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The pursuit of sustainable, zero-emission air travel is heavily dependent on the creation of energy-efficient 
aircraft. Key strategies for achieving this sustainability in aviation include reducing fuel consumption through 
low-drag designs harnessing laminar flow. However, designing aircraft with laminar flow characteristics is 
complex due to their sensitivity to environmental and operational factors. This study tackles the challenge of 
developing energy-efficient aircraft by using computational fluid dynamics models and sophisticated optimization 
techniques that account for uncertainty. Our approach demonstrates the effectiveness of surrogate-based 
optimization and uncertainty quantification in optimizing airfoil drag for a natural laminar airfoil (NLF) design. 
We use surrogate models, trained with data from detailed airfoil simulations, which include a boundary layer 
code coupled with a linear stability method and a newly developed transition transport model. Transition location 
predicted using transition models facilitate an accurate drag prediction used in the optimization process. The 
accuracy of these surrogate models is enhanced through active sampling strategies. Our robust optimization 
method considers uncertainties in environmental and operational conditions, offering a deeper insight into 
their effects on crucial design parameters. Unlike traditional deterministic aerodynamic design optimization, 
our findings highlight the efficacy and precision of uncertainty-based optimization in achieving robust NLF 
airfoil designs over large (exploration mode) and small (exploitation mode) design spaces. Investigating design 
space parameterization based on the size of design variables reveals significant differences in optimal airfoil 
configurations. The optimized designs we propose favor delayed transition, in contrast to deterministic designs 
which often result in significant loss of laminarity when facing uncertainties. This study represents a significant 
advancement in aerospace engineering, providing a practical and effective methodology for creating energy-

efficient airfoil designs. The application of these advanced optimization and uncertainty quantification techniques 
shows great potential for the wider field of aerospace engineering, paving the way for more resilient and robust 
aircraft designs.
1. Introduction

An ongoing challenge in commercial aviation is to reduce fuel con-

sumption, driven by the need to meet stringent environmental targets 
set by aviation regulatory bodies. The European Commission, for ex-

ample, has outlined goals of reducing CO2 emissions by 75% and NO𝑥

emissions by 90% per passenger kilometer by 2050 [1]. This effort not 
only addresses environmental concerns but also aims to reduce oper-

ational costs for airlines. Through the evolution of aviation, advances 
in aircraft design have led to more efficient commercial aircraft. How-
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ever, as the fundamental ‘tube and wing’ design of aircraft has largely 
remained unchanged, each new design iteration offers only incremen-

tal improvements in efficiency. To make significant progress in aircraft 
performance, it’s crucial to explore new aerodynamic configurations and 
leverage more complex airflow phenomena.

One such approach is the passive extension of laminar flow, known 
as Natural Laminar Flow (NLF), which extends the laminar boundary 
layer, reducing viscous drag and thereby improving aerodynamic effi-

ciency [2]. Achieving NLF involves suppressing boundary-layer insta-

bilities that cause flow transition. NLF benefits have so far been pri-
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marily explored for low swept wings at lower Reynolds numbers where 
boundary-layer instabilities are minimal [3]. At higher Reynolds num-

bers and sweep angles, crossflow instabilities near the leading edge can 
lead to turbulent flow [4]. However, by designing specific pressure pro-

files, it is possible to counteract these instabilities without active flow 
control devices [5]. Traditional NLF airfoil design achieves this through 
careful manipulation of pressure distribution [6,7].

Designing laminar wings typically involves inverse design methods 
based on linear stability theory (LST) [6,8], aiming to maintain laminar 
flow by specifying desired pressure distributions. While effective, these 
methods may not always yield optimal designs and heavily depend on 
the experience of the engineer. An emerging alternative is direct opti-

mization methods, which offer a broader exploration of the design space 
and can often produce better results than inverse design approaches. 
Aerodynamic shape optimization is well-established in both academia 
and industry [9]. For instance, direct shape optimization has been em-

ployed in designing NLF airfoils and wings [10]. Previous studies have 
designed NLF airfoils across various Mach numbers and lift coefficients 
to achieve robust configurations [11], focusing on minimizing a combi-

nation of the mean and standard deviation of the drag coefficient.

To design and analyze laminar flow wings, it is essential to have tran-

sition prediction and modeling techniques that can accurately capture 
all relevant transition mechanisms. These methods should also consider 
the effects of surface irregularities like roughness and surface waviness, 
as well as the impact of surface suction. The 𝑒𝑁 method is widely used in 
industry for transition prediction [12] and considered here as reference 
method. The more recent DLR 𝛾 model [13] which offers advantages in 
terms of automation and ease-of-use is considered to evaluate its appli-

cability in the design process. The critical N-factors in 𝑒𝑁 method are 
an integral measure of the flow quality and are strongly depending on 
disturbances, such as freestream turbulence intensity, surface imperfec-

tions and noise, and boundary-layer receptivity to these disturbances. 
The environmental uncertainties can be expressed as uncertainties in 
these critical N-factors. Similarly, environmental uncertainty can be ex-

pressed in terms of variation in the freestream turbulent intensity when 
the DLR 𝛾 model is used. Moreover, the variability in the flight condi-

tions can not be neglected and must be considered as operational un-

certainties in the design process. Therefore, using the above-mentioned 
high-fidelity methods for an effective implementation of NLF becomes 
complex due to sensitivity to the uncertain environmental as well as 
operational conditions [14].

There is a notable gap in real-world applications of robust design 
methodologies for NLF, particularly in scenarios involving swept wings. 
Previous efforts have largely relied on low-fidelity simulations focusing 
on 2D instabilities, limiting their applicability to more complex scenar-

ios. Robust design optimization under uncertain critical N-factors has 
been proposed [15], using tools like XFOIL combined with boundary-

layer solvers and the 𝑒𝑁 transition model. More recently, an efficient 
bilevel approach for optimization under uncertainty has been proposed 
[16], where the authors considered the uncertainty not only in the 
N-factors but also in the operational conditions. While environmental 
uncertainties have been explored for the 𝑒𝑁 method, similar analysis 
for transition transport models like the DLR 𝛾 model is still lacking. 
A robust optimization using Reynolds-averaged Navier–Stokes (RANS) 
simulations with both the 𝑒𝑁 method and the DLR 𝛾 model, presents 
an opportunity for such a comprehensive analysis. Moreover, most of 
the literature focuses on a relatively limited design space, primarily cen-

tered around baseline configurations resulting into a sub-optimal design 
owning to feasible-yet-unexplored design space. A surrogate based de-

sign optimization framework can facilitate exploration of a larger design 
space at a considerably lower computational cost compared to other 
global optimization techniques.

This study focuses on three primary objectives: (i) utilizing a proba-

bilistic framework [17] for designing robust NLF transonic airfoils that 
are resilient against uncertain environmental and operational conditions 
2

at high sweep and Reynolds numbers, (ii) comparing the robust (and de-
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terministic) optimum designs obtained using both the 𝑒𝑁 method and 
DLR 𝛾 model, and (iii) comparing the optimum designs resulting from 
larger and smaller design spaces, regarded as exploration and exploita-

tion mode design spaces, respectively.

The paper is structured as follows: Section 2 introduces the bilevel ro-

bust optimization framework using surrogate models. Section 3 details 
the setup for transonic airfoil optimization under uncertainty, includ-

ing problem formulation, flight conditions, transition models, environ-

mental uncertainties, design space parameterization, and the numerical 
model for computing aerodynamic quantities of interest (QoIs). Sec-

tion 4 presents the results from deterministic and robust optimization 
using both transition models and exploration as well as exploitation 
mode. Finally, conclusions are offered in section 5.

2. Methodology

Addressing a global optimization issue might necessitate numerous 
evaluations of a function (regarded as a black-box) which varies with 
the complexity of the design space and non-linearity of the function. 
This process can quickly become unmanageable and impractical, par-

ticularly when the design space is multi-dimensional or the function 
evaluation is costly (like a standard CFD simulation). Additionally, the 
computational burden increases significantly due to the need for a sta-

tistical evaluation at each step as explained in the following section. To 
address these challenges, an effective surrogate-based robust optimiza-

tion approach is employed, which has been demonstrated successfully 
in [17].

2.1. Optimization problem

Let 𝑌 ∈ ℝ be the quantity of interest (QoI) which is usually a per-

formance measure such as drag coefficient, depending (typically non-

linearly) on the design variables 𝒙 ∈ℝ𝑑 at operating conditions 𝑨. The 
goal of deterministic optimization is to find an optimal set of design vari-

ables 𝒙∗ at constant (nominal) operating conditions 𝑨0 while satisfying 
𝑘 constraints on the design variables,

𝒙∗ = argmin
𝑥

{𝑌 (𝒙,𝑨0)},

𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2, ..., 𝑘.
(1)

Robust optimization focuses on identifying an optimal design while 
accounting for uncertainties in environmental and/or operational condi-

tions, represented as 𝝃 ∈ℝ𝑚. As a result, the QoI is treated as a random 
variable. This alters the optimization objective from simply optimizing 
the QoI to optimizing a significant statistic of the QoI. To achieve this, 
the statistic of the QoI, such as the mean, standard deviation, or quan-

tile, is calculated using uncertainty propagation methods. The optimizer 
then aims to minimize this statistic. In this study, the mean value of the 
QoI, denoted as 𝜇𝑌 , is considered, and the robust optimization problem 
is defined accordingly.

𝒙∗ = argmin
𝑥

{𝜇𝑌 (𝒙,𝝃)},

𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2, ..., 𝑘.
(2)

Note that, choosing standard deviation as the objective function of 
the optimization process may provide an airfoil which is less sensitive to 
the uncertainties but may not guarantee an improved mean performance 
over the baseline airfoil. Ultimately the choice of the objective functions 
depends on the user and their application at hand. The methodology as 
such remains unchanged from alterations in objective function.

2.2. Surrogate-based approach for robust optimization

A versatile bilevel surrogate model framework has been effectively 
applied to a variety of robust design optimization challenges with a mod-
erate level of dimensions and uncertainties, as referenced in [17,16]. 
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Fig. 1. Bilevel approach for robust optimization [17]: surrogate of statistics (left), surrogate of random variable (middle), and full-order model evaluation (right). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
This framework, depicted in Fig. 1, integrates two loops: an outer loop 
using a Surrogate-Based Optimization (SBO) approach, and an inner 
loop employing a Surrogate-Based Uncertainty Quantification (SBUQ) 
method. In each optimization cycle, only the design variables 𝒙 are en-

tered into the SBO surrogate (illustrated by the red response surface), 
producing the QoI’s statistic as output. Conversely, the SBUQ surrogate 
(shown as the blue response surface) takes the uncertainties 𝝃 as input 
for a set of (fixed) design variables and outputs the QoI, calculated via 
a black-box function.

This gradient-free robust optimization framework is particularly ben-

eficial for CFD simulations that involve transition predictions using the 
𝑒𝑁 method or the DLR 𝛾 model, which do not yield adjoint solutions in 
a straightforward manner. The framework’s overall efficiency is further 
boosted by refining the area around the optimal solution through infill 
(adaptive sampling) techniques. Additionally, the efficiency is enhanced 
by the parallel evaluation of the design of experiments (DoE) and the 
inherent parallelization capabilities of the black-box CFD solver.

2.2.1. Optimization

The primary aim of the outer loop (SBO) in the bilevel framework is 
to conduct an efficient optimization using a minimal number of costly 
black-box evaluations, as noted in [18]. To achieve this, a surrogate 
model is constructed that not only links the design variables to the QoI 
but is also economical to evaluate.

The SBO module of the Surrogate-Modelling for AeRo-data Tool-

box in pYthon (SMARTy), developed by the German Aerospace Center 
(DLR), is utilized in this process, as referenced in [19]. This optimization 
module (i) initiates the design space exploration with a DoE sampling 
and evaluating the objective function (and constraints), (ii) constructs a 
surrogate model for the objective function (and constraints), (iii) applies 
an active infill criterion to progressively identify the optimum, requir-

ing black-box solver evaluations for each proposed optimal design, and 
(iv) updates the surrogate model(s) after each infill iteration. For the 
DoE phase, Sobol sequence is employed [20], and for surrogate model-

ing, Kriging (Gaussian process regression) models are used [21]. Further 
details on constructing a Kriging model are available in Appendix A.

The infill criterion implemented in this study is the expected im-

provement (EI) method. This method is based on the normal distribution 
predictions (mean 𝑦̂(𝒙) and standard deviation 𝜎̂(𝒙)) of the objective 
function derived from the Kriging surrogate at any specific point 𝒙 in 
the design space, as outlined in [22]. The EI is calculated using the like-

lihood of improvement compared to the current best sampled solution 
𝑦𝑚𝑖𝑛.

( ) (
𝑦𝑚𝑖𝑛 − 𝑦̂(𝒙)

) (
𝑦𝑚𝑖𝑛 − 𝑦̂(𝒙)

)
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𝐸𝐼[(𝒙)] = 𝑦𝑚𝑖𝑛 − 𝑦̂(𝒙) Φ
𝜎̂(𝒙)

+ 𝜎̂(𝒙)𝜙
𝜎̂(𝒙)

, (3)
where Φ and 𝜙 are the cumulative and probability distribution functions 
of the standard normal distribution, respectively. The EI infill method 
balances exploration with exploitation in the sense that a large expected 
improvement is present in the regions where a solution smaller than the 
current best is possible and/or in the regions where the model error is 
large. The EI implementation in SMARTy accounts for the probability of 
feasibility by computing the probability of not violating the constraints 
and multiplying it to the EI value at a given location. Differential evo-

lution is employed to locate the optimal position where EI is maximum. 
The refining continues until the convergence criteria (L2 distance be-

tween consecutive design vectors or the EI values) or the maximum 
number of infill points (budget) is reached.

2.2.2. Uncertainty quantification

The objective of the inner loop (SBUQ) in the bilevel framework is 
to effectively propagate the input uncertainties to the QoI, and then 
to precisely estimate the QoI’s statistical measures for use in SBO. To 
compute the statistics, instead of applying the Monte Carlo method in 
a conventional manner i.e. directly evaluating complex and expensive 
black box function, it is used to evaluate a simpler and inexpensive sur-

rogate model, which represents the original function’s behavior. This 
involves constructing a Kriging surrogate model based on the initial DoE 
conducted in the stochastic space, along with its evaluations (black-box 
solutions). This model maps the uncertainties to the QoI. To enhance 
the surrogate’s accuracy, an active infill criterion based on statistics is 
utilized. In this case, the infill criterion focuses on the mean of the QoI, 
demanding high global accuracy of the surrogate.

The infill criterion employs the prediction mean square error 𝑠̂(𝝃)
at any given point 𝝃 within the Kriging surrogate to ensure balanced 
sampling in the stochastic space. New samples are sequentially added—

post updating the surrogate—at the location 𝝃∗ where the product of the 
joint probability distribution function of the input uncertainties PDF𝜉
and the error estimate is maximized. The minimization problem is thus 
formulated as:

𝝃∗ = argmin
𝝃

{−PDF𝜉(𝝃) 𝑠̂(𝝃) } (4)

In this formulation, the PDF𝜉 component prioritizes sampling from areas 
with higher probability in the stochastic space, while the error term 𝑠̂(𝝃)
targets regions where the surrogate model’s accuracy is lower. Differen-

tial evolution is employed to locate the optimal position in the surrogate. 
The statistic of the QoI is then acquired using a large number of Quasi 
Monte Carlo samples evaluated using the surrogate model. The sam-
pling choice is based on its efficiency and accuracy in high-dimensional 
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integration tasks, better convergence rates than traditional Monte Carlo 
methods, and its straightforward implementation.

3. Numerical setup

This section outlines the formulation of both deterministic and ro-

bust transonic airfoil optimization. It includes a detailed characteriza-

tion of the design space and the uncertainties involved, as well as a 
description of the numerical model employed as the black-box solver.

3.1. Flight conditions

The deterministic and robust optimization processes aim to identify 
the optimal design for a transonic airfoil operating under specific condi-

tions: Mach number 0.78, lift coefficient 0.7, Reynolds number 23 ×106, 
and a sweep angle of 27𝑜. At these conditions, attachment line tran-

sition, Tollmien-Schlichting transition and crossflow transition are the 
most relevant mechanisms leading to laminar-turbulent transition of the 
flow over aircraft wings. An analysis of flight test data of the Fokker 
100 and the Advanced Technologies Testing Aircraft System (ATTAS) is 
presented in [23,24]. Attachment line transition can be prevented, for 
example using anti-contamination devices or Gaster bumps and is thus 
not considered in this study. In contrast to that, crossflow instabilities 
can be mitigated through careful wing profiling that reduces stream-

wise pressure gradients. On the other hand, larger streamwise pressure 
gradients are desirable to mitigate TS transition. This balance between

different transition mechanisms can be effectively achieved through nu-

merical optimization, facilitating extended regions of laminar flow even 
at higher Reynolds numbers and sweep angles.

3.2. Deterministic and robust optimization

In the present study, the deterministic optimization solves for the 
optimum design 𝒙∗ that minimizes the drag coefficient at a constant 
(nominal) value of Mach number and lift coefficient. The maximum air-

foil thickness normalized by chord length 𝑡∕𝑐𝑚𝑎𝑥 is set to be greater than 
𝑡∕𝑐𝑚𝑎𝑥,0 = 0.11:

𝒙∗ = argmin
𝑥

{𝐶𝐷(𝒙,𝑀,𝐶𝐿)}

s.t. 𝑡∕𝑐𝑚𝑎𝑥 ≥ 𝑡∕𝑐𝑚𝑎𝑥,0
(5)

The chosen maximum thickness-to-chord ratio ensures a balance be-

tween aerodynamic performance and structural integrity, thereby result-

ing in a reasonable trade-off between minimizing drag and maintaining 
sufficient structural strength and fuel volume.

The constant lift coefficient is handled by the CFD solver by itera-

tively adjusting the angle of attack. The maximum thickness constraint 
is set as a constraint in the optimization process.

In order to approximate realistic flight conditions, the robust opti-

mization incorporates both environmental and operational uncertainties 
𝝃. As discussed earlier, the QoI (𝐶𝐷) becomes a random variable, the 
statistic of which is therefore optimized. In order to obtain an overall 
good performance, in this study, the minimization of the mean values 
of the drag coefficient 𝜇𝐶𝐷 is sought.

𝒙∗ = argmin
𝑥

{𝜇𝐶𝐷 (𝒙,𝝃)}

s.t. 𝑡∕𝑐𝑚𝑎𝑥 ≥ 𝑡∕𝑐𝑚𝑎𝑥,0
(6)

3.3. Design parameterization - exploration vs exploitation

In both deterministic and robust optimization, the objective function 
is influenced by the design variables 𝒙, which determine the airfoil’s 
4

shape. This study employs class shape function transformations (CSTs) 
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to model and modify the airfoil’s profile throughout the optimization it-
erations, as outlined in [25]. The CST parameterization describes a two-

dimensional geometry using a combination of a class function 𝐶(𝑥∕𝑐), a 
shape function 𝑆(𝑥∕𝑐) based on Bernstein binomials, and an additional 
term for the trailing edge thickness:

z
c
= 𝐶

(x
c

)
𝑆

(x
c

)
+ x

c
Δ𝑧𝑇𝐸
𝑐

𝐶

(x
c

)
=
(x
c

)𝑁1 (
1 − x

c

)𝑁2
for 0 ≤ x

c
≤ 1

𝑆

(x
c

)
=

𝑛∑
𝑖=0

[
𝑋𝑖𝐾𝑖,𝑛

(x
c

)𝑖 (
1 − x

c

)𝑛−𝑖]
(7)

In this equation, 𝐾𝑖,𝑛 =
𝑛!

𝑖!(𝑛−𝑖)! . The exponents 𝑁1 and 𝑁2 are chosen to 
reflect the desired geometry type. For an airfoil, typically 𝑁1 = 1∕2 and 
𝑁2 = 1 are used, as 

√
𝑥∕𝑐 produces rounded leading edges and (1 −𝑥∕𝑐)

leads to sharp trailing edges. The weight factors 𝑋𝑖 represent the design 
variables. CST parameterization ensures 𝐶2 continuity of the surfaces 
and effectively captures a range of smooth airfoil shapes. Ten design 
parameters (five for the upper surface and five for the lower surface) 
define this parameterization. However, in order to ensure 𝐶2 continuity, 
the first CST parameter on the lower surface is chosen equivalent to the 
first parameter on the upper surface, effectively resulting in nine design 
parameters.

The theoretical range for CST parameters is [−1, 1]. We consider de-

sign spaces in exploration and exploitation modes bounded relative to 
the baseline transonic airfoil (RAE2822) design 𝒙0. In search of an opti-

mal design away from the baseline, in the exploration mode, we consider 
the CST bounds at 𝒙0 ±0.3. Although, these bounds may encounter unre-

alistic designs, they are also expected to capture a significantly improved 
(optimal) design. To prevent unrealistic designs and enhance optimizer 
convergence, in the exploitation mode we consider setting CST bounds 
at 𝒙0(1 ± 0.3), i.e., ±30% of the baseline design. Fig. 2 illustrates both 
the design variable bounds and example airfoil profiles away-from as 
well as around the baseline.

3.4. Numerical model

The flow around the airfoil is simulated using the TAU CFD solver 
from the German Aerospace Center (DLR) [26]. The aerodynamic prop-

erties of interest are determined by solving the RANS equations along 
with the 𝑘 − 𝜔 SST turbulence model [27]. The solver’s configuration 
includes a 4w multigrid cycle, a backward Euler solver for pseudo-

time integration and a central flux discretization scheme. An infinite 
swept-wing formulation for 2.5D analysis is used to efficiently consider 
cross-flow effects, as detailed in [28]. The employed unstructured mesh 
comprises 150,000 cells and 1024 surface nodes, as shown in Fig. 3. 
The wall normal discretization has a growth ratio of 1.05 allowing to 
maintain a maximum 𝑦+ of 0.25. Laminarity (transition prediction) is 
considered for upper as well as lower surface of the airfoil. The compari-

son of results for baseline airfoil simulation and experiments is deferred 
to the extensive studies in the aerospace community (and thereby its 
literature) [29].

To predict the transition location on the airfoil, two different meth-

ods are utilized: the widely used 𝑒𝑁 method [30] and the more recently 
developed DLR 𝛾− model [13]. The aim of employing both models is 
to compare the resulting optimal designs and evaluate their robustness 
against environmental and operational uncertainties.

The combination of linear stability theory (LST) and 𝑒𝑁 method is 
considered as state-of-the-art for aerodynamic shape optimization in-

volving laminar flow. This method is validated through wind-tunnel and 
flight tests [8,24] and frequently employed in the industry for predict-

ing transition. It is, therefore, considered as reference method in the 
present work and, for brevity, referred to as 𝑒𝑁 method. This streamline-

based approach is implemented in the transition prediction module of 

the DLR TAU code [12]. For the present work the option to compute 
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Fig. 2. CST design variable bounds used for optimization in exploration (left) and exploitation (right) modes. RAE2822 airfoil (dashed) and sample airfoil profiles 
(colored) in the design space (bottom).

Fig. 3. CFD grid of the baseline (RAE2822) airfoil used in the optimization problem. Every iteration in the optimization performs a mesh deformation.
boundary-layer data with the boundary-layer code COCO [31] is used. 
Linear stability analysis is performed with the LILO code [32] in incom-

pressible mode. According to the 𝑒𝑁 method, the transition location is 
determined where the N-factors for Tollmien-Schlichting (TS) transition 
or crossflow (CF) transition exceed certain thresholds.

The class of transition transport models has recently gained signif-

icant attention, in particular for application in laminar airfoil design. 
The DLR 𝛾 model [13], an enhancement of the 𝛾 -𝑅𝑒Θ𝑡

model, for trans-

port aircraft applications is a member of this class and used as a second 
transition prediction method in this work. It includes the “Simple-AHD” 
criterion [33], i.e. an adapted criterion accounting for pressure gradients 
and considering the effect of compressibility. Furthermore, it includes a 
crossflow extension [34]. It has been effective for laminar wings at high 
Reynolds numbers (around 107) and is continuously validated and ex-

tended [35]. In this study, however, the crossflow extension is not used 
as the implemented transition criteria are currently not including a de-

pendence on environmental conditions. This restriction is accepted as 
previous research [16] has shown that crossflow instabilities do not sig-

nificantly impact transition location under the considered conditions.

The shape modification during optimization is handled through 
mesh deformation relying on the Flowsimulator framework. Further de-

tails on the steps involved and the framework in general can be found 
5

in [36].
3.5. Uncertainty characterization

To achieve laminar configurations resilient to variations in environ-

mental and operational conditions, it’s crucial to identify and incorpo-

rate these factors into the optimization process. The critical N-factors 
𝑁𝑇𝑆, 𝑁𝐶𝐹 used in the 𝑒𝑁 method serve as a comprehensive indicator of 
flow quality, as discussed in [37,8]. These factors are significantly influ-

enced by freestream conditions such as cloud presence and disturbance 
level (turbulent intensity) [38]. Additionally, surface imperfections and 
acoustic disturbances can have a detrimental impact on laminar flow, 
i.e. reduce the critical N-factors. Thus, the physical (environmental) 
uncertainties associated with the 𝑒𝑁 method can be represented by vari-

ability in these critical N-factors. A recent study [16] explored various 
distributions of uncertainties in critical N-factors for the robust opti-

mization of a Natural Laminar Flow (NLF) wing. In this study, uncer-

tainties in the N-factors are characterized as two uniformly distributed 
random variables: 𝑁𝑇𝑆 ∼ [5, 14], 𝑁𝐶𝐹 ∼ [4, 11].

Similarly, the environmental uncertainties pertaining to the DLR 𝛾
model are expressed through variations in the freestream turbulent in-

tensity 𝑇 𝑢. A direct relationship between 𝑁𝑇𝑆 and 𝑇 𝑢 [39] is utilized 
to approximate the distribution of turbulent intensity:

𝑁𝑇𝑆 = −8.43 − 2.4 𝑙𝑛(𝑇 𝑢) (8)

A sampling-based distribution for 𝑇 𝑢 is constructed using 1000 samples 
of 𝑁𝑇𝑆 from the specified uniform distribution. The surface roughness is 

an important environmental uncertainty having an impact on crossflow 
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Fig. 4. Distribution of environmental (𝑁𝐶𝐹 , 𝑁𝑇𝑆 and 𝑇 𝑢) and operational (𝑀 and 𝐶𝐿) uncertainties. For the 𝑒𝑁 method the 𝑁 -factors (𝑁𝑇𝑆, 𝑁𝐶𝐹 ) are considered 
to be uncertain and turbulent intensity 𝑇 𝑢 is considered uncertain for the DLR 𝛾 model. The dots represent a sampling example based on the distribution.
transition in particular. This effect is reflected by the critical N factor 
𝑁𝐶𝐹 in the 𝑒𝑁 method. In case of the optimization with the DLR 𝛾 model 
this effect is neglected, as its implementation was not available at the 
time of this study. The distributions for the N-factors and freestream 
turbulent intensity are depicted in Fig. 4 (left).

Typically, Mach number and lift coefficient are considered fixed op-

erational values. However, for short-haul configurations, variability in 
these conditions during cruise can significantly impact aircraft perfor-

mance [40]. In this study, the Mach number and lift coefficient are 
treated as uncertain, modeled using thin symmetric beta distributions 
centered at the design condition, as illustrated in Fig. 4 (right).

4. Results

In the upcoming subsections, we will present the outcomes of both 
deterministic and robust optimization in exploration as well as exploita-

tion mode, employing the transition models that were elaborated on in 
the preceding section.

4.1. Deterministic optimization

The surrogate-based optimization, as detailed in section 2.2.1, is em-

ployed to address the deterministic optimization problem formulated in 
(5). In this scenario, the operational conditions, specifically the Mach 
number and lift coefficient, are maintained at their design point values 
of 0.78 and 0.7, respectively. The optimization process also assumes 
fixed values for the 𝑁 -factors (used in the 𝑒𝑁 method) and turbulent 
intensity (for the DLR 𝛾 model), set at 𝑁𝑇𝑆 = 11.5, 𝑁𝐶𝐹 = 8.5 and 
𝑇 𝑢 = 0.0247%. The turbulent intensity value is derived from 𝑁𝑇𝑆 based 
on the relationship presented in (8). The optimization budget (resource 
allocation), which includes the number of DoE samples and the infill 
iterations, is limited to 100 and 20, respectively. This allocation trans-

lates to ten samples per DoE with two infill points for each dimension 
in the ten-dimensional design space ℝ10, a strategy considered effective 
for creating an accurate meta-model, as noted in [17,16].

In Fig. 5, the optimal design and its pressure profile are compared 
with those of the baseline configuration (RAE2822) for both the tran-

sition models and design spaces. For both transition models employed, 
the optimal airfoil demonstrates superior performance compared to the 
baseline, achieving a delayed transition almost up to the shock location. 
For the design space in exploration mode, as shown in Fig. 5 (a, c), the 
6

transition in the optimized airfoil using the 𝑒𝑁 method and DLR 𝛾 model 
Table 1

Comparison of drag (𝐶𝐷) with its pressure and viscous components (𝐶𝐷𝑝
and 

𝐶𝐷𝑓
) for deterministic optimization. The pressure component is further decom-

posed in wave 𝐶𝐷𝑝,𝑤𝑎𝑣𝑒
and form 𝐶𝐷𝑝,𝑓𝑜𝑟𝑚

parts.

Case 𝐶𝐷 , [DC] 𝐶𝐷𝑝,𝑤𝑎𝑣𝑒
, [DC] 𝐶𝐷𝑝,𝑓𝑜𝑟𝑚

, [DC] 𝐶𝐷𝑓
, [DC]

𝑒𝑁 method

Baseline (RAE2822) 97.0 16.2 31.3 49.5

Exploration mode 48.7 20.1 10.1 18.5

Exploitation mode 75.8 31.6 26.8 17.4

DLR 𝛾 model

Baseline (RAE2822) 97.2 14.6 30.1 52.5

Exploration mode 46.6 18.7 8.8 19.1

Exploitation mode 78.7 34.8 24.2 19.7

occurs around 58% and 60%, respectively. This results in a significantly 
larger area of laminar flow than the baseline configuration, leading to 
a large reduction in drag – 50% for the 𝑒𝑁 method and 52% for the 
DLR 𝛾 model. In exploitation mode, as shown in Fig. 5 (b, d), the tran-

sition in the optimized airfoil using the 𝑒𝑁 method and DLR 𝛾 model 
occurs around 45% and 42%, respectively. This results in a larger area 
of laminar flow than the baseline configuration, leading to a notable re-

duction in drag – 22% for the 𝑒𝑁 method and 19% for the DLR 𝛾 model. 
The optimization results in a stronger shock wave as compared to the 
baseline configuration. This can be attributed to the trade-off between 
achieving extended laminar flow and managing stronger shock waves. 
Unlike traditional approaches in the literature that primarily focus on 
reducing pressure drag, our findings indicate the necessity of balanc-

ing both viscous and pressure drag components. A breakdown of drag 
into its pressure and friction components is presented in Table 1. Com-

pared to the baseline, the pressure drag for optimized airfoils is mainly 
dominated by the increased wave drag due to stronger shock strengths. 
However, this increase is effectively offset by reductions in form and vis-

cous drag, resulting in a total drag that remains significantly lower than 
the baseline. This trade-off underscores the complexity of optimizing 
transonic airfoil designs, where achieving optimal aerodynamic perfor-

mance requires carefully balancing these competing factors.

Despite the complexity of a high-dimensional design space, it’s re-

markable how the surrogate-based optimization successfully identifies 
a realistic laminar profile, effectively predicting the transition and min-

imizing drag within a straightforward constraint framework. The result-
ing laminar airfoil exhibits a continuous favorable pressure gradient up 
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Fig. 5. Surface pressure distribution at deterministic optimums for 𝑒𝑁 method and DLR 𝛾 model using design space in exploration and exploitation modes. The 
dashed and the solid line represent the baseline (RAE2822) and the optimized airfoil, respectively. The corresponding transition locations (𝑥𝑇𝑟∕𝑐) are denoted by 
symbols.
to the shock, as expected from previous studies [8]. The differences be-

tween the baseline and the optimized profiles for both the 𝑒𝑁 method 
and DLR 𝛾 model are small. This is anticipated, given that the DLR 𝛾
model is based on the “Simple-AHD” criterion [33], which in turn is 
based on a database generated using compressible LST. In contrast to 
that, incompressible LST is used in the present optimization process with 
the 𝑒𝑁 method, which might be the reason for the slight variances com-

pared to the results with the DLR 𝛾 model. It is worth noting that the 
optimization using exploration mode design space, although encoun-

tered a large number of unrealistic designs, resulted in a design with 
larger laminar region as compared to that obtained using exploitation 
mode design space.

In environments with fluctuating conditions, the performance of an 
optimal design determined under deterministic assumptions may signif-

icantly degrade. The presence of uncertainties can cause the transition 
location in a deterministic optimum configuration to shift considerably 
upstream, leading to entirely turbulent flow. To analyze the impact of 
environmental and operational uncertainties on the aerodynamic effi-

ciency of the deterministic optimum, we adopt a surrogate-based un-

certainty quantification method, as outlined in section 2.2.2. A Kriging 
surrogate model is constructed using five DoE samples plus one in-
7

fill sample for each random variable. This infill criterion is designed 
to enhance the surrogate model by focusing on local error estimates 
(as detailed in section 2.2.2). The mean drag coefficient is calculated 
using 10,000 Quasi Monte-Carlo samples in the stochastic space evalu-

ated with the surrogate. This is then compared to a reference solution 
obtained from 200 Monte-Carlo samples directly evaluated using the 
black-box (CFD solver). The relative error in the mean and standard 
deviation of the drag coefficient for both transition models and design 
spaces is less than 1.2% and 2.5%, respectively.

Fig. 6 depicts random realizations of the pressure profiles and transi-

tion locations using the deterministic optimum based on exploration and 
exploitation mode design spaces, incorporating environmental uncer-

tainty - N-factors (for the 𝑒𝑁 method) and 𝑇 𝑢 (for the DLR 𝛾 model), and 
operational uncertainties in Mach number and lift coefficient detailed in 
section 3.5. For both transition prediction methods in exploration mode 
(Fig. 6 (a, c)), it is evident that the transition location from laminar 
to turbulent flow varies significantly, ranging between 5 and 60% for – 
from near the leading edge to the shock. Consequently, the deterministic 
optimum operates predominantly in turbulent mode across a wide range 
of environmental parameters and operational conditions, indicating low 
resilience to uncertainties. Similarly, the deterministic optimum based 
on the exploitation mode (Fig. 6 (b, d)) shows that the transition loca-
tion is highly impacted varying from close to the leading edge up to the 
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Fig. 6. Random realizations of surface pressure distribution at deterministic optimums for 𝑒𝑁 method and DLR 𝛾 model under uncertainties using design space 
in exploration and exploitation modes. The dashed and the solid line represent the baseline (RAE2822) and the optimal airfoil, respectively. The corresponding 
transition locations (𝑥 ∕𝑐) are denoted by symbols.
𝑇 𝑟

shock location, ranging between 10 and 50%. Additionally, the shock 
wave is observed to be stronger compared to the baseline, adding to 
the performance issues, particularly when early transition induces fully 
turbulent flow. Once again, the deterministic optimum operates pre-

dominantly in turbulent mode and is highly sensitive to uncertainties. 
Moreover, the optimum designs based on exploration mode have higher

variance in the transition location as compared to the one obtained us-

ing exploitation mode. Therefore, although the exploration mode based 
deterministic optimum offers relatively lower drag (larger laminar re-

gion), the performance check reveals its rather unstable behavior under 
uncertainties. Note that, the pressure distributions used for visualization 
purposes are based on a few, randomly selected realizations and do not 
cover the whole range of all evaluated conditions.

4.2. Robust optimization

As previously mentioned, the deterministic optimization approach 
leads to an unstable configuration where a small variation in envi-

ronmental uncertainties can significantly impact performance. Hence, 
we turn to robust optimization, which considers uncertainties (refer to 
section 2.1). Our method involves using bilevel surrogate-based opti-
8

mization to minimize the average drag coefficient, taking into account 
environmental and operational uncertainties. We employed surrogate-

based uncertainty quantification in the inner loop to estimate the mean 
drag coefficient, using five DoE samples and one infill sample per input 
random variable. In a manner similar to deterministic optimization, we 
utilized 100 DoE samples with 20 infill iterations for optimization.

Fig. 7 depicts random realizations of the pressure profiles and tran-

sition locations using the robust optimum based on exploration and 
exploitation mode design spaces, incorporating environmental uncer-

tainty - N-factors (for the 𝑒𝑁 method) and 𝑇 𝑢 (for the DLR 𝛾 model), and 
operational uncertainties in Mach number and lift coefficient detailed in 
section 3.5. For both transition prediction methods in exploration mode 
(Fig. 7 (a, c)), transition location mostly lie in the range of 45 to 62% 
for the 𝑒𝑁 method and 47 to 59% for the DLR 𝛾 model. Similarly, the 
robust optimum based on the exploitation mode (Fig. 7 (b, d)) shows 
that transition location mostly lie in the range of 30 to 58% for the 𝑒𝑁
method and 42 to 56% for the DLR 𝛾 model.

Compared to the baseline and deterministic optimal, the robust op-

timal design demonstrated a smoother transition location variation and 
a weaker shock wave. This robust optimal design overall favors a de-

layed transition, leading to an extended laminar region even under chal-
lenging environmental and operational conditions, thereby exhibiting 
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Fig. 7. Random realizations of surface pressure distribution at robust optimums for 𝑒𝑁 method and DLR 𝛾 model under uncertainties using design space in exploration 
and exploitation modes. The dashed and the solid line represent the baseline (RAE2822) and the optimal airfoil, respectively. The corresponding transition locations 
(𝑥 ∕𝑐) are denoted by symbols.
𝑇 𝑟

greater resilience and considerable robustness against several uncertain-

ties.

Note that a few realizations for robust optimum in exploration mode 
exhibit transition location close to the leading edge leading into fully 
turbulent flow. This can again be attributed to the previously discussed 
unstable behavior of optimal design obtained using exploration mode. 
This is however acceptable since the standard deviation in transition 
location over all the realizations is reasonably low. In order to avoid 
large number of realization with transition locations near the leading 
edge, one may use a different expectation measure (e.g. 𝜇 + 3𝜎) to be 
minimized.

4.3. Overall performance

Fig. 8 shows polar plots for four key aerodynamic QoIs - angle of 
attack 𝛼, moment coefficient 𝐶𝑀 , drag coefficient 𝐶𝐷 , and transition 
location relative to chord length 𝑥𝑇 𝑟∕𝑐, at deterministic optimums for 
𝑒𝑁 method and DLR 𝛾 model using design space in exploration and 
exploitation modes. The colored polygons in the graphs represent the 
normalized values of these QoIs. The extent of variation in the poly-

gon’s vertices inversely reflects robustness of the design. It is evident that 
9

the deterministic optimum exhibit very high variability in all the QoIs, 
implying a lack of robustness against uncertainties. In particular, for 
both the transition models, the design obtained using exploration mode 
is highly unstable as compared to the ones obtained with exploitation 
modes. Fig. 9 shows the polar plots at robust optimums for 𝑒𝑁 method 
and DLR 𝛾 model using design space in exploration and exploitation 
modes. Contrary to the deterministic optimums, the robust optimum 
demonstrate significantly lower variability across QoIs. Overall, the de-

sign obtained using exploration mode is only slightly more unstable as 
compared to the ones obtained with exploitation modes. The polar plot 
for DLR 𝛾 model in the exploration mode does not seem to be robust at 
first due to a realization with significantly larger drag coefficient (more 
upstream transition location). However, if we consider the polar plot 
without this realization, then the overall robustness of this design is sig-

nificantly higher than its deterministic counterpart.

Fig. 10 depicts the violin plots for drag coefficient obtained from 
several realizations at deterministic and robust optimums under uncer-

tainties for both the 𝑒𝑁 method and the DLR 𝛾 model using exploration 
and exploitation modes of design space. For all the deterministic opti-

mums, the violin plots show that the mean drag coefficient is close to 
the baseline (RAE2822) drag. The distributions span over a large range 
of drag values implying a larger variability due to the wide scattering 

of transition locations, as shown in Fig. 6. For instance, the bimodal 
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Fig. 8. Polar graphs of four aerodynamic QoIs - angle of attack 𝛼, moment coefficient 𝐶𝑀 , drag coefficient 𝐶𝐷 and transition location w.r.t. chord length 𝑥𝑇𝑟∕𝑐, at 
deterministic optimums for 𝑒𝑁 method and DLR 𝛾 model using design space in exploration and exploitation modes. The polygons (colored) represent the realizations 
of the normalized QoIs.
distribution for 𝑒𝑁 method in the exploration mode has a high prob-

ability mode towards the higher levels of drag count (indicating large 
portion of realizations with significant loss of laminar flow) while the 
low probability mode lies towards the lower levels of drag count (in-

dicating only a few realizations with extensive laminarity). The violin 
plots for robust optimums demonstrate a significant reduction in mean 
drag counts as compared to the baseline and the deterministic counter-

parts. The distributions span over a relatively small range of drag values 
with a near-deterministic (low variance) drag count observed for the op-

timums in the exploration. This can be attributed to the more concise 
scattering of transition locations, as shown in Fig. 7. The distribution 
for DLR 𝛾 model in the exploration mode shows a long tail towards the 
higher values of drag due to the presence of a few realizations that lead 
to early transition (as discussed earlier).

Fig. 11 shows the Sobol indices for drag coefficient (𝐶𝐷) and transi-

tion location (𝑥𝑇 𝑟∕𝑐) based on uncertainty quantification using robust 
optimums obtained with design space in exploration and exploitation 
modes for both 𝑒𝑁 method and DLR 𝛾 model. Sobol indices are a 
method in global sensitivity analysis that uses variance to decompose 
the model output variance into fractions attributable to different inputs 
or combinations of inputs. Further details on estimating Sobol indices 
are deferred to Appendix B. Under the considered uncertainties (see sec-

tion 3.5), the sensitivities indicate that drag coefficient and transition 
location are predominantly influenced by the variability in Mach num-
10

ber, and Tollmien-Schlichting N-factor and turbulence intensity for 𝑒𝑁
method and DLR 𝛾 model, respectively. In particular, for the optimized 
result based on the DLR 𝛾 model, the influence of turbulence intensity 
on the drag coefficient is dominant over Mach number. The influence 
of the variability in the crossflow N-factor is rather small which is also 
in accordance with a previous research [16] that has shown that cross-

flow instabilities do not significantly impact transition location under 
similar conditions.

In this study, the overall precision of the optimization is influenced 
by several factors, with the accuracy of predicting transition being 
paramount. The intermittency-based model recently developed for pre-

dicting transition location showed high accuracy, closely matching the 
results from the reference method (LST/𝑒𝑁 method). Consequently, the 
optimal airfoil shapes derived using the DLR 𝛾 model closely resem-

bled those obtained using the 𝑒𝑁 method, whether deterministic or 
robust. The total number of black-box evaluations directly affects the 
optimization process cost. Conducting a single evaluation requires about 
45 minutes for the 𝑒𝑁 method and 25 minutes for the DLR 𝛾 model, using 
128 processors. While this computational cost is relatively minor dur-

ing the DoE phase due to its parallelizability, the expense escalates with 
the increase in sequential infill samples. Therefore, the DLR 𝛾 model, 
with its integrated on-the-fly transition prediction capability, is more 
efficient than the 𝑒𝑁 method, which depends on periodic convergence 
in 𝑥𝑇 𝑟. Moreover, the intermittency-based transition transport model re-
quires a low number of parameter settings. Consequently, given these 
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Fig. 9. Polar graphs of four aerodynamic QoIs - angle of attack 𝛼, moment coefficient 𝐶𝑀 , drag coefficient 𝐶𝐷 and transition location w.r.t. chord length 𝑥𝑇𝑟∕𝑐, at 
robust optimums for 𝑒𝑁 method and DLR 𝛾 model using design space in exploration and exploitation modes. The polygons (colored) represent the realizations of the 
normalized QoIs.
factors, the DLR 𝛾 model emerges as a more suitable option for conduct-

ing robust optimization studies, which are inherently costly.

A few remarks can be drawn about optimization (deterministic or ro-

bust) using exploration and exploitation design modes. In general, the 
extent of the laminar region was found to be larger for the designs ob-

tained using exploration mode resulting in lower drag. On the contrary, 
the optimal designs obtained using exploitation mode were found to 
be more stable with lower variability in transition location and drag 
count. Exploitation mode optimization is akin to traditional optimiza-

tion, focusing on incremental improvements around an initial baseline 
design. In contrast, optimization using exploration mode represents a 
more disruptive approach, aiming for high-performance designs that 
may significantly deviate from the baseline.

5. Conclusions

The potential gains in fuel efficiency from laminar designs might 
not be fully realized in practical scenarios when using common inverse 
design methods. For laminar airfoils (wings) to maintain high fuel effi-

ciency, they must be robustly designed to withstand environmental and 
operational uncertainties. Direct optimization helps create realistic de-

signs that promote laminarity up to or near the shock location, thus 
delaying transition and reducing drag. However, since these configu-
11

rations are optimized at nominal values, they become unstable under 
varying environmental and operational conditions, often leading to sig-

nificant loss of laminar flow. This issue can be addressed by quantifying 
uncertainties, projecting them onto QoIs, and using their statistics for 
optimization, resulting in designs resilient to changes in environmental 
and operational factors.

In our study, a robust optimization framework was employed to en-

hance the natural laminar flow region of an infinite swept wing using 
exploration and exploitation mode design spaces. Initial deterministic 
optimization revealed that the optimum designs were not robust against 
environmental uncertainties for both transition prediction methods (𝑒𝑁
method and DLR 𝛾 model) and both the design spaces. However, incor-

porating uncertainties into the optimization process, particularly using a 
surrogate-based approach, significantly improved average performance 
and yielded robust designs. These designs featured delayed transitions 
(extended laminarity), weaker shock waves, realistic pressure profiles, 
and stability. Moreover, robust optimums encouraged more gradual 
changes in the transition location when subject to uncertainties, com-

pared to the more significant loss of laminar flow obtained with the 
deterministic optimums. For efficient robust optimization, the DLR 𝛾
transition transport model was more cost-effective and user-friendly 
than the traditional 𝑒𝑁 method. Moreover, it was observed that, al-

though the optimum designs from exploration mode generally have a 
larger laminar region, the optimum designs from exploitation mode tend 

to be more stable i.e. higher resilience against uncertainties.
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Fig. 10. Violin plot for drag predictions at deterministic and robust optimums 
under uncertainties using design space in exploration and exploitation mode 
for both 𝑒𝑁 method and DLR 𝛾 model. The dashed line represents the baseline 
(RAE2822) drag count.

Future research could explore replacing the thickness constraint with 
a wing-box constraint which might yield more realistic designs. Consid-
12

ering other uncertainties, like variability in Reynolds number or model 

Fig. 11. Sobol indices for drag coefficient (𝐶𝐷) and transition location (𝑥𝑇𝑟∕𝑐) ba

space in exploration (left) and exploitation (right) modes for both 𝑒𝑁 method and D
Aerospace Science and Technology 154 (2024) 109532

form uncertainties, could also be beneficial. Additionally, this study can 
be extended towards laminar wing design focusing on blending opti-

mized wing sections (airfoils).
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Appendix A. Gaussian process regression

We summarize the steps involved in the construction of a Kriging 
surrogate model using SMARTy. For more details, the reader is referred 
to the literature [41] and the references therein. A basic assumption of 
the Kriging approach is that the true functional relationship 𝑦 ∶ →ℝ
between the input variables 𝑥 ∈ ⊆ℝ𝑑 and their corresponding scalar-

valued output 𝑦(𝑥) ∈ℝ is a realization of a random function,

(𝑥) = 𝑔(𝑥)𝛽 + 𝜖(𝑥), (A.1)

where 𝑔 ∶ ℝ𝑑 → ℝ𝑝 is a known regression model, 𝛽 is a vector of un-

known regression parameters, and 𝜖(𝑥) is a Gaussian process with zero 
mean and known covariance structure. Covariance is given by a known 
stationary spatial correlation kernel:

Cov[𝜖(𝑥), 𝜖(𝑥′)] = 𝜎2𝑅𝜃(𝑥,𝑥′), (A.2)

with 𝑅𝜃(𝑥, 𝑥′) being the correlation kernel and 𝜎2 representing the pro-

cess variance. Different types of covariance functions are implemented 
in SMARTy. In this work we use a Gaussian Exponential kernel [42]:

𝑅𝜃(𝑥,𝑥′) =
𝑚∏
𝑘=1

exp(−𝜃𝑘|𝑥𝑘 − 𝑥′
𝑘
|𝑝𝑘 ),

with𝜃𝑘 ∈ℝ+, 𝑝𝑘 ∈ [1,2], 𝑘 = 1, ...,𝑚

(A.3)

where 𝜃 are the unknown correlation parameters [43].

The Kriging predictor is determined as the best linear unbiased esti-

mator and can be rewritten as,

𝑦̂(𝑥) = 𝑔(𝑥)𝛽 + 𝑟(𝑥)⊤𝑅−1(𝑌 − 𝐹𝛽), (A.4)

where 𝑅 is the correlation matrix, 𝑌 is the vector of observed data, 
𝐹 is the matrix of regression vectors, 𝑟(𝑥) is the vector of corre-

lations between sample locations and the new location 𝑥, and 𝛽 =
(𝐹𝑇𝑅−1𝐹 )−1𝐹𝑇𝑅−1𝑌 .

The choice of the correlation parameters 𝜃 has a large impact on the 
Kriging predictor. Therefore, it is usually determined by a maximum 
likelihood prediction [44]. Using the likelihood-optimal parameters the 
mean squared error (MSE) of Kriging estimator at a location 𝑥 ∈  is 
given by [45],

MSE(𝑥) = 𝜎2(1 + 𝑢⊤(𝐹⊤𝑅−1𝐹 )−1𝑢− 𝑟(𝑥)⊤𝑅−1𝑟(𝑥)), (A.5)

with 𝑢 = 𝐹⊤𝑅−1𝑟(𝑥) −𝑓 (𝑥), providing an estimate of the prediction error 
variance at location 𝑥.

Appendix B. Global sensitivities in terms of Sobol indices

Sobol indices are a variance-based global sensitivity analysis ap-

proach which decomposes the variance of the model output into frac-

tions which can be associated to the inputs or sets of inputs. This method 
analyzes the influence of each component of an input random vector 
𝑋 = (𝑋1, ..., 𝑋𝑛𝑋 ) on an output random variable 𝑌 by computing Sobol’ 
indices [46].

Consider 𝑓 as the physical model such as 𝑌 = 𝑓 (𝐗). For any subset 
𝐼 ⊆ {1, … , 𝑛𝑥}, with 𝐗𝐼 = (𝑋𝑖)𝑖∈𝐼 , the variance of 𝑌 as a function of 𝐗 =
(𝑋1, … , 𝑋𝑛𝑥 ) can be expressed using the Hoeffding decomposition [47]

Var[𝑌 ] =
∑

𝐼⊆{1,…,𝑛𝑋} 𝑉𝐼 , where 𝑉𝐼 = Var
[∑

𝐽⊆𝐼 (−1)|𝐼|−|𝐽 |𝔼[𝑌 |𝐗𝐽 ]
]
. 

For better readability, for any integers 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑥, we define 𝑉𝑖 = 𝑉{𝑖}
and 𝑉𝑖,𝑗 = 𝑉{𝑖,𝑗}. Thus, we have:

𝑉𝑖 = Var[𝔼[𝑌 |𝑋𝑖]], (B.1)

𝑉𝑖,𝑗 = Var[𝔼[𝑌 |𝑋𝑖,𝑋𝑗 ]] − 𝔼[𝑌 |𝑋𝑖] − 𝔼[𝑌 |𝑋𝑗 ] (B.2)
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= Var[𝔼[𝑌 |𝑋𝑖,𝑋𝑗 ]] − 𝑉𝑖 − 𝑉𝑗 (B.3)
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Fig. B.12. Venn diagrams of variance fractions in a three-variable model high-

lighting Sobol indices of variable 1.

for 𝑖 = 1, … , 𝑛𝑋 . Thus, the variance of 𝑌 can also be written as

Var[𝑌 ] =
𝑛𝑋∑
𝑖=1

𝑉𝑖 +
𝑛𝑥∑

1≤𝑖<𝑗
𝑉𝑖,𝑗 +…+ 𝑉12…𝑛𝑋

. (B.4)

Since, Var[𝑌 ] =
∑

𝐼⊆{1,…,𝑛𝑋} 𝑉𝐼 , a result for the sensitivities can be 
simply derived by dividing both sides by Var[𝑌 ]:
𝑛𝑋∑
𝑖=1

𝑆𝑖 +
∑

1≤𝑖<𝑗≤𝑛𝑋

𝑆𝑖,𝑗 +…+𝑆1,2,…,𝑛𝑋
= 1 (B.5)

The above decomposition of variance shows how the variance of the 
output can be decomposed into terms associated to each input, as well 
as to the interactions between them. Sobol indices for first and second 
order effects are defined as follows; for 𝑖, 𝑗 = 1, … , 𝑛𝑋 , 𝑆𝑖 = 𝑉𝑖 ∕ Var[𝑌 ]
and 𝑆𝑖,𝑗 = 𝑉𝑖,𝑗 ∕ Var[𝑌 ]. The first order Sobol index 𝑆𝑖 represents the 
contribution towards the variance of 𝑌 explained by 𝑋𝑖 alone, while 
the second order Sobol index 𝑆𝑖,𝑗 represents the contribution towards 
the variance of 𝑌 explained by the interaction of 𝑋𝑖 and 𝑋𝑗 .

In order to formulate the total order Sobol indices, we define

𝑉 𝑇𝑖 =
∑
𝐼
𝑖∈𝐼

𝑉𝐼 , 𝑉−𝑖 = Var[𝔼[𝑌 |𝑋1,… ,𝑋𝑖−1,𝑋𝑖+1,… ,𝑋𝑛]] (B.6)

for any 𝑖 = 1, … , 𝑛𝑋 . The −𝑖 notation indicates the set of all vari-

ables except 𝑋𝑖. Total order Sobol indices are then defined as 𝑆𝑇𝑖 =
𝑉 𝑇𝑖 ∕ Var[𝑌 ] = 1 − 𝑉−𝑖 ∕ Var[𝑌 ] for 𝑖 = 1, … , 𝑛𝑋 . The total order Sobol 
index 𝑆𝑇𝑖 is the contribution towards the part of the variance of 𝑌 that 
represents the effect of 𝑋𝑖 and its interactions with all the other input 
variables.

Fig. B.12 shows the Venn diagrams of variance fractions in a three-

variable model highlighting the Sobol indices of variable 1. We use 
numerical methods that rely on independent (Quasi) Monte Carlo re-

alizations of the random vector using a surrogate model to estimate the 
sensitivities formulated above [48].
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