

Fuel Cell Hybrid PowerPack for Rail Applications

Limitations in the Hydrogen Refueling Process of Railway Vehicles

RAILWAYS 2024 - The Sixth International Conference on Railway Technology: Research, Development and Maintenance Prague, Czech Republic, 03/09/2024

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101006633. This Joint Undertaking receives support from the European – Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Co-funded by the European Union

Agenda

Motivation – Hydrogen vs. Diesel refueling

Modeling Approach for Hydrogen Refueling Process

Simulation Results for Hydrogen Refueling Time

Limitations in Hydrogen Refueling and Recommendations

FCH₂RAIL Project Overview & Consortium

Call Topic:

Extending the use cases for fuel cell trains through innovative designs and streamlined administrative framework

Main Objectives:

- Develop, build, test and homologate a multi-purpose Fuel Cell Hybrid PowerPack
- Demonstrate FCHPP in a Bi-mode Civia multiple unit
- Demonstrate competitiveness of fuel cell traction against existing diesel solutions

Hydrogen Refueling Process for Railway Vehicles Motivation and Targets

39% of German / 46% of EU rail network without overhead lines

• Diesel as a fuel is state-of-the-art, H₂ one possible alternative

Hydrogen in railway vehicles:

- Storage pressure at 350 bar CGH2
- Capacity of 160 320 kg hydrogen in regional trains
- Target refueling time: **15 min**

Problem:

- **Competitiveness** of the technology concerning refueling time
- Refueling with gaseous H₂ technically more challenging than with liquid diesel
- H₂ heats up due to **compression** and **Joule-Thomson effect**

Target:

• Identify limitations in the hydrogen refueling process of railway vehicles in **simulations and measurements**

European Union

Share of electrified line sections in 2017/19 Source: <u>BMDV</u>

Refueling process in FCH₂RAIL Mobile refueling station

Demonstrator of mobile refueling station

- Consists of 4 containers, operated by CNH2
- Refueling options: Intermediate storage or trailer

Pressure, temperature and mass flow limitations from refueling standard SAE J2601-2

- T = 85°C
- p = 43.75 MPa
- SoC = 100%
- Mass flow = 120 g/s

Measurement of refueling parameters

- Station: Temperature, pressure and mass flow in dispenser and other components
- Vehicle: Temperature and pressure in tanks

European Union

Railways 2024 | FCH2RAIL | Steffen Wieser, Linus Brünner

Modeling of Hydrogen Refueling Flow Resistances and Heat Transfer

Components of hydrogen refueling process

- Refueling station: Dispenser, breakaway, hose, nozzle
- Vehicle: Receptacle, piping, valves, tanks

Abstraction of components for modeling

- Summarize flow coefficient K_v
- Heat transfer from tanks to environment

* * * Co-funded by the European Union

6 CHSS: Compressed Hydrogen Storage System CFRP: Carbon Fiber Reinforced Polymer

Modeling of Hydrogen Refueling Dymola Simulation Model

Used **Dymola Libraries**

• Modelica Standard & Buildings Library

Hydrogen Refueling Model

- Termination conditions for simulation
- Refueling Station: Pressure ramp rate, pre-cooling, valves
- Vehicle: Valves, storage tanks

Heat Transfer model

- Convective heat transfer
- Heat radiation
- Heat conduction

Lumped parameter model instead of CFD model for **fast simulation time**

Railways 2024 | FCH2RAIL | Steffen Wieser, Linus Brünner

Modeling of Hydrogen Refueling Validation with Measurement Data

Measurement of **refueling data**

- Demonstrator refueling without pre-cooling
- Refueling in several **cascades**
- Measurement data of dispenser fitted as **input in simulation model**

Validation evaluation

- High pressure deviation at the beginning of refueling
- Temperature and pressure deviation around 5% for the rest of the time
- Relative behavior of temperature and pressure during refueling is similar in measurement and simulation
- Further validation with more data sets is planned

end of fueling

time in s

2 0 0 0

4 000

6 000

-20

end of fueling

time in s

4 000

6 000

2 000

Analysis of Refueling Process Simulation Results – Variation of Tank Type and Temperatures

Boundary conditions for refueling

- Starting pressure 60 bar
- Final temperature 85°C
- Final SoC 100% \rightarrow 160 kg H₂

Temperatures

- Ambient, pre-cooling and starting temperature in tank on same level
- Refueling time nearly triples from -10°C to 30°C

Tank types

- Refueling time for type 4 over 30% longer than type 3
- Hybridization of tank system offers faster refueling times than type 4 and higher energy density than type 3

Simulated refueling time for different tank types & temperatures:

	Туре З	Type 4	Hybrid
$\mathbf{T} = -10^{\circ}C$	13.5 min	17.1 min	15.3 min
	(± 0%)	(+26.1%)	(+13.1%)
T = 15° <i>C</i>	21.9 min	29.5 min	25.7 min
	(± 0%)	(+ 34.7%)	(+ 17.3%)
$\mathbf{T} = 30^{\circ}C$	36.2 min	50.4 min	43.3 min
	(± 0%)	(+ 39.1%)	(+ 19.6%)

Conclusion

Limitations for Refueling Time and Recommendations

Identified limitations for the refueling time:

- Temperature limitation in tanks (85°C)
- Choice of temperature which is limited
- Pressure loss from refueling station to vehicle
- Mass flow limitation per dispenser (120 g/s)

Concluded **recommendations** for a **fast refueling** process in railway vehicles:

- Maximize average mass flow and fast mass flow increase (e.g. degressive pressure ramp rates)
- Modularization and simultaneous refueling of several tank systems
- Active cooling of the tanks
- Use of type 3 tanks
- Setting a component temperature limit instead of a hydrogen gas temperature limit (e.g. liner)
- Refueling at the **lowest ambient temperature**
- Refueling with maximum **pre-cooling** (-40°C)

Further work: Optimization of the refueling process

Co-funded by the European Union

Testing the FCHPP

https://youtu.be/mC7EGb9VA7w

Train transformation

https://youtu.be/bFBR6nhyEVI

The Journey Begins!

https://youtu.be/s4JfnDbrLW8

HRS in service

https://youtu.be/RkGnYSADNO0

HONOR OF THE OWNER OWNER OF THE OWNER OWNE

Thank you for your attention!

 Stemmann-Technik

adif

ΤΟΥΟΤΑ

European Union

Grant Agreement Number: 101006633

Hidrógeno