is implemented within the MPU for managing the access to the CLI. As in the
CLI module, the MPU lock manager process checks whether a lock request has been set
by a participant, and assigns a corresponding lock grant as soon as the shared resource is
available. If both processes request a lock at exactly the same time, the MP-TX process is
given priority. Once one of the processes has obtained the internal lock to access the port,
it must then request the global lock from the CLI before sending its data. Only if the CLI
has also granted access, the corresponding process in the MPU is allowed to transmit its
CL message. From the perspective of an MPU process, a two-step authorization process
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is implemented here in order to gain access to the CLI. Although this can lead to delays
in MPU processes, it is necessary due to the parallel execution of asynchronous modules.
Parallel to the MP-TX and MP-RX processes, another process is implemented in the
MPU which is responsible for receiving CL messages. As explained in previous sections,
the execution of MPUs (RMCs) and the CLI is not synchronized. The CL-RX process
is used to avoid a loss of data when exchanging CL messages. This process listens on
the CLI port in parallel with the other processes to detect incoming CL messages and
store them internally. The process sorts the CL messages directly according to their type
(TX/RX request/response) and informs the corresponding process about the available
data.
As soon as the data exchange between the lanes is completed, the respective process
(MP-TX/MP-RX) switches to the integrity check state where the comparison of the data
is initiated. Data validation is implemented by an integrity process. It implements the
logic for comparing the message header, CRC, and payload data. As already described in
section 5.4.1, the CL header and the CRC of a message are compared bit-wise. To check
the payload data of both messages, the integrity check process implements both exact (bit-
wise) and approximate verification for various data types (signed/unsigned integer, float,
signed/unsigned fixed). Depending on the RMC configuration, one of the two variants
will be used for the comparison.
In the case of an exact comparison, the bit vectors of both replicas are compared bit by bit
with an if-else branch. Approximate consensus comparison checks whether the absolute
value of the difference between the two values is less than, equal to, or greater than a
specified threshold. If the difference is less than or equal to the threshold, a consensus on
the replica’s data is reached. If the difference exceeds the threshold, there is no consensus
on the replica values. The appropriate thresholds must be specified by the developer at
design time. The VHDL file is then configured automatically by the framework.
The comparison of the data can be performed with the less than or equal to (<=) or
greater than (>) VHDL operator. For this purpose, an additional IEEE open source
VHDL library is integrated, which supports fixed and floating point variables as well as
operators in addition to the classic VHDL bit vectors and integer variables.
Since the integrity process is implemented only once in the MPU and is used by multiple
processes (MP-TX and MP-RX), it is also a shared resource. For this reason, access
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to the integrity process is also managed by the MPU lock manager process. This can
also cause a process to be delayed if the lock is already being held by another process.
However, this delay is acceptable compared to the increased FPGA resource utilization
due to instantiating a second integrity process.
Once the integrity check is complete, the MP-TX and MP-RX processes send the results
(CL response) of the check to the other lane. Again, the transfer must first be granted
by the internal MPU lock manager and then by the global CLI lock manager. When
the verification results of both lanes have been exchanged, the MP-TX/MP-RX process
checks whether both lanes have reached an identical result. A status message is compiled
from the individual results and sent to the Management Unit (MU). The structure of the
RMC/MPU status message is shown in Table 7.1 in the appendix. If both lanes determine
that the data is correct, the TX message is forwarded to the appropriate interface drivers
for transmission or the RX message is stored in the RX buffer. The MP-TX and MP-RX
processes then start the execution of their state machine from the beginning, provided
that further TX or RX data is available.
The MPU protects all states or logic sections with counters where a communication re-
sponse is expected from a peripheral module. While a process is waiting, it increments
the counter variable on every clock cycle. If the peripheral module does not responds or
responds too late, the counter reaches a defined threshold and the process aborts the wait
and continues processing. This is to ensure that a process does not get stuck in a dead-
lock. The threshold at which the wait is aborted depends on the expected transmission
time (depending on data rate and data width). Furthermore, an additional buffer value is
added to the threshold, which takes any waiting times and delays into account that may
occur in the peripheral module. It is very difficult to specify an exact value here. The
MPU is initially implemented to add a buffer of 1% to each threshold variable. Later
tests will show if this buffer is suitable or if the values need to be adjusted.

5.5.2 Cross-Lane Interface

As a communication interface between two lanes, the CLI plays a crucial role in imple-
menting fault tolerance measures. As already explained in the design section, this module
is subject to corresponding reliability and performance requirements. Unlike the RMC
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module, the CLI only consists of one VHDL module. However, comparable to the MPU,
it implements several simultaneous processes that fulfill different functions. The CLI also
uses the simultaneous execution capabilities of the FPGA to increase the performance
of the module. Some of these processes work independently or are triggered by external
events. Others are managed by an internal management logic. If there are dependencies
between processes (e.g. during data exchange), internal flags are used to synchronize
the corresponding processes. In addition, all processes in this module are also driven by
the central FPGA clock signal and therefore run synchronously with the rising edge of
the clock. During the implementation, the CLI has been internally divided into three
domains.

Lock Manager and Message Queue

The processes in the first domain are responsible for managing permissions on the RMCs
and for caching the CL messages. A lock manager process manages the allocation of lock
grants based on which RMCs have requested a lock. The decision as to which RMC gets
the grant is resolved by an if-else branch with a check of the lock requests. The complexity
in this logic lies in implementing which RMC gets the lock grant when multiple RMCs
make a lock request in parallel. In addition, the logic must prevent one RMC from taking
away the lock from another before its transaction is complete. This is avoided by including
the current lock grant in the query in addition to the lock request. With 4 RMCs, this
results in 44 possible combinations of lock requests. For each of these combinations, a
corresponding lock grant assignment is implemented. It has also been taken into account
that the same RMC is not always preferred. RMC prioritization is not yet implemented
in this version of the lock manager. However, this could be integrated in an extension
of the module with an additional factor in the if-else query. Once a lock is granted, an
RMC sends its CL message to the CLI. The lock is granted to an RMC as long as it
maintains its lock request. A deadlock by permanently blocking a lock is prevented on
the RMC side. The message queuing process automatically detects a transfer and first
stores the data in the CL message queue. Similar to the message buffer in an RMC, the
CLI message queue also implements a sequential FiFo memory.
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Message Transceiver

The processes of the second domain implement the CLI message transceiver. As already
explained in the system design, two independent CLI channels are implemented in order
to increase fault tolerance against transmission faults in one channel. So the transceivers
are implemented by separate VHDL processes. To implement full-duplex capability, sep-
arate TX and RX processes are also implemented for each CLI channel. These implement
the serialization of a CL message over the physical interface or receive incoming bits and
assemble them into a message. The TX processes read the CL message to be sent directly
from the message queue, calculate the CRC checksum for the message, and append it as a
trailer. The CRC checksum is 16 bits long in each CLI module and is generated according
to the CRC16_MODBUS version. This CRC implementation includes reflection of the
inputs and outputs, the initial value of the checksum is 0xFFFF and the CRC polynomial
is 0x8005. These values are implemented as local constants in the module and can there-
fore be configured by the framework at design time. For successful CRC generation and
evaluation, however, they must be configured identically for all communication partners.
The VHDL code example below shows the implementation of calculating a 16 -bit CRC
checksum for a CL message with a total length of 96 bits.
This involves iterating over each byte of the CL message and calculating the corresponding
part for the checksum. The synthesized logic of this function can later be completely
executed on the hardware in one clock cycle. The loops are unrolled during synthesis so
that the data is ultimately used only once by the logic circuit.
To enable the evaluation of a CRC checksum of a received CL message, an additional
evaluation process is implemented for each RX process. These functions have been sepa-
rated from each other during implementation so that the RX process is ready for the next
message as soon as one is received. This is to prevent an RX process from missing the
start of the next CL message. During CRC check, an evaluation process calculates the
checksum of the CL message header and the payload and compares it with the checksum
that was attached to the message. The results of the evaluation are then forwarded to
the CLI management process.
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1 crc_polynom := x"8005"
2 c rc := x"FFFF" ;
3 −− i t e r a t e over the f i r s t 10 CL message bytes
4 f o r x in 0 to 9 loop
5 byte := cl_message ((96 −1)−x∗8 downto (96−8)−x∗8) ;
6 −− r e f l e c t the input
7 f o r i in 15 downto 8 loop
8 bu f f e r ( i ) := byte (15− i ) ;
9 end loop ;

10 bu f f e r (7 downto 0) := x"00" ;
11 c rc := ( bu f f e r xor c r c ) ;
12 f o r y in 0 to 7 loop
13 i f ( c r c (15) = ’1 ’ ) then
14 c rc := s h i f t _ l e f t ( crc , 1) xor crc_polynom ;
15 e l s e
16 c r c := s h i f t _ l e f t ( crc , 1) ;
17 end i f ;
18 end loop ;
19 end loop ;
20 −− r e f l e c t the output
21 f o r i in 15 downto 0 loop
22 c r c_re su l t ( i ) := crc (15− i ) ;
23 end loop ;

Listing 5.2: VHDL code for CRC16 computation

Initial timing tests of the message transceiver implementation have shown that the serial
transmission of CL messages takes considerably more time than the rest of the data pro-
cessing. This confirms the assumption made in the design section that message transfer
represents the timing bottleneck of the entire RM system. The data rate of the CLI trans-
fer must be high enough so that it creates not too much delay compared to the software
execution in the processor, and so that the performance requirements 1-16 and 1-36 can
be met. The timing of each bit during serial transmission is measured by counting clock
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cycles. The frequency of the module’s clock signal and the desired data rate determine
how many clock cycles a bit takes. In order to achieve high data rates, the duration of a
bit must be reduced and the clock frequency increased. A bit duration must be at least
three clock cycles to be correctly detected by the receiver. The achievable data rate can
be calculated using the following formula:

data rate =
clock frequency

bit duration
(5.1)

With a clock frequency of 100MHz and a bit duration of three clock cycles, a data rate
of about 33Mbit/s could be achieved. In requirement 1-23 (see section 7.2.4), however,
a CL data rate of 200Mbit/s is required. This data rate can be achieved with a clock
frequency of 1GHz and a bit duration of five clock cycles:

200
Mbit

s
=

1000MHz

5 1
bit

However, not all FPGA modules can be run at 1GHz. For example, the AXI modules
are limited to a maximum clock frequency of 300MHz. One solution might be to supply
individual modules with different clock frequencies. As a consequence, this can lead
to asynchronous behavior, especially when exchanging data between modules, and would
increase the complexity of the implementation. An alternative solution could be to supply
all modules with a lower clock frequency (e.g. 100MHz), so that the clock synchronization
at module level is still guaranteed. In addition, the CLI module can be supplied with a
second clock signal that provides a much higher frequency (e.g. 1GHz). This second
clock signal would then be used exclusively by the high performance processes (message
transceivers). This alternative would limit the problem of asynchrony between different
clock domains to a single module, while allowing faster execution of time-consuming
sequential processes.
A single clock frequency of 100MHz is used in the first version of the redundancy man-
agement system. The implementation of high-performance processes is planned for a later
version of the framework.
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Management Process

The management process is the third domain of the CLI module. It checks the results of
the CRC evaluation of both CLI channels and initiates the forwarding of the received CL
message to the corresponding RMC, provided that the CRC and thus the transmission is
correct. The message from the first CLI channel is preferred. However, if the CRC check
of channel 1 indicates a transmission error, the CL message of channel 2 is used provided
it contains a correct message. If the CRC check identifies a fault in both channels, none
of the messages will be forwarded to any RMC. To forward a CL message, the ID of
the target RMC is read from the CL message header. According to the CRC check, the
management process composes a status message (see Table 7.2 in the appendix section),
which is sent to the RM management unit. The status message indicates whether or not
a fault or a failure has occurred during transmission in one of the channels.

5.5.3 Management Unit

The Management Unit (MU) is responsible for evaluating the status messages of all RMCs
and the CLI in the redundancy management system. Based on this information, the MU
can detect faults in the modules and can take appropriate action to contain the faults. It
does not matter if the fault event is caused by the software, external systems, or random
faults. In addition, the MU is responsible for resetting all RM modules if necessary.
Also, the MU distributes the current mode of the lane to all RM modules. The mode
of a lane consists of an 8-bit vector and encodes both the channel activity status and
the lane configuration. The channel activity status indicates whether the channel is in
an active or standby state. This information is particularly important when multiple
redundant channels are present in the avionics system. When a channel is in the active
state, the RM modules would regularly process the TX and RX messages. In the standby
state, the channel’s redundancy management system would also process the messages, but
would not send any TX messages. The lane configuration indicates whether the lane is
in commanding or monitoring mode. This information is hard-coded into the FPGA as a
global constant, accessible to every FPGA module.
A separate process is implemented in the MU to evaluate the status information for each
RMC as well as for the CLI module. These processes read the corresponding status
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message to check whether a fault has occurred in the module. If so, an appropriate fault
counter is incremented. The RMC status messages are evaluated separately for the TX
and RX processes. As long as the number of faults in the MP-TX or MP-RX processes of
the RMC is below a configured threshold, the RMC is still considered to be correct. The
functional state of the corresponding RMC is set to failed only if the threshold is exceeded
in one of the processes. In the basic configuration, the MU interprets an RMC as failed if
one of the processes (MP-TX or MP-RX) generates or receives an incorrect message three
times in a row. The RMC is also considered failed if a total of 10 faulty messages occur
in a total of 1000 messages (1 % error rate). These thresholds are implemented in the
MU as local constants and can therefore als be adjusted by the framework at design time.
Since a unique evaluation process is implemented for each RMC, only one generic process
is implemented in the MU building block and packed into a for-generate statement. This
allows the final number of evaluation processes to be implemented flexibly. The number
of RMCs is transferred to the for-generate statement when the FPGA IP is generated by
the framework. During the synthesis, the for-generate statement then creates as many of
these evaluation processes as there are RMCs instantiated in the system.
In the CLI evaluation process, a functional state is defined for each CLI channel as well
as for the entire module. When a CLI channel reports a faulty transmission, the MU sets
that channel to the failed state. However, this decision can be reversed if the channel
shows correct operation in the subsequent messages. Once at least one CLI channel is
correct, the entire CLI module remains correct. The CLI is only be classified as failed if
both channels fail. This state cannot be reversed at runtime.
An additional process monitors the functional status of all RMCs and the CLI simulta-
neously to determine the overall status of the lane. Once an RMC or the CLI goes into
the failed state, the entire channel is classified as failed. The resulting fault containment
measures include resetting all RM modules, which stops all processing. It also disables
the channel’s external interfaces so that it no longer has access to the avionics commu-
nication system. These actions prevent a detected fault from propagating beyond the
FCR boundaries to other channels or peripheral systems. In this version of the redun-
dancy management system, a channel passivation can no longer be reversed at program
runtime. Only a power cycle would allow a channel to return to an active state again.
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In parallel to the evaluation and fault containment logic, an AXI interface is also imple-
mented in the MU, which allows the exchange of status information from the RM system
to the processor. The 32 bit status message contains the functional and activity states of
all RMCs as well as those of the CLI, the lane, and the channel. It also indicates whether
the external interfaces are disabled or enabled by the lane. The structure of the MU
status message is shown in the appendix section (see Table 7.3). This status information
should enable the processor to track the safety status of the lane and the channel.

5.5.4 Resource Utilization of FPGA Implementation

As you can see from the previous sections, most of the modules in the redundancy man-
agement system consist of processes that run simultaneously. Each of these processes
therefore requires separate logic components in the FPGA, which increases the utiliza-
tion of FPGA resources. In addition, there are a number of parallel buffer memories
that require additional resources. However, the number of CLBs is constant for each
FPGA and therefore represents the limit of how much logic can be placed on the chip.
Ultimately, a compromise may have to be found between processing performance and
resource utilization.
Table 5.23 shows the resource utilization of a redundancy management system with 4
RMCs supporting four partitions, which is implemented and synthesized for a Zynq Ul-
trascale+ XCZU3EG SoC.

Resource Type Used Available Utilization

CLB LUTs 14199 70560 20.12 %
CLB Flip Flop Registers 41350 141120 29.30 %
F7 Multiplexer 4351 35280 12.33 %
F8 Multiplexer 2057 17640 11.66 %

Table 5.23: Redundancy Management IP (4 partitions) resource utilization on a Zynq
Ultrascale+ ZU3EG SoC

The results show that the RM system requires around 20% of the Lookup Tables (LUTs),
29% of the flip-flop registers and around 12 % of the F7 and F8 multiplexers. However,
the RMCs consume the most resources with 17,20% of the LUTs, 27,28% of the CLB
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registers, and 23,60% percent of the F7 and F8 multiplexers. This is acceptable at first,
but should be taken into account if further RMCs or even additional logic (independent
to the RM system) is to be implemented in the FPGA.

Module CLB LUTs CLB Registers F7 Multiplexer F8 Multiplexer

MPU 0.78 % 0.79 % 0.01 % 0.00 %
AXI 0.14 % 0.17 % 0.09 % 0.00 %
TX Buffer 1.68 % 2.93 % 1.45 % 1.45 %
RX Buffer 1.70 % 2.93 % 1.45 % 1.45 %

Table 5.24: RMC module resource utilization on a Zynq Ultrascale+ ZU3EG SoC

Tests with various configurations have shown that the buffer memory accounts for the
majority of resource usage (see Table 5.24). In this regard, it would be feasible to reduce
the number of memory locations in each memory in order to reduce resource utilization.
However, the performance of the partitions and the peripherals must be taken into ac-
count. The amount of memory must not be so small that data is in danger of being lost
if the partition produces data faster than the peripheral system can process and respond
to it.

5.6 Building Block Verification

The verification of the redundancy management building blocks checks whether the system
is functionally correct and fulfills the requirements. Verification is performed using design
reviews, simulations, and hardware tests. The verification considers only the requirements
for the FPGA-based redundancy management system.

5.6.1 Design Review

The design review should consider requirements that cannot be verified by laboratory
testing. The following table lists all the requirements for the RM system that are verified
by a system design review.
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ID Name

1-1 Generic design
1-2 Hardware Description Language
1-3 RM modes
1-4 RM configurability
1-5 PS-PL interfaces
1-6 PS-PL interface configuration
1-7 Cross-Lane interface
1-8 Peripheral interface ports
1-9 Simultaneous processing
1-10 Peripheral interface configuration
1-11 Peripheral interface enable
1-13 Provide channel status
1-19 Provide passivation status
1-20 Synchronize lanes
1-33 Exact consensus
1-34 Approximate consensus
1-37 Target hardware

Table 5.25: RM requirements to be verified by analysis

As explained in the design and implementation section, the redundancy management sys-
tem IP is developed for integration into the FPGA of an AMD Zynq Ultrascle+ SoC in the
hardware description language VHDL. In addition, the system has a modular structure
and is composed of generic modules. The specification of each module is implemented
using either global or local static variables. This allow the individual customization of all
RM IP modules according to the avionics system requirements. The IP also implements
an internal mode that can put the system into a commanding-monitoring and active-
standby configuration at the same time. For communication, the RM system has two
customizable processor FPGA interfaces and configurable ports for peripheral interfaces.
The number of peripheral interface ports is also configurable. However, at least 15 inter-
faces are available. In addition, the RM IP also monitors the health status of the lane and
enables/disables the peripheral interfaces as needed. The IP uses this information to build
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a status message that is sent to the processor. This status message includes information
about the operating status (active or passive) of the lane and channel. Furthermore, the
individual modules consist of parallel processes to increase the performance of the system
and reduce the required execution time. To ensure data integrity, the RM IP checks each
message generated by the processor or received from a sensor and compares it to the
other lane. The goal of the comparison is to reach a consensus on the data. The integrity
logic of the RM system supports both exact and approximate data comparison. Data is
exchanged between the lanes via a redundant CLI, which also serves to synchronize the
two lanes by communicating with each other.

Result

The design review has shown that the majority of the requirements listed in Table 5.25 are
met by the developed system. Only requirements 1-13 and 1-19 (see section 7.2.1) are only
partially fulfilled, as the current implementation does not yet support data communication
with other channels.

5.6.2 Simulation Tests

Simulating VHDL modules is a very convenient way to test implemented logic early on in
the development process. Simulation can be used to test individual functions as well as
entire modules or even multi-module systems. For this purpose, the Device Under Test
(DUT) is instantiated in a separate VHDL testbench file. Finally, variables are created in
the testbench to feed the input variables of the DUT during the simulation. A simulation
of a VHDL module is therefore a Software-in-the-Loop (SiL) test. In a simulation process,
values are assigned to the simulation variables in order to simulate the behavior of a system
adjacent to the DUT. The desired temporal behavior can be configured in the simulation
by integrating wait for and wait until methods. Simulation tests are performed in the
Vivado design suite. This makes it possible to set brake points in the DUT during the
simulation and to execute the code step by step, which is especially useful for debugging.
During the verification of the redundancy management system, simulation tests were
performed on the RMC message buffer, the MPU, the CLI, and the entire redundancy
management IP.

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

73



Message Buffer Simulation

The message buffer simulation should verify that the module stores data correctly and
outputs it in the correct order. The correct behavior of the internal counter and index
variables is also verified. During the test, data is written to and read from the buffer
several times in succession.
The results of the test can be viewed in the Vivado waveform viewer. This has shown that
the buffer module stores the transferred data correctly and also outputs it in the correct
order. Internal flags, message counters, and status signals are also set correctly. The test
has been successfully completed.

MPU Simulation

A total of two simulation tests are performed to verify the Message Processing Unit.
The first test checks the processing of several consecutive TX messages. To do this,
the testbench generates appropriate TX messages and simulates the signals of a CLI.
This test pays particular attention to proper lock handling for access to the CLI and the
integrity process. The simulation of this test has shown that the MPU processes the TX
message correctly. Only during the output of the CL message a minor error occurred
which caused the CL message output port to be driven by several processes. After this
error was corrected by an internal circuit, the test was successfully completed. The lock
handling was also performed as intended.
In the second test, a parallel incoming RX message was simulated in addition to the TX
message. Once again, the CLI is realized using simulated signals. The purpose of this
test is to verify that the processes within the MPU are running correctly in parallel, and
that lock handling is correct for concurrent requests. The test is also used to verify the
integrity check logic. The goal is to verify that the data can be correctly compared to
ensure input and output consensus. The verified requirements are 1-21, 1-22, 1-30, and 1-
31 (see section 7.2.1). This test was also successfully completed. The processes of the TX
and RX paths were executed correctly without influencing each other. The lock handling
also worked properly. No violation of access rights to shared resources was detected.
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CLI Simulation

To verify the CLI, appropriate simulation signals were created in the testbench to sim-
ulate an RMC using the CLI module. In addition, the serial ports of the CLI interface
transceivers were connected (TX-1 to RX-1 and TX-2 to RX-2), creating a communication
loop.
In the first test, a lock was requested from the simulated RMC and a CL message was
provided. The purpose of this test is to verify that the CLI correctly assigns the lock
grant, processes the CL message as expected, sends it, receives it, and forwards it back
to the RMC. The test showed that the CLI issued a lock grant to the correct RMC. The
data was then correctly stored and sent through the interface. The communication loop
has ensured that the CLI received its data back directly. The previously generated CRC
was successfully evaluated and the CL message was returned to the original RMC. The
status message issued by the CLI reflects error-free execution.
The second test of the CLI simulates multiple RMCs sending multiple CL messages.
Various CL message types (request and response) are also simulated. The purpose of this
test is to demonstrate that the CLI will assign the lock grant to only one RMC, even in
the case of simultaneous lock requests from multiple RMCs. This test was also successful.
The CLI only ever granted the lock to one RMC at a time, and processed its CL messages
correctly. The CL messages received were also routed to the correct RMC.

MU Simulation

The Management Unit (MU) tests simulates the status messages of the four RMCs and
the CLI. The purpose of this tests is to verify that the MU uses the status messages to
correctly determine the status of the partitions, the lane, and the channel, and to perform
the appropriate fault containment actions. These tests are largely responsible for verifying
compliance with safety and fault tolerance requirements. The requirements verified by
these tests are: 1-12, 1-14, 1-15, 1-16, 1-17, 1-18, and 1-19 (see section 7.2).
In the first MU test, status messages from all RMCs and the CLI were simulated, showing
the correct behavior of the modules. Status messages were alternately sent sequentially or
simultaneously to the MU. The result of the test shows that the MU interprets the status
messages correctly and does not detect any misbehavior in any of the modules. The MU
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has sent this information to the processor as a status message and enabled the external
interfaces.
The second test simulates some status messages that indicate an error in an RMC. How-
ever, no more than two faulty status messages were simulated in a row per RMC and
fewer than 10 in total. The execution of the test shows that the MU detects and tracks
the fault flags in the status messages. However, the MU does not classify any of the RMCs
as failed because the failure thresholds are not met. The test passes.
The third test simulated three erroneous status messages in sequence, followed by 15
messages, of which 11 indicated a fault. This test triggers the configured fault indication
thresholds. The MU also operates correctly in this test. It detects the three consecutive
status messages with errors and then classifies the corresponding RMC as failed. As
a further consequence, the MU passivates the lane and the entire channel and disables
the external interfaces. The MU shows the same behavior with a total of 11 erroneous
messages. This proved that the logic of the MU correctly evaluates the status messages
from the RMCs and correctly passivates the lane and the channel in case of a detected
fault. A logic analyzer measurement has shown that the fault containment process requires
a total of 4 clock cycles from fault detection to reset all RM modules, passivate the lane
and the channel, and disable the external interfaces. At a clock frequency of 100MHz,
this corresponds to a duration of 40 ns. This also satisfies requirement 1-15 regarding the
required fault handling performance.
The fourth test checks the behavior of the MU in case of faulty CLI channels. First, a
CLI status message is simulated indicating that both channels are operating correctly.
The status message is then changed to simulate an error in one channel. The faulty CLI
channel is swapped multiple times. Finally, the case is simulated where both CLI channels
are faulty. The test showed that if the CLI status message is correct, the MU takes no
further action. As soon as one of the two CLI channels has an error, the MU detects this,
but leaves the CLI in the active state. Only if both CLI channels are simulated as failed,
the MU will classify the entire CLI as failed and then passivate the lane and the channel.
The external interfaces are also disabled.
The behavior of the MU observed in all four simulation tests is consistent with the re-
quirements of the RM system. Therefore, the tests have been passed and the above
requirements are satisfied.
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Redundancy Management System Simulation

As a final SiL test, the entire redundancy management system is assembled from all
modules into an IP block and simulated. Only the AXI interfaces must be excluded from
this test. These are verified during hardware testing. Previously, individual modules
were always tested with simulated adjacent modules. Now that the functionality of the
individual modules has been verified, the next step is to test their operation together.
The test focuses on the correct interaction between the modules.
This test simulates a TX message written to the TX buffer by the testbench. Once the
message is in the buffer, the RM system takes over processing. After the TX message
is processed and sent, an RX message is simulated. The test showed that the modules
of the RM system work together without indicating errors. The simulated TX message
was processed correctly and finally sent. The same applies to the processing of the RX
message.

Simulation Test Results

Overall, it can be said that the simulation tests were successfully completed and most of
the RM requirements were satisfied. A few minor implementation errors were discovered
during debugging. These have been fixed.

5.6.3 Hardware Test

Finally, the hardware tests are designed to prove that the RM system also works on
the SoC hardware in conjunction with a test software on the processor. As part of
the hardware tests, both the AXI interfaces and the entire RM system are tested on
a development board. Ultimately, tests with two development boards should realize dual-
lane operation in a commanding-monitoring channel.

AXI Interface Test

Since the AXI interface implements the hardware communication between the processing
system and the FPGA in a SoC, simulation testing is hardly possible. For this reason,
the AXI module is first tested separately on the development hardware which is why
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only the AXI module is instantiated in the FPGA configuration. For test purposes, the
registers of the TX and RX messages are also connected together on the FPGA side to
create a communication loop. Sending and writing of messages to the TX registers and
reading of the RX registers is done by test software on the processor. This is a bare metal
program written in C that initializes the AXI module on the processor side and finally
writes TX data to the corresponding registers slv_reg2, slv_reg3, and slv_reg4. The
software then reads the RX registers slv_reg5, slv_reg6, and slv_reg7. The readout data
is sent through the debug interface and displayed on the console of a lab PC. This test is
repeated with 5 different TX messages. The test showed that any TX message sent via
the AXI interface could be read out correctly via the RX register. So this test proved
that the AXI interface is working correctly.

RM Single-Lane Test

The Redundancy Management system single-lane test instantiates the entire RM system
in an FPGA configuration and deploys it on the development hardware. However, this
test uses only one software partition and therefore only one RMC. The test software
written for the previous test can be reused here with minor modifications. In this test,
the external communication ports of a lane (TX and RX messages, cross-lane TX and
RX) are interconnected by hardware pins on the development board. This creates a
communication loop that virtually simulates the interaction of two identical lanes.
In the first test case, the test software writes four TX messages to the TX message
register of the RMC AXI interface. The console output on the host PC shows that the
RM system has correctly processed the messages in the TX and RX paths. Because of
the communication loop, TX and RX messages are identical. You can see from the RMC
and the Management Unit (MU) status messages that all status flags are set to ’1’. This
means that no errors have been detected and all modules are correct and operational.
The external interfaces are enabled when the program starts and remain enabled for the
duration of the test
The second Redundancy Management (RM) hardware test simulates a partial failure of
the software partition. The test software sends the first two TX messages with an incorrect
CRC. This monitors whether the RM system identifies the errors and sets the status flags
accordingly. The console output of the software is shown in Figure 7.2 in the appendix
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section. It is shown that the RMC correctly detects the faulty CRC checksum. It sets bits
10, 9, and 8 to ’0’ in its status message and indicates an invalid CRC in the TX message.
When the third and fourth TX messages are processed (correct CRC), the flags are set
back to ’1’. When reading the RX register, it is noticeable that only the third and fourth
messages can be read. This means that the RMC did not sent the first two erroneous
messages. The fault containment process was therefore successful at RMC level. Since
the fault detection threshold was not reached with only two faulty messages, the status
of all RM modules remains active-correct (see MU status message in the console output).
The external interfaces were also enabled throughout the test. The results show that this
test is passed.
The third and fourth tests simulate reaching the fault detection threshold. First, three
erroneous messages are simulated in sequence. 1000 messages are then sent by the test
software, 10 of which have an incorrect CRC. The console output (see Figure 7.3 in the
appendix section 7.7) shows that the RM identifies the three erroneous TX messages. As
we have already seen in the second test, the status flags will be set in accordance with
a faulty CRC. You can also see that after the third erroneous message, the RMC resets
itself to the idle state (all status flags set to ’0’). In addition, the test shows that the MU
performs appropriate fault containment procedures immediately after detecting the third
erroneous TX message. This resets the RMC, disables the external interfaces (see Figure
5.7), and sets the MU status flags.

Figure 5.7: RM single-lane hardware tests 3 and 4 - measurement of interface enable pin

The MU status message indicates that the TX path of the RMC-1 has failed (bit 0 is set to
’0’). Accordingly, the RMC-1 is classified as passive (bit 2 is set to ’0’). In addition, bits
15, 17, and 18 indicate the passivation of the lane and the channel and the deactivation
of the external interfaces. In the fourth test, the RM system shows the same behavior
once the tenth erroneous message is transmitted.
These tests show that the RM system functions correctly in single-lane operation on real
hardware. Error-free TX messages are processed and transmitted correctly, and their
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responses are received and evaluated correctly. When a fault is detected in an RMC
and the fault threshold is reached, the MU initiates the fault-containment measure and
passivates the computer to prevent the fault from propagating outside the FCR.

RM Dual-Lane Test

Previously, all hardware tests were performed on a single development board, and the
interfaces to a second lane were bridged by onboard circuitry. This procedure is suffi-
cient for the functional verification of the Redundancy Management (RM) system of one
lane. However, tests with two independent hardware lanes (development boards) are also
required, as it would be the case in the DLR FCC. Due to the asynchronous execution
on both lanes, these tests check the robustness of the RMC modules and CLI interfaces
with respect to the timing of data exchange between the two lanes. In addition, all four
RMCs are now instantiated in each lane’s RM system to support four software partitions
for this test. The test software is adapted to operate all four RMC AXI interfaces from
one partition. No multicore software with multiple partitions will be developed as part of
this work.
As in the previous tests, correct TX messages are first sent to the RMCs to test the
normal operation of the system. Then, erroneous messages are simulated, which should
eventually trigger the passivation of both lanes.
The test setup for the RM dual-lane hardware test is shown in Figure 5.8. To allow
debugging with external pins, two development boards are used instead of one FCC.
These boards are stacked and act as two processing lanes. Both are supplied by an
individual power source and have separate debug USB connections. The CLI transceiver
pins are connected between the boards to allow physical CL communication. In addition,
a Saleae logic analyzer is used to capture the physical CLI communication (see Figure
5.9).
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Figure 5.8: RM dual-lane hardware test setup

During the initial tests, problems with the asynchrony of the two lanes became immedi-
ately apparent. One of the two lanes always passivated shortly after the program started.
It is suspected that there is a timing problem with the CLI interface data exchange. As a
result, the CLI counter in the RMCs of both lanes was gradually increased. This counter
indicates how long an RMC waits for a response from its counter part on the other lane.
The first successful tests were performed after a waiting time of just over 5 ms.
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Figure 5.9: RM dual-lane hardware test - measurement of CLI transceiver pins

As can be seen in Figure 5.9, the time difference between the first transmitted CL message
between the commanding and monitoring lane is about 5,5ms. This difference is due to
an asynchronous power cycle and boot process. However, it has been measured that at
runtime this difference is always the same and therefore both lanes have a constant exe-
cution time. The console output (see Appendix section 7.8) also shows that the messages
from all RMCs are processed correctly and no errors are identified by the RM system.
Finally, a test is performed in which all TX messages from the RMC-3 show an error
(incorrect CRC). The console output (see the figures in the appendix section 7.8) also
shows that the RM detects the errors in RMC-3 and sets the appropriate status flags. After
the third erroneous message in RMC-3, the MU initiates the expected fault containment
actions and passivates the lanes and thus the channel. This includes deactivation of the
external interfaces as well (see Figure 5.10).
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Figure 5.10: RM dual-lane hardware test - measurement of interface enable pins

Hardware Test Results

Ultimately, these hardware tests prove that the functional requirements of the RM system
are met in single and dual lane operation in a commanding-monitoring configuration. Due
to the long latency for communication between lanes, the current version of the system is
not very performing and therefore does not meet all performance requirements. To solve
this problem, an initialization routine could be implemented in RM that first synchronizes
with the RM system on the other lane before starting to process messages. In such a
routine, the two lanes would communicate their availability and then begin executing
the actual RM logic together. This eliminates initial asynchrony caused by a delay in
powering up or booting, and improves system performance.
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6 Conclusion and Outlook

At the beginning of this work, the main faults to be considered in safety-critical systems
and possible measures for the development of fault-tolerant avionics systems were iden-
tified. It turns out that avionics systems must be designed to survive a certain number
of failures before they can fail. Byzantine Faults and Common-Mode Failures pose the
greatest challenge to fault prevention and tolerance.
Based on this knowledge, a framework was designed to support the development of a
redundancy management system for modular avionics systems. Requirements for the
framework and the generated redundancy management system were also derived.
The developed framework provides a configuration environment to map the avionics ar-
chitecture and define the required fault tolerance measures. To facilitate this process,
the framework also provides generic patterns for various fault tolerance mechanisms. The
main part of the framework consists of an FPGA building block portfolio. These are
generic VHDL modules, each of which implements different redundancy management
tasks. Depending on the configuration of the avionics system, the framework generates
an appropriate redundancy management system from these building blocks and configures
it for the particular use case. The result is a fully configured FPGA module optimized
for use in hybrid SoCs in modular avionics computers.
The implementation and especially the tests of the redundancy management system have
demonstrated that embedding it in the FPGA part of a SoC has significant advantages.
This means that the system can be developed and executed separately from the actual
avionics software application. The framework uses the configuration file to define a clear
interface between the application and the redundancy management that makes this pos-
sible. On the other hand, the FPGA enables simultaneous execution of multiple logic
modules, which significantly reduces the processing overhead of redundancy management
mechanisms compared to conventional processors. The implementation of this first release
supports dual-lane avionics channels with multiple parallel application partitions on each
lane. Fault detection is implemented using a commanding-monitoring configuration. For
this purpose, the framework provides FPGA IP for a full-duplex CL interface. The com-

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

84



parison of the replica data can be performed in the respective lanes according to the exact
or approximate consensus principle. Each redundancy management system generated by
the framework also includes a central management module that monitors the status of all
partitions in the lanes and activates fault-containment measures if a fault is detected.
The hardware tests shows that the asynchronous execution of both lanes can be a problem
for CL communication. In particular, the delayed boot process proved to be a significant
source of error. An upcoming enhancement to the redundancy framework will include
an initialization routine that synchronizes both lanes in a channel to a common program
start. This should allow the CL data rate to be increased to satisfy the performance
requirements.
There are also plans to expand the framework to include the already designed CCI. This
is intended to implement coordination between multiple channels in an avionics system
so that multi-channel avionics systems can be supported by the framework. Redundancy
management will initially be customized for active-standby configurations. This capability
allows a standby channel to take over the role of a failed channel. In this way, fail-
operational behavior can ultimately be achieved.
Another planned enhancement is the support of redundant replicas at the software level to
better utilize hybrid multicore SoCs. The idea here is that a commanding-monitoring pair
is implemented inside an SoC within a physical lane. In a dual-lane channel, a dual-duplex
system could be configured with fail-operational capabilities.
Finally, dynamic reconfiguration of partitions and related redundancy management el-
ements will be considered for future releases of the framework. This can be achieved
through runtime reconfiguration of partial FPGA bitstreams. The redundancy frame-
work would thus support more and more approaches of the IMA concept.
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7 Appendix

7.1 Redundancy Framework Requirements

This section includes all redundancy framework related requirements.

7.1.1 Functional Requirements

0-1 Generate Redundancy Management System IP

The Framework must be able to generate an avionics redundancy management system
implemented in an FPGA IP.
Rationale:
The generation of the upfront configured redundancy management system is the key
feature of this framework. The framework is intended to support SoC based avionics
computers, hence the resulting redundancy management system is implemented as FPGA
IP to benefit from the configurability and simultaneous computing capabilities of such
chips.
Means of Compliance: Analysis/Test
Traces to upper level requirements: N/A

0-2 Avionics Architectures Support

The framework must be designed generic to support several avionics architectures.
Rationale:
Such framework is only useful for avionics developers when supporting several different
avionics architectures. Providing a generic approach increases the number of applicable
use-cases.
Means of Compliance: Analysis
Traces to upper level requirements: N/A
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0-3 Configurability

The framework must evolve configurability to adapt the redundancy management accord-
ing to safety requirements.
Rationale:
This is a key feature to support modular avionics concepts like IMA.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-4 Fault Tolerance Pattern

The framework shall provide pattern implementing several fault tolerance mechanisms.
Rationale:
These pattern allow a flexible configuration of the final redundancy management system
design according to the actual needs.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-5 Configuration Process

The framework must allow redundancy management configuration using a configuration
file.
Rationale:
Applying the configuration with a designated configuration file and defining the corre-
sponding semantic has proven to be an applicable method of interfacing the framework
with the developer.
Means of Compliance: Analysis/Test
Traces to upper level requirements: N/A

0-6 Partition Reconfiguration

The framework shall support reconfiguration of application partitions.
Rationale:
The IMA concept introduces the reconfiguration of application partitions between the
processing modules within an avionics system. In order to support this functionality, the
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framework shall consider this.
Means of Compliance: Analysis/Test
Traces to upper level requirements: N/A

0-8 Configurable Communication Protocols

The framework must support several low- and high-level data communication protocols.
The framework must be able to configure the interfaces accordingly.
Rationale:
Depending on the use-case and application, several different low- and high-level commu-
nication protocols may be used in an avionics computer. The framework therefore must
be able to provide a generic and configurable template to support them.
Means of Compliance: Analysis/Test
Traces to upper level requirements: N/A

0-10 Commanding-Monitoring Configuration

The framework must provide support for a commanding-monitoring channel configura-
tion.
Rationale:
This is a common fault-tolerance mechanism on channel level to support fault identifica-
tion.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-11 Fail-Operational Behavior

The framework must provide support to achieve fail-operational behavior.
Rationale:
Safety-critical avionics avionics computers must not fail due to a single fault [4].
Means of Compliance: Analysis
Traces to upper level requirements: N/A
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0-12 Redundant Data Interfaces

The framework must provide support for simplex and duplex data interfaces.
Rationale:
To support fault-tolerant data communication.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-13 Intra-Channel Interface

The framework must provide support for a redundant intra-channel communication in-
terface.
Rationale:
Required by the commanding-monitoring configuration to ensure channel integrity.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-14 Inter-Channel Interface

The framework must provide support for a redundant inter-channel communication inter-
face.
Rationale:
Required to achieve fail-operational behavior. Channels need fault tolerant communica-
tion interface to obtain consensus about their status.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-16 Communication Protocol Checksum

The framework must provide support to use CRC checksums to assure data communica-
tion.
Rationale:
Required to check integrity of computed and received data.
Means of Compliance: Analysis
Traces to upper level requirements: N/A
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0-17 Input Consensus

The framework must provide support to achieve input consensus between replicated input
values.
Rationale:
Required to achieve output consensus.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-18 Output Consensus

The framework must provide support to achieve output consensus between replicated
output values.
Rationale:
Output consensus and agreement on the computed values is a key requirement to provide
correct data and ensure fault containment.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-19 Exact Consensus

The framework must provide support to achieve exact (bit-wise) consensus between repli-
cated data values.
Rationale:
Some values/results require exact consensus.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-20 Approximate Consensus

The framework shall provide support to achieve approximate consensus between repli-
cated data values.
Rationale:
Some values/results require approximate consensus. E.g. sensor values displayed in phys-
ical quantities cannot be compared bit-wise.
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Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-21 Approximate Consensus Threshold Configuration

The framework shall enable the configuration of the approximate consensus threshold by
the designer.
Rationale:
Approximate comparison of values/results requires a predefined threshold which the de-
viation of the compared values is allowed to be max to be considered as consent.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-22 Redundancy Management System Dissimilarity

The framework shall provide support to generate/implement dissimilar replicas of the
configured redundancy management system.
Rationale:
Dissimilarity may be required in avionics systems to avoid common-mode-failures due to
an identical replication of logic/code.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-23 Redundant Channels

The framework must provide support for redundant channels within an avionics system.
Rationale:
This is a key requirement to achieve fail-operational behavior.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-24 Redundant Lanes

The framework must provide support for redundant lanes within a channel.
Rationale:
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This is a key requirement for a command-monitoring architecture.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-25 Fault Containment

The framework must provide support to achieve fault containment within the avionics
systems channels.
Rationale:
Key requirement to achieve fault tolerance. A fault must not propagate and affect/corrupt
other modules in an avionics system.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-26 Channel Status Consensus

The framework must provide support to achieve consensus between the avionics systems
channels about their actual status (active, standby, passive).
Rationale:
If several redundant channels are integrated in an avionics system, they must keep track
on their own and each others operational status. Consensus ensures that all channels
agree on their status and on the channel which is currently the active one.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-27 Channel Status Determination

The framework must provide support for each channel to determine its status of function-
ality (operational, faulty, failed, passive).
Rationale:
Required to achieve status consensus between all redundant channels.
Means of Compliance: Analysis
Traces to upper level requirements: N/A
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0-28 Input Integrity

The framework must provide support to achieve input integrity between replicated input
values.
Rationale:
Ensuring integrity of input data is a key requirement to ensure fault identification.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-29 Output Integrity

The framework must provide support to achieve output integrity between replicated out-
put values.
Rationale:
Ensuring integrity of output data is a key requirement to ensure fault identification.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

7.1.2 Non-Functional Requirements

0-7 HDL Support

The framework shall support the IP generation in VHDL language.
Rationale:
VHDL is the current language used by the developer team.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

0-9 Target Hardware

The framework must support heterogeneous System-on-Chip hardware platforms includ-
ing a microprocessor and a programmable FPGA part.
Rationale:
Heterogeneous platforms enable the physical separation from application execution and
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the redundancy management system. Providing the redundancy management own com-
puting resources, reduces/eliminates the computational overhead on the microprocessor
site and therefore the potential affection of applications.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

7.2 Redundancy Management IP Requirements

This section includes all Redundancy Management IP related requirements.

7.2.1 Functional Requirements

1-6 PS-PL Interface Configuration

The RM IP must be able to configure the amount of AXI interfaces and corresponding
registers.
Rationale:
Further interfaces may be instantiated for further application partitions.
Means of Compliance: Analysis
Traces to upper level requirements: 0-3; 0-9

1-10 Peripheral Interface Configuration

The RM IP must be able to configure the amount of peripheral bidirectional interfaces.
Rationale:
The amount depends on the number of partitions and used peripheral interfaces. The
amount of instantiated ports/drivers must therefore be configurable by the developer
according to the actual use-case.
Means of Compliance: Analysis
Traces to upper level requirements: 0-2; 0-3

„Developing an FPGA based Redundancy Framework for Integrated
Modular Avionics“

94



1-11 Peripheral Interface Enable

The RM IP must implement dis- and enable functionality for each peripheral interface.
Rationale:
Some hardware interface drivers require an enable signal to transmit data. Further, a
disable by the RM IP is required to avoid transmission of faulty data over the interface.
This is part of the fault containment strategy.
Means of Compliance: Analysis/Test
Traces to upper level requirements: 0-25

1-12 Status Determination

The RM IP must be able to determine the status (operational, faulty, failed, passive) of
a RM instance.
Rationale:
The status is required to determine the overall channel status and represents important
information for other channels within the avionics system.
Means of Compliance: Test
Traces to upper level requirements: 0-27

1-13 Provide Channel Status

The RM must be able to provide its internal status to other RM instances on other lanes
or even other channels. It must also be able to obtain the status from other RM instances.
Rationale:
Required to achieve avionics system status consensus among redundant channels.
Means of Compliance: Analysis
Traces to upper level requirements: 0-11; 0-26

1-14 Fault Handling

The RM must perform channel internal fault identification and treatment.
Rationale:
These are key functionalities for fault-tolerant systems. In order to ensure and maintain
fault tolerance, faults must be detected and treated.
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Means of Compliance: Test
Traces to upper level requirements: 0-11

1-16 Fault Containment

The RM must prevent fault propagation through the channel boundaries.
Rationale:
A fault in a channel must not affect other channels in the system.
Means of Compliance: Test
Traces to upper level requirements: 0-11; 0-25

1-17 Channel Passivation

The RM must passivate a channel if a failure is detected.
Rationale:
The passivation is part of the fault/failure treatment strategy. It is assumed that a channel
showing a failure event would not remain correctly operational.
Means of Compliance: Test
Traces to upper level requirements: 0-25

1-19 Provide Passivation Status

The RM must provide the passivation action to the software layer of each processing lane
and other channels within the avionics system.
Rationale:
The software may report this event to a higher level management instance. The other
channels need to be informed that a standby channel can take over the operational role
(if available).
Means of Compliance: Analysis/Test
Traces to upper level requirements: 0-11; 0-26

1-20 Synchronize Lanes

The RM shall synchronize the processing lanes of a channel.
Rationale:
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Synchronization is required to compare the correct replica values. These values must be
from the same age, they must result from a corresponding computing cycle.
Means of Compliance: Analysis/Test
Traces to upper level requirements: 0-10; 0-24

1-21 Input Consensus

The RM must achieve consensus between replicated processing lane inputs.
Rationale:
To ensure that both lanes use the same values for the computation. This is required to
achieve output consensus.
Means of Compliance: Test
Traces to upper level requirements: 0-17

1-22 Output Consensus

The RM must achieve consensus between replicated processing lane outputs.
Rationale:
To ensure that both lanes have computed the same values from the given input values.
The lanes must agree on these values.
Means of Compliance: Test
Traces to upper level requirements: 0-18

1-26 Channel Activation

The RM must switch the channel mode from standby to active if required.
Rationale:
To take over the operational role in the system in order to achieve fail-operational behav-
ior.
Means of Compliance: N/A
Traces to upper level requirements: 0-11
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1-27 Channel Activation Consensus

The RM must achieve consensus between lanes on a channel activation switching event.
Rationale:
Both lanes must agree on the decision to switch from standby to active mode. Otherwise
this decision could result from a fault in one lane (e.g. misinterpretion of a message).
Means of Compliance: N/A
Traces to upper level requirements: N/A

1-29 Internal Status Agreement Not applicable anymore

The RM instances in the processing lanes of a channel must agree on each others internal
channel status.
Rationale:
In order to determine that the lanes in a channel operate correctly or not.
Means of Compliance: N/A
Traces to upper level requirements: N/A

1-30 Input Integrity

The RM must check the integrity of received input values.
Rationale:
Ensuring integrity of input data is a key requirement to ensure fault identification.
Means of Compliance: Test
Traces to upper level requirements: 0-28

1-31 Output Integrity

The RM must check the integrity of the output values to be transmitted.
Rationale:
Ensuring integrity of output data is a key requirement to ensure fault identification.
Means of Compliance: Test
Traces to upper level requirements: 0-29
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1-33 Exact Consensus

The RM must provide an exact (bit-wise) consensus algorithm to cross-check the process-
ing lane data interfaces.
Rationale:
Some values/results require exact consensus.
Means of Compliance: Analysis
Traces to upper level requirements: 0-19

1-34 Approximate Consensus

The RM shall provide an approximate consensus algorithm to cross-check the processing
lane data interfaces.
Rationale:
Some values/results require approximate consensus. E.g. sensor values displayed in phys-
ical quantities cannot be compared bit-wise.
Means of Compliance: Analysis
Traces to upper level requirements: 0-20

7.2.2 Non-Functional Requirements

1-1 Generic Design

The RM IP must have a generic and configurable design.
Rationale:
To enable the support of different avionics systems without the need to modify the IP
templates or even the framework.
Means of Compliance: Analysis
Traces to upper level requirements: 0-2

1-2 Hardware Description Language

The RM IP shall be developed in VHDL.
Rationale:
VHDL is the current used HDL by the FPGA developer team.
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Means of Compliance: Analysis
Traces to upper level requirements: 0-7

1-3 RM Modes

The RM IP shall include several modes implementing different redundancy mechanisms.
Rationale:
To be flexible regarding the actual use-case and various avionics architectures and con-
cepts.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

1-4 RM Configurability

The RM IP must have configurable parameters which allow to configure the IP block(s)
according to the specific use-case.
Rationale:
The IP must be configurable that an avionics developer must not adjust the IP by ad-
justing the code.
Means of Compliance: Analysis
Traces to upper level requirements: 0-3

1-18 Failure Definition

A channel shall be defined to be failed if the processing lanes determining a disagreement
in one interface three times in a row or ten times in 1000 messages.
Rationale:
The first value disagreement would not necessarily indicate a fault. Therefore three dis-
agreements in a row are required to classify a vaule as faulty.
Means of Compliance: Test
Traces to upper level requirements: N/A
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1-37 Target Hardware

The RM IP must be developed to be embed into the FPGA part of an AMD system-on-
chip.
Rationale:
The heterogeneous AMD SoCs are the main processing platform of DLR’s current avionics
computers. The FPGA part provides sufficient processing power while preventing the RM
system from interfering with application partitions on the processor side.
Means of Compliance: Analysis
Traces to upper level requirements: 0-9

7.2.3 Interface Requirements

1-5 PS-PL Interfaces

The RM IP must have at least two PS-PL interfaces.
Rationale:
PS-PL interfaces are required to communicate between processor and FPGA part. At least
two are required for a control and status interface and one for a application partition.
Means of Compliance: Analysis
Traces to upper level requirements: 0-9

1-7 Cross-Lane Interface

The RM IP must have a redundant bidirectional interface to communicate between the
processing lanes.
Rationale:
Required to enable the commanding-monitoring channel architecture and provide a reli-
able communication interface between the lanes.
Means of Compliance: Analysis
Traces to upper level requirements: 0-10; 0-13
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1-8 Peripheral Interface Ports

The RM must provide bidirectional ports for at least 10 data interfaces in a processing
lane.
Rationale:
Required to obtain input data and transmit output data for multiple software partitions.
Means of Compliance: Analysis
Traces to upper level requirements: 0-14

1-24 Cross-Channel Interface

The RM must provide a redundant cross-channel communication interface.
Rationale:
Required to achieve fail-operational behavior. Channels need fault-tolerant communica-
tion interface to obtain consensus about their status and to communicate activation and
passivation actions.
Means of Compliance: Analysis
Traces to upper level requirements: 0-14; 0-23

7.2.4 Performance Requirements

1-9 Simultaneous Processing

The RM must process all peripheral interfaces of a processing lane simultaneously.
Rationale:
To minimize the temporal overhead of the redundancy management tasks.
Means of Compliance: Analysis
Traces to upper level requirements: N/A

1-15 Fault Handling Time

The fault identification and treatment must not take longer than 1 ms.
Rationale:
To avoid fault propagation and to remain the continuous systems functionality, fault
identification and treatment must be performed in a small time window. This value is
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the length/duration of a 1 kHz time window.
Means of Compliance: Test
Traces to upper level requirements: N/A

1-23 Cross-Lane Interface Data Rate

The cross-lane communication interface shall provide a data rate of at least 200Mbit/s.
Rationale:
To minimize the temporal overhead due to the required data exchange.
Means of Compliance: Test
Traces to upper level requirements: N/A

1-25 Cross-Channel Interface Data Rate

The cross-channel communication interface shall provide a data rate of at least
460,8 kbit/s.
Rationale:
Especially passivation event messages must be transmitted fast and with low latency that
an available standby channel is able to react and activate itself rapidly.
Means of Compliance: Test
Traces to upper level requirements: N/A

1-28 Mode Switch Time

The switching from standby to active mode must take no longer than 1ms.
Rationale:
In the event of a failure and the corresponding passivation of one channel, the take over
of a standby channel must be performed rapidly. The 1ms value represents the duration
of one 1 kHz time window.
Means of Compliance: Test
Traces to upper level requirements: N/A
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1-36 RM Time Offset

The RM shall not produce an execution time offset of more than 10ms.
Rationale:
The RM must not affect the application processing schedule.
Means of Compliance: Test
Traces to upper level requirements: N/A
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7.3 Redundancy Management IP Architecture
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Figure 7.1: Redundancy Management IP architecture
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7.4 RMC Status Message

The value ’1’ of a bit indicates that an item check result is true, correct, or valid. A value
of ’0’ indicates a false, invalid, or incorrect check result of an item.
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Bit Description

0 TX Buffer full
1 TX Buffer empty
2 Reserved
3 RX Buffer full
4 RX Buffer empty
5 Reserved
6 TX CL-Response received
7 TX CL-Request received
8 TX CRC valid
9 TX CRC-2 (from other lane) valid
10 TX CRC-1 (from own lane) valid
11 TX Integrity valid
12 TX-2 Integrity (from other lane) valid
13 TX-1 Integrity (from own lane) valid
14 TX CL-Response Header valid
15 TX CL-Request Header valid
16 Reserved
17 RX Message received
18 RX CL-Response received
19 RX CL-Request received
20 RX CRC valid
21 RX CRC-2 (from other lane) valid
22 RX CRC-1 (from own lane) valid
23 RX Integrity valid
24 RX-2 Integrity (from other lane) valid
25 RX-1 Integrity (from own lane) valid
26 RX CL-Response Header valid
27 RX CL-Request Header valid
28-31 Reserved

Table 7.1: RMC status message structure
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7.5 CLI Status Message

Bit Description

0 CLI Channel-1 correct and operational
1 CLI Channel-2 correct and operational
2-31 Reserved

Table 7.2: CLI status message structure

The value ’1’ of a bit indicates that an item (CLI channel) is correct and operational. A
value of ’0’ indicates that an item is incorrect and has failed.
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7.6 Management Unit Status Message

Bit Description

0 RMC 1 TX correct
1 RMC 1 RX correct
2 RMC 1 active
3 RMC 2 TX correct
4 RMC 2 RX correct
5 RMC 2 active
6 RMC 3 TX correct
7 RMC 3 RX correct
8 RMC 3 active
9 RMC 4 TX correct
10 RMC 4 RX correct
11 RMC 4 active
12 CLI Channel 1 correct
13 CLI Channel 2 correct
14 CLI active
15 Lane 1 active
16 Lane 2 active
17 Channel active
18 Interfaces enabled
19-31 Reserved

Table 7.3: MU status message structure

The value ’1’ of a bit indicates that an item (RMC/CLI/lane/channel) is correct or active.
A value of ’0’ indicates that an item is failed or passive. Bit 18 indicates if the external
interfaces are enabled (value ’1’) or disabled (value ’0’).
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7.7 RM Single-Lane Hardware Test Results

Figure 7.2: RM single-lane hardware test 2 - console output
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Figure 7.3: RM single-lane hardware test 3 - console output
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7.8 RM Dual-Lane Hardware Test Results

Figure 7.4: RM dual-lane hardware test 1 - console output 1
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Figure 7.5: RM dual-lane hardware test 1 - console output 2
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Figure 7.6: RM dual-lane hardware test 1 - console output 3
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Figure 7.7: RM dual-lane hardware test 2 - console output 1
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Figure 7.8: RM dual-lane hardware test 2 - console output 2
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Figure 7.9: RM dual-lane hardware test 2 - console output 3
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