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Extension of the Deflection-Domain Passivity
Approach for Variable Stiffnesses to SO(3)

Michael Panzirsch1, Harsimran Singh1,2, Marek Sierotowicz1,3, Alexander Dietrich1

Abstract—Recently, the deflection-domain passivity approach
(DDPA) was introduced which does not control a system’s ener-
getic behavior over time but over the deflection of the coupling
controller’s virtual spring. So far, it has been applied to guarantee
passivity in variable stiffness systems and for chattering-free force
attenuation. When compared to time-domain based approaches
as the Time Domain Passivity Approach or energy-tanks, the
DDPA yields a more continuous and proactive variation of the
controller force since the required dissipative action is distributed
over the deflection of the spring applied in the coupling controller.
In contrast, time-based approaches behave non-proactively and
often attenuate control signals such as commanded forces com-
pletely. This attenuation happens suddenly when no energy is
left available with regards to passivity. The DDPA was the
first method to ensure passivity and non-zero stiffnesses for
arbitrary unknown stiffness profiles. Here, we extend the DDPA
to the control of three energetically coupled rotations in SO(3).
Experiments in a teleoperation setup confirm the functionality
of the approach.

Index Terms—Variable Impedance, Telerobotics and Teleoper-
ation, Deflection-Domain Passivity Approach

I. INTRODUCTION

THE passivity criterion is one of the most commonly used
principles for system design and analysis in robotics.

Passive control circuits can be achieved through passive sys-
tem design in the frequency-domain using, for instance, the
Raisbeck criterion or through time-domain based approaches
such as the Time-Domain Passivity Approach (TDPA, [1],
[2]) or energy tanks [3], [4], [5]. Frequency-based control
mostly leads to conservative control actions due to its non-
adaptive nature. Time-domain based approaches on the other
hand, provide less conservative adaptive damping mainly
through variation of control commands such as forces or
velocities. Still, the dissipative action happens suddenly in
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a non-predictive manner when the energy storage is empty
and passivity would be violated otherwise. Thereby, the con-
trol forces may be completely attenuated leading to zero-
stiffness phases in the impedance controller [6]. Such coupling
controllers penalize a deviation between desired and actual
pose with spring-like characteristics. Especially in passivity-
based control of variable stiffnesses [3], [7], [5], [2], such
periods are probable and represent an undesired behavior.
Robots with such software or hardware-based [8], [9], [10]
variable impedance promise a high degree of safety in human-
robot shared environments while featuring a high positioning
accuracy and the ability to handle heavy loads. In EMG-based
tele-impedance [2], a human can adapt the compliance of the
teleoperated robot by varying his/her arm stiffness.

In the majority of passivity-based methods for variable
stiffnesses, adequate design of the stiffness variation is re-
quired to avoid zero-stiffness phases. Therefore, in [11], we
proposed the passivity-based control in the deflection do-
main (Deflection-Domain Passivity Approach, DDPA, Patent
DE102021111413B3) referring to the deflection of the virtual
spring of the coupling controller inspired by [12], [13].

In simplified terms, the spring stiffness is limited on the
releasing path (maximum to zero deflection) by the DDPA in a
way such that the available energy (measured in time-domain)
becomes zero at zero deflection, thus ensuring passivity. Thus,
the controller force is adapted continuously and earlier than in
time-based methods such that phases of complete attenuation
of the control command can be avoided. In [11], the DDPA
was compared with the energy-reflection based TDPA (TDPA-
ER, [14]) leading to zero-stiffness phases in contrast to DDPA.
The DDPA was later applied in delayed teleoperation setups
for continuous energy dissipation independent of variable
stiffnesses to increase the force transparency of the TDPA-
ER [15]. The respective extension to the 6-DoF TDPA-ER
implementation [16] requires the DDPA method proposed
in the present work. The DDPA inspired the error-domain
conservativity control recently introduced for haptics in [17].

The DDPA can be applied to ensure passivity in systems
applying a spatial coupling controller such that a coupling
stiffness can be varied. Thereby, the DDPA can especially
replace comparable methods that attenuate the force command
directly. This holds for, but is not limited to, variable stiffness
control and delayed teleoperation or tele-impedance [2].

The DDPA has been only applied on translational degrees
of freedom (DoF) so far. To enable robotics with entirely
variable compliance, the extension to 6-DoF is required. Since
translations can be controlled separately with DDPA, only
the extension to SO(3) remains. In contrast to translations,
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Fig. 1: Coupling controller [11].
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Fig. 2: Signal flow diagram for delayed tele-operation with
variable stiffness Kdes [11].

rotational DoF are coupled, i.e. energy injected in one rota-
tional DoF may be extracted in another DoF in the task space.
Therefore, rotations have to be controlled conjointly since
they require one common energy storage for passivity-based
control. Here, we propose a solution of the DDPA framework
for rotational DoF based on the angle-axis representation for
intrinsically passive controllers [18]. We restrict spatial springs
to such without coupling between translations and rotations.

The paper is structured as follows: Section II presents
the fundamentals of the DDPA. Section III introduces the
proposed approach, followed by simulations in Section IV and
an experimental evaluation in Section V. Finally, Section VI
summarizes the results and concludes the work.

II. FUNDAMENTALS

A. The 1-DoF DDPA

The control principle of the DDPA involving energy ob-
servation over time and stiffness limitation over the spring
deflection was introduced in [11]. Fig. 1 presents the control
signal flow diagram and the respective network representation
of a virtual spring (Ctrl) coupling for instance input device
and robot as depicted in Fig. 2. In such teleoperation setups,
a Human operator controls the Robot motion in its environ-
ment (Env) via an Input Device. The commanded motion
xI may be delayed by T1 and the feedback of the controller
force Fc displayed on the Input Device may be delayed by
T2. Using sEMG on the operator’s forearm (similarly to [11]),
the desired stiffness Kdes can be estimated and applied in Ctrl
representing a tele-impedance setup [2].

In [11] it was shown how the DDPA can ensure passivity in
case of arbitrary stiffness profiles while avoiding zero stiffness
phases. At port 1 and 2 of Fig. 1b, the energy input and output
can be observed over time with the effort (force) F i and flow

(velocity) vi at port i.

P iL2R(k) =

{
0, if P i(k) < 0,

P i(k), if P i(k) > 0, (1)

P iR2L(k) =

{
0, if P i(k) > 0,

−P i(k), if P i(k) < 0, (2)

with the power P i(k) = F i(k)vi(k) at time step k. The
power P iL2R flows in left-to-right direction and the power P iR2L

in right-to-left direction at port i. The flow direction can be
distinguished by the sign of the power which also depends
on the sign convention of the controller Ctrl. The respective
energies EiL2R and EiR2L (positive by definition) can be com-
puted via discrete time integration (Ei(k) =

∑k
j=0 P

i(j)Ts,
with sampling time Ts).

The current energy content of Ctrl (consisting mainly of
potential energy of the spring) can be determined from the in-
and outgoing energies of the Ctrl 1-port:

Eobs(k) = E1
L2R(k) + E2

R2L(k)

− E1
R2L(k)− E2

L2R(k).
(3)

As discussed in detail in [11], for certain stiffness profiles (e.g.
constantly increasing stiffness) over the spring deflection δ, the
energy Eobs will become negative indicating energy generation
(non-passive behavior). Thereby, energy is injected during the
pressing (or pulling) part of a spring deflection phase (spring
extension) and ejected during the releasing part respectively.
At each arbitrary maximum deflection of the spring δmax, the
DDPA yields a limiting stiffness profile Klim for the release
path to ensure passivity. For simple stiffness variations during
the pressing phase, the limiting stiffness function can be linear.
If too low stiffnesses result from Klim (compare Fig. 3), the
stiffness may already be limited on the pressing path and
polynomial limiting functions can be applied. The value Kinit

is the stiffness at the start of a deflection phase, and Kmin

is the minimally acceptable stiffness. From here, the spring
deflection δ refers to its absolute value |δ| for the sake of
simplicity. The reader is referred to [11] for more details.

The polynomial Klim derived for translational DoF in [11]
is:

Klim(δ) =
Kk1 −Kinit − 3Eobs(δk1)

δ2k1
+ 3Kinit

2

δdk1(1− 3
d+2 )

δd

+
Eobs(δk1)− a

d+2δ
d+2
k1 −

Kinit

2 δ2
k1

1
3δ

3
k1

δ +Kinit,

(4)

with

a =
Kk1 − c− 3Eobs(δk1)

δ2k1
+ 3c

2

δdk1(1− 3
d+2 )

, (5)

and polynomial exponent d. The value c can be set to Kinit

and k1 denotes the time step at which the function Klim is
calculated. In [11], Klim was derived from Eobs(δ)

Eobs(δ) =

∫ δ

0

Klim(ξ)ξdξ

= a
1

d+ 2
δd+2 + b

1

3
δ3 + c

1

2
δ2,

(6)



PANZIRSCH et al.: EXTENSION OF THE DEFLECTION-DOMAIN PASSIVITY APPROACH FOR VARIABLE STIFFNESSES TO SO(3) 3

𝛿

𝐾

𝛿max

𝐾lim

𝐾des

𝐾init

𝐾min

𝛿(𝑡1) 𝛿(𝑡2)

(a) Stiffness profile.

𝑡

𝛿

𝑡

𝐸pot

𝑡(𝛿max)

𝐸obs

𝛿max

𝐸an = 0.5𝐾𝛿2

𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔

𝑡1 𝑡2

(b) Potential energies.

Fig. 3: Passivity-based control with polynomial limiting
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lim with stiffness limitation during pressing path
(adapted from [11]).

based on the exemplary polynomial function Klim(δ) = aδd+
bδ + c.

The described 1-DoF case can be easily extended to three
translations since they can be regarded separately with three
independent energy storages. Here, we concentrate on the
extension to the SO(3) rotation group which is not straight
forward in contrast since the rotational DoF are coupled
energetically and kinematically.

B. Spatial Springs

The spatial springs with translational and orientational stiff-
ness components of [18], [19] produce a computed wrench ωc

ωc =

(
τ c
fc

)
, (7)

with torques τ c and forces fc. The overall power at port i in
the rotational DoF d can be calculated as

P rot,i(k) =

3∑
d=1

τ ic,d(k)νid(k), (8)

with the angular velocity ν. Note that power that enters in one
DoF may exit in another DoF such that P rot has to be observed
in sum. The flow direction of the power (L2R, R2L) can be
determined analogous to (1) and (2). The energy Erot,i

n (k) at
port i is calculated via integration of the respective power:
Erot,i
n (k) =

∑k
j=0 P

rot,i
n (j)Ts, with sampling time Ts and

n ∈ {L2R,R2L}.
Based on the direction specific energy values Erot,iL2R and

Erot,iR2L , the storage of available energy Erot
obs can be found as:

Erot
obs(k) = Erot,1

L2R (k) + Erot,2
R2L (k)

− Erot,1
R2L (k)− Erot,2

L2R (k).
(9)

The input to spatial springs is the spatial distance DHT
between reference frame WHD and the robot tool frame WHT
defined in the world frame W:

DHT =

( DRT
DpT

0 1

)
, (10)

with DRT , the SO(3) element of DHT , and the translation
DpT between the two frames D and T . To enable the applica-
tion of DDPA, the rotation matrix DRT will be simplified to
the angle-axis representation with axis DrT and angle DΘT .
According to [20], the angle DΘT is calculated from DHT
via the trace tr of the rotation matrix DRT

DΘT = arccos

(
tr(DRT )− 1

2

)
. (11)

The normalized axis DrT of the angle-axis representation can
be found as

DrT =
1

2sinΘ

 DRT (3, 2)− DRT (2, 3)
DRT (1, 3)− DRT (3, 1)
DRT (2, 1)− DRT (1, 2)

 . (12)

Figure 4 visualizes the angle-axis representation of rotations
and the application of DDPA to SO(3) introduced in the
following.

In robotics, 1-DoF rotational springs with nonlinear stiffness
knl = kocos(Θ) (with [k0]=Nm

rad , [18], [21], [22]) are applied
to achieve a continuous spring torque τnl = kosin(Θ) at high
spring deflections on [0, 2π].

Proposition 1: Integrating the 1-DoF spring torque τnl over
the spring deflection Θ, the analytical potential energy V nl

an

results in:

V nl
an(Θ, r) =

∫ Θ

0

τnl(x)dx = 2k0sin2 Θ

2
. (13)

With the stiffness matrix DKo defined in the desired robot
frame D, the torque vector in SO(3) becomes τnl =
DrTT

DKo
DrT sin(DΘT ). The analytical potential energy of

spatial springs in SO(3) becomes:

V nl
an(Θ, r) =

∫ DΘT

0

(DrTT
DKo

DrT sin(x))dx

=(1− cos(DΘT ))DrTT
DKo

DrT .

(14)

Applying trigonometric rules, V nl
an can be simplified to:

V nl
an(Θ, r) = 2sin2

(
DΘT

2

)
DrTT

DKo
DrT . (15)

From this equation, the influence of the scalar angle DΘT and
the axis DrT on the potential energy can be well analyzed.

III. PROPOSED METHOD

To transfer the DDPA with the two scalar control variables
δ and Klim from 1-DoF to SO(3), a suitable representation
for the rotational spring deflection and stiffness needs to
be defined. Direct control of the various components of the
stiffness matrix is not feasible since the energy term would
depend on more than one scalar control variable. In order to
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Fig. 4: Angle-axis representation and DDPA for SO(3). Left:
Angle Θ and axis r with components r1,r2, and r3. Right:
Stiffness variation over the deflection of the spatial spring
represented by the angle Θ.

apply DDPA to all three rotational DoF conjointly, we propose
to consider the scalar angle Θ (again as absolute value) of the
angle-axis representation as the deflection δ of the DDPA.

A. 6-DoF DDPA concept

For ease of understanding, we first introduce a simplified
case limited to a diagonal stiffness matrix with uniform
diagonal entries:

Method M1 - Diagonal stiffness matrix with uniform diag-
onal entries: An essential aspect for DDPA in the rotational
DoF is the energy injection or dissipation of V nl

an (15) when
the orientation of the axis r changes. I.e., the energy ejec-
tion during the release phase of the spatial spring does not
exclusively depend on δ=Θ but also on the variation of r.
To simplify the DDPA design, we first consider a Ko that
renders V nl

an solely dependent on Θ. Therefore, we formulate
the following theorem:

Theorem 1: We define sdes ([-]) as the desired and po-
tentially variable stiffness scaling. Then, a spatial spring
with diagonal stiffness matrix and uniform diagonal entries
DKo(Θ) = sdes(Θ)k0I behaves energy-conserving (lossless)
when the axis r of orientation is varied. Thus, the DDPA
can be applied to limit the desired stiffness scaling sdes

to slim. Note that the finally applied stiffness scaling is
sact=min(slim, sdes).

This theorem is proven in the following:
Lemma 1: Since the axis of the angle-axis representation

DrT is of unit length (|DrT | = 1), the following holds:

DrTT
DrT = |DrT |2 = 1. (16)

Proof 1: We choose a diagonal stiffness matrix DKo such
that DKo(Θ)=k0sact(Θ)I. Then, with Lemma 1, the influence
of r vanishes and V nl

an(k) can be derived analogous to (13).
Since the DDPA controlled variable sact is a scalar, the

polynomial slim can be found analogous to the 1-DoF case.
Note that these equations serve the passivity control, but that
energy needs to be observed over time according to (9).

Method M2 - Arbitrary stiffness matrices: The scalar scaling
sact(Θ) of a stiffness matrix DKo can also be applied as

the single DDPA control variable in case of stiffness matrices
DK∗o with non-uniform components:

DKo = sact(
DΘT )DK∗o. (17)

Applying (17) to the integral of (14), the polynomial slim
can be found analogous to the 1-DoF case. Then, with (17)
and τnl = DrTT

DKo
DrT sin(DΘT ) the polynomial slim be-

comes:

slim(δ) =
(Eobs −K0)δk1 − (Kk1 −K0)sk1 +Kk1δk1ck1

2(ck1 − 1)δk1 + sk1δ2k1
δ2+

(Eobs +K0(ck1 − 1) + f)

(sk1 − δk1ck1)
δ +K0

with f =
((ck1(δ2k1−2)−2δk1sk1+2)g)

(2δk1ck1−2δk1+δ2k1sk1)
, sk1 = sin(δk1),

g = (Eobs −K0 +Kk1ck1)δk1 − (Kk1 −K0)sk1, and
ck1 = cos(δk1). Note that with DrT a time-varying element
remains in the energy terms besides the state variable Θ.
Therefore, the observed energy Eobs may increase or decrease
due to changes in r, even while Θ may remain constant. Still,
the passivity w.r.t. a non-variable spatial spring is guaranteed
since for a variation of r energy needs to be injected or
ejected resulting in a lossless spring behavior. In DDPA, the
presence of an additional time-varying influence has to be
accounted for as follows:
• In contrast to the 1-DoF implementation of DDPA, in case

of arbitrary stiffness matrices, the polynomial limiting
function slim has to be recalculated in each time step. This
is due to the fact that through the variation of r, energy
can be injected or released from the coupling controller
which needs to be considered in the DDPA.

• The scalar value

u(t) = DrTT (t)DK∗o
DrT (t) (18)

is considered in the polynomial stiffness equation (4) via

E∗obs(t) = Eobs(t)/u(t). (19)

This division by u annihilates the effect of the axis DrT
in the observed energy such that Klim(Θ) (compare (4))
depends solely on the time-dependent variable Θ.

B. Implementation

The signal flow diagram of Fig. 5 presents the proposed
implementation of the 6-DoF DDPA. Note that the variation
of r is assumed to be negligible in the numerical differenti-
ation step. Analogous to the translational DDPA of [11], the
following aspects of implementation are recommended.
• Deflection deadband: For the sake of robustness, a min-

imum absolute spring deflection value |Θdb| should be
chosen to ensure robustness due to singularities. It has
already been confirmed in [11] that no relevant energy
generation results from such deadbands. Within this dead-
band, sact is set to sdes and the observed energy is reset
to zero.

• Filter: The detection of a releasing and pressing phase
can be filtered for increased robustness. Here, we account
for a change between the phases if the change was of
minimum amplitude and preserved for a minimum time.
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Fig. 5: Signal flow diagram of the proposed 6DoF DDPA.

Fig. 6: Simulation of Method M1 with unitary variation of
reference angle and axis (Θ, r), constantly increasing desired
stiffness sdes, and k0=Nm

rad : DDPA limits stiffness to sact

ensuring passivity with Erot
obs(sact)>0J . The shaded areas

mark release phases.

• Applied stiffness: The stiffness scaling sact applied to
the spatial spring is chosen as the minimum of sdes and
slim. Still, a minimum stiffness smin may be considered
(sact = max(min(sdes, slim), smin)) which may lead to
a limitation of sact during the pressing phase [11].

Note that further recommendations regarding stiffness vari-
ation during the pressing path, parametrization of slim, and
consideration of energy dissipated by damping in Eobs are
discussed in [11].

IV. SIMULATION

Fig. 6 to Fig. 7 present the results of SO(3) DDPA simu-
lations with Method M1 and M2. No mechanical models of
input device and robot were applied in the simulation and force

Fig. 7: Simulation of Method M2 with unitary variation of
reference angle and axis (Θ, r), constantly increasing desired
stiffness sdes, and k0=Nm

rad : DDPA limits stiffness scaling to
sact ensuring passivity with Erot

obs(sact)>0J . The shaded areas
mark release phases.

feedback was neglected. The DDPA controlled spatial spring
was fed an artificial input device pose xI and the robot pose
xR(k)=xI(k−Td). Thus, the robot pose xR matched the input
device pose x1 delayed by Td=120ms to simulate a dynamic
behavior of the robot. The constantly increasing sdes was
chosen to provoke active behavior of the stiffness variation.
The angle Θ and axis r are derived from the input DHT to
the spatial spring. In all simulations, deactivating the DDPA, it
can be analyzed that the resulting observed energy Erot

obs(sdes)
becomes negative. This confirms the energy-generating behav-
ior of the applied stiffness variation. It can be observed for
both simulations that sact (limited by the DDPA) leads to a
passive system behavior: Erot

obs(sact≥0J).
In case of Method M1 (Fig. 6), a matrix with uniform

diagonal entries DKo=sactk0I was applied which lead to
overall lower energy values when compared to the subsequent
experiments with method M2. A nonlinear spatial spring with
the arbitrary positive definite and symmetric stiffness matrix

DKo = sact(
DΘT )

 3 1 2
1 8 2
2 2 5

 (20)

was applied in the experiment of Fig. 7. In the respective
energy plots, the effect of the axis r due to the more complex
stiffness matrix becomes obvious. Despite the major differ-
ences in the design of the spatial spring, the variation of sact

through the DDPA is very similar.
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V. EXPERIMENTAL EVALUATION

The following experiments were performed with the haptic
input device lambda.7 developed by Force Dimension and a
DLR light-weight robot as depicted in Fig. 8. The control was
implemented in Matlab/Simulink and executed on a RT Linux
system at 1kHz sampling rate. EMG measurements recorded
with the Myo Armband were applied to set the desired
stiffness. For more information on the stiffness estimation via
EMG data, the reader is referred to [11]. For all experiments,
the stiffness matrix was set to

DKo = sact(
DΘT )

 0.3 0.01 0.03
0.01 1 0
0.03 0 1.5

 ,
which was scaled by the DDPA-controlled scaling sact. The
deflection deadband was set to Θdb = 0.01rad. The first
experiment shows that passivity is not guaranteed if DDPA
is deactivated. The latter 6-DoF experiments evaluate the
functionality of Method M2 in contact and free motion. Note
that the EMG data was intentionally filtered only slightly to
evaluate the robustness of the DDPA under harsher conditions.

Fig. 8: Hardware setup: Light-weight robot (DLR), lambda.7
(Force Dimension), and Myo Armband (Thalmic Labs).

A. Deactivated DDPA
The first experiment presents an active behavior of variable

stiffnesses in case of deactivated DDPA (see Fig. 9). The
scaling sdes of the stiffness matrix had an offset of 10 ([-
]) and could be increased to a value of 20 ([-]) by the normed
EMG data. A wall contact was performed at t=[15.6s, 21s].
During the wall contact, the arm stiffness has been increased
as visible from the plot of sdes. Although the stiffness has
been decreased already during the release phase at t=19s, the
observed energy attains negative values at t=19.5s (shaded
area). From the instant of the energy sign change until the
end of the contact, the non-predictive time-domain approaches
would attenuate the controller force completely, leading to a
zero-stiffness phase. The same holds for the zero-crossing of
the energies in the simulations of Section IV.

Fig. 9: Experiment with deactivated DDPA: Stiffness scaling
is increased during pressing phase at t = [17s, 18s] such that
passivity is violated during release phase. The shaded area
marks passivity violation.

B. Experiment with DDPA Method M2

The following experiments allow for the evaluation of the
performance of DDPA Method M2. In both experiments, the
robot is moved downwards in z-direction (not visualized) and
then moves forward in x-direction into a wall contact. The
scaling sdes of the stiffness matrix had an offset of 20 ([-])
and could be increased to a value of 40 ([-]) by the normed
EMG data.

The plots of Fig. 10 present a free motion phase
at t=[40s, 51s] and two wall contacts (shaded area) at
t=[20.9s, 27.8s] and t=[30.1s, 35s] respectively. The plot of
axis r shows large variations indicating that the motion direc-
tion was varied in all rotational DoF. During the wall contacts,
the spatial spring was mainly deflected in α as visible from
Fig. 10b. Passivity is ensured although the stiffness was almost
not adapted throughout the experiment by the DDPA. This is
due to the fact that the desired stiffness was set via the Myo
armband before the deflection of the spring and held constant
during the deflection. The chosen deadband Θdb leads to
detection of several spring deflection phases, but the adaptation
of stiffness through DDPA is not negatively affected. At
t = 11.5s, the DDPA prevents a stiffness increase already
during the pressing phase since the available energy is too
low to guarantee the desired minimal stiffness scaling smin.
The torques τdes=τα+τβ+τγ and τact = τdes

sact

sdes
present the

minimal, indirect adaptation of torques analogous to sact.
The second DDPA experiment (see Fig. 11) presents two

wall contacts at t=[10.7s, 17.6s] and t=[21s, 29.5s] respec-
tively. As observable from Fig. 11b, the spatial spring was
again mainly deflected in α, whereas the orientation change
in γ could be set by the robot without resistance. The first wall
contact was initiated with high arm stiffness sdes. During the
release phase, the stiffness was reduced. Since this presents a
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(a) Overview.

(b) Pose and Torques.

Fig. 10: Experiment involving EMG measurements and DDPA
with free motion and two wall contacts: stiffness scaling is
varied such that no adaptation of sact is required to ensure
passivity. The shaded areas mark wall contacts.
DLR
DLR

(a) Overview.

(b) Pose and Torques.

Fig. 11: Experiment involving EMG measurements and DDPA
with free motion and two wall contacts: reducing stiffness
during release phase of first wall contact does not require
DDPA action. Adaptation of sact during second wall contact
since stiffness increased at comparably high deflection. The
shaded areas mark wall contacts.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

passive action, sact did not need to be adapted by the DDPA
to guarantee passivity. In contrast, the second wall contact was
initiated with low stiffness. At t = 24.6s, the operator tries to
increase the stiffness, but the DDPA limits the scaling to sact
to ensure passivity. Analogously, the torque τdes is reduced
to τact. It can be observed that the torques only need to be
slightly varied to ensure passivity. Note that in case of non-
predictive time-domain control, passivity violation would lead
to a complete attenuation of the force and thus to a long zero-
stiffness phase in this situation.

C. Discussion and Limitation

The DDPA operates with equal performance in rotational
and translational DoF. It could be observed that due to the
positive definiteness of the angle Θ of the angle-axis represen-
tation, the deadband Θdb may need to be chosen comparably
higher than in the translational DoF. The experiments with
different complexity of rotations and interactions confirmed
the DDPA ability to ensure passivity in case of arbitrary
stiffness matrices for arbitrary unknown stiffness profiles.

The fact that the rotation matrix is scaled by one common
DDPA scaling to ensure passivity may appear to be a limitation
of the approach. Still, arbitrary stiffness matrices are feasible
and since the rotations are energetically coupled, the solution
should be sufficient for all relevant applications. In specific
applications, terms coupling translations and rotations in the
spatial spring may be relevant which cannot be handled by the
DDPA so far. A solution to this is not obvious and remains for
future work. The torque plots show that the DDPA requires
only slight adaptation for the sake of passivity. Still, the
limitation of the stiffness during the pressing phase may be
reduced through more advanced approaches in future.

VI. CONCLUSION AND FUTURE WORK

This work introduced a 6-DoF extension of the deflection-
domain passivity approach based on the angle-axis represen-
tation. Analogous to the 1-DoF DDPA, two scalar control
references (observed energy and spring deflection) and a scalar
control variable (limited stiffness) could be defined. The angle
of the angle-axis representation was identified as a suitable
deflection scalar. It was shown that the 1-DoF DDPA can
be directly applied in case of diagonal stiffness with uniform
diagonal entries. Furthermore, an extended DDPA solution for
arbitrary stiffness matrices was developed and validated. The
free motion and contact experiments confirmed the passivity
of the approach. In future, the DDPA can be applied in 6-DoF
time-domain controllers also to avoid sudden force attenuation
through prescient stiffness attenuation.
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