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Nonlinear dynamics as a ground-state solution on quantum computers
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For the solution of time-dependent nonlinear differential equations, we present variational quantum algorithms
(VQAs) that encode both space and time in qubit registers. The spacetime encoding enables us to obtain the
entire time evolution from a single ground-state computation. We describe a general procedure to construct
efficient quantum circuits for the cost function evaluation required by VQAs. To mitigate the barren plateau
problem during the optimization, we propose an adaptive multigrid strategy. The approach is illustrated for
the nonlinear Burgers equation. We classically optimize quantum circuits to represent the desired ground-state
solutions, run them on IBM Q System One and Quantinuum System Model H1, and demonstrate that current
quantum computers are capable of accurately reproducing the exact results.
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I. INTRODUCTION

Methods to solve partial differential equations (PDEs), par-
ticularly those which are nonlinear, have long been of central
importance in fields such as aerospace engineering [1] and
energy science [2]. Prominent applications include solving
the Navier-Stokes equation in computational fluid dynamics
and the numerical integration of continuum models in battery
research [3,4]. Despite their efficacy, conventional numeri-
cal methods encounter substantial constraints when tackling
large-scale three-dimensional models [5].

Numerous quantum algorithms have been proposed to
integrate PDEs with an exponential advantage over their
classical counterparts in theory [6]. This includes quantum
linear systems algorithms (QLSAs) for linear [7–16] and non-
linear [17–21] PDEs, as well as quantum algorithms based
on Hamiltonian simulation [11,17,21–27]. Furthermore, tech-
niques based on quantum amplitude and phase estimation
have been put forth to integrate PDEs [28–32] (which might
be realizable using approximations with low quantum hard-
ware requirements [33–35]). In practice, however, these
algorithms do not yet give a quantum advantage. Various
challenges, including the input-output problem, hinder an ac-
tual quantum advantage in some cases [36,37]. On current
noisy intermediate-scale quantum (NISQ) devices [38], these
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algorithms are affected by strong limitations on the depth of
the quantum circuits that can be coherently executed.

On NISQ devices, variational quantum algorithms (VQAs)
have become a popular approach to solving PDEs [39]. One
famous example is the Variational Quantum Linear Solver,
which is a generic solver for linear systems of equations and
can be applied to linear PDEs [40–42]. A standard benchmark
is the Poisson equation [43–47]. For nonlinear equations, dif-
ferent algorithmic primitives have been proposed [48–52].

One way of solving time-dependent PDEs using VQAs
proceeds one time step at a time, analogous to established
classical numerical solvers [53]. In this time-stepping ap-
proach, however, a large number of time steps can lead to an
accumulation of errors. Also note that time stepping leads to a
computational complexity that is at least linear in the number
of time steps.

In this paper, our goal is to develop alternative VQAs
that do not rely on time stepping. To that end, we use the
formalism of Feynman [54,55] and Kitaev et al. [56], in which
time is encoded in a clock qubit register and the solution to
a time-dependent problem at all points in time is contained
in the ground state of a Hamiltonian. A proof-of-principle
demonstration of this spacetime approach was introduced by
McClean et al. for quantum chemical problems in 2013 [57],
which was extended to open quantum systems by Tempel
and Aspuru-Guzik in 2014 [58]. A recent implementation of
this method has been put forth by Barison et al. [59] for the
dynamics of quantum systems, providing numerical evidence
for a favorable scaling.

We present methods that extend the Feynman-Kitaev for-
malism to incorporate nonlinear dynamics [60]. We show how
to evaluate the Feynman-Kitaev Hamiltonian using quantum
nonlinear processing units (QNPUs) [49,61,62]. To mitigate
barren plateaus, which are a serious problem for variational
algorithms [63], and scale the variational algorithm to a larger
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FIG. 1. Schematic summarizing the proposed approach. (a) The quantum state |ψ0〉 encodes the initial condition at t = 0. (b) The nonlinear
Hamiltonian is evaluated using QNPUs. The solution to the PDE at all times corresponds to the ground state of the nonlinear Hamiltonian,
which can be calculated via the variational optimization of an ansatz U (�θ ) with nx + nt qubits and variational parameters �θ . (c) 3D plot of the
solution corresponding to the result from the Quantinuum H1-1 computer. See Fig. 3(a) for more details.

number of qubits, we propose a multigrid optimization strat-
egy with a customized ansatz structure [64]. In this approach,
a converged ansatz is passed from a coarser to a finer grid,
which allows us to speed up the optimization by limiting the
number of variational parameters. We apply the approach to
the Burgers equation as a paradigmatic nonlinear equation.
We show that the number of circuits required to evaluate the
Feynman-Kitaev Hamiltonian only depends on the number of
terms in the equation and the order of approximation in the
time step, not on the number of time steps or spatial points,
and that these circuits have a depth that scales at most linearly
with the number of qubits. A schematic of the approach is
depicted in Fig. 1.

This paper has the following structure. In Sec. II, we first
present the modified Feynman-Kitaev cost function and its
implementation in terms of QNPUs. We then show how to
evaluate this cost function on NISQ devices and how to op-
timize it using VQAs. In Sec. III, we present results from
the IBMQ and Quantinuum devices. We then show the cost
achieved for different variational ansatz structures and discuss
the scalability of the algorithm. We provide our conclusions in
Sec. IV and technical details in the Appendixes.

II. METHODS

Here we describe how we use the Feynman-Kitaev formal-
ism to solve nonlinear PDEs on NISQ devices. In Sec. II A,
we derive the Feynman-Kitaev Hamiltonian for nonlinear sys-
tems. In Sec. II B, we show how to construct QNPU circuits to
evaluate it. In Sec. II C, we describe the variational procedure
which we use to find the ground state of the Hamiltonian.
Finally, we discuss in Sec. II D what is necessary to implement
this Hamiltonian on a NISQ device.

A. Feynman-Kitaev Hamiltonian for nonlinear systems

We want to apply the Feynman-Kitaev formalism to time-
dependent differential equations of the form

d

dt
f (x, t ) = L[ f (x, t )] f (x, t ), (1)

where L is a (linear or nonlinear) differential operator acting
on the function f (x, t ). To implement nonlinear equations,
the operator L may have a functional dependence on f (x, t ).
Such an equation can be solved classically by defining a
propagator [53]

T̂ (dt ) = edt L. (2)

The exponential of the operator can then be approximated
using the Taylor series

T̂ (dt ) = 1 + dt L + (dt L)2/2 + O(dt3), (3)

where the time step is assumed to be small, i.e., dt � 1.
Although this is formulated for a time-independent prob-
lem, the generalization to time-dependent problems using a
time-ordered propagator is straightforward [57]. In contrast to
quantum dynamics [59], the propagator T̂ is not unitary for
classical systems in general.

To encode the function f (x, t ) in a quantum state |�〉, we
define a spatial register of nx qubits and a time register of nt

qubits. We then discretize the function f (x, t ) on a grid of
2nx = Nx + 1 points in space and 2nt = Nt + 1 in time and use
the amplitude encoding [23,59] given by

|�〉 =
Nx∑

i=0

Nt∑
j=0

ψi, j |binary(i)〉 ⊗ |binary( j)〉, (4)

where binary(i) is the binary encoding of the number i as a
bitstring on the space or time qubits. This quantum state is
normalized as

∑
i, j |ψi, j |2 = 1. We now define the Feynman-

Kitaev Hamiltonian,

Ĥ = c0Ĉ0 + X̂ †X̂ , (5)

where the operator Ĉ0, which enforces the initial condition
|ψ0〉 = f (x, t0)/N , is given by

Ĉ0 = [Î − |ψ0〉〈ψ0|] ⊗ |0〉〈0|. (6)

The constant c0 can be tuned to speed up optimization; the
ground state of the Hamiltonian, for which 〈Ĉ0〉 = 0, does
not depend on it. We use c0 = 2 in all cases presented in this
paper. The normalization constant N = ‖ f (x, t0)‖2 is used to
rescale the results such that the norm of the first time point
matches N and the initial condition is obeyed. The operator
X̂ , which describes the time evolution, is given by

X̂ =
Nt −1∑
i=0

T̂ (−dt ) ⊗ |i〉〈i + 1| − Î ⊗ |i〉〈i|. (7)

This X̂ ≈ dt (∂t − L) describes an implicit (backward Euler)
time integration scheme, known to be more stable for stiff
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FIG. 2. Parametrizable quantum circuits employed throughout this work. (a) One layer of a brick-wall ansatz, which can be repeated to
increase the depth of the circuit. Each unitary U (red) represents a generic two-qubit gate. (b) Generic quantum MPS with bond dimension
χ = 4 (Sec. II C) where each unitary U (blue) represents a generic three-qubit gate. (c) Sequential (blue) and reversed space (red) ordering of
space and time qubits in the register. The arrows point from the most to the least significant qubit for time and space. [(d), (e)] Example QNPU
circuits to calculate the cost function, using the adder circuit Â [49] for the time shift operator, where Û (�θ ) is the ansatz circuit and H the
Hadamard gate. Of these, (d) is used for the Ĉ1 term and (e) for the Ĉ2 term. In these two figures, the notation QNPU(�θ ) is used as shorthand
for the QNPU itself and any duplicates of the ansatz, which depends on �θ , encoded on ancilla qubits. See Appendix B for details about the
implementation of these circuits.

PDEs than explicit schemes [53]. The product X̂ †X̂ in Eq. (5)
can be further decomposed into Ĉ1 − Ĉ2 with

Ĉ1 =
Nt −1∑
i=0

Î ⊗ |i〉〈i| + T̂ †(−dt )T̂ (−dt ) ⊗ |i + 1〉〈i + 1|, (8)

Ĉ2 =
Nt −1∑
i=0

T̂ (−dt ) ⊗ |i〉〈i + 1| + H.c. (9)

We now integrate the PDE of Eq. (1) for all time steps by
finding the zero-energy ground state of Ĥ . This ground state
is given by the history state

|�〉 = 1√
Nt + 1

Nt∑
i=0

[T̂ (dt )]i|ψ0〉 ⊗ |i〉. (10)

We show numerically in Appendix A that the history state is
indeed the ground state and that it is nondegenerate. Further
details on the derivation of the cost function can also be found
there.

B. Evaluation of the Hamiltonian

We evaluate the Feynman-Kitaev Hamiltonian 〈Ĥ〉 de-
scribed in the previous section using the QNPU formalism
introduced by Lubasch et al. [49]. A QNPU implements
nonlinear terms by pointwise multiplication. Lubasch et al.
presented an efficient implementation of spatial derivatives
and periodic boundary conditions using a quantum adder cir-
cuit [49]. Nonlinear terms such as f (x, t ) ∂ f (x,t )

∂x in the Burgers
equation (12) are represented by combining these two con-
cepts with a duplicate of the ansatz.

We go beyond the approach of Lubasch et al. [49] by in-
cluding the time register. Because our problem is not periodic
in time, we add a time qubit to the register before applying
the adder circuit Â for the time derivative, so the time does not
wrap around from |Nt 〉 to |0〉 [see Fig. 2(e)]. Using QNPUs,
we can estimate the expectation value 〈Ĥ〉 in a number of
circuits that does not depend on the number of discretization
points, with a depth linear in the number of space and time
qubits. In this way, we ensure the scalability of the QNPU
implementation. The number of circuits to realize T̂ and its
product T̂ †T̂ as they appear in Eqs. (8) and (9) depends on the
number of terms L = A + B + . . . in the PDE and the powers
of L in the Taylor expansion of the time evolution operator
T̂ in Eq. (3). Every product of the terms A, B, etc. in the
powers of L gives rise to a small number of QNPUs; see, for
example, Eq. (B3). The number of circuits to implement the
Hamiltonian for the Burgers equation depends on the order
of the expansion in dt of T̂ in Ĉ2 and T̂ †T̂ in Ĉ1. Using
T̂ up to first order, which means T̂ †T̂ contains up to dt2,
one can implement the Hamiltonian in 18 circuits, as shown
in Appendix B. It is possible to reduce this to 11 circuits
by cutting off seven circuits encoding terms of order dt2 in
T̂ †T̂ . Notably, the number of circuits does not depend on the
number of time or space qubits.

The Ĉ0 term enforcing the initial condition can be mea-
sured in a single circuit with a swap test [65], for which
efficient destructive implementations have recently been pro-
posed [66], if one is able to prepare |ψ0〉 as a quantum
state. While preparing a function in amplitude encoding
can require deep circuits in general, most engineering prob-
lems have a simple initial state that can be encoded in a
shallow circuit on a quantum computer. Alternatively, one
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could generate this initial state using dissipative engineering
[67,68].

C. Variational ansatz circuits

Throughout this paper, we parametrize the solution using a
variational ansatz circuit

|�〉 = Û (�θ )|0〉, (11)

where Û (�θ ) is a parametrizable quantum circuit of the forms
shown in Fig. 2. We consider two different parametrizable
quantum circuits as variational ansatz to find the ground state
of the Hamiltonian Ĥ . First, we consider a short and dense
brick-wall ansatz of various depths, of which a single layer
can be seen in Fig. 2(a). The brick-wall ansatz, also referred
to as the checkerboard ansatz [46], is especially suited for
NISQ devices [69]. It has been used before in the context of
the variational quantum eigensolver (VQE) [70] as well as
simulations of quantum dynamics [71]. Second, we employ
a tensor-inspired quantum matrix product state (MPS) ansatz,
as seen in Fig. 2(b). In classical simulations of dynamical sys-
tems, matrix product states represent a promising technique
to improve the algorithmic efficiency thanks to their efficient
representation of multidimensional problems [72,73]. Quan-
tum MPS have been employed successfully for the numerical
simulation of one-dimensional systems with relatively small
correlations [74]. Our ansatz consists of successive three-qubit
unitaries, which corresponds to a sparse representation of a
classical MPS with bond dimension χ = 4. By varying the
depth of the individual unitaries, we obtain an ansatz with
13, 26, or 39 CNOT gates. This is described in more detail
in Appendix C.

To identify an optimal ordering of spacetime qubits that
may take advantage of the underlying entanglement structure,
we investigate two different ways to order the qubits in the
register: a sequential structure with separate time and space
registers [blue arrow in Fig. 2(c)], and one where the space
register is reversed to have the qubits representing the coarsest
structures in space and time next to each other [red arrow
in Fig. 2(c)]. This ordering is particularly suitable for the
multigrid optimization method discussed below and provides
a low-rank tensor representation [64].

To accelerate the minimization procedure and avoid barren
plateaus, we initially use small values for coefficients such as
the D or β in Eq. (12). We use the Adam optimizer [75] to
find the ground state of Ĥ for this simpler problem. Then, we
improve the solution in steps with the L-BFGS-B optimizer
[76], as described in Appendix D. In Sec. III C, we discuss a
multigrid approach to further improve the scalability, limiting
the number of variational parameters.

D. Variational optimization on NISQ devices

We want to implement the nonlinear Hamiltonian (5) on
NISQ devices such as IBMQ Ehningen and Quantinuum
H1-1. IBMQ Ehningen is a superconducting quantum com-
puter with 27 qubits, based on the IBM Quantum Falcon
processor which allows for two-qubit gate infidelities below
10−2 and coherence times around 100 µs [77]. It features fast
computation times, suitable for optimization problems with

many iterations. Quantinuum H1-1 is an ion trap quantum
computer with 20 qubits. It features all-to-all connectivity, a
two-qubit gate infidelity around 2 × 10−3 [78] and coherence
times in the order of seconds [79]. Therefore, complicated
circuits are evaluated at high accuracy.

After performing the VQE optimization on the Qiskit stat-
evector simulator [80], we sample the resulting state on both
quantum computers. On IBMQ Ehningen, we use readout
error mitigation from the M3 library [81] and transpile the
circuits using the highest optimization level. This includes
dynamical decoupling [82] to avoid decoherence during the
idle time of the qubits. As a result, the two-qubit gate infidelity
becomes the main source of errors. On Quantinuum H1-1, we
run our circuit without error mitigation. The main sources
of errors on this machine are qubit depolarization and the
two-qubit gate infidelity [79].

We have validated the QNPU implementation for a 2 +
2-qubit problem on a noiseless simulator. For further bench-
marking of our nonlinear Hamiltonian Ĥ , we decompose it
into Pauli strings because this is more feasible for a low
number of qubits. Nonlinear terms such as f (x, t ) ∂ f (x,t )

∂x in
Eq. (12) depend on the ansatz state itself. Therefore, we
perform a Pauli decomposition of a linearized Hamiltonian
at each iteration of the optimization. While this is possible for
small systems, the decomposition of an observable into Pauli
strings scales exponentially with the number of qubits [83].

III. RESULTS AND DISCUSSION

In Sec. III A, we perform simulations on the Quantinuum
and IBMQ quantum computers to show that our ansatz circuits
are viable on NISQ devices. In Sec. III B, we investigate
the performance of the different ansatz and entanglement
structures in the minimization of the Hamiltonian Ĥ and
numerically demonstrate the scaling. Finally, we discuss
promising optimization strategies for our hybrid algorithm
in Sec. III C and the applicability of our methods beyond
variational algorithms in Sec. III D.

A. IBMQ and Quantinuum

We want to solve the Burgers equation,

∂ f (x, t )

∂t
= D

∂2 f (x, t )

∂x2
− β f (x, t )

∂ f (x, t )

∂x
, (12)

a nonlinear PDE that describes the convection-diffusion of
particles in a viscous medium. Here, D is the diffusion co-
efficient and β determines the strength of the nonlinearity. If
one sets β = 0, the nonlinear term vanishes and the diffusion
or heat equation is obtained [84].

First, we study this equation for 3 + 3 qubits, which cor-
responds to a spacetime grid of 23 = 8 points in time and
23 = 8 points in space. We use β = 1 and D = 0.05 with
periodic boundary conditions, with a time step of �t = 0.05.
A detailed discussion of the discretization error in spacetime
is given in Appendix E. To emphasize the nonlinearity in
the form of a shock wave, we choose a Gaussian profile
f (x, t0) = exp(−(2πx − π )2) for x ∈ [0, 1] as initial state.
On a noiseless state-vector simulator, we optimize for the
VQE solution |ψVQE〉 using a four-layer brick-wall ansatz
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FIG. 3. Solutions to the Burgers and diffusion equation (12) sampled on NISQ machines. We use 3 + 3 qubits (23 = 8 points in space and in
time) and a reversed space brick-wall ansatz (Sec. II C) with four layers (Burgers) or three layers (diffusion). (a) Burgers equation, Quantinuum
H1-1. (b) Burgers equation, IBMQ Ehningen. (c) Diffusion equation, Quantinuum H1-1. (d) Diffusion equation, IBMQ Ehningen. The IBMQ
Ehningen experiments were run on August 17, 2023, and the Quantinuum H1-1 experiments on September 15 and 20, 2023. The dashed
lines correspond to a converged circuit from a noiseless simulator. This noiseless result has a cost 〈Ĥ〉 of 2.7 × 10−4 (Burgers) or 4.7 × 10−13

(diffusion) and a very good overlap with a numerical solution [infidelity of 3.3 × 10−4 (Burgers) or 3.2 × 10−7 (diffusion)]. More details can
be found in Sec. III A.

(circuit depth 8) with reversed space entanglement structure
[Fig. 2(c)]. The cost 〈Ĥ〉 of this state is low, 2.7 × 10−4. The
infidelity 1 − 〈ψnum|ψVQE〉 = 3.3 × 10−4, where |ψnum〉 is the
solution from the ODE solver from the SCIPY library [85],
proves that our VQE optimization has converged.

We sample this spacetime state |ψVQE〉 on the IBMQ
Ehningen and Quantinuum H1-1 quantum computers [see
Figs. 3(a) and 3(b)]. On Quantinuum H1-1, we take 2.5 × 104

shots, whereas on IBMQ Ehningen, we take 2 × 106 shots (in
20 series of 105 shots), which has a similar execution time.
We observe that the Quantinuum computer is able to repro-
duce the rightwards shift of the wave, characteristic for the
Burgers equation, whereas the IBM result is more affected by
noise, especially in the yellow curve representing the last time
point. The analogous simulation with a quantum MPS ansatz
is plotted in Figs. 15(a) and 15(b), where the Quantinuum
result stems from an emulator which models the noise of the
Quantinuum H1-1 machine.

Next, we discard the nonlinear term from Eq. (12) by
setting β = 0 and D = 1 with a time step of �t = 0.00625,
which gives us the one-dimensional diffusion or heat equation.
As initial condition at t0 = 0, we consider a sinusoidal profile
f (x, t0) = 2 + sin(2πx) for x ∈ [0, 1], with periodic bound-
ary conditions. We have chosen the constant 2 instead of 1 for
the experiments on both quantum computers because we find
that, in the presence of noise, we measure some counts for
every bitstring, including the ones that correspond to values
close to zero. This makes it difficult to distinguish values close
to zero in amplitude encoding. This shift does not change the
dynamics of the diffusion equation. For comparison, we show
the unshifted simulations in Fig. 16 in Appendix E.

We calculate a VQE solution on the Qiskit state-vector
simulator using a three-layer brick-wall ansatz (circuit depth
6). The cost 〈Ĥ〉 of this state is 4.7 × 10−13. To verify that
this state with a low cost indeed matches the desired solution,
we calculate the infidelity with regards to a solution from
numerical integration 1 − 〈ψnum|ψVQE〉 = 3.2 × 10−7. These
cost and infidelity values indicate that the upwards shift of the

initial condition does not prevent convergence of the VQE. In
Figs. 3(c) and 3(d), we sample it on the IBMQ Ehningen and
Quantinuum H1-1 quantum computers. The analogous simu-
lation using a quantum MPS ansatz is depicted in Figs. 15(c)
and 15(d).

B. Circuit depth requirements

We show the achieved cost of the VQE solutions for
all ansatz and entanglement structures in Fig. 4. Note that
the initial condition for the diffusion equation is f (x, t0) =
1 + sin(2πx) here. The circuit depth in this figure is defined
by counting the consecutive layers of CNOT gates; for the
brick-wall ansatz with six qubits, this is the number of CNOT
gates divided by 2.5 because one brick-wall layer contains five
blocks, but has a depth of 2. For the quantum MPS ansatz, it
is equal to the number of CNOT gates. We find in Fig. 4(c)
that our diffusion problem is very well described using a
shallow reversed space ansatz with three or four brick-wall
layers. The low cost which we observe for these depths, and
the subsequent increase in cost for deeper circuits, indicates
that these ansatzes can be optimized in less iterations than the
deeper ones. The sequential ordering [see Fig. 2(c)] requires
a few more layers and is more sensitive to random initializa-
tions. For the nonlinear problem in Fig. 4(a), we see that the
deeper ansatzes provide an advantage in expressibility, with
only small differences between the entanglement structures.
The quantum MPS ansatz requires a slightly higher number
of CNOT gates, but is less sensitive to the ordering of the
qubits in the register, as seen in Figs. 4(b) and 4(d). We
conclude that there are particularly efficient (shallow) repre-
sentations of our diffusion problem using the reversed space
entanglement structure; however, the cost for these shallow
circuits does show a significant spread depending on the ran-
dom initial condition, indicating there are local minima to
the cost function. This is consistent with literature about the
trainability of shallow circuits [86,87]. Our classical MPS cal-
culations indicate that the entanglement entropy in the ansatz
and the necessary ansatz depth depend significantly on the
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FIG. 4. Cost 〈Ĥ〉 with Ĥ from Eq. (5) as a function of the circuit
depth on a noiseless simulator for 3 + 3 qubits. (a) Burgers equa-
tion, brick wall; (b) Burgers equation, quantum MPS; (c) diffusion,
brick wall; (d) diffusion, quantum MPS. The data points in (a) and
(c) represent two to eight layers, those in (b) and (d) three quantum
MPS ansatzes with 13 to 39 CNOT gates as detailed in Appendix C.
The top and bottom axes indicate that the CNOT count and circuit
depth are equivalent for the quantum MPS ansatz but different for
brick-wall circuits. The lines represent the median of the cost re-
sulting from 20 different random initializations, which are plotted as
scattered points. The maximum number of iterations is 4 × 2500 as
described in Appendix D.

smoothness of the initial condition and the spectral content of
its evolution.

We study the scaling of our algorithm. To this aim, we
analyze the required circuit depth increasing the system size
from six to ten qubits (nx + nt = 3 + 3, 4 + 4 and 5 + 5). This
gives us a measure for the necessary coherence time required
to run any of these circuits on a real quantum computer. The
results for a four-layer brick-wall ansatz with 4 + 4 qubits and
a six-layer brick-wall ansatz with 5 + 5 qubits are shown in
Fig. 5. The costs for brick-wall and quantum MPS ansatzes
of different depths are shown in Fig. 6. We normalize them
by dividing by the energy E1 of the first excited state of the
Hamiltonian for the respective number of qubits, such that we
can use the distance to the first excited state as a measure
of the quality of the solution, irrespective of the number of
qubits. We observe in this figure that the low cost solutions
for 3 + 3 qubits require an ansatz with more parameters than
the dimension of the Hilbert space, whereas the solutions
from Fig. 5 do not. From this analysis, we conclude that
a crossover exists between coarse grids requiring an over-
parametrized ansatz for convergence (six qubits) and finer
grids (eight qubits or more) that can be efficiently encoded
with less variational parameters than the dimension of the
corresponding Hilbert space.

C. Barren plateaus and multigrid optimization

Variational cost functions commonly exhibit barren
plateaus: gradients of the cost function exponentially vanish
as the number of qubits increases when optimizing using
random initial parameters [63]. Figure 4(c) indicates that it

FIG. 5. Results for the diffusion equation [Eq. (12) with β = 0]
obtained from a noiseless simulator for different numbers of qubits.
(a) Obtained solution for 4 + 4 qubits (24 = 16 points in space and
time) with D = 1 and �t = 1/320. Reversed space brick-wall ansatz
with four layers, with a cost of 1.6 × 10−9 and an infidelity of 9.3 ×
10−8. (b) 5 + 5 qubits (25 = 32 points in space and time) with D = 1
and �t = 1/640. Reversed space brick-wall ansatz with six layers,
with a cost of 7.0 × 10−7 and an infidelity of 2.9 × 10−7.

can be beneficial to optimize for a smaller depth first and then
increase the depth if necessary. This motivates our approach
of first solving a simpler problem with a small D and/or β and
then ramping up these physical constants (see Appendix D).
We calculate the variance of the gradient for different random
initializations in Appendix F to evaluate this strategy. We do
not observe any barren plateaus for the system sizes studied
here.

Now, we analyze a multigrid approach [64] for further
improvements: First, the solution is found for a coarse grid
using a combination of the Adam and L-BFGS optimizers,
as described in Appendix D; second, optimization on a finer
grid is started with the optimal parameters of the coarse grid.
We use the reversed space entanglement structure. In this
way, it becomes possible to add new time or space qubits
while maintaining the ansatz structure for the coarser grid, as
shown in Fig. 7(a). This strategy is inspired by the fact that
the entanglement entropy is greatest for the tensors encoding
the coarsest partitions of the grid in a matrix product state
representation [64].

To stay close to the ground state and avoid detrimental
jumps in the cost when transitioning from a coarse to a
fine grid, we want to implement a step profile as shown in
Fig. 7(b). We achieve this by slightly modifying the brick-wall
ansatz so every 2-qubit unitary contains two CNOT gates in-
stead of one, and six rotations after every CNOT, duplicating
the unit seen in Fig. 11(d) in Appendix C. There, we also show
that this modification of the ansatz does not negatively affect
the required circuit depth because less layers are required if
every layer contains twice the number of gates. By initializing
all of these angles to zero, except for the very last rotations
on the new qubits, the new qubits representing fine structures
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FIG. 6. Cost 〈Ĥ〉 with Ĥ from Eq. (5) achieved for the diffusion
equation with different numbers of qubits, divided by the energy
E1 of the first excited state, plotted as a function of number of
parameters divided by Hilbert space dimension (64 for six qubits,
256 for eight qubits, 1024 for ten qubits.) The shaded area indicates
where the number of parameters exceeds the dimension of the Hilbert
space. The dots in the background represent the 20 individual runs
for which the line shows the median. (a) Brick-wall ansatz of two
to eight layers. The two states from Fig. 5 are marked with red
circles. (b) Three quantum MPS circuits, as detailed in Appendix C.
A reversed space entanglement structure is used in both cases. We
have increased the number of iterations from 2500 to 5000 for every
value of D for 8 qubits, and to 10 000 for every value of D for
10 qubits.

in space and time are not immediately entangled with the
existing coarse ones. Importantly, the rotations at the end of
the ansatz are initialized such that they represent a Hadamard
gate. This results in a step profile after initialization of the fine
grid ansatz as shown in Fig. 7(b). We slightly shift the initial
condition along the x axis to make the generated step profile a
better match. In Fig. 8(a), we depict the cost after transitioning
from a coarse to a fine grid. Our step profile algorithm results
in a smaller cost function than when initializing the new qubits
randomly or in a zero state. It may be possible to engineer
other initial states, such that they come even closer to the
desired solution.

After adding the new qubits, we optimize for the new pa-
rameters and the blocks affecting the qubits x2 and t2 directly
adjacent to the new ones, as shown in Fig. 7(a). This guides the
optimizer towards the solution of the refined problem. After
this optimization round, we add the blocks affecting x1 and
t1 and optimize again. Finally, we optimize all blocks. We
compare the cost as a function of the number of iterations
of this method with a direct optimization for 4 + 4 qubits in
Fig. 8(b), either using Adam only, without ramping up D on
the way, or using Adam and L-BFGS. This figure shows that
the multigrid strategy, with a transition from 3 + 3 to 4 + 4

qubits, needs a similar number of iterations as a direct opti-
mization for 4 + 4 qubits with Adam and L-BFGS, whereby
the multigrid method is faster because it optimizes less param-
eters. It is also clear that either method provides a significant
advantage compared to solving with Adam only, which ends
up in a local minimum almost two orders of magnitude higher
than the other methods in this example. We conclude that the
multigrid strategy described here is a promising method to
solve problems on fine grids.

D. Beyond variational algorithms

The nonlinear Feynman-Kitaev Hamiltonian is applicable
beyond the variational methods discussed in this paper. Be-
sides the VQE, on which our methods are based, there are
many other variational and nonvariational techniques for find-
ing the ground state. Imaginary time evolution (ITE), which
we use in Appendix A 2 to study the stability of the solution,
has a quantum analog that is applicable on NISQ devices [88].
This quantum imaginary time evolution, which has previously
been used to solve differential equations [89], is still vari-
ational. A nonvariational strategy can be found in adiabatic
quantum computing [90], which has similarities with the op-
timization strategy we used of increasing D and/or β in steps.
An implementation on NISQ devices has been recently shown
[91] and promising proposals exist to further compress the
corresponding quantum circuits [92]. As such, we expect that
this can also be used to solve our ground-state problem.

IV. CONCLUSIONS

In this paper, we present an extension of the Feynman-
Kitaev formalism, originally developed for quantum dynam-
ics, that is tailored to the integration of arbitrary PDEs with
nonlinearities. We provide proof-of-principle calculations that
demonstrate that nonlinear dissipative processes are well re-
produced within this framework. Here, the full spacetime
solution of the system can be retrieved in a single optimization
routine of an appropriate cost function, which prevents the ac-
cumulation of errors of iterative time marching schemes. We
see this as a necessary step to solve PDEs on quantum com-
puters, as stability conditions (see Appendix A 2 for details)
require that an increase in spatial resolution goes together
with an increase in time resolution. Our results indicate that
solutions to nonlinear PDEs can be obtained with shallow
circuits using either a brick-wall ansatz with a few layers or
a sparse formulation of MPSs as a quantum circuit. We adopt
a multigrid strategy where the ansatz is adaptively optimized
for finer and finer solutions of the discretized PDE, thereby
making the spacetime quantum solver potentially scalable in
the number of qubits. We show how to adapt the ansatz so
it can be expanded with additional qubits while keeping the
coarser result. We expect this multigrid strategy to become
more powerful as the resolution, and thereby smoothness of
the function, increases. We adapt the QNPU [49] to evaluate
the cost function. To implement time evolution, we show how
to implement derivatives without periodic boundary condi-
tions. Notably, the number of circuits to be measured is only
dependent on the number of (non)linear terms in the PDE and
the desired accuracy of the time evolution operator and not on
the number of qubits, and the depth of the circuits is linear in
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FIG. 7. Multigrid optimization strategy. (a) The reversed space ansatz of two brick-wall layers is expanded from six to eight qubits. The
red blocks correspond to the new spacetime qubits (x3, t3) and the optimization is initially only performed for the angles within the red and
blue blocks, while the unitaries of the qubits encoding the coarser structures (x0, t0) are fixed to the parameters of the converged circuit with
six qubits. (b) Converged 3 + 3-qubit result expanded to 4 + 4 qubits, showing the “step” profile that is created by initializing the new qubits
with a Hadamard gate. The dashed lines correspond to the solution obtained via numerical integration.

the number of qubits. Depending on the nature of the problem
and the available quantum resources, it can thus be favorable
to use a first- or second-order propagator and a fine grid in
time instead of a higher order integration scheme on a coarser
time grid, which is commonly done in classical simulations
[53]. Alternatively, one could start with a low order solution
and use that as input for a higher order optimization with more
circuits.

Current classical methods for nonlinear PDEs in fluid dy-
namics allow around 106 spatial points [1,72]. This amounts to
about 102 points in every dimension for a 3D grid and is equiv-
alent to 20 spatial qubits. Hence we believe that only around
100 qubits in total (including time qubits and duplicates of the
ansatz for nonlinearities) would be necessary to go beyond
current classical simulations. Our methods are also relevant in
classical computing, as recent developments in tensor network
representations of nonlinear problems have shown that it is
possible to devise efficient classical algorithms inspired by

quantum algorithms for PDEs [72,73,93]. Finally, we remark
that our methodology does not require a variational approach
for finding the ground state of the Hamiltonian, and alternative
techniques can be readily employed.
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FIG. 8. (a) Increase in cost caused by adding more qubits to a converged solution of the diffusion equation, normalized by the energy of
the first excited state E1, for different initializations of the new qubits. (b) Comparison of the number of iterations versus cost for a 4 + 4-qubit
problem using different optimization procedures, showing that the multigrid ansatz has a performance comparable to the Adam + L-BFGS
procedure. For all three lines, the best result out of 20 random initializations was chosen. The green line describes an Adam + L-BFGS
optimization for 3 + 3 qubits, followed by a transition to 4 + 4 qubits marked by the dashed black line, and subsequent L-BFGS optimization
in red. This illustrates our multigrid strategy. The green and red lines for the multigrid strategy are shorter because the 3 + 3-qubit simulation
considered only took 7857 iterations instead of the total 10 000.
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APPENDIX A: DERIVATION OF THE COST FUNCTION

We start with the general form of the differential equa-
tion as given by Eq. (1), where the differential operator L
(linear or nonlinear) is the generator of the underlying dynam-
ics. For simplicity, let us assume that L is time independent.
We encode the values of the function in a quantum state using
the amplitude encoding of Eq. (4). This way we can define a
quantum version of Eq. (1) as

d

dt
|�〉 = L|�〉, (A1)

where the amplitudes ψ (x, t ) = N f (x, t ) of the state |�〉
represent the function values up to a certain normalization
constant N . A general solution to this equation can be written
in terms of the time evolution operator (propagator),

�ψ (t ) = T̂ (t ) �ψ0, (A2)

where �ψ (t ) is the state in space for a specific time t . We use
this propagator to define an implicit integration scheme

dt (∂t − L) �ψ (ti ) ≈ T̂ (−dt ) �ψ (ti+1) − �ψ (ti ), (A3)

where the vector notation �ψ (ti ) is used for the state in space
at time step |i〉 such that �ψ (ti ) = 〈i|�〉. For a time-dependent
L, one would replace the backwards propagator T̂ (−dt ) by its
time-dependent equivalent T̂ (t + dt, t ). If T̂ is approximated
to first order in dt , this is equivalent to a backward Euler inte-
gration scheme. We turn this into a spacetime representation
by multiplying on the left with |i〉 and taking the sum over all
i, which leads to

dt (∂t − L)|�〉 ≈
Nt −1∑
i=0

(T̂ (−dt ) ⊗ |i〉〈i + 1| − Î ⊗ |i〉〈i|)|�〉

≡ X̂ |�〉, (A4)

where X̂ is as defined in Eq. (7). This means that X̂ ≈
dt (∂t − L). We multiply with the adjoint to get a Hermitian
operator X̂ †X̂ ≈ dt2‖∂t − L‖2, and use this operator to define
a ground-state problem for Eq. (1). Combined with the Ĉ0

term for the initial condition |ψ (t = 0)〉 = |ψ0〉, one obtains
the Hamiltonian in Eq. (5).

For a better physical understanding, we rewrite X̂ †X̂ as

X̂ †X̂ =
⎛
⎝Nt −1∑

j=0

T̂ †(−dt ) ⊗ | j + 1〉〈 j| − Î ⊗ | j〉〈 j|
⎞
⎠(

Nt −1∑
i=0

T̂ (−dt ) ⊗ |i〉〈i + 1| − Î ⊗ |i〉〈i|
)

, (A5a)

=
Nt −1∑
i=0

(Î ⊗ |i〉〈i| + T̂ †(−dt )T̂ (−dt ) ⊗ |i + 1〉〈i + 1|) −
Nt −1∑
i=0

(T̂ †(−dt ) ⊗ |i + 1〉〈i| + T̂ (−dt ) ⊗ |i〉〈i + 1|). (A5b)

We define the two terms of equation (A5b) as Ĉ1 and Ĉ2.
We can then alternatively write Eq. (5) as

Ĥ = c0Ĉ0 + Ĉ1 − Ĉ2, (A6)

with the three terms given by

Ĉ0 = [Î − |ψ0〉〈ψ0|] ⊗ |0〉〈0|, (A7a)

Ĉ1 =
Nt −1∑
i=0

[Î ⊗ |i〉〈i| + T̂ †(−dt )T̂ (−dt ) ⊗ |i + 1〉〈i + 1|],

(A7b)

Ĉ2 =
Nt −1∑
i=0

[T̂ †(−dt ) ⊗ |i + 1〉〈i| + T̂ (−dt ) ⊗ |i〉〈i + 1|].

(A7c)

Here Ĉ0 ensures the initial condition is kept, Ĉ1 ensures that
all time points are present in the solution, and Ĉ2 ensures that
the steps between them correspond to the application of the
differential operator L. For quantum systems, it is possible
to derive this cost function from a time-embedded discrete
variational principle that is equivalent to the Dirac-Frenkel-
McLachlan time-dependent variational principle in the limit
of infinitesimal time [57].

We show here that the history state (10) is an eigenstate
of this Hamiltonian with an eigenvalue of 0. To this end, we
calculate the action of all three terms of Eq. (A7) on this state.

The first term gives us

Ĉ0|�〉 = 1√
Nt + 1

[Î − |ψ0〉〈ψ0|]|ψ0〉 ⊗ |0〉

= 0|�〉. (A8)

The second and third terms give us

Ĉ1|�〉 = 1√
Nt + 1

Nt −1∑
i=0

[T̂ i(dt )|ψ0〉 ⊗ |i〉

+ T̂ †(−dt )T̂ (−dt )T̂ i+1(dt )|ψ0〉 ⊗ |i + 1〉],
(A9a)

Ĉ2|�〉 = 1√
Nt + 1

Nt −1∑
i=0

[T̂ (−dt )T̂ i+1(dt )|ψ0〉 ⊗ |i〉

+ T̂ †(−dt )T̂ i(dt )|ψ0〉 ⊗ |i + 1〉]. (A9b)

Using the property T̂ (−dt )T̂ (dt ) = Î , one can see that
Ĉ1|�〉 = Ĉ2|�〉. Therefore,

Ĥ |�〉 = (c0Ĉ0 + Ĉ1 − Ĉ2)|�〉 = 0|�〉, (A10)

which means that |�〉 is an eigenstate of Ĥ with eigenvalue 0.
We numerically show in Appendix A 2 that this is the ground
state, and that there is a gap with the first eigenstate which
makes this ground state unique.
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FIG. 9. (a) Ground-state profiles of Ĥ for the Burgers equation (D = 0.05, β = 1) calculated with imaginary time evolution (ITE).
Converged solutions can be achieved for dt = 0.05 and dt = 0.1, but the breakdown of stable solutions to the discretized PDE with dt = 0.2
results in unphysical states. (b) Energies of the first excited state E1 (A12) of Ĥ as a function of the number of time qubits nt for a fixed time
step of dt = 0.05 and a spatial register of nx = 3 qubits.

1. Note on implicit integration

Using the implicit integration scheme of Eq. (A3), the
Ĉ1 term (A7b) contains a term with T̂ †(−dt )T̂ (−dt ). If one
performs the derivation with an explicit integration scheme,
there is a term T̂ †(dt )T̂ (dt ) instead. For quantum dynamics
[57,59], the propagator is unitary, which means that both
terms become an identity. In this case, there is no difference
between an implicit and an explicit integration scheme. For
our nonunitary T̂ , we have chosen to use an implicit scheme.

2. Uniqueness and stability

To produce stable solutions in a finite-difference integra-
tion scheme, the distance traveled by the solution in one time
step must be less than the distance between two points in the
grid [53]. For the Burgers equation (12), this stability condi-
tion translates into the requirement that D dt/dx2 < 1/2. With
our model parameters (D = 0.05, β = 1), we expect stable
solutions for dt � 0.15 for three space qubits (dx = 1/8). To
obtain stable solutions from the ground-state problem given
by the Feynman-Kitaev Hamiltonian Ĥ , it is necessary that
the ground state of Ĥ is unique. This is ensured if there is
an energy gap between the ground state and the first excited
state. In this section, we show numerical simulations with ITE
using the MPNUM library [94] to evaluate the existence of this
gap under different model parameters.

The ground and first excited states of Ĥ must satisfy the
conditions

Ĥ (|�0〉)|�0〉 = E0|�0〉, (A11)

Ĥ (|�1〉)|�1〉 = E1|�1〉. (A12)

Due to the nonlinear nature of the Hamiltonian, the states
|�0〉, |�1〉 may not be orthogonal to each other. Furthermore,
the lowest eigenvector |E ′

0〉 of Ĥ (|φ〉) for an arbitrary state |φ〉
may not coincide with |�0〉.

The ITE method is based on the fact that the operator e−t Ĥ

becomes a projector onto the ground state of Ĥ in the limit
t → ∞. For an arbitrary, initial state |φ〉 with a non-negligible
overlap |〈�0|φ〉| > 0 with the ground state, the ITE operator

e−t Ĥ acting on |φ〉 converges to the ground state

|�0〉 ∝ lim
t→∞(e−t Ĥ )|φ〉. (A13)

Starting from a random state |φ〉, we choose an Euler integra-
tion scheme for ITE by iterating

(1) |φ′(t + τ )〉 = |φ(t )〉 − τ Ĥ |φ(t )〉,
(2) |φ(t + τ )〉 = |φ′(t + τ )〉/√〈φ′(t + τ )|φ′(t + τ )〉,

until convergence is reached for Ĥ (|�0〉)|�0〉 = E0|�0〉 with
E0 � 10−14. We normalize the state after each time step be-
cause the norm 〈φ(t )|φ(t )〉 diverges exponentially with t .

We turn the calculation of the first excited state |�1〉 (A12)
into another ground-state problem. This can be achieved
by performing ITE with a modified Hamiltonian Ĥ ′, whose
ground-state energy is raised above the energy of its first
excited state. One may be tempted to use the “shifted”
Hamiltonian

Ĥ ′ = Ĥ + c|�0〉〈�0|, (A14)

where c is a positive constant and |�0〉 is the ground state
calculated with ITE as described above. However, for nonlin-
ear Hamiltonians, the ground and excited states as defined in
Eqs. (A11), (A12) may not be orthogonal (〈�0|�1〉 �= 0) and
the shift c|�0〉〈�0| in Eq. (A14) not only modifies the lowest
energy subspace of Ĥ (|φ〉) but also perturbs the rest of the
spectrum. To avoid this, we perform ITE simulations with the
modified Hamiltonian

Ĥ ′(|φ〉) = Ĥ (|φ〉) + c|E ′
0〉〈E ′

0|, (A15)

where the second term raises the energy of the lowest
eigenstate |E ′

0〉 of Ĥ (|φ(t )〉), which changes with every ITE
iteration. This way, the ITE is directed towards a state that
solves Eq. (A12). The only requisite for the constant c is that
it should be larger than the second eigenvalue E ′

1 of Ĥ (|φ〉)
for any |φ〉. We use this method to calculate the energy gap
of the nonlinear Hamiltonian Ĥ associated with the Burgers
equation (12).

In Fig. 9(a), we calculate the ground state for the Burg-
ers equation (12) using the same parameters as in the main
text (D = 0.05, β = 1), for a spacetime grid with 3 + 3
qubits (nx = nt = 3) and three different time steps (dt =
0.05, 0.1, 0.2). Our results demonstrate a stable solution for
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FIG. 10. (a) Circuit to evaluate Ĉ0 and the T̂ †T̂ term in Ĉ1 simultaneously, using an ancilla qubit to determine whether to apply a swap test
for Ĉ0 if the time is |0〉 or a QNPU for Ĉ1 otherwise. (b) Circuit to evaluate Ĉ2, with an additional qubit for the time-shift operator to make
it nonperiodic. This qubit represents the most significant bit of the adder. In these two figures, the notation QNPU(�θ ) is used as shorthand
for the QNPU itself and any duplicates of the ansatz, which depends on �θ , encoded on ancilla qubits. (c) Building blocks of QNPU circuits,
with the Â operator red and the pointwise multiplication ĉ in blue. The multicontrolled gates need to be understood as to be applied pairwise:
qubit 0 on one time or space register controls qubit 0 on the other register, and so forth for every time and space qubit. (d) Circuit calculating
�(

∑
i ψ

2
i )/

√
Nt Nx with � the real value. (e) Adder circuit for four qubits [49].

the cases with dt = 0.05 and dt = 0.1. However, for dt =
0.2, the ITE trajectories converge to an unphysical state,
which is in accordance with the stability condition. In this
scenario, the coefficients ψi j (4) corresponding to later times
become overrepresented. In Fig. 9(b), we show E1 as a func-
tion of the number of time qubits for a fixed time step of
dt = 0.05 and a spatial register of nx = 3 qubits. We see that
for this time step, there is a gap for any number of time qubits,
and that it decreases with the number of qubits for a constant
dt as the number of eigenstates of the system increases. Our
simulations with the modified Hamiltonian (A15) for dt =
0.2 show a constantly decreasing energy, without converging
to a state that satisfies the eigenvalue condition (A12). For
the states |ξ 〉 which we found on the way, Ĥ (|ξ 〉) presents
a degenerate ground state. This suggests that there is indeed
a closing gap for our modified Feynman-Kitaev Hamiltonian
once we violate the stability condition.

APPENDIX B: EVALUATION OF THE COST FUNCTION

To measure the expectation value 〈Ĥ〉 on a quantum com-
puter, it needs to be expressed using unitary circuits. We have
produced the numerical results in this paper by decomposing
the cost function into Pauli strings. This is not a scalable ap-
proach because the number of these strings, in general, scales
exponentially with the number of qubits [83]. When using a
Pauli string decomposition for nonlinear problems, it is also
necessary to decompose the cost function repeatedly during
the optimization process to update the linearized function.
In this section, we show that there is a decomposition into
a constant number of circuits using QNPUs [49], if one can

efficiently create the initial state |ψ0〉 on a quantum computer.
We show that the number of two- or three-qubit gates in these
circuits scales linearly with the number of qubits. This is
important for the scalability of the algorithm.

The QNPU approach allows us to separate space and time
in the cost function, as the propagator T̂ is independent of
time. The time part of the Ĉ1 term (A7b) is then given by the
sums over |i〉〈i| and |i + 1〉〈i + 1|. In general, the sum over
all projectors |i〉〈i| is an identity. However, as these sums run
until Nt − 1, they represent an identity with one missing entry,
given by

Nt −1∑
i=0

|i〉〈i| = Î − |Nt 〉〈Nt |, (B1a)

Nt −1∑
i=0

|i + 1〉〈i + 1| = Î − |0〉〈0|. (B1b)

We can then rewrite the Ĉ1 term of the cost function as

Ĉ1 = Î ⊗ (Î − |Nt 〉〈Nt |) + T̂ †T̂ ⊗ (Î − |0〉〈0|). (B2)

This reduces the complexity of the time part of Ĉ1 to that
of a single projector for both terms. The first term is deter-
mined in one circuit by sampling the ansatz and counting the
results where the time is not |Nt 〉. The second term can be
implemented efficiently by using an ancilla qubit to indicate
whether the time was |0〉 before performing a Hadamard test
to measure T̂ †T̂ , then postselecting the results for times other
than |0〉. In general, the probability of this approaches 1 as nt

is increased. This circuit is shown in Fig. 2(d) in the main text.
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FIG. 11. Schematics of a brick-wall ansatz with a single layer and a generic MPS ansatz of bond dimension χ = 4. (a) One layer of the
brick-wall ansatz. (b) Generic quantum MPS with χ = 4. (c) Three-qubit unitary, with the part taken out for the sparse χ = 4 quantum MPS
shown in red. The dashed unitary is left out if it overlaps with one of the next block. (d) Two-qubit unitary with one CNOT for the brick-wall
ansatz. (e) Two-qubit unitary for the MPS ansatz for a number of CNOTS per block of r = 1...3. The dashed gate is left out if it overlaps with
an Rz gate of the previous block.

We propose that one can combine it with a measurement of Ĉ0

(described below) as shown in Fig. 10(a).
The Ĉ2 term (A7c) concerns the shift operator |i + 1〉〈i|

and its adjoint. This term can be encoded efficiently using an
adder circuit, such as the one by Lubasch et al. [49], with
a depth that scales linearly with the number of qubits. For
small numbers of qubits, one could use the one by Sato et al.
[44] instead. The shift operator in Ĉ2 is not periodic, thus it
is necessary to filter out the |Nt 〉〈0| term. We achieve this
by adding a qubit to our time register which we initialize to
zero; instead of |Nt 〉〈0|, there will be an |Nt 〉〈Nt + 1| term, for
which the Hadamard test will measure an overlap of zero. This
can be seen in Fig. 10(b).

The spatial part of the Ĉ1 and Ĉ2 terms is given by the
propagator T̂ , as well as T̂ †T̂ . For the second-order Taylor
approximation used in our main results, T̂ contains terms
up to the square of the Laplace operator, and T̂ †T̂ up to its
fourth power. In general, one can formulate a QNPU as given
by Lubasch et al. [49] to calculate any of the terms in the
equation. In the propagator T̂ to second order, one has the
Laplacian ∂2

∂x2 , the nonlinear term f ∂
∂x , as well as the squares

of both and the product of the two with each other. For T̂ †T̂ ,
one also needs to implement the third and fourth powers. The
first derivative ∂

∂x and the Laplacian ∂2

∂x2 can be produced by
applying an adder circuit in space, implementing the finite
difference approximations of either derivative as (Â − Î )/�x
and (Â − 2Î + Â†)/(�x)2, respectively. For the nonlinearity,
one can create a duplicate of the ansatz and do a pointwise
multiplication. The differential operator L from Eq. (1) can
then be calculated using

L = 1

(�x)2
(Â − 2Î + Â†) − βM 1

�x
(Â − Î )ĉ, (B3)

where Â represents the adder circuit and ĉ the multiplication
with a duplicate of the ansatz. One can see this as a diagonal
operator with the coefficients of the state on the diagonal.
M is a constant with which the nonlinear term needs to be

multiplied to turn the amplitudes of the quantum state into the
function values f (x, t ). The value of this can be determined
from the norm N of the initial state divided by the probability
to measure |0〉 time.

In this QNPU formulation, a complex-valued equa-
tion (A1) is being solved, instead of the real-valued Burgers
equation, because the pointwise multiplication ĉ multiplies
with the complex amplitudes of the state. To reproduce the
real-valued equation, the state |�〉 has to be real-valued.
This can be ensured using a real-valued ansatz [62] or
by adding a penalty term to the cost function, such as
Ĉ3 = c3[1 − �(

∑
i ψ

2
i )], with � the real value, which is

zero if all amplitudes are real. A circuit that can be used
to measure �(

∑
i ψ

2
i ) up to a factor

√
Nt Nx is shown in

Fig. 10(d).
In the representation of Eq. (B3), the propagator T̂ can

be expressed up to first order in four circuits because one
can take Â and its adjoint together. The operator T̂ †T̂ from
the Ĉ1 can be expressed in 11 circuits up to first order. The
term Î ⊗ (Î − |Nt 〉〈Nt |) from Eq. (B2) can be measured in
a single circuit, and the same holds for ψ2 from Ĉ3 when
using a complex-valued ansatz. One additional circuit is nec-
essary to determine the probability to measure the zero time
state, which is needed for the normalization constant M. This
brings us to a total of 18 circuits for the Burgers equation with
a first-order propagator.

The coefficients in front of all of these circuits depend on
the Taylor series of the exponential of �t L from Eq. (3),
with L from Eq. (B3). For the diffusion term, this means
that the coefficients scale with powers of �t/(�x)2, while for
the nonlinear term, they scale with �t/�x. It is important to
make sure that these coefficients do not increase exponentially
with the number of space or time qubits. A good scaling can
be achieved when �t ∝ �x2, i.e., adding two time qubits to
the system for every added space qubit. Interestingly, this
coincides with the stability condition for a PDE that is first
order in time and second order in space, which requires that
�t/(�x)2 is bounded [53].
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FIG. 12. Comparison of the cost 〈Ĥ〉 achieved using the brick-
wall ansatz with r = 1 or 2 CNOTS per block, with a reversed
space entanglement structure, and a brick-wall ansatz with two to
eight layers for r = 1 and one to four layers for r = 2. The lines
represent the median of the cost resulting from 20 different random
initializations, which are plotted as scattered points. (a) Diffusion.
(b) Burgers equation.

1. Initial state

The time part of Ĉ0 is the projector |0〉〈0|, and the space
part is an identity minus a projector Î − |ψ0〉〈ψ0|. If one
can prepare the initial state |ψ0〉 as a quantum circuit, it is
possible to do a swap test to measure the overlap between the
ansatz and this initial state. This results in a linear number of
controlled swap gates. One can make this more hardware ef-
ficient using a destructive swap test [66], which only requires
CNOT gates instead of controlled swap gates. However, it is
necessary to sample the time register and filter out the time
states that are not |0〉. Because Ĉ0 only measures time |0〉,
and the T̂ †T̂ term in Ĉ1 only measures times other than |0〉,
we propose a circuit where one conditionally measures Ĉ0 or
Ĉ1, based on the state of the time qubits. This is shown in
Fig. 10(a).

This measurement can be simplified if the initial state is
a basis vector of the computational basis or if a basis trans-
formation can be applied such that the initial state can be
identified by a single bitstring. In this case, one can sample all
qubits and determine the probability of finding time |0〉 and
a spatial state that is not |ψ0〉. In particular, the Ĉ0 term for
a sine wave as the initial condition could be measured using
a quantum Fourier transform on the space qubits instead of a
swap test.

APPENDIX C: ADDITIONAL ANSATZ CIRCUITS

1. Brick-wall ansatz

The brick-wall ansatz [Fig. 11(a)] consists of layers of two-
qubit unitaries. For the results in the main text, we used a two-
qubit unitary consisting of six rotations and one CNOT gate,
as given in Fig. 11(d). We have also run the simulations with
two CNOTS per block by duplicating this two-qubit unitary,
thus creating layers that are twice as deep. The achieved cost
for both diffusion and the Burgers equation can be seen in
Fig. 12. We see here that there is no notable disadvantage in
most cases by using less, but deeper, layers.

FIG. 13. Comparison of the cost 〈Ĥ〉 achieved using different
MPS ansatz circuits with χ = 2 as well as χ = 4, with three versions
of the two-qubit unitary (three data points on every line) and two
versions of the three-qubit unitary (orange and green lines), with a re-
versed space entanglement structure. The lines represent the median
of the cost resulting from 20 different random initializations, which
are plotted as scattered points. (a) Diffusion. (b) Burgers equation.

2. MPS ansatz

We consider an MPS ansatz of bond dimension χ = 4
as given in Fig. 11(b). In general, each of the three-qubit
unitaries in this ansatz circuit can be decomposed into six two-
qubit unitaries [95]. Of these six two-qubit unitaries, the last
one overlaps with the first one of the next three-qubit unitary
so it is left out, except at the end of the circuit. This means
that a structure with five two-qubit unitaries is obtained. To
limit the circuit depth, we use a sparse MPS with only three
two-qubit unitaries, as shown in Fig. 11(c). In this circuit, we
also vary the complexity of the two-qubit unitary. A generic
two-qubit unitary can be composed of 15 rotations and three
CNOT gates [66,96]. We use three different depths of this
circuit as shown in Fig. 11(e). In Fig. 13, we present the
cost as a function of circuit depth and compare with the full
χ = 4 quantum MPS (with five two-qubit unitaries of varying
depths), as well as a χ = 2 quantum MPS, to verify that the

FIG. 14. Cost 〈Ĥ〉 versus achieved number of L-BFGS-B itera-
tions for all 20 random initial conditions for the diffusion problem
using a brick-wall ansatz with two to eight layers. (a) Sequential
entanglement structure. (b) Reversed space.
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FIG. 15. Solutions to the Burgers and diffusion equation (12) sampled on NISQ machines. We use 3 + 3 qubits (23 = 8 points in
space and in time) and a reversed space quantum MPS ansatz (Sec. II C) with 26 CNOT gates (Burgers) or 13 CNOT gates (diffusion).
(a) Burgers equation, Quantinuum H1-1E emulator. (b) Burgers equation, IBMQ Ehningen. (c) Diffusion equation, Quantinuum H1-1E
emulator. (d) Diffusion equation, IBMQ Ehningen. The dashed lines correspond to a converged circuit from a noiseless simulator. This
noiseless result overlaps with numerical results with an infidelity of 1.89 × 10−4 (Burgers) or 3.2 × 10−7 (diffusion). More details can be
found in Sec. III A.

sparse χ = 4 quantum MPS provides a good balance between
circuit depth and expressibility.

APPENDIX D: OPTIMIZATION PROTOCOL

For both the diffusion and Burgers equation, we use an
optimization procedure where we start with a configuration
with a small D and β = 0 and then ramp up either D or β.
This is equivalent to Barison et al. [59], who instead increased
the time step in steps to avoid barren plateaus.

We optimize this initial configuration with 2500 steps of
the Adam optimizer [75], and all following configurations
with at most 2500 steps of the L-BFGS-B optimizer [76]. For
the diffusion equation, we start with a diffusion coefficient of
1/8. After optimizing with Adam, we increase D in steps to
1/4, 1/2, and, finally, 1, optimizing with L-BFGS-B in be-
tween. For the Burgers equation (12), we start with a diffusion
coefficient of D = 0.05 and a nonlinearity coefficient β = 0,
so the optimization with Adam can be performed on a linear
equation, which is less computationally expensive. We then
increase β in steps to 1/8, 1/4, 1/2, and, finally, 1, optimizing

with L-BFGS-B in between. This means that we end with
β = 20D, which is sufficient to observe nonlinear effects.

We chose these optimizers because the Adam optimizer
allows us to avoid local minima that can be encountered when
starting from a random initial state, whereas the L-BFGS-B
optimizer is more local, and thus well suited in cases where
the initial state is already reasonably close to the solution.
For either optimizer, we use automatic differentiation [97] to
determine the gradients of the cost function with respect to all
ansatz parameters.

For the L-BFGS-B optimization, we consider the L-BFGS-
B optimization converged if the difference in cost between
two successive iterations is less than 10 times the machine
precision. We choose a very low value here to be able to
benchmark the cost function, which means that the maximum
of 2500 iterations per value of D is exhausted for most runs of
the linear problem.

We run the above protocols for both types of ansatz, with
different depths for the brick-wall ansatz and different bond
dimensions for the quantum MPS. We run each simulation
20 times with random initial conditions. We plot the cost for
each random initialization as a function of the number of

FIG. 16. Solutions to the diffusion equation [Eq. (12) with β = 0], without a shift in the y coordinate, sampled on NISQ machines. We use
3 + 3 qubits using [(a), (b)] a brick-wall ansatz of three layers or [(c), (d)] a quantum MPS ansatz of 13 CNOT gates, and sample the result
on [(a), (c)] Quantinuum H1-1E emulator and [(b), (d)] IBMQ Ehningen. The dashed lines correspond to the state-vector simulation, which
corresponds to results from numerical integration with an infidelity of 1.09 × 10−6 for both cases.
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FIG. 17. Comparison of the solutions from a noiseless simulator with 3 + 3 qubits (23 = 8 points in space and in time) to a classical
simulation on a fine grid for (a) diffusion using a brick-wall ansatz with three layers and (b) Burgers equation using a brick-wall ansatz with
four layers.

L-BFGS-B iterations in Fig. 14. We can see here that the
simulations for shallow circuits converge around a cost of
10−2, while the deeper circuits either exhaust the maximum
number of iterations or converge at a cost below 10−10, which
is close to machine precision. Especially for the reversed
space structure, there are many runs that converge at a low
number of iterations for all numbers of layers � 3.

For shallow circuits, we find that the cost landscape is
irregular, and thus a measurement protocol using different ran-
dom initializations, then taking the one that leads to the lowest
cost, is necessary. With deep circuits, we find that the opti-
mization will eventually converge if the number of iterations
is increased sufficiently, regardless of the initial condition. As
we are focusing on shallow circuits for NISQ devices, we
decided to present results from random initializations in this
paper.

APPENDIX E: ADDITIONAL IBMQ AND QUANTINUUM
RESULTS

In the main text, we have shown the final state result-
ing from noiseless optimization sampled on the IBMQ and
Quantinuum machines in Fig. 3. In that figure, we used a
brick-wall ansatz, and the initial condition for the diffusion

equation was given by f (x, t0) = 2 + sin(2πx). Here we show
similar results with a quantum MPS ansatz in Fig. 15. We
also show results for the diffusion in Fig. 16 for both ansatz
types without the upward shift in the y coordinates, using
the initial condition f (x, t0) = 1 + sin(2πx). We can see here
that both quantum computers have trouble representing am-
plitudes close to zero. We see in these figures that the lowest
amplitudes are better represented when using a shift, but the
overall precision goes down for both quantum computers.

It should be noted that the IBMQ results have been pro-
duced using readout error mitigation from the M3 library [81],
as well as dynamical decoupling [82] to avoid decoherence
during the idle time of the qubits, which is especially rele-
vant for the MPS ansatz. As these methods have not been
applied to the results from the Quantinuum platform, there
is still room for improvement here. In particular, one could
use an ansatz that uses the ZZPhase two-qubit gate defined
by ZZPhase(θ ) = exp ( − i πθ

2 (Z ⊗ Z )), which has an error
depending on the phase angle, instead of the CNOT gate
which fully entangles two qubits and is not a native gate of
the Quantinuum platform.

In Fig. 17, we show the same state-vector result that was
shown as a dashed line in Fig. 3, now combined with a
numerical solution on a very fine grid. We see that the error

FIG. 18. Standard deviation of the gradient norm of the cost function for the diffusion equation with respect to the ansatz parameters,
divided by the square root of the number of ansatz parameters, for 20 random initial conditions. (a) We consider the beginning of the first
optimization step for D = 0.125 and random initialization. (b) We consider the beginning of the last optimization step for D = 1, right after
the converged optimization for D = 0.5.
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FIG. 19. Result of noisy optimization of the diffusion equa-
tion on 2 + 2 qubits. The optimization was done using the IBMQ
Montreal noise model and the result has been plotted without noise.
The dashed lines correspond to the solution obtained via numerical
integration.

caused by the quantum algorithm is significantly smaller than
the discretization error.

APPENDIX F: BARREN PLATEAUS

The presence of barren plateaus is generally indicated by
an exponential decrease of the variance of the gradient of
the cost function, calculated for different random initializa-
tions, as a function of the number of qubits [63]. It has
been shown that there is a relation between barren plateaus
and ansatz depth [98] or ansatz expressibility [99] (and a

thorough understanding exists for quantum tensor networks
[100,101] such as the quantum MPS considered in this paper),
especially for local cost functions. Our cost function is not
entirely local because the shift operators in space and time
affect all space or time qubits, which means that one would
expect barren plateaus for shallow (or less expressive) ansatz
circuits as well. For this reason, we calculate the gradient of
the cost function during the optimization process for the diffu-
sion equation, using different numbers of qubits and different
ansatz depths.

In Fig. 18, we show the results for two different stages of
the optimization: after initializing randomly and after ramping
up the diffusion coefficient from D = 0.5 to D = 1 (which is
the last time that D is increased in the optimization procedure).
Instead of taking the standard deviation of one component
of the gradient, we have taken the standard deviation of the
gradient norm divided by the square root of the number of
parameters to be more rigorous. In this figure, there is no
indication of an exponential decrease with the number of
qubits.

APPENDIX G: NOISY VQE

We perform a preliminary study of the effect of noise on
the VQE optimization procedure by optimizing a 2 + 2-qubit
system on a noisy simulator with the IBMQ Montreal noise
model (another quantum computer with the same 27-qubit
chip as IBMQ Ehningen.) We obtained the result from Fig. 19
after less than 300 iterations. To highlight the effect of noise
on the optimization procedure, we have sampled the result
state without noise. We see that, despite the noise, optimiza-
tion is still successful and a state close to the desired solution
is found.
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