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Abstract – Electric propulsion enables ambitious and 
affordable space missions by substantially reducing 
the fuel mass in comparison to lower specific impulse 
propulsion. However, the optimisation of the 
according transfer trajectories is particularly 
challenging due to their typically low thrust 
characteristics, resulting in many-revolution 
transfers with many local minima and highly non-
linear dynamics. The Q-Law guidance algorithm can 
provide near-optimal low-thrust trajectories with 
minimal computational effort, which can be used 
either as an initial guess for the optimisation to 
ensure a faster convergence or directly for mission 
analysis. In the classical formulation presented by [1] 
the Q-law does not allow to target a specific position 
in the final orbit, rendering a poor initial guess in 
cases where it is a constraint. Such a constraint could 
be the geographical longitude when acquiring a 
geostationary orbit, but also the position within a 
constellation of Low Earth Orbit and Medium Earth 
Orbit satellites, or within a rendezvous scenario. This 
study proposes a predictor-controller approach to 
enable Q-Law targeting capabilities for this fast-
moving orbital element in the final orbit, as a 
generalisation to a method proposed by [2] to target 
a geographical longitude in geostationary orbit. This 
work uses the semi-major axis augmented Modified 
Equinoctial Elements formulation of the Q-law and 
has been tested for a range of orbital transfers with 
varying inclinations and eccentricities. A sensitivity 
analysis on the key parameters of the algorithm, with 
respect to its convergence, is presented. This 
approach permits to quickly compute near-optimal 
transfers to a specified slot in the final orbit. 
 

I. INTRODUCTION 
The first record of the concept of low-thrust Electric 
Propulsion (EP) for spaceflight trajectories dates back 
from the early 1900s [3, 4], but its active development 
only started in 1957 [5]. Since then, its potential to allow 
for significant mass savings for long-term interplanetary 
cruise and planetocentric orbital operations has been 
widely recognised [6, 7]. However, while the 
optimisation of high thrust chemical propulsion 
trajectories has been studied in great details [9-13], the 

optimisation of many-revolutions low-thrust trajectories 
is significantly more challenging due to the highly 
nonlinear dynamics, orbital perturbations, and many 
local minima [14, 15].  
 
Low-thrust transfer optimisation is classically 
formulated as an Optimal Control Problem (OCP), 
limited to continuous dynamics with real variables and 
parameters [14]. However, spacecrafts employing EP 
often require multiple modes of operations, such as 
coasting, which introduce discontinuities in the 
dynamics. This is tackled using phases relative to each 
operational mode, throughout which the dynamics are 
continuous. The optimisation is then considered a 
Hybrid Optimal Control Problem (HOCP). Numerous 
numerical and analytical methods have been presented 
in literature based on either the OCP or HOCP 
formulation [14, 16-19], with most categorised as either 
direct or indirect techniques, or a hybrid of the two [20, 
21]. In the indirect method the necessary conditions for 
optimality are derived using calculus of variations and 
the resulting boundary value problem is then solved e.g. 
numerically via shooting techniques [16]. Conversely, 
direct methods discretise the optimal control problem 
first and then solve the resulting Non-Linear 
Programming problem via gradient-based techniques 
[16]. This means iterating an appropriate initial guess of 
optimisation variables such that the objective function is 
minimised to find the closest local minimum (e.g. using 
Sequential Quadratic Programming). Therefore, direct 
methods strongly benefit from an initial guess close to 
the global optimum. To quickly generate such a near-
optimal and physically feasible initial guess, Lyapunov 
control laws have recently gained in popularity [20, 22].  
 
Lyapunov theory considers the stability of a system 
based on an indirect or direct method. The latter is 
particularly of interest as it permits to analyse and design 
non-linear systems to achieve global stability [23]. The 
fundamental principle being that if the total energy of 
the system is continuously dissipating, the system will 
reach a stable equilibrium point. Therefore, a suitable 
positive scalar Lyapunov candidate function describing 
the energy of the system is selected and its first time 
derivative along the system trajectory is evaluated. In 
the case of low-thrust trajectory design, the thrust 
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direction is chosen to ensure a maximum decrease of the 
Lyapunov function at each step. Reference [24] was the 
first to employ Keplerian elements in the Lyapunov 
function and to develop a control law for low-thrust 
trajectories. Later, [25] presented a candidate function 
using the angular momentum and eccentricity vectors 
and solved the trajectory in Cartesian coordinates. 
Reference [26] developed another Lyapunov function 
based on the analytic expressions of the maximum rates 
of change in orbital elements. The latter has been refined 
and improved over the past two decades and became the 
preferred option to quickly obtain a reasonable 
low-thrust transfer trajectory [27, 28]. 
 
Several alternative formulations to the candidate 
function presented by [28] (which uses Keplerian 
elements), called the proximity quotient or Q-Law, have 
been proposed in literature. Reference [29] presented a 
partial formulation making use of the Modified 
Equinoctial Elements (MEE) and optimised the weights 
of the law using a Genetic Algorithm (GA). This work 
was extended by [30] who completed the Q-Law 
formulation and replaced the semi-latus rectum of the 
MEE set by the semi-major axis (AMEE). This 
modification results in a better convergence of the 
algorithm. However, [31] found that approximations of 
the maximum rate of change of the 𝑓 and 𝑔 elements are 
inaccurate for significantly eccentric and inclined orbits, 
requiring to evaluate those values numerically. 
Furthermore, although those formulations use constant 
weights, some attempts have been made to use time-
varying weights [20, 32, 33]. 
 
Although the Q-Law is a powerful tool which has been 
used for both research and mission design purposes [34, 
35], the classical formulation does not permit 
sixth-element targeting [27], which is necessary for 
rendezvous missions. Numerous attempts have been 
made in literature, such as introducing the sixth-element 
directly in the proximity quotient [36], changing the fast 
variable to a slow-moving term related to the mean 
anomaly [36], having a built-in phasing mode (RQ-Law) 
[31], and augmenting the classical elements [37]. The 
two first methods fail according to [36], the third one is 
suboptimal as targeting only starts after the target orbit 
is reached, and the last method was found to yield 
inconsistent travel times [36].  
 
This work presents a reliable method to target a specific 
moving-position in any bounded target orbit based on a 
predictor-controller approach extending the capabilities 
of the Q-Law. The algorithm was derived as a 
generalisation of the Geostationary Orbit (GEO) 
longitude targeting algorithm from [2] to both circular 
and eccentric orbits. 
 
 

II. METHODS 
A. Dynamical Framework 
The spacecraft is considered as a point mass in the Earth 
central gravity field, where orbital perturbations were 
neglected. Therefore, the electric thruster is the only 
external force acting on the body. The propagation is 
performed using the Modified Equinoctial Elements 
(𝑝, 𝑓, 𝑔, ℎ, 𝑘, 𝐿) formulation of the perturbation 
equations [38], which only have a singularity for an 
inclination of 𝑖 = 180°. However, the true longitude 𝐿 
was used as independent variable to ensure a constant 
data density throughout the orbit: a constant time step 
would result in more points around the apocenter than 
the pericentre for eccentric orbits. The time formulation 
of the MEE's equations of motion is given by [39], 
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with 𝑡 the time variable, µ is the central body 
gravitational parameter, 𝑠$ = 1 + ℎ$ + 𝑘$ and 𝑤 =
1 + 𝑓 cos 𝐿 + 𝑔 sin 𝐿. The ∆) , ∆# , ∆2 perturbing 
accelerations are expressed in the RTN frame, a 
spacecraft-centred coordinate system where R is parallel 
to the position vector, N is in the direction of the angular 
momentum vector (perpendicular to the orbital plane), 
and T completes the right-handed coordinate system. 
The set of equations is completed by (7), 
 
 d3
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with 𝑚 the spacecraft mass at time 𝑡, 𝑇 the thrust level, 
𝐼." the engine specific impulse in vacuum, and 𝑔6 the 
reference sea-level gravitational acceleration. These 
equations can be modified to allow the true longitude as 
an independent variable as follows [40], 
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with œ an orbital element. These equations were 
integrated using the validated high-accuracy Adams-
Bashforth-Moulton (ABM) integrator from DLR’s 
German Space Operations Centre (GSOC) flight 
dynamics libraries, which is a multistep method that 
needs to be restarted across discontinuities. This means 
that the method cannot be used through the thrust 
chattering phenomenon described by [30]. 
 
B. Q-Law Formulation 
The general form of the candidate Lyapunov function 
presented by [1] is given by (11). 
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Where 𝑄 is called the proximity quotient and is a 
measure of the distance between the current and target 
orbital elements, 𝑊: and 𝑊œ are the weights of the 
control law, œ" is a target value of an orbital element, 
d(œ,œ4) is the difference between the current and 
target orbital elements, and œ̇P @@ is the maximum rate 
of change of the orbital element achievable in the current 
orbit with an optimal thrust direction. Following, 𝑃 is a 
minimum pericentre altitude penalty function given by, 
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and 𝑆œ is a scaling function ensuring that the semi-major 
axis does not tend to infinity, being formulated as, 
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where 𝑚., 𝑛., 𝑟. and 𝑘" are user-defined constants, 𝑟" is 
the spacecraft pericentre radius, 𝑟",3A2 is the user-
defined minimum pericentre radius, and 𝑎 is the orbit 
semi-major axis.  
 
An analytical solution for the optimal thrust direction 
yielding the fastest decrease of 𝑄 was provided by [30]. 
However, various formulations using different sets of 
orbital elements have been suggested based on (11) [1, 
29-31]. In this work, the semi-major axis augmented 
MEE formulation of the Q-Law presented by [30] is 
used without its coasting mechanism (minimum-time 
trajectories). Additionally, the PIKAIA genetic 
optimiser was used to select the 𝑊œ weights of the law 
[41], permitting to significantly improve the trajectory 
obtained from the Q-Law. This also permits to reject sets 
of weights resulting in thrust chattering before 
convergence to the target orbit [30].   
 
 

C. Predictor-Controller Approach 
A major drawback of the Q-Law is its inability to target 
a specific position in the target orbit. This could be 
desired to target a slot in the final orbit, as is usually 
done for GEO satellites, or to rendezvous with a 
spacecraft. When the Q-Law is used as an initial guess 
for a local optimisation algorithm, the absence of this 
functionality renders the initial guess rather poor for 
cases requiring a constraint on the final position. This 
results from the estimated time of flight and mass being 
inaccurate but also because the trajectory is not initially 
constraint compliant, thus resulting in no or a slower 
convergence of the optimiser. This limitation of the law 
was addressed by generalising the GEO longitude 
targeting method presented by [2] to be compatible with 
the Q-Law and for arbitrary transfers between two 
bounded orbits. First, the derivation of the algorithm 
presented by [2] is repeated to better outline the key 
assumptions to be relaxed for the generalisation. Then, 
it is generalised to circular target orbits. At last, the 
generalisation is extended to eccentric target orbits. 
 
For each case, the elements of the desired position in the 
target orbits are propagated (from a specified epoch) and 
tabulated before the Q-Law propagation, such that the 
state vector (in MEE) can be interpolated at any 
timestamp. This provides a method to aim for a specific 
position in the target orbit which is compatible for both 
GEO and LEO. 
 
GEO Case 
As the final position in the target orbit heavily depends 
on the semi-major axis history, [2] presented a 
proportional controller approach to target a specific 
geographical longitude 𝜆 in GEO, by slightly shifting 
the target semi-major axis throughout the trajectory. A 
predictor-controller function is evaluated at a certain 
time interval (𝑡A2#) after a portion of the transfer is 
achieved (𝑡.#B)#), based on a specified controller gain α. 
The function predicts the final phase error ΔΦ by 
independently propagating the trajectory using the 
classical Q-Law until convergence with the target orbit, 
and adapts the target semi-major axis using a 
proportional controller. This concept lies at the heart of 
all algorithms presented in this work. 
 
The original algorithm was designed for geostationary 
target orbits, meaning that it is based on three main 
assumptions [2]: the target orbit is circular (𝑒4 =
𝑒CDE ≈ 0), the target semi-major axis is 𝑎4 = 𝑎CDE =
42,164.14 km, and the target inclination is 𝑖4 = 𝑖CDE =
0°. These assumptions permit to use the geographical 
longitude to compute the phase error as it is constant for 
a given orbital position, yielding a constant phase error 
throughout the orbit. This permits to write, 
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where ΔΦ = δ𝜆 = λ4 − λ is the difference in 
geographical longitude between the target slot and the 
spacecraft at convergence to the target orbit, 𝑛 =
@µ/𝑎#I is the mean motion in the orbit targeted by the 
Q-Law, and 𝑛)H' is the mean motion in the desired orbit 
(here GEO). At the end of the transfer, by definition 
dFG
d#
= 0 as the spacecraft should have converged to the 

target slot [2]. Reference [2] then devised a controller, 
 
 dFG
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where 𝐾 > 0 is the controller gain. Combining (14) and 
(15) yields, 
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Equation (16) is used to update the target semi-major 
axis at each call of the predictor-controller stage, thereby 
changing the element evolution. As δ𝜆 reduces, 𝑎4 →
𝑎+HM, permitting to converge to GEO at the desired 
geographical longitude. To further enhance the 
reactivity of the algorithm, the gain 𝐾 is dependent on 
the remaining time to convergence 𝑇) (in seconds) as 
follows [2], 
 
 𝐾 = N

4-
 (17) 

 
where α is a user-specified gain. In theory, using 𝛼 =
1, 3, 7 permits to correct 63%, 95% and 99.9% of the 
initial phase error within one revolution [2]. However, 
in practice, numerical errors and overshooting are 
avoided by using,  
 
 𝐾 = minBN

4-
, 𝐾3B@C (18) 

 
with 𝐾3B@ = 109O. Furthermore, to ensure convergence 
to the right inertial state vector, all elements but the 
argument of pericentre ω and Right Ascension of the 
Ascending Node Ω (RAAN) (as they are undefined for 
GEO) should be targeted during the propagation. 
 
Algorithm Generalisation 
The assumptions on the target orbit eccentricity and 
semi-major axis from [2] permit to derive a phase error 
formulation, that remains constant throughout the orbit 
if no perturbing accelerations are applied, using the 
geographical longitude. This behaviour is desired as it 
allows a smooth convergence of the controller. A similar 
behaviour can then be obtained using different phase 
angle formulations for general circular and eccentric 
target orbits. This results in the generalisation of (16) to,  
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First considering equatorial circular orbits, both the 
ascending node and argument of pericentre are 
undefined, therefore the inertial longitude λ5 is used to 
evaluate the phase error. This comes back to the GEO 
case, but the inertial longitude will be varying linearly 
with time throughout the orbit for a given orbital 
position (rather than staying constant), meaning that 
ΔΦ = λ5' − λ5 remains constant for two given 
unperturbed orbital positions. Therefore, dG1

d#
= 𝑛 and 

dG1-/0
d#

= 𝑛)H', yielding, 
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and the rest of the derivation remains the same, except 
that 𝑛)H' refers to the target orbit rather than GEO. 
Similarly, in circular but inclined orbits, the RAAN is 
defined, but the argument of the pericentre is not. This 
allows to use the argument of latitude, 𝑢, being the phase 
angle measured in the direction of motion and from the 
ascending node to the spacecraft, which also varies 
linearly through the circular orbit and ΔΦ = 𝑢4 − 𝑢 
remains constant throughout the orbit for two given 
unperturbed orbital positions.  Therefore,  dT

d#
= 𝑛 and 

dT-/0
d#

= 𝑛)H', yielding, 
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and the rest of the derivation remains the same. To 
ensure convergence to the inertial state vector for the 
circular case, all elements but ω should be targeted (nor  
Ω for equatorial circular orbits).  
 
For eccentric orbits, the argument of pericentre is 
defined and the mean anomaly can be used. As 𝑀 can 
be related to the percentage of the orbit which was 
covered since the last pericentre passage, it always 
varies linearly. 𝑀 can then be expressed as, 
 
 𝑀 = 𝑛(𝑡 − τ) (22) 
 
where τ is the time of the last pericentre passage. It is 
then clear that 𝑀 varies linearly throughout the orbit (𝑛 
and τ are constants for a given bounded orbit), therefore 
ΔΦ = 𝑀4 −𝑀 remains constant for two unperturbed 
orbital positions. Therefore,  dW

d#
= 𝑛 and 

dW-/0

d#
= 𝑛)H', 

yielding, 
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Tab. 1. Reference transfers used to test the circular and eccentric orbit sixth-element targeting algorithms. All transfers 

employ a satellite with an initial mass of 𝑚6 = 2000.0 kg and use a specific impulse of 𝐼." = 1700.0 s. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Percentage of successful propagations with respect to start time, interval time, or 𝛼 for case A.

and the rest of the derivation remains the same. The use 
of the mean anomaly for mean motion control was 
already presented by Naasz [42] for different control 
laws. Furthermore, to ensure convergence to the same 
inertial position and velocity, all other orbital elements 
should also be targeted (except the Ω in case the 
inclination is zero). 
 

III. RESULTS 
A. Test Cases 
The three orbital transfers inspired from [27] and shown 
in Tab. 1 were considered to demonstrate the capabilities 
of the presented algorithms. The capabilities of the GEO 
longitude targeting algorithm were demonstrated by [2] 
and will not be considered. It is only reported that the 
GEO algorithm converged in 90% of the combinations 
considered. Note that in all cases, the mean anomaly 
specified for the target orbit in Tab. 1 relates to the 
starting epoch. Therefore, as mentioned above, the 
target position in the final orbit is propagated and its 
position is tabulated before the Q-Law propagation. The 
phase angle ΔΦ is then obtained by considering the 
position of the target slot at the time of spacecraft 
convergence to the target orbit, based on the tabulated 
data. This permits to rendezvous with a moving target. 

For each transfer considered, numerous combinations of 
the three user-defined parameters of the sixth-element 
targeting algorithm (𝑡.#B)# , 𝑡A2# , and α) were tested to 
illustrate their influence on the algorithm dependence. 
While some combinations yield transfer performances 
very close to the original Q-Law, others result in no 
convergence. Furthermore, the 𝑊œ weights in (11) were 
selected by optimising the same trajectory using the 
PIKAIA genetic optimiser but without sixth-element 
targeting capabilities to limit the computational load. 
 
B. Circular Target Orbits 
The capability of the algorithm for the circular case was 
tested based on case A from Tab. 1. A parametric 
analysis using the ranges α = 1, 2,… , 9, 𝑡.#B)# =
0, 1, 2, … , 10 days, and 𝑡A2# = 0.1, 0.2, … , 1.0 days was 
considered. Starting the controller from the start of the 
propagation and evaluating it every 0.4 days with a gain 
of α = 	9 was found to yield the best performance with 
a 1.03% increase in propellant consumption compared 
to the same transfer without targeting. However, only 
60% of the combinations considered resulted in a 
convergence of the trajectory. This is illustrated in Fig. 
1, showing that the algorithm showed a better 
convergence for larger values of α and smaller 𝑡.#B)#.

Case Orbit 𝑎  
[km] 

𝑒  
[-] 

𝑖 
[deg] 

𝜔 
[deg] 

Ω 
[deg] 

𝑀 
[deg] 

𝑇 
[N] 

A 
(SSO 

Circular 
Raise) 

Init. 7078.0 0.0075 97.55 55.64 90.0 0.0 

0.25 Targ. 7278.0 0.000 97.40 55.64 90.0 0.0 

Tolerance 1 0.0001 0.001 0.001 0.001 1 

B 
(SSO 

Elliptic 
Raise) 

Init. 7078.0 0.0075 97.55 55.64 90.0 0.0 

0.5 Targ. 7278.0 0.1 97.40 55.64 90.0 0.0 

Tolerance 1 0.001 0.001 0.001 0.001 1 

C 
(Highly 

Eccentric) 

Init. 9222.7 0.2 0.573 0.0 0.0 120.0 
1.5 Targ. 30000.0 0.7 0.573 0.0 0.0 120.0 

Tolerance 25 0.001 0.001 1 0.001 1 
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Fig. 2. Time evolution of  the Cartesian distance between the target slot and the 

spacecraft (upper left), as well as the eccentricity (upper right), inclination (lower left), and (lower right) semi-major 
axis of the spacecraft and target slot over the duration of the best sixth-element targeting case B transfer. 

 
Fig. 3. Percentage of successful propagations with respect to start time, interval time, or 𝛼 for case B.

C. Eccentric Target Orbits 
Cases with both low and high eccentricity were 
considered with cases B and C. While the majority of 
the combinations considered resulted in convergence to 
the correct target orbit and orbital slot, similarly to case 
A, 40% of these did not converge due to the onset of 
thrust chattering.  
 
 

For the Case B (SSO Elliptic Raise), a parametric 
analysis using the ranges α = 1, 2,… , 9, 𝑡.#B)# =
1, 2,… , 8 days, and 𝑡A2# = 0.5, 1.0, … , 5.0 days was 
considered. Starting the controller after 5 days of 
transfer and evaluating every 3 days with a gain of α =
	9 was found to yield the best performance with only a 
0.22% increase in propellant consumption compared to 
the same transfer without targeting. The time evolution 
of the distance to the target slot, and of selected 
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Keplerian orbital elements for this transfer are shown in 
Fig. 2.  Furthermore, Fig. 3 shows that the time interval 
between evaluations of the predictor-controller stage has 
the largest influence on the convergence of the 
algorithm. This is expected, as the controller is not 
called enough times to ensure a smooth convergence 
when the interval time is too large. Additionally, it 
appears that higher values of α result in a more reliable 
convergence for this transfer. 
 
For the Case C transfer, the ranges 𝛼 = 	1, 2, … , 9, 

𝑡.#B)# = 0, 3, 6, … , 18 days, and 𝑡A2# = 1, 2,… , 5 days 
were considered heuristically and the best combination 
of parameters found starts the controller at the start of 
the propagation (𝑡.#B)# = 0 days) with an interval of 3 
days and 𝛼 = 	6, yielding a 0.25% propellant mass 
increase to target the specific slot. This rendezvous 
transfer is shown in Fig. 4, correctly inserting in the 
target orbit at the desired position. Furthermore, Fig. 5 
indicates that larger values of 𝛼 result in a better 
convergence, and lower value of 𝑡A2# are preferred, 
similarly to cases A and B.

 

 
Fig. 4. Cartesian coordinates of the spacecraft and target slot as a function of time during the Case C transfer.

 

 
Fig. 5. Percentage of successful propagations for start time, interval time, or 𝛼 in the Case C transfer.
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IV. DISCUSSION 
The presented predictor-controller approach enabling 
sixth-element targeting functionality to the Q-Law was 
found to yield promising results. Certain combinations 
of 𝑡.#B)# , 𝑡A2# , and α yield convergence to the desired 
orbital slot with a minimal impact on the propellant 
consumption. However, 40% of the combinations do not 
converge for both the circular and eccentric cases 
because of thrust chattering, compared to only 10% for 
the GEO algorithm. As this phenomenon is 
characterised by very fast changes in the optimal thrust 
direction obtained from the Q-Law, the integrator gets 
stuck, and the propagation cannot be continued. While 
the use of a fixed-step integrator could push through the 
thrust chattering phenomenon until convergence, this 
would result in inaccurate estimates of ΔΦ in the 
predictor stage and prohibit the convergence of the 
targeting algorithm. 
 
From the combinations which did converge, it can be 
observed that smaller values of  𝑡.#B)#	𝑎𝑛𝑑	𝑡A2# yield a 
better convergence. This is expected, as both yield a 
smoother behaviour of the controller and therefore 
smaller changes in the targeted semi-major axis at each 
evaluation of the predictor-controller stage. Such 
behaviour reduces the probability of thrust chattering, 
and therefore increases the convergence rate. However, 
this results in an increased computational load. 
Furthermore, while higher 𝛼-gain values were found to 
benefit the convergence of the algorithm, adequate 
values are case-dependent and need to be assessed for 
each transfer separately. Additionally, the convergence 
of the algorithm does not automatically imply an 
optimal performance. However, the kind of performance 
analysis presented in this work only needs to be 
performed once for a new transfer and the obtained 
algorithm constants will be similar for similar transfers. 
 
Considering the best combinations resulting from each 
case, test case A revealed a significantly worse drop in 
performance because of sixth-element targeting 
compared to cases B and C (1.03% against 0.22% and 
0.25%). Such differences are unexpected and are 
unexplained at this stage, indicating that further work on 
the circular version of the algorithm is necessary to 
improve its performance. One possible explanation for 
this behaviour is that while the circular target orbit 
considered in case A does have 𝑒4 = 0 exactly (which 
is an assumption of the derivation of the method), the 
orbit reached at the end of the transfer has 𝑒 ≈ 0.0001 
due to the specified tolerance on the eccentricity. A 
better performance would then be obtained with a 
smaller tolerance. However, [31] showed that the 
AMEE and MEE formulations of the Q-Law both 
possess a singularity at 𝑒 = 0, meaning that exactly 
circular orbits cannot be targeted and further reducing 
the tolerance could result in a trajectory encountering the 

singularity. Nevertheless, the availability of a sixth-
element targeting method for arbitrary circular orbits 
remains valuable, even if suboptimal, to be used as an 
initial guess of a local optimisation algorithm.  
 

V. CONCLUSION 
This work presented and demonstrated the capability of 
a sixth-element targeting algorithm for the Q-Law 
applicable to any bounded target orbit. The method is a 
generalisation of the work from [2] and relies on the 
evaluation of a predictor-controller stage which 
evaluates the final phase error between the desired target 
slot and the spacecraft at convergence with the target 
orbit, and adapts the semi-major axis evolution to reduce 
the error. The algorithm convergence and performance 
depend on three user-specified constants: an α controller 
gain, the epoch at which it is started, and the frequency 
at which it is evaluated throughout the transfer. The 
capability of the algorithm was demonstrated based on 
three test cases and results in a minimal increase in fuel 
mass used compared to the classical Q-Law for eccentric 
orbits. However, the method applied for circular orbit 
shows a larger drop in performance which should be 
further investigated. Further work shall include 
improving the circular version of the method, testing the 
algorithm performance in a perturbed environment with 
eclipsing (and coast phases), and developing the Q-Law 
to reliably avoid thrust chattering. The latter is not a 
problem specific to the proposed method, but improving 
this general issue would aid in designing more complex 
transfers. Additionally, a genetic optimiser could be 
used to select the three user-defined functions, rather 
than the parametric analyses presented in this work. This 
would permit to directly exclude combinations which 
encounter thrust chattering and improve the rendezvous 
trajectory optimality. However, the computational time 
linked to an excessive number of calls to the predictor-
controller stage needs to be considered in this case.   
 
Despite the reported future improvements, the proposed 
method already opens the door to fast rendezvous 
mission design and significantly improves the initial 
guess quality for further trajectory optimisation. 
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