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verspätete Flüge). 
 
 
Air Traffic Flow Management (ATFM), Resilience, Robustness, System resiliency, Supervised 
Machine Learning, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), 
European ATM Network (EATMN), Network State, ATFM Delay 

(Published in English) 
Rasoul SANAEI 
German Aerospace Center (DLR), Institute of Air Transport, Hamburg 
 
An exploratory research on European ATM Network resilience through supervised 
learning 
Doctoral Thesis, Hamburg University of Technology 
 
Air Traffic Management (ATM) is a complex system challenged by different aspects such as 
layered management subsystems, various business models for airlines, and dynamic 
environment. These aspects expose planned operations to daily disruptions leading to delayed 
passengers. Disruptions on one hand and system saturation on the other hand, suggest that ATM 
needs to become more resilient. Through a data-driven approach, this thesis works on 
conceptualizing the European ATM network resilience. Since system resiliency is correlated with 
situational awareness, this study proposes a network state definition and then explores learning 
methods to extract better predictions (delay and delayed flights).  
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Summary 
Air transportation is managed to accommodate more flights every day with solutions such 

as new business models for airlines, but at cost of rising congestion. Solutions like low-cost 
carriers stimulated the traffic demand to a higher growth rate. Such consequences exacerbate 
the gap between demand and airspace capacity despite planning procedures. Congestion adds 
to the complexity of air traffic management (ATM), that challenges planning phases of air 
traffic flow and capacity management (ATFCM). Factors such as dynamic capacities and built-
in flexibilities expose the ATM system to emergent Demand-Capacity Balancing (DCB) issues. 
In an exploratory attempt this study considers resilience as a systematic solution to cope with 
emergent dynamics. A resilient system basically accepts the dynamic environment and tries 
to manage the raised complexities with performance variability.  

  Resilience is intertwined with situational awareness. Thus, after conceptually modeling 
the European ATM network (EATMN) resilience, a proposed methodology determines the 
network state (based on large scale disruptions) and then the thesis delivers a prediction 
method to assess reviving solutions against emergent imbalances. Most of emergent 
disruptions (DCB issues) are currently managed by simulation-based assessments that require 
high computational power and access to different data bases. In comparison, this study is a 
data driven approach with statistical evaluations and supervised learning algorithms focused 
on disruptions rather than constant monitoring of demand (traffic) and capacity.   

Throughout the methodology chapter, network state is defined based on statistical 
inferences and predictability of disruptions is improved by supervised learning. More 
specifically, situational awareness is improved by daily network predictions from a deep 
Convolutional Neural Network (CNN). The model exploits characteristics of disruptions such 
as their spatio-temporal dimension. Furthermore. the resilient path to revive the network is an 
accumulation of individual corrective actions (i.e. capacity regulations). Therefore, a Recurrent 
Neural Network (RNN) is proposed to predicts the impact (delay) of corrective actions, 
because at a higher granularity temporal dimension of data is more informative.   

The conceptual achievements of the thesis support the operational need to declare solid 
cases of network anomaly based on performance indicators while authorities such as the 
European Aviation Crisis Coordination Cell (EACCC) rely on safety metrics. This paradigm 
shift is on one hand evaluated by 2018 use cases and received expert feedbacks from an EU-
SESAR project. On the other hand, RNN results are evaluated against results from the deep 
CNN model. In fact, the post-operational dataset (regulations from 2015 to 2018) show that a 
network-wide prediction that is accumulated from RNN predictions has an accuracy of 97 
percent for cumulative daily delays. This actively demonstrates that even if such a high 
precision cannot be realized throughout operations, still the proposed approach not only 
delivers an improved situational awareness but also enables the network manager to foresee 
the network impact of submitted list of corrective regulations from local authorities.   
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GLOSSARY 
  

A-CDM  Airport Collaborative Decision Making 
ACC Area Control Centre. The part of ATC that is concerned with en-route traffic coming 

from or going to adjacent centers or APP. It is a unit established to provide air traffic 
control service to controlled flights in control areas under its jurisdiction. 
 

AD  Aerodrome 
ADP  ATFM Daily Plan 
ADR  Airport Departure Rate 
ADS-B Automatic Dependent Surveillance-Broadcast 
AFP  Airspace Flow Program (US) 
AIM  ATFCM Information Message (Europe) 
AIRAC Aeronautical Information, Regulation and Control 
AIS  Aeronautical Information Service 
ANM  ATFCM Notification Message (Europe) 
ANS  Air Navigation Service. A generic term describing the totality of services provided in 

order to ensure the safety, regularity and efficiency of air navigation and the 
appropriate functioning of the air navigation system. 
  

ANSP  Air Navigation Services Provider 
AO  Aircraft Operator also referred as AU 
APP  Approach Control Unit 
AR  Alternative routing scenario  
ARTCC  Air Route Traffic Control Center, the equivalent of an ACC in Europe. 
ASM  Airspace Management 
ASMA  Arrival Sequencing and Metering Area. The volume around an aerodrome taken as a 

reference for measuring the efficiency in handling the arrival flow. Typically, it is a 
cylinder of 40 NM radius. 
  

ASP  Arrival Spacing (US) 
ASPM  Similar to European NMIR, FAA Aviation System Performance Metrics is an online 

access system (https://aspm.faa.gov) that provides data on flights to and from the 
ASPM airports and all flights by ASPM carriers, including flights by those carriers to 
international and domestic non-ASPM airports. All IFR and some VFR flights are 
included.  
  

ATC  Air Traffic Control. A service operated by the appropriate authority to promote the 
safe, orderly and expeditious flow of air traffic. 
  

ATCO  Air Traffic Control Officer/Air Traffic Controller 
ATCSCC  Air Traffic Control System Command Centre (US) is a facility dedicated to balancing 

the air traffic demand with system capacity (similar to DCB operations in Europe). 
  

ATFCM  Air Traffic Flow and Capacity Management, extends ATFM to include the 
optimization of traffic patterns and capacity management. Through managing the 
balance of capacity and demand, the aim of ATFCM is to enable flight punctuality and 
efficiency, according to the available resources with the emphasis on optimizing the 
network capacity through the collaborative decision-making processes. 
  

ATFM  Air Traffic Flow Management, is established to support ATC in ensuring an optimum 
flow of traffic to, from, through or within defined areas during times when demand 
exceeds, or is expected to exceed, the available capacity of the ATC system, including 
relevant aerodromes. In contrast to ATFCM, ATFM considers capacity as an input 
constraint. 
  

ATFM delay 
(CFMU) 

The duration between the latest requested (by AO) take-off time and the take-off slot 
given by the CFMU. More specifically it is the difference between Calculated Take Off 
Time and Estimated Take Off Time (CTOT-ETOT). 
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ATFM Regulation  When traffic demand is anticipated to exceed the declared capacity in en-route control 
centers or at the departure/arrival airports, ATC units may call for an “ATFM 
regulations”. It is a requested time window with reduced entry rates for a reference 
airspace.  
  

ATM  Air Traffic Management. A system consisting of a ground part and an airborne part, 
both of which are needed to ensure the safe and efficient movement of aircraft during 
all phases of operation. ATM is comprised of functionalities such as of Air Traffic 
Services (ATS), Airspace Management (ASM) and Air Traffic Flow Management 
(ATFM).  
  

ATO  Air Traffic Organization (US), is the operational arm of the FAA (similar to 
functionality of Network Manager in EUROCONTROL). 
  

ATS  Air Traffic Service. A generic term meaning variously, flight information service, 
alerting service, air traffic advisory service and air traffic control service. 
   

AU  Airspace User also referred as Aircraft operator (AO). 
Bad weather  For the purpose of this thesis, “bad weather” is defined as any adverse weather 

condition (e.g. strong wind, low visibility, snow) which causes a significant drop in 
the available airport capacity. 
  

CAA  Civil Aviation Authority 
CAS Complex Adaptive Systems 
CASA Computer Assisted Slot Allocation (CASA) system is a part of the Enhanced Tactical 

Flow Management System (ETFMS) which provides automatic message exchange in 
the form of Slot Allocation Messages and other Air Traffic Flow and Capacity 
Management (ATFCM) messages. CASA is triggered by activating a regulation. 
  

CBA  Cross-Border Area, is an airspace restriction or reservation established over 
international borders for specific operational requirements.  
 

CCF  Combined Control Facility (US): An air traffic control facility that provides approach 
control services for one or more airports as well as en-route air traffic control (center 
control) for a large area of airspace. Some may provide tower services along with 
approach control and en-route services. CCF also includes Combined Center Radar 
Approach (CERAP) facilities. 
  

CCSD Collaborative Constraint Situation Display (US) 
CDF Cumulative Distribution Function 
CDM  Collaborative Decision Making 
CDR  Coded Departure Route (US) 
CFMU  Central Flow Management Unit established in 1995 (See NMOC) 
CNN Convolutional Neural Network 
CODA  EUROCONTROL Central Office for Delay Analysis 
CONUS  Continental United States, see US CONUS 
CTOP  Collaborative Trajectory Options Program (US) 
CTOT  Calculated take-off Time 
DCB  Demand Capacity Balancing 
DCNN Deep Convolutional Neural Network, or Deep CNN 
DDR2 Demand Data Repository 
DOF Date Of Flight, A date of flight shall be included in all messages (esp.in item 18 of 

submitted flight plan) where the estimated off-blocks time is more than 24 hours in 
advance, but not more than 120 hours (5 days) in advance the time at that message is 
processed by the IFPS. 
  

DRR Disaster Risk Reduction 
DSNA Direction des Services de la Navigation Aerienne, DSNA is the ANSP of France. 
DSP  Departure Spacing (US) 
DTW  Departure Tolerance Window  
EATMN European ATM Network 
EC  European Commission 
ECAC  European Civil Aviation Conference 
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EDCT  Estimate Departure Clearance Time. EDCT is a long-term Ground Delay Program 
(GDP), in which the Command Centre (ATCSCC) selects certain flights heading to a 
capacity limited destination airport and assigns an EDCT to each flight, with a 15-
minute time window. 
  

EEC EUROCONTROL Experimental Centre in Brétigny-sur-Orge, France 
EOBT Estimated Off Block Time, the estimated time at which the flight starts to be pushed 

back from the gate and start to taxi. 
 

ENAIRE ENAIRE is the air navigation and aeronautical information service provider in Spain. 
ENAV ENAV SPA, is the Italian ANSP with four Area Control Centers (ACC). 
ETA  Estimated Time of Arrival 
ETFMS  Enhanced Tactical Flow Management System (Europe) provides enhanced tactical 

data to all operational stakeholders, regardless of national boundaries, language, or 
equipment. ETFMS facilitates improvements in flight management from the pre-
planning stage to the arrival of the flight. It maximizes the updating of flight-related 
data and thus improves the real picture of a given flight. 
  

EU  Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 
Luxemburg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, 
Spain, Sweden and United Kingdom. All these 28 States are also Members of the 
ECAC. 
  

EUROCONTROL  The European Organization for the Safety of Air Navigation. It comprises Member 
States and the Agency. 
 

EUROCONTROL 
Member States 
(2023) 

Since 1963: Belgium, France, Germany, Luxembourg, Netherlands, United Kingdom; 
Ireland (1965), Portugal (1986), Greece (1988), Malta (1989), Turkey (1989), Cyprus 
(1991), Albania, Armenia, Austria, Bosnia and Herzegovina, Bulgaria, Croatia, 
Cyprus, Czech Republic, Denmark, Estonia, Finland, Georgia, Greece, Hungary, 
Ireland, Italy, Latvia, Lithuania, Malta, Moldova, Monaco, Montenegro, Norway, 
Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, 
The former Yugoslav Republic of Macedonia and Ukraine.  Comprehensive 
agreement states: Israel (2016), Morroco (2016).  
  

FAA  US Federal Aviation Administration 
FAA-ATO  US Federal Aviation Administration - Air Traffic Organization 
FAB  Functional Airspace Block (Europe) means an airspace block based on operational 

requirements and established regardless of state boundaries, where the provision of 
air navigation services and related functions are performance-driven. 
 

FCA  Flow Constrained Area (US) 
FCFS First Come First Serve principle 
FDP  Flight data processing  
FEA  Flow Evaluation Area (US) 

FEI  Flight Efficiency Initiative  
FIR  Flight Information Region. An airspace of defined dimensions within which flight 

information service and alerting service are provided. 
  

FL  Flight Level; the altitude above sea level in 100-foot units measured according to a 
standard atmosphere. Basically, a flight level is an indication of pressure, not of 
altitude. Flight levels are used mainly above the transition level (e.g. FL135) and to 
indicate altitude below the transition level, feet are used (e.g. 4000 ft). 
  

FL  Level capping scenario; this means that flights that meet certain conditions would be 
subject to a restriction, e.g. all flights departing from ZZZZ must be at FLXXX or below 
over point ENTRY. This is the most commonly used STAM.  

FMP  Flow Management Position (also referred to as LTM: Local Traffic Manager). The 
FMP’s role is, in partnership with the NM, to act in such a manner so as to provide the 
most effective ATFCM service to ATC and AOs. Each FMP area of responsibility is 
normally limited to the area for which the parent ACC is responsible including the 
area(s) of responsibility of associated Air Traffic Services (ATS) units as defined in the 
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NM Agreement. However, depending on the internal organization within a State, 
some FMPs may cover the area of responsibility of several ACCs, either for all ATFCM 
phases or only for part of them. The size of individual FMPs will vary according to the 
demands and complexities of the area served. [1] 
  

FMS  Flight Management System 
FOQA Flight Operational Quality Assurance data 
FRA  Free Route Airspace 
FTS Fast Time Simulation (FTS) is a technique to estimate the capacity of each ATC sector. 
GDP  Ground Delay Program (US) 
General Aviation  All civil aviation operations other than scheduled air services and non-scheduled air 

transport operations.    
GS  Ground Stop (US) 
IATA  International Air Transport Association (www.iata.org) 
ICAO  International Civil Aviation Organization 
ICR  Integrated Collaborative Rerouting (US) 
IFR  Instrument Flight Rules; one of the two types of regulations that apply to flights (IFR 

and VFR). Visual Flight Rules, is mostly for general aviation and small sized aircraft 
such as Cessna Skyhawk. IFR flights include commercial flights and Cargo flights.  
 

KPI  Key Performance Indicator 
LR Linear Regression 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
MSE Mean squared error 
NAS  National Airspace System 
NATS National Air Traffic Control Services and Civil Aviation Authority of United Kingdom 
NextGen  The Next Generation Air Transportation System (NextGen) is the name given to a new 

NAS due for implementation across the United States in stages between 2012 and 2025.  

NLP Natural language processing, is a field of research that studies the capabilities of 
learning algorithms to enable a computer to "understand" the contents of documents. 
  

NM  Network Manager (EUROCONTROL) or Nautical Mile (1.852 km) 
NMIR The Network Manager Interactive Reporting 
NMOC  EUROCONTROL’s Network Management Operations Centre located in Brussels 

(formerly CFMU).  

NN Neural Network 
NOP  Network Operations Plan or Network Operations Portal 
NRP  North American Route Program (US & Canada) 
OBT Off-Block Time is the time defined in the flight plan at which the flight leaves its 

parking position with a push back.  
  

OD Origin Destination, also referred as city pairs 
OPSNET  The Operations Network is the official source of NAS air traffic operations and delay 

data. The data is used to analyze the performance of the FAA's air traffic control 
facilities. 
  

Percentile  A percentile is the value of a variable below which a certain percent of observations 
fall. For example, the 80th percentile is the value below which 80 percent of the 
observations may be found. 
  

PRC  Performance Review Commission 
PRU  Performance Review Unit (Europe) which is in charge of performance review report 

(PRR).  

Punctuality  On-time performance with respect to published departure and arrival times. 
RAD  Route availability document  
RE Resilience Engineering 
ReLU Rectified Linear Unit  
RF Random Forest 
RFR Random Forest Regression 
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RL  Reinforcement learning & Reference Location  
RMSE Root Mean Squared Error 
RNN Recurrent Neural Network 
RR  Rerouting scenario (Europe) & Required Reroutes TMI (US) 
R2 R squared; coefficient of determination 
RTS Real Time Simulation is a method of improving the ATC capacity estimation. 
Separation minima  The minimum required distance between aircraft. Vertically usually 1,000 ft below 

flight level 290, 2,000 ft. above flight level 290. Horizontally, depending on the radar, 
3 NM or more. In the absence of radar, horizontal separation is achieved through time 
separation (e.g. 15 minutes between passing a certain navigation point). 
  

SESAR  Single European Sky ATM Research (SESAR) project was set up in 2004 as the 
technological pillar of the Single European Sky initiative. SESAR is founded by the 
European Union and EUROCONTROL. 
  

SGD Stochastic Gradient Descent 
SNN Sequential Neural Network 
Slot (ATFM)  A take-off time window assigned to an IFR flight for ATFM purposes 
STAM  Short Term ATFCM Measure  
STATFOR  Statistics & Forecasts Service 
STD  Scheduled Time of Departure 
STW  Slot Tolerance Window  
Summer season  IATA Summer schedule - begins on the last Sunday of March and ends on the last 

Saturday of October.  

SVM Support Vector Machines 
SVR Support Vector Regression 
SWAP  Severe Weather Avoidance Plan (US) 
Taxi-in  The time from touch-down to arrival block time. 
Taxi-out  The time from off-block to take-off, including eventual holding before take-off. 
Thales Thales Group is a French multinational company that designs and builds electrical 

systems and provides services for the different industrial sections including aviation. 
  

TFMS  Traffic Flow Management System (US) 
TMA  Terminal Maneuvering Area 
TMI  Traffic Management Initiative (US) 
TOS  Trajectory Option Set (US) 
TSA  Temporary Segregated Area  
TSD  Traffic Situation Display (US) 
TV or TFV Traffic Volume (Europe) A computer code used to identify the number of flights over 

an airspace, point, aerodrome or set of aerodromes in order that they can be monitored 
or regulated within the tactical/pre-tactical ATFCM.   

UAV Unmanned Aerial Vehicle  
UIR  Upper Information Region 
US  United States of America 
US CONUS  The 48 contiguous States located on the North American continent south of the border 

with Canada, plus the District of Columbia, excluding Alaska, Hawaii and oceanic 
areas  

VFR  Visual Flight Rules 
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1 
1. Introduction 

Air transportation is constantly changing by adopting new technologies and hosting new 
business models. In general, the demand for aviation services is increasing, and its persistent 
growth is predicted by long-term forecasts (e.g. from EUROCONTROL [2]  in Figure 1-1). 
Although the actual data deviate from prediction, yet in normal environment demand is 
growing at different rates. These predictions include factors such as economic growth, fuel 
prices, load factors, high-speed rail network development and airline schedules 1  in three 
scenarios (global growth, regulation & growth, fragmenting world).  

 
a) actual and forecasts for 1990-2022 (10 million IFR flights in 2016; i.e.  +2.4% compared to 2015) 

 
b) actual and forecasts for 2008-2025 (11 million IFR flights in 2018; i.e. +3.8% compared to 2017) 
 

Figure 1-1 Growth of European IFR flights, [2] 

The pessimistic scenario of fragmenting world addresses major safety issues such as 
volcanic eruption in 2010 and COVID-19 pandemic. But COVID aftermath requires more 
studies (as in [3] ) since fragmented world is no more considered as a pessimistic scenario with 
regard to realities such as changed mentality in business models (e.g. digitalization and home-
office). Nevertheless, the risk of eventually facing a saturated Air Traffic Management (ATM) 

                                                           
1 The forecast ignores Emissions Trading Scheme (ETS) and Carbon Offsetting & Reduction Scheme 
for International Aviation (CORSIA). DLR’s institute of air transport is studying the impact of 
emissions in different aspects which are relevant to such predictions.   
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1 network is inevitable even in case of a pandemic, in which both traffic demand and airspace 
capacity will be degraded simultaneously. In fact, during COVID-crisis, staff management at 
Area Control Centers (ACCs) has been proved to limit capacity because staff availability for 
different roles and working positions (such as executive and planner controllers) at any control 
center is a key factor in airspace capacity.  

Saturation risk can also be tracked in industrial forecasts such as Global Market Forecast 
(GMF) from Airbus [4]. Despite having less relevance to ATM topics, industrial forecasts 
provide a picture of fleet expansion.  For instance, in Figure 1-2, Airbus predicts to deliver 
more than 39 thousand new aircrafts in next twenty years. In the same time window, Boeing 
also forecasts [5] to deliver almost 25 thousand new airplanes. A total of added 64 thousand 
airliners will push ATM services to reach a much higher level of efficiency.  

 
Figure 1-2 Demand for new Airbus aircraft delivery by 2038, [4] 

 
Similarly, ICAO (International Civil Aviation Organization) predicts that global revenue in 

aviation will continue to grow annually at 4.1% rate (Figure 1-3) and this forecasted increase 
is accompanied by a 3.9% increase rate for freight traffic from 2015 to 2035. 

Although every long-term prediction serves a specific objective but in general there are 
some factors that are missing such as Technology Readiness Level (TRL) or saturation limit. 
Yet, hints of such aspects can be spotted in annual reports rather than predictions. For instance, 
EUROCONTROL [6] reported some effects of congestion in 2018. It was observed that in top 
30 busiest European airports, departure management was a challenge that led to a general 
increase of the additional taxi-out times and ATC pre-departure delays. What intensifies this 
is that such a degradation has been observed despite of solutions like Airport Collaborative 
Decision Making (A-CDM) concept that supports Air Traffic Flow and Capacity Management 
(ATFCM) to reduce delays, improve predictability and optimize the utilization of resources 
[7].  
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1 

 
Figure 1-3 World Total revenue in aviation: history and forecasts, [8]. *CAGR: Compound Annual Growth Rate 

 

Upgrading industrial solutions are less likely to provide a total solution for congestion. This 
claim is reinforced by Performance Review Report [6], that captured the highest inefficiencies 
in 2018 for flights arriving at airport with modern solutions such as Frankfurt (FRA), Paris 
Charles-de-Gaulle (CDG), London (LHR) and Paris-Orly (ORY).   

Such observations remind that the rising pattern of demand in aviation cannot be efficiently 
accommodated by relying only on different industrial solutions for different stakeholders. But 
a systematic approach is needed to address efficiency in a saturated environment. This thesis 
is an endeavor to explore a new perspective (i.e. resilience) to pave the way in resolving the 
saturation problem. The methodology is based on a data driven approach and learning 
models. The thesis claims that resilience is a sound choice with regard to complexity of 
European ATM network. This chapter elaborates more on this claim in four sections: firstly, 
statistics and figures are provided to review the dimension of increasing demand that leads to 
growing delays; secondly, the major ATM procedures against delays are discussed to orient 
the thesis approach and discuss obstacles and limitations. Next, the research question is 
formulated with regard to current European research program, ATM resiliency and realization 
of ATM as a system. This chapter is then concluded by providing the study outline.  

 

1.1.  Motivation 
As mentioned the emerging problems of reaching the saturation level at ATM add to the 

importance of efficiency. COVID experience implied that congestion is not necessarily a result 
of excessive demand but also capacity shortages (e.g. ATC staffing issues due to infected 
controllers) may still cause the same challenges that lead to longer delays. This section shortly 
addresses the general growth of demand and delay prior to enumerating current traffic flow 
management procedures in the following section.   
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1.1.1 Growing demand 
Demand figures are showing an increasing trend in most congested airspaces in United 

States and Europe. Such similarities are more evident in comparative reports that have been 
published by a mutual effort from FAA and EUROCONTROL since 2009.    

Comparative figures [1, 9] do imply that Europe has a bigger increase in its traffic demand. 
Figure 1-4 takes the year 2000 as the baseline and shows the detrimental impact of 2008 
economic crisis on both traffic situations. Europe experienced a faster recovery due to factors 
of being an aggregated airspace with different economies compared to FAA in US that 
provides services on national environment (Figure 1-5).  

 

 
Figure 1-4 Evolution of IFR traffic US vs Europe, [9] 

   

 
Figure 1-5  Faster IFR traffic growth in Europe with different states and economies, [9] 

 
Such different geo-economic factors make FAA and EUROCONTROL to have different 

planning horizons to accommodate the traffic demand. Compared to American ATM system, 
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1 ATFCM in Europe is managed in four phases [10]: strategic, pre-tactical, tactical and post-
operations. These phases and their definition contribute to standardization of European ATM. 
The reference day for these rolling phases is the target date (i.e. day of operations) at which 
the actual flights take place. EUROCONTROL describes planning phases as follows:  

 Strategic Flow Management includes research, planning and coordination 
activities that are concluded seven days or more prior to the day of operations. 
This phase considers procedures and measures toward early identification of 
major demand/capacity imbalances (e.g. traffic axis management). The output of 
this phase is the Network Operations Plan (NOP).   

 Pre-Tactical Flow Management is applied during the six days prior to the day of 
operations and consists of planning and coordination activities to study the 
demand on target date, comparison against predicted capacity, and making 
necessary adjustments to the strategic plan (e.g., sector configuration 
management). Apart from coordination activities based on predictions and 
available capacity a wide range of appropriate ATFCM measures is proposed in 
form of ATFCM Daily Plan (ADP)1. 

 Tactical Flow Management takes place on the day of operations and involves 
adaptation and implementation of ADP into flight operations. The objective is to 
ensure that strategic and pre-tactical corrective measures are the minimum 
required to solve the DCB issues. The provision of accurate information is of vital 
importance, since it feeds short-term forecasts that reveal the impact of events. 

 Post Operational Analysis is the final step of analysis that investigates and 
reports on operational processes. This phase compares the anticipated outcome 
against the actual measured outcome, generally in terms of delay and route 
extension with respect to performance targets.   

These planning horizons are the actual procedures that eventually meet the expected 
demand in discussed long-term predictions. Among all, tactical phase links plans and 
predictions to records of performance. The last-minute demand predictions are done at this 
phase, with the challenge to consider the cumulative uncertainty at a much higher granularity 
than the whole European airspace. In fact, at tactical phase the load in each Traffic Volume2 
(TV) with a limited capacity is predicted (Figure 1-6). 

                                                           
1 These measures are offered to all stakeholders by different services such as ATFCM Notification Messages 
(ANMs) and Initial Network Plan (INP). 
2 TV is a commonly used expression for number of flights over an airspace or a reference location (e.g. an 
airports) in a specific time window. 
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Figure 1-6 Distribution of demand uncertainty over a flight profile to enter a traffic volume, i.e. entry time, [11] 
 
 

Figure 1-6 elucidates the different uncertainty distributions for a flight through different 
prediction intervals.  The distribution curves have different shapes before and after Actual 
Take-Off Time (ATOT). This figure illustrates the dynamic uncertainty in a typical demand 
prediction for a target flight in a specific TV (note that each flight trajectory connects multiple 
TVs to reach the destination. In this approach, the cumulative value of predicted demand/load 
at a target TV has different shapes based on selected prediction horizon. The uncertainty at 
each TV is at much higher magnitude since a TV hosts multiple flights from different traffic 
flows and entry/exit points.  

The described uncertainty to foresee the demand for a couple of hours in tactical phase is 
only a fraction compared to uncertainty of delivered plans from strategic and pre-tactical 
phases when it comes to making decisions about delaying or rerouting a flight at day of 
operations. Along with predicted saturation in long-term, the uncertainty of demand 
prediction in tactical phase pushes the ATM community to seek innovative approaches to 
control resonance of prediction errors in corrective measures that can trigger secondary 
problems with delay.  

 

1.1.2 Growing delay 
The discussed growing demand and efforts to support real-time decision making are the 

frontier of ATM evolution. Despite endeavors to modernize ATM in Europe and US, the 
recorded data trends show a degraded delay figure (Figure 1-7). Comparative reports [9] on 
different management methodologies almost outline similar challenges regarding delay.  
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Figure 1-7 Reported annual delay and delayed flights in US and Europe, [9] 
 

 
 Figure 1-7 shows the increasing delays with a significant portion of delays to take more 

than 15 minutes. Such delays are either ground delay (US terminology) or ATFM1  delay 
(European term). Although delay in US is higher but the number of delayed flights is much 
more in Europe that might be due to different strategies. ATM authorities in US and Europe 
decompose [9] the overall delay and number of delayed flights in Figure 1-7 as:   

“in U.S.: 
 10% of the recorded delay is departure delay, that accounts for a bigger proportion (20%) 

of the delayed flights; 
 10-15% of the recorded delay is ATC-related (TMI-L3 and TMI-L4); which is imposed 

on 25% of the delayed flights. 
 75-80% of the recorded delay is ATFM-related (TMI-L2); and more than half (55%) of 

the delayed flights are affected by this type of delay and 
in Europe: 
 75-80% of total recorded delay (≥ 15 minutes) is from approximately half (45-55%) of 

the delayed flights. The other half of the delayed flights experiences only small delays. 

 Despite the large number of affected flights, the ‘small delays’ account for only 20-25% 
of the total annual delay. 
 

In both regions, if a flight is delayed, the cause most likely (75-80%) is an ATFM issue. In 
Europe when traffic demand is anticipated to exceed the available capacity (in en-route sectors 
or at airports) Air Traffic Control (ATC) units may contact the local Flow Management Position 
(FMP) to initiate an ATFM measure or regulation. Flights that cross these areas receive an 
ATFM delay with a new departure time from EUROCONTROL as the Network Manager 
(NM). Basically [7]: 

                                                           
1 Air Traffic Flow Management (ATFM) 
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1 ATFM delay is defined as the duration between the last Estimated Take-Off Time (ETOT) 
and the Calculated Take-Off Time (CTOT) allocated by the Network Manager. ATFM 
delay comprises both Airport ATFM delay and En route ATFM delay.   

ETOT is the airline’s requested departure time that is driven by a set of airline constraints. 
These constraints depend on passengers, airline schedule, fleet management, or operational 
limitations.  ETOT has its own line of research that addresses concepts like punctuality.  

CTOT is calculated by a mathematical model that considers active regulations. This 
mathematical model is called Computer Assisted Slot Allocation (CASA) in Europe. CASA 
indirectly takes in the request from airline in form of a filed flight plan (defining ETOT) and 
with respect to active ATFM regulations assigns a departure slot (CTOT) as its output [10]. 

CASA algorithm is part of the Enhanced Tactical Flow Management System (ETFMS) that 
generates CTOTs. EFTMS provides tactical data and has two main functions: 

1. calculating traffic demand and occupancy counts based on the information from Initial 
Flight Planning System (IFPS), and 

2. balancing demand with regard to capacity and sequencing the flights by CASA. 

ETFMS in European ATM system (similar to TFMS in US) performs a number of key 
activities: flight and pre-flight data collection, flight activation monitoring, entry and sector 
occupancy counting, flight profile calculations and data distribution. However, despite of 
these centralized tasks the cost of delay to airlines is rising each year. As in Figure 1-8 (left) 
while Air Navigation Service (ANS) provision costs remained almost at the same level for 
airlines, en-route costs grow each year. Also, the increasing gap between annual en-route and 
airport ATFM delay, Figure 1-8 (right), can be a sign of saturated traffic system that 
significantly suffers from en-route capacity issues.  

Figure 1-8 Rise of en-route ATFM delay despite controlled ANS provision costs, [12] 
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1 Even in absence of Corona crisis, EUROCONTROL in Performance Review Reports1 [12] 
estimated that in 2019 twenty two percent of flights will be regulated (and most likely 
delayed). Among which 5 percent are airport driven and 17% are en-route driven ATFM 
delays. This leads to a total estimated 9.29 billion-euro cost for delays in 2019.   

ETFMS in European ATM saves almost 80% of flights from delay. Conversely, the costs of 
delay and its growing demand pattern warns a systematic challenge that 2018 traffic data 
exposed (compare 2017 and 2018 delayed flights in Figure 1-8). Knowing that EFTMS has been 
improved for years of its service through known performance areas (e.g. punctuality, capacity 
and safety), the unsatisfactory results of accommodating flights in 2018 were off the charts.  

In this thesis, system resiliency is explored with a distinction to consider resilience as a 
performance topic rather than a safety aspect. This proposed approach requires better 
justification of the scope. So far, data and reports from both US and European ATM are 
reviewed. The next step is to clarify which region should be the focus of the study and why. 

1.2.  ATM procedures in Europe and US  
Europe and US are the two busiest airspaces; yet their ATM system evolved differently. 

Table1-1, shows that while there are similarities in e.g. area and number of airports, European 
ATM is facing more challenges compared to US, especially in terms of congestion [9].   

Table 1-1 Comparison of European and American ATM dimension, [10] 

Factor Europe US Comments 
Area (million Km2) 11.5 10.4  
Service Provider 37 1  
En-route facilities 62 20  
Airports with ATC services 406 517  
Highly Congested airports (IATA Level 3) ~ 100 1 US: JFK 
Congested airports (IATA Level 2) ~ 70 6 US: EWR, LAX, MCO, 

ORD, SEA, & SFO 
Average daily flights 28 475 41 874  
Share of general aviation (IFR) 3.5% 19%  

 

Figure 1-9 [9] shows major airports in both US (Continental United States - CONUS) and 
Europe (European Civil Aviation Conference – ECAC). CONUS is on average accommodating 
more flights while having significantly fewer congested airports that are scattered across the 
country in contrast to Europe that hosts a central cluster of congested airports. Conversely, 
both regions are using relatively similar approaches in ATM. In strategic phase, for instance 
ECAC benefits from considering following aspects: 

 Flexibility: implementing Free Route Airspace (FRA) to allow airlines plan their 
routes directly, without adhering to published route network.  

                                                           
1 PRR reports are post operational annual reports (e.g. PRR 2019 was published on 18. June 2020). 
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1  Airspace structure: regular RAD (Route Availability Document) updates that 
include related references such as policies, procedures and route network. 

 Operational planning:  offering various scenarios of measures to combine 
airspace organization, route flow restrictions, sector configuration plan, capacity 
plan, rerouting plan and/or regulation plan. 

 Event Management: defining temporary plans for south-west and north-east axis 
flows, the ski season traffic flows as well as major sport events such as Olympic 
games and military events. 

Figure 1-9 FAA/ATO (CONUS) and EUROCONTROL covered area (ECAC), [9] 

US on the other hand applies another set of procedures and solutions in strategic planning 
that some can be listed as: 

 North American Route Program (NRP) is agreed between US and Canada for 
upper airspace (flight level 290 and above) is similar to FRA and allows flights to 
choose flexible routes in the cruise phase (from 200 nautical mile after departure 
until 200 nautical mile distance to arrival airport). 

 Pre-defined routes are validated and coordinated solutions such as Severe 
Weather Avoidance Plans (SWAPs) and Coded-Departure Routes (CDRs). 

 Altitude segregation is the code name for deconflicting traffic flows by capping 
and tunneling. Capping means assigning a lower than requested flight level and 
tunneling is advising a flight to descend prior to the normal descent point.  

Despite similarities in strategic phase, tactical phase is managed by procedures that are 
more customized to regional patterns. There are characteristics that urge different systematic 
perspectives to study ATM in each region. These drivers are for instance, meteorological 
patterns, passenger demand, route network, airline business models and number of service 
providers [9].  
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1 Next rather than discussing mentioned drivers, applied managing processes for tactical 
DCB are addressed based on comparison reports such as [9]. In US, the Air Traffic Control 
System Command Center (ATCSCC) manages the flow of air traffic and minimize delays 
while in Europe most of such procedures are administered by Network Manager Operation 
Center (NMOC). On a local level such measures are implemented by either Combined Control 
Centers (CCF) in US or ACCs in Europe. Examples of major procedures are categorized to 
airport and en-route constraints, minimal adaptations, flow management and weather 
prediction to provide an overview that is required for scoping this exploratory thesis and 
definition the research question.   

 

1.2.1 Airport constraints 
 US, CONUS: inbound traffic to airports are managed either by Arrival 

Spacing (ASP), Ground Delay Program (GDP) or Ground Stop (GS). 
GDPs are mostly triggered by sustained airport capacity loss (due to 
e.g. severe weather as in Severe Weather Avoidance Plan - SWAP). 
Compared to GDPs, GS are not supposed to exceed more than 30 
minutes.    

 EU, ECAC: ATFM regulations manage airport traffic flows. Airport ATFM 
regulations can be applied to a single aerodrome (AD) or to a set of aerodromes 
(AZ) as Reference Location (RL). In most cases only arrivals are restricted. 
Airport ATFM regulations with a non-zero rate (flight entering rate) are similar 
to a GDP and those with a zero rate are same as GS (closed RL). In some cases, 
an airport ATFM regulation starts off with a zero rate, that eventually increases 
to accept a limited amount of traffic (low-rate). This is the equivalent of a 
combined GS and GDP. 

1.2.2 En-route constraints 
 US, CONUS: 

o Departure stop, similar to a GS that is being for instance, assigned to an 
airway, fix, departure gate or sector; 

o Airspace Flow Program (AFP), is a type of Traffic Management Initiative 
(TMI) that is defined with similar parameters as of a GDP but AFP is 
applied to a volume of airspace (referred to as Flow Constrained Areas-
FCAs); 

o Flow Evaluation Areas (FEA) are 3-dimentional airspaces defined for a 
period of time, with a filter for flights to evaluate the demand in 
monitored airspace (in ECAC this is referred as a Hotspot). Note that the 
airspace is not restricted but closely monitored. Both FEAs and FCAs 
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1 provide reroutes to flights and are visible through e.g. Traffic Situation 
Display (TSD) or collaborative constraint situation display (CCSD). 

o Required Reroutes (RR) is another TMI coupled with a delay program 
and they are issued by departure, arrival or FCA entry time; 

o Collaborative Trajectory Options Program (CTOP), is a relatively new 
procedure for DCB that automatically assigns delay and/or reroutes 
flights to avoid FCAs. CTOP considers the preferences of airlines 
(Trajectory Option Set, TOS) by taking a set of alternative routes (AR) 
from airlines; 

o Integrated Collaborative Rerouting (ICR) is based on the FCAs and 
allows the airlines to revise their trajectory preferences according to the 
FCA and finally if the imbalance is not resolved, the traffic managers will 
decide on the next action that can be recommended routes, RRs and AFPs.  

 EU, ECAC:  

o En-route ATFM regulations that can be applied on a specific airspace 
volume (AS) or special point (SP) as the Reference Location (RL). Such a 
regulation can limit all or a set of traffic crossing the RL (Referred to as a 
TV). En-route regulations can be similar to AFPs if they impose delay or 
in case of rerouting it can be in form of:  

 Flight level capping (imposing vertical limitations), 
 Required reroutes (RRs), or  
 Alternative rerouting (AR) that opens a low rate through airspace 

which normally is not accessible to the traffic flow. 
o Flight Efficiency Initiative (FEI) enables airlines to revise their flight plans 

in search of more efficient trajectory. The cost of each trajectory can be 
evaluated based on a criterion (cost): flight time, fuel, cost of delay. 

o Airspace Users Fleet Priorities and Preferences Processes (UDPP), similar 
to CTOP in US, considers the priorities and preferences of airlines in both 
en-route and airport collaborative processes. 

1.2.3 Minimal adaptation 
 US, CONUS: there is also the possibility of exchanging (subbing) the departure 

time slots. The substitution process provides a way for airspace users to manage 
their flights during a GDP, GS or AFP. Airlines can, for example, swap slots 
between a high priority flight and a less important flight, reducing the delay on 
one at the cost of increasing the delay for another flight of their own. 
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1  EU, ECAC: the same possibility is referred as slot swapping that also allows slot 
extension. Airlines only request swaps concerning flights for which they operate 
or where there is a formal agreement between two different airlines for swaping.  

The differences between mentioned aspects of ATM in each region is also a result of 
different traffic patterns (Figure 1-10). Not only the seasonal patterns are different both in their 
shape and density but traffic flows and axes are different too. Figure 1-10 depicts the annual 
flight hours per square kilometers to identify the traffic density [9]. Most of the congested 
airports are located in central Europe while in US, they are mainly located at the coast lines 
and US has less challenges to deal with weekly traffic patterns. Europe also has crossing traffic 
axes in contrast to converging flows in US (Figure 1-11).  

 

 

 
 

Figure 1-10 Comparison of US and Europe traffic density and weekly variability, [9] 

Annually, ICAO reports the traffic flow chart for all movements across the world and 
Figure 1-11 cuts the European and US section of the global map [13]. The cross-traffic flows 
over Europe and pointed converging flows to north-eastern coast of United States are evident. 
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1 This crossing pattern of traffic flow in Europe and high number of service providers require 
EUROCONTROL role as the Network Manager. NMOC is the ‘former Central Flow Management 
Unit -CFMU operations room that manages one single flow management system over Europe together 
with its partners, the airlines, airport authorities and air navigation service providers’ [7]. The role of 
NMOC is more transparent in ATFM and delay management that is discussed next. 

Figure 1-11 ICAO traffic flow map of 2018, showing cross shape traffic axis in Europe compared  
to rather converging pattern in United States, [13]  

 

1.2.4 Flow management: ATFCM regulation vs. TMI (Europe vs. US) 
NMOC mission is to optimize traffic flows through DCB procedures. As provided by Figure 

1-12, the DCB framework in different planning phases [14] benefits from constant updates on 
both demand and capacity estimations and the uncertainty of factors such as weather and 
staffing are persistence and eventually will affect the planned operation at tactical phase. 

Some levels of uncertainty are intentionally built in to allow the required flexibility of 
operations. A good example is the flight plan submission allowance for airlines up to 3 hours 
before departure (or more specifically 3 hours to Estimated Off-Bock Time - EOBT). 

  The cost of such relaxations is more traffic complexity at tactical phase. For instance, the 
implementation of FRA in European airspace improves the fuel efficiently but consequently 
leads to unpredicted excessive demand for ATC capacity. In other words, since FRA allows 
pilots to fly direct routes which were not originally filed in flight plans; in some cases, the pilot 
request results in earlier entry times over adjacent sectors that tags them as intruders since they 
are unexpected for local ATC units.  
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1 

Figure 1-12 ATM planning and ATFM Phases, [14] 
 

Figure 1-13 maps the dynamic recursive cause and effect chain in tactical phase that is 
triggered by demand-capacity imbalances (e. g. intruders).  Both overloads and unused 
capacity costs to airlines and ANSPs are managed through ATFCM measures in Europe and 
TMIs in United States.  

Such ATFCM or TMI measures are applied and requested by air traffic control centers in 
US and in Europe by FMPs and applied after being authorized from NMOC. They can be 
separated depending on the impact, whether it is affecting the airborne flights or penalizes 
them before departure time. While similar to assigning a CTOT in Europe, in US an updated 
Estimated Departure Clearance Time (EDCT) delays a flight; each region has a different 
tolerance time window for assigning a delay [9]: the EDCT window is ±5 minutes and the 
CTOT Slot Tolerance Window (STW) is -5 to +10 minutes.  

However, not every flight is restricted with a CTOT or EDCT. As an example, in Europe for 
flights without an ATFM slot, the Departure Tolerance Window (DTW) for Actual Take-Off 
Time (ATOT) is normally 30 minutes, from -15 to +15 minutes of Estimated Take Off Time 
(ETOT) that can be extended in adverse conditions to 45 minutes (-15/+30min). In US at New 
York area for example, similar controlling is applied through Departure Spacing Program 
(DSP) that is planned to be replaced by 2026. 
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1 

Figure 1-13 DCB triggers and outcomes in tactical phase of ATFM, [9] 

As reviewed there are various devised tactical procedures for DCB issues that each may be 
caused by operational uncertainties. More specifically, weather induced uncertainties has a 
different category both in terms of its nature and impact. Next section is dedicated to review 
this aspect since despite the improved weather prediction models, incidents such as closure of 
Istanbul airport due to adverse conditions on 24. Jan.2022 have and will significantly interrupt 
the flight operations across Europe.       

1.2.5 Weather predictions 
The limit at which day-to-day weather can be predicted is one of the drivers of demand-

capacity imbalance. Experts of meteorology and atmospheric sciences argue this limit on 
average, is about two weeks and large scale high-impact events such as hurricane tracks can 
be predicted with an accuracy of 150 km up to 4 days in advance [15]. Such numerical weather 
predictions (NWP) are an asset in pre-tactical rather than tactical phase of ATFM. For instance, 
temporary bad weather situations are one of reasons that makes pilots request alternative 
cruise flight levels, leading to unexpected demand and increased complexity of flight 
trajectory at the day of operations. 

But there are also other weather-related issues that can neither be predicted by NWPs nor 
be detected and considered by delay assignment algorithms such as CASA. Factors such as 
stability of airport facilities and management experience makes it a challenge to estimate the 
duration of an airport closure (e.g. in case of a heavy snowfall). At Istanbul incident (on Jan 
24th, 2022), the wrong initial assessment of airport suspension period, caused a lot of delays. 
Although the airport was opened in 2019, a cargo terminal roof was collapsed because of heavy 
snow, runways were blocked and airports ground services couldn’t be supported by the local 
authorities since the access roads to the airport was also blocked.   
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1 Nevertheless, even the precision of NWPs is highly dependent on initial conditions. 
Sensitive dependence on initial conditions or Butterfly effect is pointed out by Lorenz [16]. His 
investigations into predictability of the atmosphere led to introduction of chaos theory, strange 
attractors and chaotic solutions that usually appear in nonlinear systems as of weather. Such 
fundamental difficulties limit the precision of weather predictions and despite constant 
improvements even same models provide different forecasts at different runs. 

As an example, Figure 1-14a shows the results of ensemble Global Forecast System (GFS) 
at different runs (P1 to P20) for temperature and the precipitation level as target values. 
Despite of fixed geographical position and reference date, the divergent pattern for different 
runs is evident for both target values. This uncertainty does not only concern the values of 
predicted parameter but also it has a significant deviation in geographical span as shown in 
so called Spaghetti figures (figure 1-14b).  

 

a. Predicted Temperature (at 850 hPa Pressure) and 
precipitation level for 6th March as the reference date 

b. Spaghetti graph of prediction runs that shows 
the geographical divergence for different runs of 

the model 
Figure 1-14 Divergence pattern of different runs (P1-P20 shown by different colors) for ensemble GFS model from 

NCEP, [17] 

Such uncertainties in weather forecasts in general are one of the reasons for flexibility in the 
tactical phase of ATFM. Weather conditions are affecting both the airborne and ground 
capacities. For instance, airborne flights may alter the flight trajectories to avoid weather 
conditions. Such modified trajectories increase the workload for controllers and in some cases 
creates secondary problems in other ATC units (adjacent sectors) that provide surveillance to 
the same flight.   

                                                          *** 
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1 As discussed from different perspectives, there are many devised planning steps for a 
smooth traffic flow. However, the rise of demand still challenges the saturated capacity and 
no procedure is in place to resolve or monitor network issues other than extreme cases of a 
pandemic for example. In Europe the risk of ignoring network awareness is much more 
tangible since it is integrated from different states with various evaluation models in terms of 
demand, capacity or weather.  

The risks and simultaneously the potential benefits of current traffic patterns can be 
realized by monitoring locally optimal ATFM measures and capture their impact on the 
network (e.g. European ATM Network-EATMN). Such functionality is mainly projected on 
top level authorities i.e. FAA/ATO (Air Traffic Organization is the operational arm of the FAA) 
and NMOC. These operational units are the most relevant stakeholders to address and study 
systematic improvements. Specially in Europe the exposure to secondary problems is higher 
because 37 service providers (Table 1-1) request and apply numerous local optimal solutions 
at tactical phase in absence of a network situational awareness. Throughout previous five sub-
sections, these solutions were investigated from different aspects and the conclusions are 
offered below:   

 Why such local solutions need to be reviewed? Reported rise in demand figures 
and its discussed uncertainties remind that the current system is reaching its 
saturation level and it is time to reach out for revolutionary ideas for air traffic 
management. But first a solid understanding of active solutions is needed to spot 
potential directions of improvement.  

 What is the cost of a saturated network? The rise of delay despite collaborated 
processes in European (ECAC) and American (CONUS) sky, is a sign that delay 
management approaches such as CASA algorithm are not designed to be 
consistent with new concepts (e.g. FRA) and need to be revised. This is observed 
specially in summer 2018 that despite timely raised alarms about excessive 
demand, delay figures significantly degraded beyond control; 

 Why not invest on improving local solutions with current methods? Complexity 
of dynamic traffic management is more significant in tactical phase. Both in 
ECAC and CONUS there are controlled (e.g. flight plan modification) and 
uncontrolled (e.g. weather) uncertainties that cannot be fully realized by 
analytical and numerical methods.  
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1 1.3.  Problem Definition 
In spite of exploratory nature of the thesis, the holistic problem of providing systematic 

approach against European airspace saturation needs to be formulated more specifically. 
Therefore, this section begins with describing ATM as a system. Consequently, life cycle stages 
are considered to locate the phase at which the saturation problem needs to be addressed. 
Saturation of a system is directly related to its adaptation capacity. System resiliency is the 
concept that addresses the saturation in this regard and is interrelated to situational 
awareness. Furthermore, the perspective from European research program is adopted to 
identify and map system’s basic data flows. Such an understanding leads to a situational 
awareness based on a data driven approach that avoids ATM complexity.  

 

1.3.1 ATM as a system 
In system engineering, ISO 15288 standard [18] man-made systems are designed to provide 

stakeholders, services/products within defined environments. Therefore, Air Traffic 
Management (ATM) is a standard system since it is the aggregation of airborne and ground-
based services (air traffic services-ATS, airspace management-ASM and air traffic flow 
management-ATFM) [19] that are provided to four main categories of stakeholders (in 
Europe): 

 NMOC: Network Manager Operations Center operated by EUROCONTROL, 

 FMP: Flow Management Position representing the ANSP (air navigation service 
provider) stakeholders that can be also designated by ACCs, 

 APOC: Airport Operations Center representing the airport perspective since each 
center is the core organizational unit responsible for airside operations, and 

 FOC: Flight Operation Center (also known as Airline Operation Center-AOC) 
represents the airline interests and hosts required functions for flight operations. 

These categories are considered as a system-of-interest with defined roles and authorities 
in ATM and all four are linked by different flows of information. In systems-of-interest, 
humans play different roles in each group. For instance, FMP coordinators interact with 
Collaborative Decision Making (CDM) processes in ATM.  

Nevertheless, ATM as a system is getting closer to saturation level and retirement stage. In 
absence of radical changes, ever growing capacity costs (e.g. improving navigation 
infrastructures and building new airports) will change the opportunity of the rising demand 
into an obstacle. Generally, a system has six stages in its life cycle (Figure 1-15) and retirement 
is the last [20]. A resilient ATM system should constantly be engaged in support and concept 
stages. The system provides sustained capabilities at support stage and any 
needs/requirement for a new system-of-interest or modifications are recognized at concept 
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1 stage. Establishment of EUROCONTROL in 1960 [21] serve as a good example of such changes 
at concept stage. 

 
Figure 1-15 Stages of a system’s life cycle, [20] 

EUROCONTROL started to acquire data, assess potentials and set strategies to support 
European aviation (stage: development). More specifically to assist traffic management, 
Network Manager (NM) role was established (stage: concept) that later started to operate 
NMOC (stage: production). This center optimizes traffic flows by monitoring demand and 
capacity. But while the numbers show a steady trend in traffic and delay figures (stage: 
utilization), still the EATMN suffers from saturation specially in summer season (March-
October). This draws the attention to support stage.  

According to ISO standard [20], “support stage includes processes related to providing 
services that support utilization of the system-of -interest. This stage also includes processes 
to use and monitor the support system itself, including the identification, classification, and 
reporting of anomalies, deficiencies and failures of the support system and services”. The 
given diagram in Figure 1-15 is showing the connection of support stage that is directional to 
retirement stage but interacting with other stages except development. Because development 
stage considers strategic needs while support stage deals with inspected issues at hand.  

Saturation can result from unproportionate assessment of system load at concept stage. In 
EATMN, firstly it was unrealistic to draw prediction figures at concept stage for upcoming 20 
years knowing that it remains in service for much longer than 20 years. ATM should be 
considered as a rolling system, which accommodates more and more flights every year and 
provides ranges of solutions (i.e. vertical separation minima) as time goes by. Secondly, 
predicting the load of the system means gathering tons of data that is both an acquisition 
challenge and an analysis issue since there are different types of data with different 
granularities. 

Such challenges in Europe are addressed by international cooperative research programs 
such as SESAR (Single European Sky ATM Research). In next section the contribution of 
SESAR in EATMN is discussed to realize any conceptual approach against saturation.  
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1 1.3.2 EATMN and SESAR 
SESAR was launched in 2004 to not only define the challenges but also to develop and 

deploy solutions to support EATMN performance. In 2007, SESAR Joint Undertaking (SJU) 
was established to be responsible for modernization of EATMN. SJU started the first program 
of research in 2008. SESAR-I continued until 2016 with 400 projects that took 20 million hours 
to ensure the quality of deliverables to fit the operational needs [22]. SESAR-I successfully 
delivered numerous industrial prototypes, operational and technical solutions but more 
importantly a wide range of new questions, potentials and challenges were inspected.  

SESAR 2020 was launched as the follower until 2024 with a budget of 1.6 billion Euros. 
European Union and EUROCONTROL and other 19 members work together in a setting that 
gathers regulatory bodies, airspace users, airports, ANSPs, manufacturing industry and 
scientific community such as German Aerospace Center (DLR). Its target was to deliver a 
‘modular and automated’ ATM based on digital and virtual technologies in 4 key areas: 

 Airport operations, 

 Network operations, 

 Air traffic services, and 

 Technology enablers. 

These key areas are planned as pipelines that transfer ideas to industrial solutions, in three 
strands of Exploratory Research (ER), Industrial Research (IR), or validation & very large-scale 
demonstrations. To the benefit of this thesis, the author as a concept expert have joined project 
PJ09: DCB or ‘advanced demand capacity balancing’. The project supported the European 
ATM master plan [23] that aims at providing an interoperable concept of European ATM in 
which operations are built around a continuous sharing of data between actors, i.e. ANSPs, 
airspace users (AUs), airports and NMOC. The focus towards performance ambitions of the 
master plan to further develop DCB processes is addressed by improving collaborative 
processes and mutual situational awareness. In essence one of work packages of PJ09 (network 
performance) and this thesis share ideas such as focus on data flows and situational awareness. 
Global thinking was focused through situational awareness at regional levels. 

PJ09 focus was on performance driven DCB in a collaborative environment among actors. 
Actors (systems-of-interest) are communicating through dataflows among each other. While 
each dataflow serves a specific purpose, none is dedicated for a mutual situational awareness 
at EATMN level.  Figure 1-16, summarizes current main data flows in tactical phase. Among 
all dataflows, ATFCM regulations represent results of collaborative decision-making 
processes among all actors. Regulation data is constantly updated and published for all actors 
in the course of tactical phase.  
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Systematic model of European ATM Network
 The figure is comparing the direct and indirect links of 
managing Demand Capacity Balancing issues in the 
Tactical phase. ATFCM Regulations are considered as a 
feedback loop that represent the results of complex 
collaborative decision making processes (taken as a 
black box) among four main stakeholders in form of 
large scale capacity limitations. 
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Figure 1-16 Proposed European ATM network as a system. Such a model takes ATFCM regulations as feedback 
loop that connects all stakeholders. The model avoids complexity of numerous direct data flows between 
stakeholders. 

 

ATFCM Regulations or measures are introduced in section 1.1.2 (growing delay) as a 
method of matching traffic demand to available capacity by limiting the number of flights 
planned to enter an airspace or aerodrome by ATFM delays [7].  

PJ09 provided the chance to explore network performance improvements. Having 
EUROCONTROL as a partner in this project assured that a better network wide situational 
awareness is operationally motivated since NMOC experts in practice realized the need for a 
conceptual improvement against saturation.  

 

1.3.3 ATM resiliency 
The constant update of regulations at tactical phase is a result of emergent behavior of 

European ATM system. Emergent behavior is a complementary expression to resultant 
behavior. Resultant behaviors are those dynamics that happen as a consequence of known 
causal links. In contrast, emergent behavior is a response to unpredicted issues in large scale 
systems usually with sub-systems as of European ATM.  

Emergent disruptions have a direct relationship to complexity. Pariès [24] describes the 
emergence relative to the size and complexity of a system. EATMN is considered as both a 
largescale and complex system with inevitable disruptions.  These disruptions can be 
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1 decomposed to components of the system for analytics but the coping mechanism is bounded 
to following questions:  

 How to realize an emergent disruption?  

 Which level of decomposition is needed to revive the system? 

The first question is a bottom-up and the second one is a top-down challenge. Each system 
has an identical answer based on available dataflows and provided level of control. In 
EATMN, NMOC has the authority to control network issues and in tactical phase this can be 
mostly realized through ATFCM regulations.   

While both NMOC roles and Regulation data are active in daily operations, emergent 
disruptions are not covered by resilience. Prior to this study, resilience was solely a safety 
(rather than performance) topic. Instead robustness of operations was at focus, e.g. by 
providing the mentioned flexibilities in flight plan submission. However, robustness is 
addressing the predictable disruptions (resultant) in the planning phase and resilience is more 
focused on system functionality and emergent disruptions (mostly in tactical phase). In fact, a 
resilient system accepts the inevitable challenges of its dynamic states and adapts itself by 
changing operational processes to maintain its core functionality.  

In EATMN, the four mentioned systems-of-interest NMOC, ANSPs, airports and Airspace 
Users (AUs) are interacting with each other through eight systems [25]: 

1. Systems and procedures for airspace management. 

2. Systems and procedures for air traffic flow management. 

3. Systems and procedures for air traffic services, in particular flight data processing 
(FDP), surveillance, data processing and human-machine interface systems. 

4. Communications systems and procedures for ground-to-ground, air-to-ground 
and air-to-air communications. 

5. Navigation systems and procedures. 

6. Surveillance systems and procedures. 

7. Systems and procedures for aeronautical information services (AIS). 

8. Systems and procedures for the use of meteorological information. 

Extent of these systems defines, EATMN (here after also referred as network) high level of 
complexity. The systems and procedures for ATFM is the most relevant in tactical phase 
(Figure 1-16 is a simplified role base model of this subsystem). This part of network is the most 
interactive systems in tactical phase and therefore taken as the frontier for detection and 
resolving emergent disruptions. 
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1 In conclusion, in order to improve the tactical operations, as an exploratory research this 
thesis addresses the gap in coping mechanism against emergent disruptions by 
conceptualization of network resiliency. The following statement reflects the aim of the study: 

Considering the NMOC role and regulations data, the study firstly tries to model the 
network as a resilient system(conceptually), then it proposes a mechanism to detect 
network emergent disruptions and finally investigates the required level of decomposition 
in reviving the resilient network. In other words, the following research objectives are 
considered: 

1. Demonstrate the idea of EATMN resiliency by a conceptual model; 

2. Since the initial requirement of monitoring resilience is the situational 
awareness, propose a mechanism to detect the network state that serves for 
both current and reference states; 

3. In order to revive the network from emergent disruptions, investigate the 
required level of decomposition for corrective measures (so viel wie nötig, so 
wenig wie möglich: as much as necessary, as less as possible).   

The data driven methodology of the thesis explores an alternative approach based on 
statistical (Objective 2) and learning methods (Objective 3) in comparison to current 
simulation-based approach in ATFM. As of today, DCB issues are declared as hotspots by 
demand prediction models and tactical simulations. Hotspots are locally identified problems 
across the network. By conceptualizing the EATMN as a resilient system, this work 
demonstrates the benefit of inspecting ‘network’ disruptions rather than ‘local’ hotspots.  

 

1.4.  Study outline 
The following chapters define the road map to realize the objective of the thesis: Chapter 

two goes through resilience and its advantages over robustness, and is concluded by system 
state and assumptions of the thesis. Third chapter, methodology, starts with objective 1 to 
conceptually model the EATMN state. Next, the selection of regulations as a feedback loop is 
described in realizing the second objective of the work. More specifically, a twostep statistical 
analysis to detects tactical EATMN state is provided at first and then with regard to data 
driven approach, two intermediate sub-problems on learning algorithms are devised to 
associate second objective to the third:  

Sub-problem I: a feasibility study on different learning techniques to estimate network 
ATFM daily parameters from regulation data.  

Sub-problem II: base on the result of sub-problem I, devise a solid supervised learning 
algorithm that extracts the spatiotemporal dimension of regulations (Deep Convolutional 
Neural Network- DeepCNN).   

Chapter four (Resilient Path) along with an understanding of Complex Adaptive Systems 
(CAS) addresses the third objective of the study on achieving the required granularity on 
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1 predicting corrective actions (i.e. regulations) by providing a Recurrent Neural Network 
(RNN) architecture that predicts ATFM parameters of each regulation (max granularity). 
These predicted values are accumulated to deliver daily predictions at a network level so that 
at any given time the Network Manager (NM) is able to evaluate a list of regulations. Chapter 
five, provide results from all three objectives which are further discussed in chapter six. The 
thesis is concluded by providing a brief overview of COVID pandemic and stating possibilities 
for future works.  
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2 

2. Literature Review 
Limited studies on resilience as a performance topic rather than a safety aspect is a reason 

that this thesis is categorized as an exploratory research. This chapter reviews resilience and 
system state in general and then narrows down to address EATMN.     

In fact, EATMN as a complex system with eight subsystems is highly exposed to emergent 
disruptions. As given in Figure 2-1, despite expected systematic disruptions, there is also a 
seasonal pattern which is also reflected in delay figures in DCB issues. Generally, the rise of 
delay is either a ramification of major disruptive events (e.g. strikes, unpredicted demand) or 
a wave of airspace capacity limitations (e.g. prolonged weather issues). Studies on controlling 
such disruptions tend to propose solutions for strategic or pre-tactical phases. For instance, 
campanelli et al. [26] compared US and European air traffic networks by analyzing the 
propagation of delays due to disturbances. Through agent-based models, their work on 
different delay management systems (flight sequencing) conclude that a priority system in 
ATFM is more efficient in avoiding congestion compared to a first-come first-served managing 
protocol for flights. Similar studies in EATMN are less likely to address resilience in tactical 
phase through a data driven approach.  

But prior to discuss EATMN resiliency in tactical phase, it is crucial to locate resilient 
performance against safety resilience and then differentiate robustness from resilience 
(structural versus tactical solutions).   

 

 
(a) 

 
(b) 

Figure 2-1 Statistical survey of regulations per AIRAC cycle to compare (a) total ATFM delay and (b) 
regulation count. Apart from seasonal patterns, the figure shows that an increase in number of 
regulations does not necessarily imply an increase in the ATFM delay (see annex B.1. for AIRAC cycles; 
Data source: EUROCONTROL, NMIR reports). 
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2 

2.1.  Resilience 
The term resilience is described by a number of definitions, concepts and approaches in 

different disciplines [27]. It has a strong bond with other concepts such as robustness, flexibility 
and agility. The extended scope of resilience has evolved and became more mature through 
specific stages. Hoffman [28] introduced resilience as ‘a high percentage of recovery after, but not 
necessarily immediately after, a deformation’. His study also provided a definition for resilience as 
a capability of a substance to return to its original state at some time after removal of the 
deforming stress. Reviving time is a key aspect of both definitions, hence if the damage or 
deformation is so extreme and abrupt that the object/system seizes to exist/operate, resilience 
is not a topic anymore.   

Another definition is introduced by Holling [29] that compared resiliency and stability to 
develop the concept of resilience. It is coupled with the definition of disruption and based on 
deformation time, the concept determines multiple states for disrupted systems [30]. A system 
that faces (internal or external) forces is considered as resilient if its core functionalities are not 
lost in a disrupted state. This perspective suits the dynamic nature of the EATMN with its 
required operational flexibility for efficient services.  

Moreover, resilience engineering (RE) was introduced by Hollnagel et al. [31] and charted 
studies from different disciplines. RE is a focused paradigm on how safety managers can be 
empowered to handle complexity under pressure. Its approach relies on safety as a dynamic 
process of systems. Resilience engineering invests on strength of a system to compensate 
effects of a disruption [32]. Such a system is considered to have control over its performance 
variability. In other words, RE respects the performance variability by assessing both sets of 
different system outputs: failures (extracting disruptions) and non-failures (detecting system 
strengths).  

Resilience engineering contributes to safety by improving performance in contrast to 
lowering risks through applying constraints. In fact, traditional methods of accident analysis 
and risk assessments are being compromised by more complex technologies in dynamic 
systems. Therefore, current methods combine the technical aspects and human factors to 
improve safety. In this regard, RE is using the principle of resonance to explain how the 
variability of normal performance can (in dynamic ways) lead to disproportionate disruptions. 
EUROCONTROL describes the resonance principle as: 

‘Resonance: A principle that explains how disproportionate large consequences can arise 
from seemingly small variations in performance and conditions [33].’  
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For instance, RE is providing the base for methods such as Functional Resonance 
Assessment Method (FRAM)1 that has four principles: 

 Success and failure equivalency: none of the processes in a system is meant to 
produce failures. In other words, failures and successful outputs are generated 
from the same system. 

 Approximate adjustments: every planned activity needs some levels of adjustment 
since resources, time and in general the actual situation is not the same as assumed 
conditions in planning phase.  

 Emergence: performance variability may build up on unexpected results, that 
are disproportionally large and disturbing the whole system. An outcome is 
emergent if it neither can be attributed to nor explained by (mal)functions of the 
system. 

 Functional resonance: that is an alternative to linear causality. It represents the 
detectable signal that emerges from the unintended combination of the 
variability of many signals. This explains how the variability of a number of 
functions can reinforce each other, leading to excessive disturbance in 
downstream functions. The consequences may spread through the system by 
means of tight couplings rather than easily identifiable cause-effect links. 

Among these principles, functional resonance is closer to systems like EATMN with 
numerous local solutions, i.e. ATFM measures (capacity regulations) that might trigger 
secondary problems. 

Moreover, a study by Francis and Bekera [27] provided categories of resilience definitions 
in different settings. They concluded that “resilience is a conceptual framework composed of 
multiple dimensions. Absorptive, adaptive, and restorative capacities are at the center of what 
a system needs to do and how it needs to respond to perceived or real shocks”. Considering 
EATMN settings, these capacities/levels of resilience (Cook et al. [34]) can be modified as in 
Table 2-1 to locate challenges at each ATFCM phase [35].  

For instance, reliability and robustness of a system should be considered within the 
strategic phase, since a complex system is able to implement structural solutions through 
strategic plans. Generally, systems are more vulnerable at the strategic phase because of 
possible broad consequences. A structural failure can shatter other resilience levels severely 
(low rate but drastic impact).  

 

 

                                                           
1 To read more about FRAM refer to [155] and for a ATM study consider [156]. 
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Table 2-1 Resilience Levels 

Level Features ATFCM Phase 
Absorptive Robustness, Reliability 

e.g. Air Traffic Flow Management (ATFM) Procedural 
Contingency Plan 

strategic 

Adaptive Consideration of adverse impacts, Anticipation of disruption, 
Recognition of unanticipated events 
e.g. Reaccommodation of network flows during an ATC strike 

pre-tactical 

Restorative Control measures, Conflict handling, 
Cost estimation 
e.g. STAMa  measures  

Tactical 

a. Short-term ATFCM measures (STAMs) include a set of automated support tools at the network level which detect hotspots 
and disseminate the information to flow management positions in the ACCs. 

 

Table 2-1 suggests that each type of DCB solutions can be improved according to a 
corresponding level of resilience. Such a classification helps for an efficient selection of 
corrective measures in different disrupted situations (or non-nominal states). Every system 
has iterative processes at different intervals, therefore assuring a level of resilience for each 
process varies in terms of effort, cost and impact domain.  

Most recently, resilience has been defined through the European research project, 
‘Resilience 2050’ as the capacity to recover [quickly] from difficulties; toughness. In fact, ATM 
resilience is defined as the capacity of the aviation system to behave as scheduled in spite of 
incidences, so that flights arrive on time whenever they encounter a difficulty. 

Along with the project Resilience 2050, DLR (German Aerospace Center) has also focused 
on terminology of resilience in different disciplines. For instance, DLR [36] has addressed 
following associated terms with resilience: 

 Reference State: in order to be able to measure the resilience of a system there is 
a need to identify deviations at first place. Rationally the planned status (also 
referred as Nominal situation) of the system is considered as the Reference state.  

 Current State: the status of the system which is captured by indicators at a given 
time. It is compared against reference state to measure either resilience or 
robustness of the system. 

These states do not imply a static mode of the system but rather a domain in which the 
system is considered to be functional. For example, a reference state is possible to be 
defined by either single values of performance indicators, intervals or acceptable range 
where performance indicators can vary. 

 Disruptions and disturbances: despite the importance of clarifying disruptions 
and disturbances, there is no general definition for them due to technical 
complexity of each system. Nevertheless, a disruption can be considered as a state, 
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where the deviation from the plan is sufficiently large to impose a substantial 
change [37].  

Note that the disruption does not have to be always negative but a resilient system is 
considered to be able to capture opportunities too. In some cases, a disrupted state needs 
to be realized so that the system can gain more or better outputs. 

Similarly, a disruption can be expressed by thresholds. Adopted from available DLR 
literature [38], disruptions can be defined using the approach introduced in ecology in 
which a disturbance is defined as the cause (not the state) of stress and perturbation. 

 Stress: the reactionary state of the system or the consequences of the disruption 
on the system functionality that can be divided to: 

o Survival: if the effect of the disruption is not severe and the system can 
respond and damp the consequences through modifications. 

o Lethal: if the system does/should not respond to the consequences of 
disruption. In this case there is always a call for largescale modifications 
and generally a lethal stress is regarded as a Crisis. 

 Perturbation: this term is referred to the reaction of the system to imposed 
changes. Based on the impact and severity of disturbance, two scenarios can be 
defined: either system is partially engaged or every subsystem is affected. 
Nevertheless, in case of a survival stress, perturbation can be: 

o Transient: temporary solutions which are able to revive the system over 
limited time and absorb the effects of disruption in system, and 

o Permanent: the consequences are so severe that the system is forced to set 
a new reference state through fixed modification solutions. A permanent 
perturbation pushes the system into a new reference state to cope with a 
lethal stress.  

In summary, despite of provided definitions, classifications and approaches for system 
resiliency, only a few attempts such as Resilience 2050 project was dedicated to ATM 
resiliency. The project was executed by six academic and research institution in the absence of 
industrial partners or European aviation authorities. As expected, the results are more 
contributing to absorptive and adaptive rather than restorative level (Table 2-1) of ATM 
resiliency. Consequently, a larger scope of transportation systems should be reviewed 
regarding measurement of resilience. IEEE published a comprehensive review paper of such 
studies in 2019 [39] that is addressed next.   

 



2. Literature Review   

53 
 

2 

2.1.1 Resilience measuring methods 
As provided in Figure 2-2, studies on transportation systems resiliency has been increased 

over the past years. Among which the majority of the studies (44%) are related to resilience of 
road networks. Other domains of research include freight transports, railway, maritime 
networks, air traffic networks and multimodal transportations.    

 
Figure 2-2 Publications on resilient transportation systems per year, [39] 

Share of studies on air transportation is reported [39] to be only 8% despite the availability 
of multiple standard data types. But even with the rise in published papers from 2015 
onwards, it seems that other modes of transport hosted more studies compared to air 
transportation due to its complexity and extent.  

Nevertheless, resilience metrics in transportation systems are either topological metrics 
(mostly based on network graph theory) or those that consider attributes and performance of 
the system. Metrics that evaluate the build-in ability of the system to act resilient are referred 
as attribute metrics while those that measure dynamic reaction of the system (e.g. throughput 
or network flow) are called as performance metrics.  

As an example, in aviation, Yoo and Yeo [40], take an attribute-based metric to measure the 
resilience of air transportation network in US. The metric addressed the adaptive capacity of 
resilience to measure the ability of the network to replace a disrupted node with an adjacent 
node.  

Furthermore, in a network graph study, Janić [41] proposed a resilient metric based on the 
airport importance (relative to share of each airport in accommodating flights) and operated 
flights by an airline. Janić [42] later continued his work to assess resilience from another set of 
indicators in a freight transportation systems, including: flights, profits, time of transport, and 

the inventory cost at airports.  

Another example of attribute metrics in topological models, is a commonly used metric: 
size of giant component. It is calculated by determining the proportion of nodes that act as of 
a cluster. In aviation domain [43, 40] it has been used to realize the impact of resilient strategies 
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to maintain the network connectivity since the metric measures the network’s proportion that 
can be travelled by air routes.   

Critical component analysis also uses attribute metrics in resilient air transportation studies 
[44]. This technique is important with regard to limited available resources in time of a 
disrupted network. It sets priorities to assign resources to most crucial nodes of a network 
either in strategic pre-cautionary planning or in post-disaster mitigation strategies.   

It is important to notice that in almost all of the mentioned references, metrics do not 
identify if a system is disrupted or not but rather assign a score to system resiliency. In fact, 
the system vulnerability can be classified into two topics: the probability of having disruption 
in the system and the magnitude of system disruption. Most cited works focus on the latter 
that is also recommended by some classic studies [45, 46] on vulnerability. These studies claim 
that measuring the consequences should be the primary objective. This objective is referred as 
conditional vulnerability and most of the mentioned studies on resilience follow this line of 
research and not the definition of disrupted system. As a result, this thesis is relying on 
performance metrics rather than attribute metrics since the purpose of the work includes 
network state definition.   

Apart from type of resilient metrics, the contribution of this thesis in using system resiliency 
becomes clearer by better clarification of system vulnerability, especially in terms of flexibility 
and robustness. Therefore, next section is dedicated to distinguish robustness from resilience.    

 

2.1.2 Resilience and robustness 
Although to some extent resilience, robustness, stability and flexibility are used in the same 

context but each is technically different. Resilience is a comprehensive term for the ability of a 
system to handle changes, while robustness is more focused on the absorptive level of 
resilience, as inherent resistance against stresses beyond normal system functionalities. Thus, 
robustness is less likely to support performance variability in the tactical ATFCM phase. 
EATMN belongs to complex networks that are counted as robust if basic functionalities remain 
operational under the failure of sub-components. However, in order to provide an exclusive 
and inclusive definition for resilience and robustness, the following general definitions are 
provided: 

 Robust System: A system is identified to be Robust, if it has the ability to 
continue functioning in the presence of internal and external challenges without 
fundamental changes to the system [47]; In other words, a Robust System is 
designed to prevent possible failures. 

 Resilient System: A resilient system accepts the inevitable challenges of its 
dynamic structure and in case of a disruption, adapts itself by changing its 
operational processes while continue its core functionality. This is also addressed 
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in early definition of the word ‘Resilience’ in Psychology [48] which is coming 
from the Latin root, i.e. ‘resilire’, meaning "to jump back" or "to recoil." Hence, a 
resilient system is based on early discovery and fast recovery from unpredicted (or 
emergent) disruptions. 

In other words, robustness indicates a system design to cover more uncertainties. But, the 
improvement of system performance in order to empower system compensation during a 
disruption is the key feature of a resilient system. Robustness in ATM is more investigated 
from topological aspects and indicators. Such studies help to realize important local nodes in 
a modeled ATM network [49].  

In transportation networks, systems are subject to disruptions. Therefore, robustness and 
resilience of such systems can be improved by means of increasing the redundancy as an 
example. However, such measures and their associated investments can be very expensive. In 
transportation networks, appealing sustainable and feasible solutions are generally based on 
more effective management techniques. These techniques are highly relied on remodeling and 
optimization of underlying complexity of the system. 

Here system modeling is a technique that helps to realize system vulnerability and 
recovery. Such a model should address different states of the system. States can be defined 
according to many aspects such as life-cycle or performance levels. Next section discusses, the 
system state that is defined by levels of performance. 

 

 

2.2.  System state 
Resilience is a concept that deals with the functionality of a disrupted system. But with 

regard to conditional vulnerability, the first step toward resilience is to realize the state of the 
system. Devoe [50] provide a theoretic notion of system state in his book: 

“at each instant of time, the system is in some definite state that we may describe with 
values of the macroscopic properties we consider to be relevant for our purposes. The 
values of these properties at any given instant define the state at that instant”.  

This definition reminds that a system state can be expressed by a set of variables (i.e. key 
indicators). But in case of a dynamic system, such a definition can lead to indefinite number 
of states.  Therefore, phase transition is a better alternative for complex systems such as 
EATMN. These systems intentionally have a built-in degree of flexibility in its internal 
environment. 

Devoe also mentions an “equilibrium state” as a state that remains unchanged indefinitely 
unless some external forces violates its internal environment. Theoretically, a sealed system 
with zero interactions with the surroundings is named as an isolated system. In such a system 
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if any change happens, the system will experience a series of reactions that concludes with a 
new equilibrium state. In conclusion, “steady states” is noted by him, that is different from an 
equilibrium state.  

A steady system is regarded as constant for a period of time that it exchanges matters or 
energy with its environment. As an example, one can consider a thermometer. Once the 
thermometer is in contact with a cold or hot object (exchanging heat energy), it measures the 
temperature accordingly (remain stable) without malfunction or (tangible) heat exchange with 
the person using the thermometer.  

Such a definition is more consistent to EATMN state definition since EATMN interacts with 
different level of internal (e.g. passenger demand) and external forces (e.g. weather 
uncertainties) without the need of major airspace closure. Consequently, in this thesis 
addressed EATMN state is assumed to be under the category of steady states. In resilient 
studies a key assumption is that the system at study has at least one steady state (disrupted 
vs. nominal state).  

The connection of steady states and resilience is better discussed in Disaster Risk Reduction 
(DRR) studies. In fact, the combination of resilience and stability in general, motivated the 
subject of disaster resilience, especially after the disastrous Tsunami of 2004 in Indian Ocean. 

Coetzee et al. [51] mention the discussion of DRR and resilience. They also noted that the 
definition of system resiliency as the ability to recoil (to bounce back) needs careful 
consideration since a complete reset leaves the system vulnerable to similar disruptions in 
future. The statement is not relevant to all levels of resilience (Table 2-1) but mainly a key 
aspect in absorptive level. In restorative level of resilience, the resilient system is able to 
maintain its core functionality while reducing the effects of disruption.  

In other words, an improved steady state is not the goal at restorative level of resilience. As 
illustrated by Figure 2-3, the initial state (S0) and the final state (Sf) are not necessarily at the 
same level of performance (Ft) but both are significantly improved states compared to the 
disrupted state (Sd).  

 
Figure 2-3 System states and Resilience adopted from, [30] 
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A review on system studies suggests that some distinguished the state of a system from its 
mode. This difference does not apply to all systems. But as an example, in aviation, Baduel et 
al. [52] focused their research on the definition of states and modes in a system engineering 
context. The study contributed to the specification and design of system behavior. Based on 
their analysis system states have the following aspects: 

 Each state is able to characterize the system; 

 each state is valid or considered at a given point of time or at a time window; and 

 states are providing a specific kind of information, knowledge domain or system 
design (e.g. operations, level of readiness, energy). 

Similarly, one can conclude the following points about the “mode” of a system based on 
their study:  

 A mode also characterizes the behavior of a system; 

 modes are defined for a set of conditions that is not necessarily a temporal 
condition (e.g., specific states of the system); and 

 modes express a behavior regarding a set of capabilities, functions or actions 
(e.g., moving forward or backward, performing flight maneuver, etc.). 

In other words, the state of a system is mainly a variable that can be measured and 
quantified while the mode of a system is the label that tags a set of system behaviors that 
are either activated intentionally or triggered by disturbances of the system.  

Similar to the selection of a correct network definition, the description of non-nominal states 
is relying on correct network impact description. For example, Cook et al.  [53] described non-
nominal states as a phase transition. It refers to high number of locally interacting elements 
causing a collective phase change. It is concluded that unlike other traffic systems (e.g. road 
traffic networks) phase-transition behavior in air transportation systems requires more solid 
definitions. 

Nevertheless, in terms of network states, nominal and non-nominal conditions are not 
similarly discussed in the literature. In their study on a passenger oriented and event-driven 
model, Cook et al.  [54] considered stochastic growth of average departure delay as an 
indicated disruption against nominal conditions. In another attempt to study resilience of air 
transportation system as an optimization problem, Filippone et al.  [55] examined non-nominal 
conditions in order to find the resilience path that is the most valuable chain of processes to 
push the system back to nominal conditions. This microscale1 study described a model for non-
nominal scenarios based on different quantifications of given key performance indicators 
(KPIs).  

                                                           
1 Microscale, Mesoscale and Macroscale studies are explained in next section. 
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Notation of states is also studied in other domains of aviation such as aircraft maintenance 
schedules. But in comparison to network states, there are significant differences in definition 
of states and the dynamics. As an example, a recent study by Andrade et al. [56] applied 
reinforcement learning (RL) for maintenance scheduling. The methodology takes a transition 
function to relate different states at a cost (as of a Markov Decision Process). But in a network 
state, there is no global set that contains all possible states. Even if such a set is given, the 
complexity of parameters and unknown dynamic of intertwined operations at such a scale 
pose a severe challenge in defining a transition function. In a similar study at delft university 
[57], maintenance states are addressed by optimization. However, instead of a transition 
function, the stochastic framework takes a two-phase state transition based on known 
probabilities.        

 

 

2.3.  Assumptions and scope 
To summarize, reviewed studies on resilience and air transportation system reveal some 

gaps and guidelines in the literature. A summary of these potential research directions is 
offered below: 

 despite advantages of organizational efforts such as establishment of 
EUROCONTROL in Europe, the air transportation system needs to consider 
structural changes with respect to less cultivated concepts such as resilience; 

 incidents such as delay peak in 2018 cannot be modeled by classic comparative 
studies. Current European CASA algorithm based on first-come-first-serve 
(FCFS) is less efficient in case of a saturated network; 

 resilience engineering with methods such as FRAM is providing better principles 
for dynamics of air traffic flow management. For instance, functional resonance 
is more relevant to emerging disruptions in ATFM; 

 mapping of resilience levels and ATFCM phases, acts as a reference to locate 
different mitigation approaches. It also helps to assess the impact and costs of 
modifications at each resilience level;   

 Importance of system state definition is discussed and supported by a review on 
resilience measuring techniques. In aviation domain most studies on resilience 
are dedicated to measuring resilience (by attribute metrics) as a mean to evaluate 
imposed costs but the contribution of resilience as a detecting mechanism (by 
performance metrics) is not addressed. Most studies focus on major disruptive 
events and no study is dedicated to emergent disruptions;  
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 lastly, the review of studies on system state and its mode, provided the visibility 
that performance variability needs to be addressed in a system state context 
rather than developing recovery scenarios in different system modes.   

As discussed, resilience is a concept that is defined on the system level. EATMN is 
considered as a system and this study aims at understanding its resilience. Therefore, the goal 
of this exploratory study is to work on conceptualizing the EATMN resiliency as an attempt 
to investigate the possibility and mechanism of addressing resilience in an ATFM context. 
Secondly, the thesis is set to enhance performance of the network from a network manager 
(NM, i.e. EUROCONTROL) perspective. The best practice as of today is the use of simulations 
to predict demand-capacity imbalances and to evaluate the efficiency of capacity regulations. 
This research is providing an alternative by machine learning based predictions instead of 
simulations. Demand-capacity imbalances are addressed as network disruptions and capacity 
regulations are regarded as reviving measures in a resilient ATM system while performance 
metrics are used to measure network resiliency.  

In general, the complexity and dimensions of the EATMN make it challenging to detect 
disrupted network situations by monitoring procedures and operations. Thus, the term 
emergent is used rather than the term resultant to describe such situations. Understanding 
network states provides a better opportunity to investigate emergent disruptions rather than 
resultant failures. Therefore, one of the objectives of the thesis is to propose a methodology to 
capture emergent disruptions as a result of dynamic interactions among DCB actors in tactical 
phase of operations. 

Emergent forces in a network are more likely to happen in mesoscale or macroscale of the 
ATM system. Cook et al.  [53] defined three scales to investigate emergent interactions: 
microscale, that only considers a single flight; mesoscale as an intermediate scale covering a 
given airspace with many flights following a given set of rules e.g. as in a Terminal 
Maneuvering Area (TMA) or in Air Traffic Control (ATC) sectors; and the largest scale is 
macroscale.  

A macroscale air transportation network can be considered at the level of regional, national 
and supra-national networks, or even at the level of the global ATM system. As an example of 
macroscale studies, impact of major external disruptions on an ATM network has been studied 
by Lau et al. [58, 59]. Hosted by DLR-air transportation systems, they analyzed weather-
induced network disruptions that generally have adverse effects on network performance. 
This study led to better understanding on interactions of ATM subsystems. But more 
importantly it has intensified the necessity of implementing systematic concepts such as 
resilience to an ATM network that supports stabilized functionality and performance levels.  

Another known factor of macroscale studies on air transportation modeling and resilience 
is the underlying data [60] and subsequent limitations. Therefore, this thesis has some basic 
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assumptions toward understanding the mode (behavior) of the EATMN as a system. These 
collected assumptions enable achieving higher levels of control over EATMN state: 

 while in most studies on system resiliency, the key assumption is that the system 
is already disrupted; this study is aimed at realizing if a system (EATMN) is 
suffering from such a wide disruption;  

 the scope is not covering sources of uncertainties in air transportation system 
such as prediction of adverse weather situations or large-scale disasters (e.g. 
volcano eruptions). The assumption is that such uncertainties are ultimately 
reflected in demand-capacity imbalances;  

 demand prediction topics and related indicators are avoided since the idea is to 
quantify network state that eventually serves as a baseline to standardize 
common ATM performance indicators; 

 the size of available ATM data and their update rates challenge the consolidation 
of relevant data from different stakeholders. Therefore, selected basic descriptive 
statistics at relevant stages of the study are considered to avoid excessive 
complications; 

 since the initial survey (Figure 2-1) verified seasonal patterns in ATFM delay, 
historical data has been compared to understand current network state. This 
approach is selected based on the fact that, although the network is always 
impacted by different sources of uncertainties, imbalances are part of a finite set 
of possibilities -which can be considered as recursive scenarios. 

 as a proposed rule, emergent non-nominal states are declared based on control 
intervals that assume network states as nominal in 99.3% (corresponding to 2.7σ) 
of the cases. In fact, it is possible to investigate less or more severe disruptions 
relative to control intervals by modifying this assumption.  

Here major safety issues or significant performance losses are in focus to address network 
resiliency. This reminds the different perspectives of resilience and robustness, since a 
robust system is hardly designed to prevent circumstances with occurrence probabilities 
of 0.7 percent and below. In other words, the control interval assumes that benefiting 
from strategic and pre-tactical plans, the ATM network has the flexibility to cope with 
disruptions up to 1.5 times of estimated imbalances (± 1.5 Interquartile Range, i.e. 2.7σ). 
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3. Methodology  
This chapter provides an overview on the methodological selections and the design of the 

research. The main aspect in driving such decisions is the research problem. More, specifically, 
it explains why and how the study is started with an exploratory design and extended to 
assessments. Further, this chapter gives the procedures to selection of ATFCM regulations, 
collect relevant data, analyze them and understand the European ATM network resiliency [61, 
35, 62, 63, 64, 65].  

Moreover, the close collaboration with international research organizations in the SESAR 
Solution PJ09.01 “Network Prediction and Performance” fostered the methodology and its 
operational benefits. Project PJ09 had 29 partners ranging from research organizations (e.g. 
DLR, Thales), airports (e.g. Heathrow), major European ANSPs (e.g. NATS, DSNA, ENAIRE 
and ENAV), to airlines (e.g. Air France). Such a wide range of audience, enriched the 
operational understanding of the different understanding of resilience in European aviation 
community. Resilience is more perceived as a safety topic, but resilience (as studied in this 
thesis) is also about performance. Performance in aviation is highly connected to indicators 
such as delay which is further discussed in this chapter that explains the research design, 
describes the EATMN state, predicts disruptions by learning methods, explains data collection 
process and concludes by describing developed tools.  

 

3.1.  Research design 
Considering three forms of research design: exploratory, descriptive and explanatory, this 

thesis is following an exploratory theme since the concept of resilience is mainly described 
from a safety engineering perspective [33]. Subsequently, resilience engineering [66] changed 
the focus to performance management rather than safety concerns. However, in practice the 
aviation industry still categorizes the resilience concept as a safety topic (also observed 
through early brainstorming sessions of the SESAR project PJ09). In contrast to most studies 
that consider resilience as a safety measure with attribute metrics, this thesis is set to be an 
exploratory study on European ATM resiliency through performance metrics.  

Exploratory studies are those conducted during the early stages of a research, mostly in 
conceptualizing an idea or doing feasibility studies (as of framing the ATM resiliency). In 
comparison, descriptive researches focus on well-established problems such as delay in air 
traffic flow management. Explanatory researches explain why a particular phenomenon exists 
to provide answers to its causality. The behavior of EATMN is resilient to some extent and the 
first section of this chapter works on network state to illustrate this resilient behavior through       
tactical situational awareness.  
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3.2.  EATMN state 
EATMN is unique in its complexity due to numerous stakeholders, airspace configurations 

and accommodated traffic volumes. As discussed previously, such a complexity challenges 
both tactical visibility and the network resiliency in general. Therefore, in this section the 
principle of performance variability used to determine network states. To this end, 
performance metrics and indicators are required. However, due to the absence of a solid 
baseline (or reference state), network state is proposed to be bound to consolidated. The 
methodology is based on capturing the emergent disruptions as drivers of performance 
variability. A key assumption and claim is that emergent disruptions across network are 
revealed through capacity regulations as restorative mechanisms for tactical ATFM.  

After describing the regulation data, this section addresses the network state definition at 
two divided levels of macro and micro analysis. Macro analysis serves as a constant 
monitoring scheme while micro analysis is only focused on disrupted states.   

Based on capacity regulations the results show that proposed statistical approach is even 
able to distinguish non-nominal disruptions to either crisis or critical states. The proposed 
approach is then demonstrated by a data sample covering six months. Furthermore, to assess 
the severity of non-nominal states, the probability distributions of different regulation types 
are estimated. This section is then concluded by offering insights on long term network 
resiliency based on estimated probability distributions. 

The general overview of how resilience is bound to state of the system is emphasized in 
Figure 3-1. Knowing the level of system performance at each given time (P(t)) the state can be 
monitored based on the extent of disruption. The general assumption is that in the design 
phase, the realistic assessment of system internal and external forces (in strategic and pre-
tactical phases) enables EATMN to maintain its functionality for most of its life cycle (remain 
nominal).  

 
 

Figure 3-1 Symbolic model showing the difference between robustness and resilience of a system and their 
connection to system state. S represents the state of the system and P is the level of its performance. 
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Figure 3-1 shows that a resilient network accepts the odds of performance loss beyond its 
robustness (critical/crisis), yet still is able to revive its core functionalities through resilient 
capacities to reach a new steady state (Srecovered). In order to realize such a resilient EATMN, the 
proposed approach is to (I) find most contributing data that describes and contributes to 
tactical situational awareness (measures levels of S), and then (II) make statistical inferences 
for resilient decision-making (is the network degrading to a critical state or a crisis?), and (III) 
develop monitoring measures, i.e. thresholds for network state identification (i.e. micro 
analysis that informs on magnitude of disruption). 

An unusual ATFCM situation or even crisis might be triggered by imbalances between 
capacity and demand as a result of major capacity losses. Another trigger may be major failure 
of information flow in at least one sub-system of the network [67]. Such situations are well-
planned and managed by NMOC. Guidelines are also available for local contingency planning 
for national ANSPs in the event of failure or disruption of related services. These definitions 
and such procedures are contributing to safety-I perspective [68, 66]. Safety-I is more 
concerned on failures or adverse outcomes and tries to enhance preventive mechanisms or 
containing the consequences. Conversely, safety-II perspective is more bounded to 
performance levels since it is focused on successful outcomes (safe and efficient performance) 
rather than mitigation plans. Safety-II considers performance as a variable, that leads to study 
system characteristics to understand successful safety mechanisms. System resiliency and 
safety-II perspective are more aligned as both rely on constant performance monitoring and 
are not only focused on degradations. 

In general, the complexity and dimensions of the EATMN make it challenging to detect 
disrupted network situations through monitoring numerous procedures and operations. 
Thus, the term emergent is used rather than the term resultant to remind that causal links are 
not at focus. Understanding network states provides a better opportunity to investigate 
emergent disruptions rather than resultant failures. Therefore, following sections provide a 
proposed methodology for capturing emergent disruptions as a result of dynamic interactions 
among DCB actors in the tactical phase. 

In search of most contributing data-type different databases were compared with respect 
to certain criteria (section 3.2.1). The acquired data are firstly used to provide statistical 
inferences about network state in general (section 3.2.2) and secondly to provide a more 
detailed overview on characteristics of identified non-nominal state (section 3.2.3).  

 

3.2.1 Selection of regulation data (ANM data)  
The consolidation challenge of relevant data from different stakeholders and update rates 

is considered to be managed by basic descriptive statistics and several data-types and 
databases were compared with regard to the following criteria:  
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 Update rate: the database must be published throughout the tactical and pre-
tactical phase to be more relevant to decision making processes on the day of 
operation, 

 Granularity: selected data should be able to provide required precision to 
understand types of disruption including spatial and temporal dimensions, 

 Coverage: selected data shall be relevant and accessible by all layers of decision 
makers across the European Civil Aviation Conference (ECAC) area. 

According to the mentioned characteristics, delay statistics including reports from the 
Central Office for Delay Analysis (CODA), statistics and forecasts (STATFOR) and those that 
are published in the post-operational phase are not considered. Likewise, databases including 
National Performance Reports (NPR) and ATFCM Statistics and Network Operations Reports 
are only published for authorized users and cannot fulfill the coverage criterion. Among all 
capacity (ATFCM) regulations denote the results of collaborative decision making. In fact, 
regulation is a method of matching traffic demand to available capacity by limiting the number 
of flights planned to enter an airspace or aerodrome [7].   

ATFCM regulations are initiated based on the evaluation of ATFCM Daily Plans (ADP) 
from the pre-tactical phase while being updated constantly in tactical phase. Regulations 
correspond to network states in the restorative level of resilience and are accessible through 
ATFCM Notification Messages (ANM) that are published by NMOC before the day of 
operation. In contrast to ADP, ANMs are updated throughout the tactical phase. Moreover, it 
is considered as official medium for the notification of ATFCM measures (regulations) to all 
actors [69]. These messages are offered to provide a summary of planned measures and to 
promulgate any specific instructions on them to represent each ATFCM regulation. Finally, as 
ANMs fulfill all three criteria it has been selected to represent ATFCM regulations.     

The evaluated amount of data at this stage of the study covers six months, from May to 
October 2017. The investigated period of year is chosen as previous studies [70] on European 
air transportation system revealed that network centrality measures for both air navigation 
route network and airport network are significantly fluctuating from AIRAC 1  sixth cycle 
(May) up to the end of eleventh cycle (October). 

 

3.2.2 Macro analysis  
To identify potential non-nominal states, a macro analysis is performed that is focused on 

regulation counts (Step 1) and durations of active regulations in the tactical phase (Step 2). 
Since the interest lies in emergent characteristics of non-nominal network states, the approach 
is depending on the size of the assessed data sample. In other words, a benefit of statistical 

                                                           
1 Aeronautical Information Regulation And Control (AIRAC), see annex B.1. 
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inferences is that based on sample size, statistics get different values with the same confidence 
levels (i.e. different patterns can be monitored with different thresholds). This dependency 
enables the realization of temporary patterns as well. This means that a non-nominal state is 
able to be compared against various time frames of network performance. Here, ANM data 
are analyzed in two different time frames: six-month (seasonal patterns) and single month 
(weekly patterns). 

As discussed in previously, resilience is about network behavior in disrupted conditions 
and not only in degraded conditions. Therefore, in step 1 (counts) a two-sided control interval 
is used to detect outliers because the intension is to monitor both negative and positive 
deviations. Such incidents (positive disruptions: absence of regulations) may indicate an 
impact of other factors (e.g. airline strikes). They may also provide the opportunity to update 
performance baselines in terms of accommodated traffic demand.  

In step 2 regulation durations are additionally evaluated as they provide more details on 
the severity of a network disruption. Despite the relevance of number of affected flights to the 
network state, the concrete number of affected flights per ANM is only available to all actors 
in post-operational databases. Therefore, the only tactically available data are regulations, 
from which their magnitude can be assessed by their duration. Consequently, outliers are 
identified with respect to calculated mean and standard deviation as descriptive statistics of 
regulations’ duration per day.  

The mean duration of published regulations represents the overall severity of the disrupted 
network condition while standard deviation indicates the dispersion of the problem. 
Depending on different combinations of mean and standard deviation values, non-nominal 
states are classified to critical and crisis states (Figure 3-2) with the following definitions: 

 Critical state: Regulations show large mean values (exceeding control intervals) 
accompanied by significant large standard deviations. Such a condition emerges 
when severe but local disruptions are affecting network operations. Hence such 
states need NM support in collaboration among local actors of both ANSP and 
airport networks to handle traffic flows. 

Based on this definition and added dimension of activation time for regulations, both 
nominal and critical states are broken down into more specific types of states when the 
methodology is implemented into developed tools (see NetRes in annex C.2). 

 Crisis state: Regulations show large mean values with rather small standard 
deviations. The network is facing a wave of prolonged impacts restricting safe 
operations. In such situations the loss of airspace capacity is so severe that the 
number of available restorative measures is very limited. Accordingly, NMOC is 
the main actor in handling the situation which is no longer a regional issue.  
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Figure 3-2 Two-step model of network state detection. In macro analysis each day (a daily sample) is compared 
against thresholds corresponding to selected reference sample (e.g. a month). Note the different procedures of 
reviving a critical state and a crisis in EATMN.   

In strategic planning horizon, different stakeholders are more concerned on reserving the 
capacity and scheduling their resources in advance. In pre-tactical phase there is a need to re-
allocate the tasks and resources in accordance with latest updates of other stakeholders. Such 
updates (Events, serious prolonged weather conditions, strikes or major technical problems in 
resources such as maintenance issues) or disturbances may interact with each other and 
potentially lead to adverse impacts that may span over multiple spatial and time scales [55].  

As provided in Figure 3-2, the devised algorithm proposes a mechanism to capture network 
states and only in case of a non-nominal situation, the algorithm proceeds to micro analysis 
that improves the restorative level of resilience and provides analytics for absorptive and 
adaptive levels of resilience. This model was also documented in PJ09 project [11] after being 
presented to project partners (refer to section C.2.3 and Figure C-16 in annex). 

 

3.2.3 Micro analysis  
The micro analysis considers type of regulations and network states. Results also contribute 

to overall robustness of an ATM network by realizing critical airspaces. For such an analysis, 
the following challenges are identified and addressed: 

 Data type: at tactical phase, publicly available data are ANM, ADP and Initial 
Network Plan (INP) but the structure of ANM data is different from the ADP and 
Initial Network Plan (INP) in terms of terminology and format.  
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 Data precision: each ANM record (i.e. regulation) can be evaluated in terms of 
the number of affected flights. In fact, the operational flexibilities on flight plans 
and delay assignment algorithms result in different counts for regulated flights. 
However, such details are published in the post operations reports. 

 Temporal dimension: ANM data are updated in tactical phase by push messages 
and accordingly contain ‘change’ and ‘cancellation’ records. But ADP is 
presented as a reference document that serves as an input for tactical phase.  

 Spatial dimension: ANM data are referenced to traffic volumes. A traffic volume 
can be referred to an airspace, point, aerodrome or set of aerodromes, i.e. they 
can be assigned to both ANSP and airport networks. Diversity in visualization of 
data is covered by considering related ACC 

  that leads to homogenous set of reference locations. 

With respect to mentioned challenges, ANM data is divided based on the regulation reason 
or cause. As stated in the ATFCM user’s manual [10], causes of regulations are divided into 14 
different categories. Major five types are considered including ATC capacity, ATC routings, 
ATC staffing, aerodrome capacity and weather. The remaining nine categories are integrated 
into a single type, named ‘Others’. 

To provide secondary inferences on a critical state, initially the distribution of data is tested 
by quantile-quantile plotting to understand the dispersion of regulation types and to realize 
any similar distributional patterns among different regulation types. Figure 3-3 depicts the 
comparison of each regulation type against normal distribution through estimated normal 
cumulative distribution functions (CDF) on sample data. The advantage of the given plot is 
that it shows different statistical aspects including the shift in scale or location, presence of 
outliers and changes in data symmetry. The figure also shows the expected significant 
deviation from fitted normal distribution of the integrated category of ‘Others’. Upon 
declassification of mixed 9 regulation types, it has been realized that the regulation type ‘ATC 
industrial action’ (mostly strikes) is the main driver of this deviation. Likewise, weather 
regulations are proved to be far from best fitted normal distribution. Knowing the significance 
of weather impact on ATM network, weather regulations are selected to demonstrate the 
methodology in estimating the Probability Density Function (PDF). As the most challenging 
type, weather regulations are proved to be from a skewed and heavy-tailed probability 
distribution (Figure 3-4). 
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Figure 3-3 Simultaneous comparison of ANM data against estimated normal distributions. Note the extended 
distribution of Weather and ATC Capacity compared to other regulation types. Such regulations are expected to 
have a heavy-tailed distribution.   

 

 

Figure 3-4 Sample histogram and estimated probability density function of regulations’ count from ANM data 
(2017: 01.May-31.Oct).   

For micro analysis, the counts of weather regulations in ANM data are plotted separately. 
Results of initial sets of curve-fitting proved that the probability distribution curve is 
considerably skewed and has an asymmetric multi-modal shape as given in Figure 3-4a. Such 
distributions cannot be represented by parametric distributions like Poisson or Gamma. 
Therefore, the use of Kernel density estimation with a normal smoother function is proposed. 
It is a method for estimating PDF of samples from an unknown distribution. Kernel estimation 
actually computes the probability of data by dividing the domain into intervals and then 
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estimating PDFs for each. The final PDF is provided by merging them (Figure 3-4). Kernel 
estimation relies on a probability function and a fixed bandwidth (denoted by bw). Dashed 
curves are based on the best bandwidth that statistically minimizes the errors while black 
curves show the bandwidths from the proposed correction method as estimations for: (a.) 
weather (heavily skewed) and (b.) ATC capacity regulations (multi-modal). Note that for other 
types of regulation there is no need to correct the bandwidth (as given in (c.) and (d.)). 

Kernel density smoothing methods mainly differ from each other based on the kernel 
function (K) used. In the case of using the PDF of normal standard distribution (zero mean 
and unit variance), the smoothing is called normal kernel. Other common kernel smoothing 
functions are called box, triangle and epanechnikov [71]. The final distribution is estimated by 
cumulating the probabilities based on multiple estimated normal distributions for each 
interval. 

Normal kernel smoothing is used with the formulae given in equations (1), (2) and (3) that 
are evaluated over each data point within the interval [xi – (bw/2), xi + (bw/2)]. As a normal 
kernel, the error function (erf in equation 3) is used as it denotes the probability of observing 
a random value in the interval [-x, x]. The equation given in (3) is needed for the computation 
of CDF when they are transferred from a discrete into a continuous distribution. Cumulative 
functions are later required to set thresholds for each regulation type. 
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The distributions for weather and ATC capacity regulations as given in Figure 3-4 are with 
regard to described normal kernel smoothing method. The right bandwidth is obtained from 
minimization of errors. This statistical approach assures the best fit to the data but results 
should be refined to be consistence with the operational understanding of the data.  

From a pure mathematical perspective, it is well established to use minimization of errors 
to select the best bandwidths. However operational understanding of the data reminds the 
necessity of assuring the values of calculated bandwidth for each regulation type in our study. 
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As given in Figure 3-4, statistically optimal values of bandwidths are specified by dashed 
curves, but these bandwidths need to be verified as negative values cannot represent the 
number of regulations on a given day (Figure 3-4a and 3-4b). The corrected bandwidth for 
such type of regulations is actually the greatest integer less than (floor or round down) half of 
the optimal bandwidth. Characteristics of such a corrected curve are more contributing to 
identification of thresholds for detecting outliers in shuffled data. Also, less smoothing 
decreases the loss of precision due to the probability of observing negative values which has 
no added value. 

It is also realized that for larger datasets the recommended bandwidth is even smaller since 
the data size has a negative correlation with bandwidth. For other regulation types, no 
correction was applied and the statistically optimal bandwidth is considered for estimating 
the probability functions. Nevertheless, the screening of the results with both methods was 
also considered for every type of regulation (Figure 3-4).  

Once the probability density curve is extracted from the data, a second set of thresholds 
according to reference confidence levels is calculated within the micro analysis. In the results 
section values based on estimated CDFs are given (Table 5-1). 

ANM messages can also provide spatial patterns of regulation types (Figure 3-5). Also, 
potential relationships among types of regulations are addressed based on estimations in 
micro analysis (see results section Figure 5-2).   

Figure 3-5 projects regulation data on airspace volumes considering ACC areas of 
responsibility. The borders for each ACC (relative to Cross Border Area- CBA) are gathered 
from the EUROCONTROL’s Demand Data Repository (DDR2). On top of quantitative results 
of the micro analysis, such figures provide geographical perspective for disrupted areas. 
According to the given guidelines on regulation [10], each type can be interpreted differently 
with regard to consequences it implies. ATC capacity regulations may include flights in 
departure, arrival and en-route phases. Hence, the potential efficiency of such regulations is 
expected to be high in resolving imbalances between demand and capacity (Figure 3-5a).  
Moreover, weather regulations (Figure 3-5b) denote a reduction of planned capacity. These 
regulations also affect departure, arrival and en-route segments but the prediction uncertainty 
and available measures to counteract are quite different than ATC capacity.  
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b. Weather d. Aerodrome 

  
a. ATC Capacity c. ATC Routings e. ATC Staffing 

Figure 3-5 ACCs and count of different ATFCM regulation types across Europe (May to Oct. 2017) based 
on ANM data.  Geographical patterns for five major regulation types are provided as heatmaps.  

There are more specific regulations like ATC routing regulations (Figure 3-5c) that are only 
applied to en-route flights. Similarly, aerodrome capacity regulations (Figure 3-5d) only affect 
departures and arrivals, which are more contributing in understanding airport network 
disruptions. Finally, ATC staffing regulations (Figure 3-5e) are less frequent across the 
network. This category includes unplanned staff shortage and has signs of correlation with 
other type of regulations. In the result section a closer look to potential causal relationship 
among different types of regulations is provided. Generally, the study shows that regulation 
types reveal even more detailed input for other levels of resilience with regard to different 
affected flight phases and driving factors. 

 

3.3.  Disruption management procedures  
As declared before, robustness of a system is the ability to avoid majority of failures. This 

means that there are a number of cases that can be detected based on the information that are 
used in design phase of the system. For instance, the underlying processes such as flight 
scheduling, sequencing processes and optimization models, each have defined risk 
management plans and contingency strategies to maintain functionality or minimize the 
impact of possible failures. A good example of this case was recorded on 3rd of April, 2018 at 
EUROCONTROL. 

EUROCONTROL reported [72] that the flight plan data in the Network Manager’s (NM) 
IFPS and Enhanced Tactical Flow Management System (ETFMS) was accidentally deleted on 
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the day. The tactical operations were disrupted for a total of 12 hours and 40 minutes. The 
ATFM procedural contingency plan (a robustness plan) was activated which included 
precautionary reductions in ATC capacities and reduction of airport departure rates (ADR). 
As the backup solution, EUROCONTROL activated the contingency site at the 
EUROCONTROL Experimental Centre (EEC) in France to contain the impact. The robustness 
of the system and designed risk assessments and contingency plans allowed the European 
airspace to cancel only a few flights at the day and the negative impact was only captured by 
excessive delays.  

Similarly, for airlines, robustness is conceptualized in different ways so that for this 
stakeholder majority of the deviations are contained in normal operations. One of them is the 
designed buffer in scheduling process. Buffers are also referred as scheduling contingencies. 
Table 3-1, provides an example to better understand different type of allowances in airline 
scheduling. The “Off-block” buffer is allocated to the aircraft in getting from gate A to gate B. 
The purpose of this buffer is to absorb off-block delays such as taxi, line-up, runway 
sequencing (in ASMA- Arrival Sequencing and Metering Area) and airborne delays (such as 
arrival management delays). Note that this type of buffer in Europe is consistent with the 
duration of a departure slot (15 minutes). The “At-gate buffer” is considered to cover delays 
incurred at destination to secure a punctual departure for the next leg of the aircraft. This type 
of buffer is designed for ground delays and possible recovery between rotations of airplane. 

Table 3-1 Timetable for an airplane to illustrate buffers 

Leg Scheduled 
departure 

Off-
block 
buffer 

Scheduled 
arrival 

Turn-
around time 

(min) 

Slack 
time 

At-gate 
buffer 

1 dep. A: 0730 15 arr. B: 0930 60  0 min 15 mins 
2 dep. B: 1045 15 arr. A: 1300 65  0 mins 10 mins 
3 dep. A: 1415 15 arr. B: 1615 60  10 mins 5 mins 
4 dep. B: 1730 15 arr. A: 1945 65  10 mins 0 mins 
5 dep. A: 2100 15 arr. B: 2300 (out-stationed overnight)  

Adopted from [73] 

 

Nevertheless, it might be inevitable for a flight to wait for connecting passengers or crew 
rotations before continuing to the next leg. Also, there might be an issue over the available 
departure slots at the airport. “Slack time” is the built-in flexibility to absorb such 
discrepancies for airlines. 

Similarly, other stakeholders ensure some degrees of freedom in strategic planning phase 
to deal with the concept of robustness. As mentioned before, this capacity of handling such 
sorts of deviations is noted as absorption in Resilience Engineering.  

However, terminology of industry does not clearly distinct robustness from resilience. a 
quick glance at industrial solutions from related businesses confirms this.   In Europe, 
Lufthansa systems (one of the leading providers of IT services in the airline industry) offers a 
number of different scheduling solutions to enhance airline abilities in their planning. These 
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services often follow other objectives than what academia pursuits in resilience. To present the 
bridge between business objectives and robustness/resilience objectives, a short review of a 
tool from Lufthansa systems is given next.   

Lufthansa in partnership with airlines offers NetLine/Plan tool based on 20 years of 
experience in managing planning challenges. The tool’s primary goal is to maximize 
profitability of an airline’s schedule. At the very first stage, airlines need to optimize their route 
network. This is done by consideration of both market demand and other airspace users 
(airlines). In fact, there is a need to not only optimize the connectivity of hubs but also to 
monitor the route network1. In general, such solutions (designed to optimize airlines flight 
planning procedures) are based on the ATM statistics of strategic phase (up to 18 months 
before the day of operations) and market analysis in coping with following challenges: 

 Connectivity of Hubs: slot constraints in managing the passenger streams in hubs 
are one of the main issues for airlines, especially airlines that rely on more than 
one hub in their operations. Consequently, solutions are offered in terms of 
decision support systems to deal with raised issues on airline schedules.  

 Route network: each airline needs a calculated visibility over flight schedules in 
case of planning new routes. For instance, flight connections are managed and 
scheduled by consideration of factors such as local traffic requirements, crow 
rotation plan, and fueling options.  

Most of the described aspects are challenges studied in the strategic phase of ATFM2. 
Strategic solutions offer robust flight planning procedures to maximize profit and prevent 
failures. All robust solutions, specifically in ATM have an intrinsic flexibility which is essential 
for a smooth traffic flow on the day of operation, hence slight deviations from plans and 
schedules are anticipated in business solutions. The challenge is to control such flexibilities by 
acceptable deviation tolerance levels for flight plans. Punctuality (not robustness or resilience) 
is the dedicated topic in ATM that investigates adherence to these tolerance levels. 
Nevertheless, Figure 3-6 shows the decreasing pattern of punctuality in both US and EU. 

 

 

                                                           
1 This phase is covered by two solutions from Lufthansa systems: NetLine/Plan Hub optimizer and NetLine/Plan 
Route optimizer 
2 Strategic phase covers plans from several month up to 7 days before the day of operations. 
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Figure 3-6 Arrival punctuality for main 34 airports. The vertical axis is showing the percentage of arrivals 
delayed by less than or equal to 15 minutes vs published schedule, [9]  

In Europe the decreasing pattern is mainly driven by factors such as en-route ATC capacity 
shortage, adverse weather and ATC strikes (all regarded as disruptions in resilience). These 
tactical factors cannot be fully absorbed by strategic robust planning because of required 
flexibility. Implicitly, deterioration of such tactical issues may lead to network wide 
disruptions. Therefore, resilience as a broader concept that accounts for system dynamics is 
more capable than robust solutions in achieving higher level of control on EATMN states.  

With regard to different levels of resilience, on top of effective strategic disruption 
management procedures (absorptive level), the interdependencies should be modeled to reach 
restorative and adaptive levels of resilience. From the Netline/Plan tool it is showed that the 
leading industrial solutions use state of the art methodologies but to profitability and not 
system resilience. This demonstrates that the announcement of detected EATMN states is less 
likely to be properly addressed by industrial tools and solutions.  

Therefore, the thesis is continued by taking a data driven learning approach to navigate its 
exploratory research with trending methodologies across industry to keep the pace with 
stakeholder needs in Europe. To model raised interdependencies from EATMN complexity 
and its extent, this study investigates holistic learning methods based on enriched data flows.   

 

3.3.1 Feasibility of machine learning approach 
Perceiving EATMN in terms of resilience requires a closer look at its behavior. At network 

level, the operational procedures that structure ATFM are fully established and constantly 
updated through extensive research programs such SESAR. But such researches mainly 
contribute to absorptive level of resilience rather than restorative level at tactical phase.  

At restorative level, reaction time is limited and active situational awareness is crucial. 
Compared to other complex systems, data availability in ATM enables Machine Learning (ML) 
to contribute to required situational awareness. ML in regression and classification problems 
is most effective when either the causal link cannot be defined or emergent behavior needs to 
be monitored. In EATMN, both the use of numerous procedures by different ACCs and impact 
of emergent disruptions such as weather conditions, motivate the use of ML to understand the 
dynamics in each network state.  
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Indeed a few studies are dedicated to take ML in addressing challenges of restorative level 
of resilience, especially among American academia. For instance, Gorripaty et al. [74] 
considered airport demand figures, capacity estimations and weather situation 
(METeorological Aerodrome Report- METAR data) to find the most similar day to day-of-
operations. The methodology is based on a random survival forest model, that is a learning 
method based on a feature selection mechanism to manage missing data or process noisy 
features [75]. Their study takes data from 2011 to 2015 to offer a decision support tool for only 
one airport at tactical ATFCM phase. In contrast to one airport, this section is focused on much 
wider geographical span that contains 70 congested airports. At such a scale, complex 
dynamics challenge the required computational power. ML methods benefit from huge 
datasets on a process to learn from it. But required data fusion from different data types (i.e. 
demand, capacity, weather, etc.) on top of numerous processes at tactical phase is less likely 
to guide feasibility study at current scope. Instead, metrics such as delay seem to be more 
instructive.  

ML models for delay 
The study of air traffic delay (i.e. a performance metric of resilience) is a live topic and in 

US, the literature is more extended in predicting departure delay (in Europe equivalent to 
airport delay as part of ATFM delay). For instance, Rebollo and Balakrishnan [76] used the 
random forest algorithm to predict departure delay with the help of data from National 
Airspace System (NAS). Their study estimated the network related delay on a certain Origin-
Destination (OD) pair. In a similar study by Kim et al. [77], Recurrent Neural Network (RNN) 
was applied as deep learning method to predict aggregated delay. 

In a joint study by SESAR (Europe) and NextGen (USA), Kravaris et al. [78] studied arrival 
delays in a multi-agent system setting. Three different methods of alternative multi-agent 
reinforcement learning were implemented. The work was further extended by experimental 
results to study the significance of methods in a follow up paper [79]. Arrival delay was also 
addressed as a predictability estimator by Montes et al. [80] in a ML study. Similarly, OD pairs 
are initially clustered by a classification with density-based clustering algorithm. Then 
regression models were applied for each cluster to predict delays. However, none of the 
mentioned methodologies predicted delay on a network level but mostly on specific OD pairs. 

In Europe, among unified databases and standard definitions, specific data types such as 
ATFCM regulations are effective assets to resolve complexity of delay prediction on a network 
scale. Despite the following advantages of regulation data, they are less explored in this 
regard; 

 Regulations are already classified to fourteen different types, meaning that the need for 
clustering and a classification problem is already covered by available features of ATFCM 
regulations; 
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 ATFCM regulations can be planned both in tactical and pre-tactical phase of ATFM. 
Therefore, application of ML methods can be extended to tactical phase depending on 
the model inputs; 

 Each regulation is defined for a reference location, which is not an OD pair or a specific 
route but they are valid for an airspace block (i.e. a traffic volume). In fact the FMP which 
proposes the regulations to resolve DCB problems is defining the reference location. This 
aspect alone opens a new opportunity to set a comparative delay prediction study on an 
agent-based model taking FMPs as agents rather than flights.  

Subproblem-I definition 
Learning models are investigated from two defined sub-problems on feasibility (I) and 

performance/prediction quality (II). Subproblem-I investigates the applicability of ML 
methods in predicting ATFM delay with capacity (ATFCM) regulation data. As candidates of 
two different families of learning mechanisms, a Sequential Neural Network and a Random 
Forest Regression were applied to pre-processed data. Generally, neural networks belong to 
pattern recognition models while random forests are an extension of decision trees in which 
different features of data are handled as decision points.  

In pre-processing some statistical features are calculated on reference locations (i.e. ACC) 
from capacity regulation types. These calculated features were considered as added features 
to input data in predicting normalized mean ATFM delay. Both models are coded in Python 
3.6.8 environment by Keras library and Scikit-learn module. 

Sequential Neural Network (SNN) 
Sequential neural networks [81] build high-level features through their successive layers. 

SNNs are linear stack of layers without any arbitrary graphs of layers such as parallel or 
branching architectures.  

Denoyer and Gallinari [81] denoted the structure of a SNN in comparison to NNs to 
illustrate the advantage of SNN in using a sequence of transformation functions rather than a 
global one in neural networks. These models have a Directed Acyclic Graph (DAG) structure 
defined as follow: 

 Each node n is in {n1, ..., nN}, where N is the total number of nodes of the DAG; 

 n1 represents the root node (without any parent node); 

 cn,i corresponds to the ith child of node n; 

 leaf(n) is true if it is a node without children; 

 Each node is associated to a particular representation space and act as layers in 
classical neural networks 

o the dimension of the root node is the dimension of the input layer, 
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o if leaf(n) = true then the dimension of the leaf nodes equals the output 
layer; 

 Mapping functions (𝑓, ∈ 𝐹) transforms the input x in the node n to adjacent 
node of m. The output produced by the model is a sequence of f-transformation 
applied to the input like in a neural network; and  

 Every node is also associated with a selection function, which is a probability 
function denoted by Pn that assigns a score for each child of node n. This function 
defines a probability distribution (z) over the children of a given node.  

The learning algorithm in case of a gradient decent, tries to minimize the error of expected 
values from mapping and selection functions. Each chain of transformation functions from the 
root node to a leaf is denoted by H in Equation 5. This equation evaluates the performance of 
the SNN architecture (J) through the expected value (E) for a given θ and γ as of parameters 
for mapping (F) and probability (p) functions. Same parameters also serve in learning 
procedure, that is formulated as an optimization problem on gradients (∇) of output vectors 
(Equation 6).  

𝐽(𝜃, 𝛾) = 𝐸(௫,ு,௬)[∆(𝐹(𝑥, 𝐻), 𝑦)] (5) 
 

∇ఏ,ఊ𝐽(𝜃, 𝛾) = න ∇ఏ,ఊ൫𝑃(𝐻|𝑥)൯∆(𝐹(𝑥, 𝐻), 𝑦))𝑃(𝑥, 𝑦)𝑑𝐻𝑑𝑥𝑑𝑦 (6) 

            

From the same logic the proposed architecture is built with an input layer feeding four 
hidden layers to converge into the output layer. The proposed SNN architecture allowed 
experimenting on different activation functions at each layer and for the case of regulation 
data, Rectified Linear Unit (ReLU) as the activation function for all layers led to better results. 
The NN is then compiled by Adam [82] optimizer because it converges faster and requires 
little memory requirements compared to normal SGD (stochastic gradient descent optimizer). 
Adam is also a suggested algorithm for noisy gradients that is the case with regulation data 
since delay can variate significantly due to temporary factors such as weather.  

One of the reasons that Adam algorithm is efficient with noisy data is its choice of step size. 
Step size (∆௧) at each iteration (t) is calculated based on the learning rate (𝛼), exponential 
moving averages of the gradient (momentum or 𝑚௧) and squared gradient (𝜐௧) as given in 
Equation 7.   

∆௧= 𝛼. 𝑚௧/ඥ𝜐௧ 
 

(7) 
 

|∆௧| ≤ ൝
𝛼. (1 − 𝛽ଵ))/ඥ1 − 𝛽ଶ, (1 − 𝛽ଵ) > ඥ1 − 𝛽ଶ

𝛼                                     , (1 − 𝛽ଵ) ≤ ඥ1 − 𝛽ଶ

 

 
(8) 
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Step size is bounded by two upper thresholds based on the chosen hyper parameters of 
Adam ( 𝛼, 𝛽ଵ 𝑎𝑛𝑑 𝛽ଶ ). Inequality 8, provides these thresholds based on 𝛽ଵ and 𝛽ଶ , i.e. 
exponential decay rates for the moving averages (𝑚௧& 𝜐௧). In other words, if the algorithm at 
a time step reaches a gradient that has been zero at all previous time steps (severe sparsity), 
Adam continues with larger step size than the specified learning rate. To illustrate, in case of 
a 𝛽ଵ = 0,9 & 𝛽ଶ = 0,999 the step size can jump to 3 times of the specified learning rate: 

1 − 𝛽ଵ

ඥ1 − 𝛽ଶ

=
0,1

√0,001
=

0.1

0,032
 ≈ 3.125  . 

Such an advantage is an efficient asset in processing regulation data with important 
outliers. As an instance Istanbul airport (LTFM) had a closure in Jan. 2022 due to heavy 
snowfall and collapse of a cargo terminal roof. Airport authorities had problems in estimating 
the required time for retrieving operations. Because LTFM is a busy hub in EATMN, many 
flights had to be heavily delayed by network manager (11900 minutes on January 26th in Figure 
3-7). Such incidents happen rarely but cannot be ruled out as an outlier specially if one 
considers that high ATFM delays are recorded for the following day as well (10806 min for 
27th).  

Figure 3-7  Istanbul airport (LTFM) daily delay on 27. Jan.2022 (EUROCONTROL- Aviation intelligence) 

 

Relying on the advantages of Adam over described characteristic of regulation data, the 
algorithm’s performance is tested at three levels of learning rates (0.1, 0.01 and 0.001). Results 
of experiments on fixed loss function (Mean Squared Error), indicated that a 0.01 rate delivers 
better results in terms of computational time and calculated Root Mean Squared Error (RMSE).  

 

Random Forest Regression (RFR) 
To compare results from SNN (from pattern recognition models), RFR is explored (from 

decision tree models). Despite stablished ATM procedures across Europe, that assure 
acceptable level of performance for daily operations (robustness), emergent disruptions pose 
unforeseen downfalls. A data science perspective translates this aspect as a system that 
produces low-biased output but with a meaningful variance. Bagging (i.e. bootstrap 
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aggregation) is an ensemble learning technique to reduce variance within a noisy dataset. The 
name bagging comes from the sampling technique such that for every learning model (also 
referred as weak learners) a subset of data is independently sampled (a data point can be 
selected for more than one sample).   

 As an extension of bagging in ensemble learning, Tim Kam Ho [83] proposed a method for 
extending decision tree-based classifiers. The method of random forests is based on building 
multiple de-correlated trees (i.e. weak learners) in a randomly selected feature space. Breiman 
[84] extended this method in machine learning knowing that the generalization error 
converges as the number of trees in a forest grows. In his study it is proved that random forests 
do not overfit and therefore they are promising in predictions (both in classification and 
regression problems).  

This can be statistically expressed by knowing that trees of a forest are identically 
distributed, therefore every tree in a forest predicts with the same variance (σ2). The average 
of B trees has a σ2/B variance and since the trees are identically distributed (but not necessarily 
independent) with positive pairwise correlation (𝜌), the average variance is calculated by 
(Equation 9) 

𝑉𝑎𝑟തതതതത = 𝜌𝜎ଶ +
1 − 𝜌

𝐵
𝜎ଶ. (9) 

 

When the forest grows (increased B) the second term approaches zero, i.e. the average 
variance can be decreased by reducing the correlation among trees (𝜌). In a random forest, this 
is realized by random selection of input variables at each decision tree.  

Random Forests (RF), compared to other classification and regression models, such as 
logistic regression boosting and linear regression, deliver a superior performance [85]. 
Moreover, it has been applied in prediction of air traffic delays by Rebollo and Balakrishnan 
[86]. Their work noted the advantages of RF as: 

 automatic generation of variable importance, 

 low sensitivity to outliers in the training data, 

 efficient in cases that number of variables is large compared to number of samples. 

With the intended small scale at feasibility check, i.e. limited number of available data 
points for a given Area Control Center (ACC/FMP) over a year, and with consideration of 
above-mentioned advantages, RFR is chosen to compare the results from SNN.  

Data  
At this early stage EUROCONTROL’s post-operational data on ATFCM regulations is 

acquired. A more comprehensive overview of regulation data is provided at section 3.4 (data 
collection process). As the use-cases, capacity regulations from Langen FMP (EDGG) for the 
years of 2016 and 2017 are selected. For each regulation twenty different parameters are 
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recorded in the data structure. Since the purpose here is to only consider one FMP, the balance 
between number of parameters (i.e. data features) and count of data points is less 
proportionate and needed to be managed. Consequently, the number of parameters is reduced 
by removal of less contributing features and some are expressed in form of indicators. As a 
result, the set of features per regulation has been characterized as of Table 3-2. This reduced 
set does not include any categorical features such as type of regulations. In other words, no 
label encoding was required in data pre-processing. Also, each feature is normalized to assure 
balanced learning for the estimators by avoiding any feature dominance. Daily average ATFM 
delay is predicted value from the first five rows of Table 3-2 that form features per data point 
in pre-processing (sum and average values are used in (11 and 12) since each FMP can have 
multiple incidents of a regulation type on a day).  

Table 3-2 Data Preparation (Features for feasibility study) 

Code Formula Description Type/Class 
T1M 

                  (10) 

Magnitude score of each FMP based on 
mean direct impact of regulated flights & 
Reg duration together with inverse relation 
with activation noticea 

Magnitude 
idicator/input  

T2M 

      (11) 

Cumulative version of T1M  Magnitude 
idicator/input  

T2RA  
                 (12) 

Time to recover (Applied) : measuring the 
direct impact of Most Penalized Regulated 
Traffic and inverse role of Activation notice 
per regulation  

Time to Recover 
indicator/input 

D 
 

Duration of ATFCM Regulation Time to Recover 
parameter/input  

LT 
 

Lag-Time (Activation Notice) Time to Recover 
parameter/input 

ATFM 
 

ATFM delay (airport and en-route) predicted variable 
/output  

a. Activation Notice or Lag-Time is the time between the publication of a regulation and the time that the regulation becomes effective  

 

Along with main parameters of ATFCM regulations, indicators are proposed in terms of 
resilience. To avoid multiple features for limited data points, a feature selection is conducted 
(among indicators and parameters) to focus on dominant features and Table 3-2 only provides 
the selected set. The balance between input vector and number of data points result in less 
computational effort and lower risks of overfitting.  

The column ‘type/class’ in Table 3-2, identifies type of inputs the reduces set belongs to. 
Both magnitude and time-to-recover, represent different aspects of DCB disruption’s severity 
and will contribute to better situational awareness (esp. in case of a preferred weighted input 
vector). Training and testing datasets are separated by a fixed rate (70% - 30%) for every case 
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of Table 3-3. Among different types of regulations, weather regulations (WX) are intentionally 
separated in different cases since its nature is from higher levels of uncertainty.   

Results 
The two methods of RFR and SNN are applied on twelve identical cases in terms of size of 

input vector and respective year of data. Filtered data provide larger dataset in 2017 compared 
to 2016 (Table 3-3). Nevertheless, SNN is verified to deliver better predictions in every case 
(note the RMSE scores). Figure 3-8 and Figure 3-9 provide regression charts for two selected 
cases (best SNN results). The recorded delay per capacity regulation is fluctuating even after 
being normalized. Sequential plots in these figures show that SNN is less likely to be affected 
by short term patterns. However, both RFR and SNN methods proved to be capable of 
predicting extreme chaotic behavior of data points. This is expected from SNN, because data 
is shuffled to eliminate effects of such data characteristics. But, RFR (regardless of data 
shuffling) has higher prediction errors. Moreover, figures reveal that RFR is less efficient in 
predicting high values of delay (sorted values) while SNN seems robust.   

Table 3-3 Comparison of applied methods on different cases 

Case ID WX Input feature RFR 
score 

(RMSE) 

SNN 
Score 

(RMSE) 

Train 
points 

Test 
points T1M T2M T2RA D LT 

2017-10 Yes    * * 0.1255 0.0787 281 121 
2017-11 Yes   * * * 0.1282 0.0762 281 121 
2017-12 Yes  * * * * 0.1262 0.0290 281 121 
2017-13 Yes * * * * * 0.1265 0.0208 281 121 

2016-10 Yes    * * 0.1265 0.0981 206 89 
2016-11 Yes   * * * 0.1271 0.0907 206 89 
2016-12 Yes  * * * * 0.1282 0.0647 206 89 
2016-13 Yes * * * * * 0.1283 0.0354 206 89 

2016-00 No    * * 0.0929 0.0914 168 72 
2016-01 No   * * * 0.0942 0.0890 168 72 
2016-02 No  * * * * 0.0724 0.0241 168 72 
2016-03 No * * * * * 0.0718 0.0368 168 72 

 

The feature importance vectors (Table 3-4) reveal the dominance of Lag-Time (LT) in 
prediction of ATFM delay. But calculated RMSEs suggest to use all features to gain best 
predictions. From a tactical point of view this dominance implies the importance of LT (time 
difference between announcement of regulation and start of regulation). Basically, the system 
is less resilient to sudden disruptions and this is actively reflected in delay as a consequence. 
In comparison, the duration of a regulation (D in Table 3-4) is less contributing to prediction. 
This reminds that such cases hint that current systems are not resilient to disruption as a 
resilient system should suffer more from duration of a disruption. Also, such findings support 
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the claim that regulations are able to represent a network behavior even when being studied 
on a single FMP (here EDGG).  

Table 3-4 Feature importance (2017 cases) 

Case ID T1M T2M T2RA D LT 
2017-10 - - - 0.0654 0.9345 
2017-11 - - 0.0859 0.0592 0.8548 
2017-12 - 0.0618 0.0548 0.0413 0.8419 
2017-13 0.0037 0.0603 0.0516 0.0394 0.8448 

 

Figure 3-8 Regression chart (case 2017-13) best performance achieved by SNN among all cases on 2017 (including 
weather regulations). 

Figure 3-9 Regression chart (case 2016-02) best performance achieved by SNN among all cases on 2016 (excluding 
weather regulations). 

Moreover, the extraction of weather induced regulations is observed not to be much 
effective for SNN (compared to RFR); probably due to resulted reduction of training sets. But 
in absence of weather induced regulations, both RFR and SNN tend to response better to more 
input features. With weather induced regulations, SNN reaches better precision (esp. for 2016 
cases) by considering both magnitude indicators (T1M & T2M). Despite similarities of these 
two indicators, RMSE improved significantly by adding T1M as an input. In contrast RFR 
delivers same quality of predictions which is a reminder of fundamental differences of pattern 
recognition models against decision trees. This difference is also evident of better performance 
of SNN for 2017 cases with more data points (compared to 2016) while RFR tend to be neutral 
against size of training and testing sets.  
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Better performance of SNN is also illustrated by residual plots in Figure 3-10. Plotted 
predicted values against residuals show a smooth dispersion for SNN compared to RFR. This 
figure also implies that RFR suffers from increasing residuals for estimating bigger values of 
delay. Experiments on different cases also justified that reduced feature space is proportionate 
to size of data set since the achieved improvement after including forth feature is minimal.  

  
2017-13 case (included weather regulations) 2016-02 case (excluded weather regulations) 

Figure 3-10 Residual plots, better performance of SNN compared to RFR. 

Conclusion  
In subproblem-I, different approaches in estimating the delay by some studies for US and 

Europe were briefly reviewed. Two different learning techniques are tested to check the 
feasibility of learning methods in delay prediction, on a controlled database (only EDGG). RFR 
and SNN are chosen since each represent different classes of learning methodologies (decision 
tree vs. pattern recognition). In contrast to previous studies that select OD pairs, experimenting 
on 24 cases verified that capacity regulations not only can be used to predict delay but feature 
importance values (Table 3-4) reveal that regulations represent same network behavioral 
patterns even at smaller geographical span. Moreover, these preliminary set of learning 
experiments [35], implied firstly the possibility of delay prediction without modeling causal 
relationships, and secondly SNN’s reliability that grows as the number of daily regulations 
increase. 

3.3.2 Customized learning model    
In previous section, the feasibility of both learning models and use of regulation data has 

been studied by preliminary experiments. This section invests more on extracting features of 
regulation data at first and then seeks different learning approaches to find a baseline model. 
Lastly, based on the data input and performance of investigated models a customized learning 
architecture is designed in response to second aspect (prediction quality) of third objective.  

Objective 3: In order to revive the network from emergent disruptions, investigate the 
required level of decomposition for corrective measures. 

  In subproblem-I, regulations proved to represent network behavioral patterns even at a 
geographically smaller scale compared to EATMN. However, compared to other tactical DCB 
solutions (such as cherry picking) capacity regulations represent largescale corrective 
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measures. Initial findings such as importance of lag-time in learning process, motivated the 
study to invest more on regulations toward resilience at ATFM subsystems (EATMN has 8 
subsystems [25]). Getting an overview of the most relevant procedures at ATFM is an active 
research topic in the literature [87]. Therefore, regulation data are set to be investigated to 
capture dynamics of network behaviors rather than modeling the entire complex ATFM.  

Since the 3rd objective is focused on emergent disruptions, prediction of delay and delayed 
traffic are desired. Both indicators are categorized as performance metrics of resilience (and 
not attribute metrics). Delay (ATFM delay) has a dedicated line of research. For instance, 
Ivanov et al. [88] in an effort to resolve the en-route DCB problem, used a layered mixed-
integer optimization model to minimize delay across Europe. From an airline perspective, 
their study considered delay propagation despite flight schedule buffers.  Optimization 
techniques are widely implemented for delay. Various techniques such as multi-objective 
optimization [89], integer programming [90], and stochastic integer programming [91] are 
explored under the category of delay assignment. There are also studies to minimize (ground) 
delay by alternatives such as airborne delay [92]. Likewise, reducing cruise speed is proved to 
reduce ground delay by up to 15% [93].  

Such studies are focused on minimizing the ATFM and ground delays which is raised as 
Flow Management Problem (FMP) by Odoni [94] in 1986. On a network level, cost benefits in 
Europe are measured in 2007 [95] to be 80 million euros.  From 2007 (793 million passengers 
[96]) to 2018 (almost 1 billion passengers [97]) despite observed ATC productivity gains [98], 
ATFM delay reached 25 million minutes with a substantial yearly increase (+64.5%). Statistics 
of 2018 demonstrated that a network with optimized delay cannot necessarily be considered 
as a resilient network since weather, staff shortages and ETFMS outage conspired to take 
delays to the extreme. Alternatively, this study is aimed at predicting (not optimizing) delay 
and delayed traffic to offer more situational awareness against emergent disruptions.    

With regard to aviation advantage in data availability compared to other means of 
transportation, ML has been used for delay prediction [99, 100, 101]. Some studies designed 
learning architectures that combine different methods for delay prediction. For instance, Gui 
et al. [102] merged Long Short-Term Memory (LSTM) and decision trees to enable their 
approach in integrating different datasets (ADS-B1, weather, airport info). They reached a 
90.2% accuracy by a random forest-based model (for a binary prediction). In a similar study 
[103], LSTM and Support Vector Regression (SVR) were used to calculate the air traffic flow 
instead of delay. They concluded that the LSTM architecture outperforms SVR, especially in 
case of abnormal traffic flows. Their methodology was applied on selected air routes (OD 
pairs).  

However, regulation data have not been investigated specially in understanding emergent 
behavior of EATMN.  In subproblem-I the feasibility of a learning model based on regulation 

                                                           
1 Automatic Dependent Surveillance-Broadcast (ADS-B) 
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data, encourage this study to pursue more complex models that can learn better from different 
aspects of regulations.    

Subproblem-II definition 
Based on results of subproblem-I, next steps are revised to be twofold: firstly, to exploit 

regulations as a rich datatype that encodes multiple interactions between subsystems of 
network, and secondly, to predict the network performance in presence of large-scale capacity 
regulations with a learning method. The proposed model is required to be developed such 
that it can predict two network indicators: total ATFM delay and the number of delayed flights 
(indicators that represent magnitude of disruption).  

More specifically subproblem-II is intended to answer the following aspects:  

1. To handle the modeling challenge of network; that is addressed by supervised 
learning to avoid complexities of interaction in network’s subsystems; 

2. To select the most relevant data; that is answered by capacity regulations since 
each record encodes the result of different coordinated planning processes to 
deal with a DCB issue at the day of operations (tactical phase). In this phase, 
network resiliency is highly vulnerable to disruptions; 

3. To capture the spatiotemporal dimension of network dynamics, that is 
managed by a proposed deep convolutional neural network architecture.    
 

Regulations are mainly studied in DCB and ATFM optimization approaches [104, 105, 106]. 
Data on regulations are available both at post-operational and tactical phases. Therefore, 
different supervised models are tested next to: a) provide a baseline to assess quality of results, 
and b) to select the best potential model for further development.  This part of thesis is fostered 
through a master thesis [107] and is separately published [62]. Primary results are concluded 
with selection of random forest as the baseline since its accuracy is directly linked to forest size 
(i.e. accuracy can be increased even up to overfitting). Furthermore, neural networks is chosen 
because of its superior performance and intrinsic flexibility in learning from regulations 
(reminding the results of subproblem-I). Such an approach guided the study to Convolutional 
Neural Networks (CNN) which is further improved to propose a deep CNN with higher 
prediction quality. The aforementioned steps (data preparation, setting a Random Forest (RF) 
model as the baseline, and the design of the proposed deep CNN) are described in more details 
in the following sections.  

Subproblem-II variables 
Subproblem-I provided a better picture on choosing the right data range. The annual 

growth of delay and regulation counts in presence of persistent seasonal patterns reminds that 
model training set shall be limited to most recent years. 2018 stands out with the highest 
number of regulations and the highest amount of delay. However, data from 2018 and 2017 
are combined to construct a dataset with adequate data points for train/test sets (knowing that 
supervised learning methods account for generalization of trained model). Every tested model 
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is using this dataset to enable comparison of the results explored models. Section 3.4, describes 
the data collection approach, data structure, and its characteristics in detail.  

Input features 
In subproblem-I (feasibility study), normalized mean ATFM delay was predicted. But the 

main intention is to predict daily target values at day of operation (dop). Such a predictability 
matters most to network state definition based on pre-tactical regulations; in which the 
learning algorithm tries to learn the dynamics of tactical phase as a black box.  The described 
methodology so far worked on the claim that regulations encapsulate these dynamics and 
NMIR is a EUROCONTROL database that offers a post operational dataset on regulations. 
Tactical regulations are published in form of ANM messages that has different structure but 
with some common attributes as of NMIR.  

From NMIR, a cut of desired data for 2018 and 2017 is acquired (let N be the number of 
days in this cut), then regulations for each day are filtered out to only those that are being 
activated before 06:00 UTC. Such a list of regulations is taken as the pre-tactical (dop -1) 
regulations. Pre-tactical regulations for each dop, are selected by filtering the attribute of 
“regulation activation date”. Although the resolution of the dataset allows to break down to 
hours, it has been refrained since with a coarse resolution, the pattern may disappear. In a final 
step each day is reconstructed with daily aggregated attributes, specified weekdays and 
respective AIRAC cycles (the input vector and its features for a given dop):  

 𝑁ோ: Number of active regulations for each dop (i.e. regulations that their start 
time is from pre-tactical phase (dop -1) up until 6:00 UTC in the tactical phase); 

 𝐷ഥோ: Average duration of all activated regulations at dop; 

 𝑁்௧: Tactical regulations count (i.e. number of regulations with a start time from 
0:00 up until 6:00 UTC); 

 𝑁 : Represents number of ACC with regulations from pre-tactical phase up 
until 6:00 UTC at dop;  

 𝑅𝑡𝑦𝑝𝑒: A family of 14 features (that each correspond to a regulation type as of 
Table A-2 in annex). 𝑅𝑡𝑦𝑝𝑒 is the total number of type i regulations across the 
network (active regulations from pre-tactical up until 6:00 UTC at dop); 

 AIRAC: The AIRAC cycle (1 to 13) to which each dop belongs. This feature is 
mapped to NMIR data from a reference table (Table B-1);  

In context of learning models, the AIRAC cycle should be considered as categorical data. 
This is because AIRAC13 is not greater than AIRAC1, or vice versa in any sense. 
Therefore, this feature has to be encoded such that learning model can use it without 
giving numerical significance to the AIRAC number. The one-hot encoding of Scikit-
learn [108] pre-processing module is used for this purpose. With such an encoding, any 
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AIRAC is represented by a binary vector of length 13 and only one of the items in the 
vector will have a binary high. 

 Weekday: Similar to AIRAC, the seven weekdays are one-hot encoded resulting 
in a binary vector of length seven. This feature is added with consideration of a 
study from Sun et al. [70], that captured a weekday variation in the European air 
transportation network connectivity.  

Predicted values  
The total daily ATFM delay and delayed traffic (also referred as Most Penalized (MP) 

delayed traffic) are considered as the predicted values (i.e. labels) for the supervised learning 
model. These values constitute the volume (delay) and extent (count of delayed flights) of 
network disruption. More specifically target values for a given dop are total values at the end of 
the day (24:00 UTC) as:  

 Delay (min): Total daily ATFM delay in the network; and 

 Delayed Traffic (flights): total number of delayed flights or daily MP delayed 
traffic. A flight can be subject to more than one regulation on its route and in such 
cases, only the most penalizing regulation is considered to impose a delay, i.e. 
other regulations on the flight route are ignored.   

Train-test split  
In learning models, the size of the train and test sets needs to be proportionate since a 

relatively large training set would increase the risk of overfitting while a small training set 
challenges the generalization of the model and the prediction error will rise, especially in 
absence of evident patterns in a scattered dataset. However, such a choice is not a point of 
concern for this study, because of the persistent seasonal trend of regulations. The acquired 
dataset (2017 & 2018) includes a total of 730 days (with more than 118 thousand regulations) 
and is splitted by a 70-30 ratio for train and test sets.  

Baseline: supervised learning models 
ML is a suitable approach for dynamics of EATMN as a system with complex non-linear 

structures that data acquisition is much more convinient than modeling the system. In 
comparison to deterministic optimization models, ML applications are mainly about 
generalization. These models consist of a combination of optimization cores and statistical 
analysis in their algorithms.  

According to the SESAR publications, the application of ML has gained more interest since 
2017. Among different supervised learning approaches, applications of Neural Networks 
cover more topics of ATM [109, 110]. NNs were used in different aspect, for instance to predict 
the flight trajectories [111] and flight levels [112]. Along with NNs, decision tree based models 
such as Gradient Boost Machines (GBM) are used to predict the runway occupancy count for 
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a single airport [113]. Gradient Boost and Recurrent Neural Network (RNN) are also addressed 
in predicting take-off times [114].  

RF (another example of decision tree models) has also been used for ATM topics such as 
predicting the flight efficiency [115]. However, the prediction of daily delay and delayed traffic 
at network level by learning techniques is rather remained as a gap. The closest work is in 
[116], where a simple decision tree model was used to find the delay variations in a small 
group of sectors instead of whole European airspace. 

In order to foster the modeling approach and to select a baseline model, four different 
supervised learning methods are applied on regulation data with the described features. The 
selected baseline model will serve to assess the efficiency of final proposed model. These 
explored methods are: RF, Linear Regression (LR), Support Vector Regression (SVR), and 
Neural Network (NN). As these models are intended for comparison, similar performance 
metrics are required.  

Performance metrics  
For regression problems, standard metrics such as Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and Coefficient of Determination (R2) are more common. However, the 
extended range of variations for delay and delayed traffic calls for a customized metric. In 
selected dataset, daily delay varies from 1 958 to 327 795 minutes. Similarly, delayed traffic can 
be as small as 117 flights and reach up to  10 812 flights. These metrics treat the deviations 
equally, but ignore the operational understanding of data. For example, a deviation of 50 000 
minutes is not acceptable for an actual target value of 25 000 minutes, but is considered as a 
decent error when the target value is 350 000. Therefore, it is risky to rely on such metrics to 
evaluate the overall performance of the model. This aspect is answered by following two 
solutions:  

 Mean Absolute Percentage Error (MAPE) 
Similar to MAE, this metric is the average value of errors that is expressed in percentages. 
Suppose yi is the actual value for which the prediction is ŷi, then the MAPE is calculated 
as: 
 

𝑀𝐴𝑃𝐸 =
100 

𝑁


|𝑦 − ŷ|

ŷ
ே

  . (13)

 
 
 Evaluation per delay category 

Delay records of 2017 and 2018 can be ordered to three categories of: low (first quartile), 
moderate (2nd and 3rd quarlile), and high (last quartile) as given in Table 3-5. To achieve a 
better insight on performance quality, evaluations for each model is calculated for per 
category and overall values.   
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Table 3-5 Categorization ranges for model performance evaluation 

Category Delay (min) 
Delayed traffic 

(flights) 
Low [0, 20 000) [0, 1 250) 
Moderate [20 000, 80 000] [1 250, 4 650] 
High (80 000, ∞) (4 650, ∞) 

 

Baseline models   
The baseline model has been selected after comparison of individually tuned and evaluated 

explored models (LR, SVR, RF and a NN architecture). Although trained individually, 
simultaneous prediction of two target values leads to poor performance since delay and traffic 
values have different ranges. If not tailored properly, this aspect imposes optimization 
challenges, because the model through the general loss function mostly in a backward 
propagation, tries to minimize the calculated prediction error. A multi-variate prediction 
misleads the optimization model in favor of one of the predicted values. The particular reason 
is that the correlation between delay and traffic is not intended to be provided to the learning 
model, and the purpose here is to minimize the prediction error instead of understanding the 
correlation.     

The following options are considered to control the different scale of delay and traffic: 

 Scaling the predicted values, with the cost of losing the operational 
understanding of both delay and delayed traffic. Specially during an exploratory 
phase, it makes the results to be less intuitive and more theoretical;  

 weighted loss function, with weights that are required to be either pre-assigned 
or learned. In absence of solid correlation, if these weights are set to be learned, 
it leads to excessive complexity and more data points will be required to control 
the relative error;  

 or training separate models for each variable. The key advantage of this option 
is that model can detect and learn different dependencies on input vector 
(features). For instance, it might be the case that a specific type of regulation leads 
to more delayed flights while another type is more persistent and cause longer 
delays. Although the need for more datapoints is less crucial with this option, 
but the cost is higher computational effort.   

The 3rd option serves the best to the limitation on dataset size and the interest of the 
methodology, therefore for each learning method, two independent models are being trained 
and tested. However, identical performance metrics and model design (e.g. cost functions or 
activation functions) are used for both predicted values.  
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Linear Regression (LR) 
It is a basic prediction method to estimate a linear function of independent variables. In 

general regression models take a response variable (Y) and search for an approximation 
function on predictor variables (X). Approximation function can have different forms; a linear 
regression assumes the function to be linear as in: 

𝑌 = 𝛼 + 𝛼ଵ𝑋 + 𝜀  , (14)

where α0 and α1 are constant coefficients or weights, and ε is a random disturbance or error. In 
a LR learning model, the gradient descent optimization technique is typically used to find the 
optimal coefficients that minimizes the error.  

LR is used here to check a model with two key assumptions: linearity and normal 
distribution of prediction error. Though it is expected that regulation features and the target 
values are less likely to be in a linear relation but the model also considers ε as an independent 
random variable with standard normal distribution [117]. The data are prepared, scaled and 
splitted as described earlier and using the Scikit-learn library the model is trained on 511 days. 
Table 3-6 (delay) and Table B-4 (delayed traffic) provide the model performance on train and 
test sets. 

 

Table 3-6 Performance of applied LR to predict delay. 

Category Train Test 
Days MAPEa R2 MAEb Days MAPE R2 MAE 

Low 127 77.59 -5.81 8 744 55 92.51 -5.54 8 562 
Nominal 261 34.85 -0.14 13 753 111 36.1 -0.33 14 834 

High 123 18.02 0.56 24 329 53 22.53 0.26 27 884 
Overall 511 41.47 0.82 15 054 219 46.98 0.77 16 417 

a in percentage, b minutes. 

 

Similar performance in both train and test sets, demonstrate a stable model but in general 
the performance is not convenient enough to account for a linear relationship between 
variables. But the benefit of MAPE over other metrics is evident in Table 3-6. Even when 
categories are ignored (overall), it still shows the poor quality of predictions, in contrast R2 
(goodness-of-fit) indicate a relatively good prediction (i.e. 0.82 in training). Moreover, smaller 
absolute errors in low category led to smaller MAE values exposing the risk of being 
interpreted as a better prediction quality. This pattern which is observed also in Table B-4 is 
emerged from the use of absolute error as the cost function. In other words, errors are 
penalized similarly in different ranges of predicted values that lead to worst MAE values to 
be at high category.   
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Support Vector Regression (SVR)   
Results from LR actively demonstrated that there is no linearity.  Consequently, SVR (a 

derivative of Support Vector Machines (SVMs) is explored next to assess the non-linearity. 
SVRs are recommended for small and medium size datasets in presence of outliers. Assisted 
by tunable hyper parameters, they search for the best prediction within symmetric thresholds.   

Generally, SVR tries to find a function (hyperplane) that is surrounded by an error tube. 
The idea of an error tube formulates the optimization problem to search for the flattest tube 
that best approximates the hyperplane that contains most of the training data points (refer to 
chapter 4 of [118]).  

SVR hyper parameters are: kernel, C, epsilon, and gamma as briefly described below: 

 Epsilon: defines the size of the tube in which the training loss function is equal 
to zero. Value of epsilon controls the generalization of the model; 

 C: the regularization parameter that defines the extent to which the outliers are 
to be penalized in fitting the model. A large penalization on outliers may result 
in over-fitting and poor generalization; 

 Kernel: a transformation function (a kernel) is used instead of a hyperplane in 
case of an assumed nonlinearity between input features and the response 
variable. A kernel can be either precomputed or linear, polynomial, sigmoid, and 
Radial Basis Function (RBF). RBF is basically an exponential function;    

 Gamma: is the assigned coefficient in case of a polynomial or exponential (RBF) 
kernel. It is a positive value that defines the influence of each training sample (i.e. 
curvature weight of the decision boundary). Higher values of gamma lead to a 
more complex kernel and increase chances of over-fitting. 

During the training phase, a grid search is performed to tune hyper parameters (in Scikit-
learn library). The following values constitute different combinations for the grid search (for 
both delay and delayed traffic): 

 Epsilon: 0.1, 0.5, 1.5, 2, 2.5; 
 C: 1, 100, 5 000, 8 000 and 10 000; 
 Kernel: ‘Linear’, ‘Poly’ and ‘RBF’; 
 Gamma: 0.01, 0.1, 1, ‘auto’. 

Despite same reference sets, using separate models for delay and delayed traffic lead to 
different hyperparameters in grid search (Table 3-7). For instance, the significance of 
nonlinearity for delay compared to delayed traffic is once more identified by the selection of a 
polynomial kernel as the best kernel. In fact, the nonlinearity of delayed traffic is so complex 
that SVR performs better with a linear kernel and maximum errors (C=10 000) compared to 
either a polynomial or RBF case.    
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Table 3-7 Best hyper-parameters for SVR. 

Response value Epsilon C Kernel Gamma 

Delay 2.5 5 000 Poly 1 
Delayed traffic 2 10 000 Linear 0.1 

 

Performance metrics of tuned SVR model (Table 3-8 and B-5) confirms similar pattern as 
observed by LR along the lines of quality degradation over low category. In general, SVR 
outperforms LR but the model seems to be rather overfitted for delay compared its 
homogeneous behavior for delayed traffic. The values for hyperparameters, i.e. lower 
regularization parameter (C), polynomial kernel and bigger gamma provide a plausible reason 
for a more complex model with overfitting.   

Table 3-8 Performance of applied SVR to predict delay. 

Category Train Test 
Day

 
MAPEa R2 MAEb Days MAPE R2 MAE 

Low 127 30.87 -0.06 2 553 55 71.64 -4.0 7 361 
Nominal 261 11.31 0.7 4 759 111 29.87 0.13 12 068 

High 123 12.42 0.57 18 115 53 23.41 0.17 31 753 
Overall 511 16.44 0.88 7 426 219 38.8 0.78 15 649 

a in percentage, b minutes. 

Despite better performance of SVR for delayed traffic (Table B-5: MAPE metric is 26.46% 
for overall category in test set), the purpose of finding an approach with acceptable 
performance for both delay and delayed traffic is yet to be fulfilled. 

Random Forest Regression (RF) 
As explained before, RF is a typical decision tree learning method that employs multiple 

learners (weak learners) to generate a weighted prediction (strong learner) as the final result. 
Ensemble learning is known to provide better generalization ability and more accurate 
prediction [118].   

Random Forests provides an average predicted value based on a set of noisy predictors 
(trees) with relatively low bias. Generally, such a model reduces the variance of predictions 
and can fit perfectly on training set by either unlimited depth (feature exploitation), or 
unconstrained minimum samples for each split. Similar to other decision tree methods, RF 
recursively selects a variable (split-point) to grow a forest of trees. However, in absence of 
tuned hyperparameters, performance on test set is less likely to be satisfactory. The important 
hyper-parameters and their significance are explained below: 

 Number of trees: defines the number of estimators in a forest. Number of 
estimators is in direct relation with generalization; 
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 Maximum depth: controls the extent of splitting at each tree. Smaller depth 
avoids chances of overfitting since it leads to low bias;  

 Maximum features: sets the maximum number of features in splitting, because 
selecting only a subset of features for building a regression tree minimizes the 
over fitting risk; 

 Bootstrap: allows creating random sub-samples of the main dataset with 
replacement (same value can be used multiple times). It is a powerful statistical 
technique for estimating a quantity from a data sample. RF is a bootstrap 
aggregation (bagging) algorithm. In Scikit-learn library, this is a boolean variable 
that if set to false, the whole dataset is used to build each tree without resampling. 

RF is less sensitive to type of features since it aggregates the output from a number of weak 
estimators. This understanding helps to balance the size of input vector and categorial features 
such as AIRAC cycle and weekday are not required to be encoded. Based on such a reduced 
input vector, a grid search is performed to find the best combination of hyperparameters from: 

 Number of trees: 50, 70, 100, 130; 

 Max_features: 2, 4, 6, 8, 10; 

 Max_depth: 5, 10, 20, 25, 50; 

 bootstrap: True, False. 

First impression from Table 3-9 is that Maximum depth is selected to be at highest. Higher 
depth lead to better prediction, however such a choice exploited the training set (Table B-2 & 
B-3 shows the overfitted model). Therefore, lower values for this parameter has been 
separately tested and a value of 12 seems to avoid overfitting and delivers the best results on 
test set (values below 12 are underfitted models). 

Table 3-9 Best hyper-parameters for RF. 

Response value Tree counts Max_features Max_depth Bootstrap 
Delay 70 6 50 False 

Delayed traffic 70 8 50 False 
 

Table 3-10 and Table B-6 provide the performance metrics (max_depth is 12) for delay and 
delayed traffic, respectively. The results imply that tuned RF model outperforms previous 
models (SVR and LR). 

 

 

 



3. Methodology   

95 
 

3 

Table 3-10 Performance of applied RF to predict delay. 

Category Train Test 
Day MAPEa R2 MAEb Days MAPE R2 MAE 

Low 127 6.76 0.95 746 55 74.15 -3.49 7 741 
Nominal 261 1.96 1.0 776 111 26.2 0.24 10 612 

High 123 0.68 1.0 792 53 17.65 0.47 24 263 
Overall 511 2.85 1.0 772 219 36.18 0.85 13 195 

a in percentage, b minutes. 

Table 3-10 demonstrates that RF as a decision-tree approach can fit on training set as if the 
model is overfitted but the metrics on the test set assures that the model is not overfitted.  
provide best performance so far baseline because of its tree-based approach. This was already 
anticipated by results of feasibility study (subproblem-I) that verified the potentials of a tuned 
RF model. Those results also manifested the nonlinearity and superior performance of a 
sequential NN against random forest regression [35]. Therefore, as the last model for this 
phase, same data structure is fed to a candidate NN.  

 
Neural Networks (NNs)   

In general, a neural network learns in a hierarchical order and their structure involves 
multiple levels of abstraction for knowledge representation. NNs accumulate propagated 
information through higher levels in a sequential order such that learning at each layer is based 
on statistical learning procedures at the previous layers (refer to chapter 7 of [118]). 

In current discussion, it is clear that the prediction problem at hand is rather nonlinear 
which NNs basically manage by activation functions. A network can have different activation 
functions at each layer in comparison to random forests that trees are identically distributed. 
Furthermore, prediction errors are evaluated by cost (loss) function and through iterations, 
optimization function pushes the network toward minimizing the errors. Each iteration is 
performed on batches that are subsets of the training set. Once a batch is processed, each node 
of every layer gets a new weight (learning). An epoch is completed when all the batches of a 
training set are fed as inputs.  

To implement a fully connected sequential NN with three hidden layers, Keras [119] (an 
open source deep learning library of python) is used. The input layer has 38 neurons that 
matches the length of input vector (features). The three hidden layers converge from 100 to 50, 
and 25 neurons. A single neuron at the output predicts the delay or the delayed traffic for the 
two separate models. Each layer uses Rectified Linear Unit (ReLU) as the activation function. 
The model is trained with MAE cost function and Adam optimizer for 500 epochs with a batch 
size of 30.     

Considering the model performance in Table 3-11 (and Table B-7), the tested architecture is 
not considered to be overfitted, since the metrics report similar quality of prediction for train 
and test sets. Over the test set, even such a basic network remarkably performs with almost 
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same quality as in RF. But compared to RF, NN has not exploited the training set and offers a 
consistent model.  

 

Table 3-11 Performance of applied NN to predict delay. 

Category Train Test 
Days MAPEa R2 MAEb Days MAPE R2 MAE 

Low 127 54.96 -2.52 5 621 55 59.58 -2.98 5 417 
Nominal 261 25.33 0.26 10 687 111 30.33 0.08 12 334 

High 123 21.01 0.36 28 693 53 23.94 0.18 30 975 
Overall 511 31.65 0.81 13 762 219 36.13 0.79 15 108 

a in percentage, b minutes. 

Table 3-12 sums up all experiments that has been stated to this point. Performance of four 
different regression approaches is expressed by MAPE for both delay and delayed traffic. It is 
evident that all models had challenges in predicting lower category and precision improves 
for bigger values. It is intuitive that higher target values benefit from a richer input vector 
because of more regulations that are encapsulated in daily features. Nonlinear models such as 
NN outperform linear models and Figure 3-11 confirms this claim by visualized dispersion of 
predictions. Moreover, the optimization of RF hyperparameters not only led to higher 
precision but also the scatter plot shows a steady narrow prediction error for both delay and 
delayed traffic.  

Table 3-12 Performance of explored learning models over test set. 

Category Delay a Delayed traffic a 
LR SVR RF NN LR SVR RF NN 

Low 92.51 71.64 74.15 59.58 64.28 54.79 55.95 47.95 
Nominal 36.1 29.87 26.2 30.33 22.0 20.76 17.31 23.13 

High 22.53 23.41 17.65 23.94 9.9 11.1 11.64 9.75 
Overall 46.98 38.8 36.18 36.13 29.05 26.46 25.09 25.73 

a measured by MAPE metric. 
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(a) (b) 
Figure 3-11 Scatter plots for prediction quality of learning models on test set. (a) delay, (b) delayed traffic. 
Explored models perform better on delayed traffic due to its smaller range compared to delay. RF (Random 
Forest) provides minimum errors with symmetrical low dispersion.   

 

Clearly the result show that RF and NN deliver higher quality of prediction. Apart from 
poor performance, LR is a linear model and SVR has less flexibility to be evolved to a more 
complex architecture. Therefore, the study is guided to invest more on NNs respecting a 
diverse range of architectures while RF is chosen as the baseline model knowing that with 
tuned hyperparameters it gets closer to overfitting boundaries.   

Proposed Deep Convolutional Neural Network (DCNN)  
In the previous section, the pre-processing on data were arranged so that it provides an 

aggregation of data features that can be fed to different models. The aggregation of data 
ignores the spatiotemporal features to a great extent. But, the traffic flows connect separate 
ACCs across Europe and regulated traffic volumes may lead to secondary effects on other 
traffic volumes in adjacent airspaces. The propagation of this consequential impact is known 
as network effect in ATFCM [116]. Such secondary effects can be perceived better by CNNs since 
they are designed to capture different features of data (spatial ant temporal) through 
convolutional layers.  

CNNs are mainly employed for classification problems, especially in image processing, 
where learning is about spatial characters (as of curves or sharp edges). Relatively few studies 
try to extract spatiotemporal features by CNN. For instance, in intelligent transportation 
systems, Bilong et al. [120] proposed a deep 3-dimensional CNN to extract the spatial and 
temporal correlations. They evaluated the model with a database on taxi trajectories in New 
York city. Similarly, a recurrent CNN is developed in a study by Wang et al. [121] to predict 
the traffic speed and congestion. Their model integrated the spatiotemporal traffic speeds of 
contiguous road segments as the input matrix.  
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The architecture of such deep networks is identical in each study because deep networks 
have higher degrees of freedom compared to other learning methods. In fact, apart from 
hyper-parameters of CNN such as kernel size and stride, the model design can also be different 
in selection of activation functions, optimization methods, etc. Before structuring a Deep CNN 
to consider network effect by extracting deep characteristics of regulation data, one should 
understand CNNs in general. 

Why CNN? The obstacles of modeling the European ATM network has been addressed in 
previous chapters. This thesis seeks intuition against deduction to learn the behavior of 
EATMN as a measure to deal with dynamic complexities of intertwined ATFM operations. In 
search of intuitive inference technique for prediction, the proposed methodology invests on 
representation of regulation data as daily records. In fact, each daily data point that 
encapsulates regulations can be considered like a daily image captured by a traffic camera at 
an intersection. In this analogy a datapoint can have 14 different type of regulations just like 
cars with different colors in an RGB image. Similarly, different ACCs can be mapped as of 
different brands of cars, or large-scale weather conditions can be considered as presence of 
pedestrians at intersection, etc.  

Majority of applications of CNNs are dedicated to image processing applications with 
highlights such as AlexNet (2012), VGGNet (2014), GoogLeNet  (or inception V1, 2014). 
Success of CNNs compare to SNNs are attributed to key advantages of parameter sharing and 
sparse connections.  

 Parameter sharing is the benefit of filters in convolutional layers. The assigned 
value to each node is calculated upon a neighborhood (depending on the filer 
size) and distinct values of the filter. Each convolutional layer has one filter (i.e. 
kernel) to produce all nodes of the next layer. In an image processing task this 
allows to consider features bigger than one pixel (e.g. one filter for curves and 
another for sharp edges). 

 Sparsity of connections means that not every neuron is connected to all neurons 
of the previous layer. In fact, instead of having a dense layer (each node is 
connected to all previous nodes) a filter is applied to a specific neighborhood 
(extracting regional patterns rather than processing the whole input at once). In 
other words. If the input is an image of 100x100 pixels, then the input vector has 
10 thousand neurons and a dense layer will have 100 million (104x104) weighted 
connections (learning parameters). In comparison a convolutional layer uses 
same filter for all nodes of the next layer. Input of size 100x100 and a 25x25 filter 
creates an output of only 76x76 (assuming that hyperparameters stride is 1 and 
pad is 0).  

Moreover, CNN as a neural network follows principally same algebra on loss function 
(forward pass) and back propagation (updating weights). Each filter at a convolution layer 
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acts as a dot product of a filter (w) and a subset of input vector (x), plus the bias term (Equation 
15). The difference for CNN at this level is that output of each convolution layer is produced 
by filter (f) and generated subsets of the input vector (function g in Equation 16).   

𝑍 = 𝑤்𝑥 + 𝑏  , (15)

𝑍 = 𝑓 ⊗  𝑔

௨௧ ௧

 

  , 

f: applied filter at each convolutional layer, 
g: the function that produces a chunk of input vector (signal). 

(16)

 

In back-propagation of the loss function (L), same considerations are regarded in 
calculation of the derivatives. In convolution layers derivatives of the loss function (L) from 
the previous layer are achieved based on Equation 17 (Back-propagation). 
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The loss from previous layer that needs to be backpropagated to other layers is denoted by 

(డ

డ
) since input of each layer is the output of the previous layer. Filter’s group of partial 

derivatives (డ

డ
) is required for updating (learn) the filter values according to the learning rate 

(Equation 18).   

𝐹 = 𝐹ିଵ −  𝛼
𝜕𝐿

𝜕𝐹ିଵ
   ,  

α: learning rate 
i: iterations for a layer 

(18)

 

Activation map is produced as the result of applying a filter on the input. It can be 
considered as a matrix with values connecting a small region of the input to the filter. In fact, 
each activation map is a compressed transformation that shares same parameters. The stack of 
activation maps can be fed to a pooling layer. A pooling layer makes the representation more 
abstract and manageable (down-sampling). There are different types of pooling layers such 
as: maximum, minimum, average and adaptive pooling.  

Pooling layers in deep learning offer translational invariance. This feature (mostly in 
classification applications) allows the model to detect patterns regardless of their positions. 
For instance, if a model is designed to count faces in a photo, it might encounter problems in 
detecting faces in a selfie with faces from different orientations (Figure 3-12).  
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a. Same orientation for faces b. Radial face orientation 
Figure 3-12 Translational invariance by pooling layers in CNN; pooling allows the detection of patterns 
regardless of their position, without pooling layers, the model is more efficient in face detection in a rather than b.  

 

However, in case of enhancing EATMN situational awareness, both geographical vicinity 
and time sequence are valuable and pooling layers are avoided to protect such inferences (esp. 
that the model is a regression model and not a classifier).  

In accordance to described aspects of convolutional networks, the input of the model needs 
to be restructured but same database is processed such that results can be compared with 
baseline model. Once the input data is structured to be fed into a convolutional network, other 
adaptations were made to maximize the efficiency of the features because the architecture of 
proposed DCNN benefits from deep learning.  

Data preparation  
From the same span of data (2017 and 2018), daily features representing each day are added 

to include more features in the model. These are the same daywise features that were used for 
baseline models (Subproblem-II variables) except regulation types that are included as 
channels in DCNN. This results in a feature vector with a length of 24 to represent each day: 

 𝑁ோ, 𝐷ഥோ, 𝑁்௧, and 𝑁 ; 

 AIRAC cycles that adds 13 encoded features, and 

 weekdays that are converted into 7 encoded features. 

Spatiotemporal feature map   
In convolution layers, either Traffic Volumes (TVs) or ACCs can be used to construct the 

spatial bins for feature map. However on a EATMN scale, TVs are at a lower granularity 
compared to ACCs and builld up on the model’s complexity with no significant benefit. Even, 
a division of the data over TVs limits the number of data points for learning. But taking ACCs 
is a better compromise since it avoids detailed granularity while preserving the spatial 
patterns of regulations in bins. Therefore, ACCs are extracted from TVS Id instead of TV Id 
(Table 3-13).  
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Table 3-13 Regulation’s dataset structure (NMIR) 

Field Sample Entry Field Sample Entry 
TVS Id  EDYYFMP Reg Activation Notice a 98 
TV Id  MASBWST Reg Duration a 42 
Reg Id  YBWST01 Reg Window Width a 10 
Protected Location Id EDYYBWST MP Regulated Traffic b 90 
Protected Location Type  Airspace Regulated Traffic b 93 
Reg Start Time 01.01.2018 20:00:00 ATFM Delay a 259 
Reg Truncated Start 
Time 

01.01.2018 MP Delayed Traffic b 24 
Reg End Date 01.01.2018 21:40:00 Avg Delay per Regulated Traffic a  2.8 
Reg Cancel Status Cancelled Reg Reason Name S - ATC Staffing 
Reg Cancel Date 01.01.2018 20:42:21 Reg Description (text) 
Reg Activation Date 01.01.2018 18:22:19 Day of the Week Monday 

a in minutes, b flight count. 

 

For 88 different ACCs across ECAC area, each day is divided with a bin size of one hour to 
also make the temporal bins (i.e. hour of the day and respective ACC are regarded as vertical 
and horizontal position of a pixel in an image for CNN). Moreover, instead of merging all 
regulations for each ACC at each time bin, 6 channels are set for different regulation types as 
of Table 3-14. These definitions for spatiotemporal bins build a NxCxHxW matrix that can be 
taken for a 2D convolution in Pytorch [122]. N corresponds to the number of days, C to the 
number of channels, H is the time bins and W is the spatial bins.  

Table 3-14 Defined channels based on regulation types. 

Channel Regulation Type 
1 C-ATC Capacity 
2 S-ATC Staffing 
3 G-Aerodrome Capacity 
4 W-Weather 
5 I-ATC Ind Action 

6 
M-Airspace Management, O-Other, P-Special Event 

V-Environmental Issues, E-Aerodrome Services, T-ATC Equipment,  
R-ATC Routings, A-Accident/Incident, N-Ind Action non-ATC 

 

For the activation function, a variation of ReLU function known as Leaky ReLU is taken in 
activation maps, since it supports generalization for deep NNs [123]. Furthermore, the 
proposed model uses Weighted Mean Absolute Error (WMAE) as the cost function to improve 
predictions for low category of target values. These weights are calculated from a negative 
exponential function (Equation 19), which delivers higher magnitude for low target values (yi) 
and flattens out for medium to large values.  

𝑤 = 25 ∗ 𝑦


ିଵ
ଷൗ

  . (19)
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Model architecture 
The proposed model was designed using an iterative process and is inspired by the model 

in [120]. In their model, the authors have not explicitly reasoned why a large number of filters 
(kernels) were used but it is clear that they used their model to process numerous frames of a 
video in a pixel-wise video prediction task. Since a large number of filters significantly 
increases the computational effort an initial architecture with few filters and layers is 
implemented at first. Based on the performance of the model on test set, the filters and the 
model architecture were iteratively improved to achieve the final proposed architecture. 

For instance, dilation as a feature of deep learning proved to be efficient in improving the 
results. A convolutional layer without dilation, applies the filter (or kernel) less on the edges 
and more on the middle values of input matrix. This actively demonstrates that the model is 
less sensitive to early hours of the day and the sequence of 88 ACCs, asserts less importance 
on the first and the last ACC; i.e. these hours and ACCs are less exposed to learning. Dilation 
rate mitigates this risk by specifying a spacing between values of a filter. For instance, in a 2D 
space, a 3x3 filter takes 9 adjacent pixels of input image, but a filter with a dilation rate of 2, 
takes 9 pixels out of 5x5 region as of a 5x5 filter that ignores every second column and row 
(Figure 3-13). 

      
 

      
Left: 3x3 filter, dilation: zero; right: 6x6 input matrix Left: 3x3 filter, dilation: two; right: 6x6 input matrix 

Figure 3-13 Dilation in convolutional layers; numbers inside each input matrix shows times that each cell has 
been scanned by filter. Dilation assures fair usage of all values of input matrix.   

 

The finalized architecture, (Figure 3-14 and Table 3-15) has two blocks of convolution filters 
that are applied to six input channels (spatiotemporal feature maps). Each block has two 
independent temporal and spatial filters, which are followed by a spatiotemporal filter to 
check for correlated patterns. Second block has bigger filters that considers a longer time span 
and a larger geographical area, therefore dilation is used to improve fair calculations. The 
output of second block (which extracts deeper features) is then aggregated with a unit size 
kernel to get a single channel.  
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Figure 3-14 Proposed architecture for DCNN. Channels are set based on the regulation types and two blocks of 
convolutional layers, which learn the spatiotemporal characters of regulations, [62].   

The first block, that deals with temporal dimension is less responsive to different dilations 
since there are no major activities at early morning hours as well as late hours of the night 
(silent edges versus busy hours of the day). In contrast, second block is intentionally explored 
by bigger filters and different dilations in search of correlated airspaces (ACCs). Moreover, 
each block is creating a defined set of activation maps (6 and 12 for first and second block 
respectively). The result of convolutional layers is flattened to a vector (by a 1x1 filter with 
zero padding) and concatenated with daywise feature vector. This vector is processed by a 
sequential neural network (SNN) with two fully connected layers (100 and 50 neurons). The 
output of the model is a single neuron that predicts either delay or the delayed traffic.  

Table 3-15 Outline of convolution layers in proposed DCNN architecture. 

Layer Kernel Size Dilation Padding Type 
1 (3,1) (1,1) (1,0) time 
2 (1,5) (1,1) (0,2) ACC 
3 (3,5) (1,1) (1,2) spatiotemporal 
4 (5,1) (2,1) (4,0) time 
5 (1,7) (1,2) (0,6) ACC 
6 (5,7) (2,2) (4,6) spatiotemporal 
7 (1,1) (1,1) (0,0) aggregation 

 

 

3.4.  Data collection process 
This section describes the data domain, acquisition and sampling technique that formed the 

input data for different part of the study. As mentioned before, the regulation data are selected 
since they represent an encapsulated information about how the daily demand-capacity 
imbalances are being managed at a large scale.  
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3.4.1 ATFCM regulations & flight plans 
Each ANSP is closely monitoring its capacity to accommodate the flight demand. The 

demand itself is calculated based on the submitted flight plans from airlines. A flight plan 
defines many characteristics of a flight but most importantly it declares the requested flight 
route and the scheduled time of departure (STD) and estimated arrival (ETA) (flight profile). 
The flight profile is a representation of the four-dimensional path that a flight is expected to 
follow between departure and arrival aerodromes. The profile calculation is required to 
validate the flight route, to determine the ANSP address list for message distribution that 
further assist demand forecast. 

In Europe the capacity is defined as the maximum number of aircrafts that can safely enter 
an air traffic control sector in a specified period [124]. Each sector is a defined airspace region 
for which an associated controller (or controllers) has ATC responsibility. ANSPs mostly use 
fast time simulations (FTS) to estimate the en-route capacity which is actually a computer 
modeling of controller workload. The results of simulations are then post-processed to 
formulate the relationship between the number of entering aircrafts and controller workload 
over a given period of time. 

Knowing the demand (from flight plans) and the capacity (From FTS) enables the automatic 
balancing between demand and capacity. But, on the day of operations (tactical phase) both 
demand and capacity figures change. Because, FTS are not covering important factors such as 
the complexity of the traffic, structure and geometry of the sector and their interactions; hence 
‘Real-time simulations’ or RTS are being used to improve capacity estimations.   

Both FTS and RTS are done in strategic phase of ATFM. The latter considers the human 
related elements such as cognition, thinking and judgement by accounting for operational 
environment which pushes the process to be expensive and requires personnel training, 
specific infrastructures and significant simulation time. Consequently, RTS is not an option for 
all of the en-route capacity estimations. Another solution for capacity declaration is air traffic 
controller workload model, for example: 

 Sector Design and Analysis Tool (SDAT), developed by FAA, is an analytic 
model used in United States. The model is focused on routine tasks, probabilistic 
conflict resolution, sector scanning and planning. SDAT addresses both Planning 
Controller (PC) and Tactical Controller (TC). 

 Total Airspace and Airport Modeler (TAAM), developed by Preston Group 
(Boeing), is a simulation model which is used in Germany and Switzerland. The 
focus is on routine tasks, deterministic conflict detection and resolution. This 
method accounts for TC only. 

 Reorganized ATC Mathematical Simulator (RAMS), developed by 
EUROCONTROL is based on controller (PC & TC) observation, and is focused 
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on same aspects as TAAM. It has been applied in numerous European airspaces 
and proved to be flexible and easy to use. 

 Performance and Usability Modeling in ATM (PUMA), developed by NATS, is 
also a simulation model which incorporates observation task analysis and 
cognitive debrief. Yet unlike other models, it assumes that controllers can handle 
more than one task simultaneously. 

 

However, tactical phase is more dynamic to be fully modeled by different demand and 
capacity prediction models. For instance, the challenges to capacity predictions are [73]:  

 individual sector capacities, 

 flexibility & adaptability of airspace (configuration and sectorization),  

 staffing, 

 tactical configuration management, 

 exogenous factors (e.g. weather). 

 
As a response to such challenges, in Europe ATFCM Regulations (also referred as 

Regulations and Flow Regulations) are measures that are available to cope with demand-
capacity imbalances. A regulation is basically a restriction over the rate of flights being 
authorized to enter a monitored sector. For instance, a regulation with zero-rate is in fact a 
closed airspace (e.g. Temporary Segregated Area, TSA). In reference documents [7], it is 
defined as: 

Regulation is a method of matching traffic demand to available capacity by limiting the 
number of flights planned to enter an airspace or aerodrome, achieved by the issuing of 
departure slots (CTOTs). 

A regulation is a potential cause for ATFM delay. ATFM delay can be assigned to a flight 
based on the submitted flight plan. In Europe under the authority of the EUROCONTROL, 
Network Manager (NM) is using a centralized flight plan processing service to organize flights 
[125]. The service is provided by the integrated IFPS. 

Each airline is required to submit flight plans to the IFPS for processing at least three hours 
before the EOBT (Estimated Off-Block Time) where possible. The option to submit flight plans 
in such a time window is assuring the required level of flexibility in tactical phase. IFPS accepts 
flight plans that are filed even less than three hours ahead of departure time if operational 
reasons restrict the normal submission. In general, IFPS accepts a submission up to a 
maximum of 120 hours (Figure 3-15), ahead of its EOBT (item 18 of flight plan should include 
Date Of Flight (DOF) in case of a flight plan for a future date). 
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Figure 3-15 Allowance time to submit flight plans to IFPS. 

When a message is submitted to the IFPS, a copy of the flight plan is sent by IFPS to the 
Enhanced Tactical Flow Management System (ETFMS) where the flight information is being 
analyzed with regard to all active flow regulations. If the flight is penalized with one of the 
active regulations in its route, origin or destination, ETFMS assigns a delay to the flight by 
issuing a CTOT to the flight. This delay is referred as ATFM delay. 

The IFPS and ETFMS are separate systems; any message submitted to the IFPS 
must be acknowledged before it is transmitted to the ETFMS, where any relevant 
flow regulations may then be applied, thus the IFPS as the interface to airlines is not able 
to assess the impact of flow regulations on flights [126]. 

Moreover, if the flight is close to its departure by the time that the regulation is activated 
(or updated), ETFMS is not assigning a new delay to the flight. In fact, if the Off-Block Time 
(OBT) is within the next 30 minutes this rule applies in ETFMS to protect the airport startup 
sequence and avoids last minute change massages to the airline.  

The final decision on the regulation implementation is for the responsible ANSP (also 
referred to as respective ACC or FMP). However, the details on the regulation itself should be 
coordinated with the NM. Sometimes a network measure (e.g. level capping, rerouting) 
impacts more than one FMP and NM will be the responsible decision maker for the regulation.   

After coordination with the FMP, the NM decides to activate regulations in those locations 
where it is necessary. In ETFMS, regulations include the start and the end times, the 
description of the location, the entering flow rate and similar parameters. 

 

3.4.2 Covered domain 
Since the thesis is addressing the resilience of EATMN, referred regulation data should 

cover the geographic ECAC area. This indicates that all flights which are flying from IFPS zone 
(IFPZ, see annex A.1) are considered for all active regulations. All submitted flight plans to 
IFPS which are typically IFR flights are considered to define impacted flights. Also, each 
regulation can be active for different durations (from hours up to several days). Therefore, the 
reference time stamp for deciding on tactical regulations is the regulation start time and 
regulation publication time. Lastly, full year cut of data is acquired because of known seasonal 
demand patterns. 
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3.4.3 Databases (NOP & NMIR) 
FAA offers Aviation System Performance Metrics (ASPM) as an online system that collects 

data from sources such as: Traffic Flow Management System (TFMS), Airline Service Quality 
Performance (ASQP), CountOps and Flight Schedule Data System (FSDS). EUROCONTROL 
also offers various data sources that in this study are considered against the following criteria:  

 update rate: the database must be published throughout the tactical and pre-
tactical phase to be more relevant to decision making processes on the day of 
operation, 

 granularity: selected data should provide required precision to understand types 
of disruption including spatial and temporal dimensions, 

 coverage and accessibility: selected data should not only be accessible by all 
layers of decision makers across the European Civil Aviation Conference (ECAC) 
area but also collect data from ECAC to represent EATMN. 

According to the mentioned characteristics, delay statistics including reports from CODA 
(Europe), OPSNET (US), STATFOR and those that are published in the post-operational phase 
are not considered. Likewise, databases including NPR and ATFCM statistics and network 
operations reports are only published for authorized users and cannot fulfill the accessibility 
criterion. However, a focus on capacity (ATFCM) regulations is promising since they denote 
the results of collaborative decision making. In fact, a regulation is a method of matching traffic 
demand to available capacity by limiting the number of flights planned to enter an airspace or 
aerodrome (EUROCONTROL 2014).  

In tactical phase, ATFCM regulations are initiated based on the evaluation of ATFCM Daily 
Plans (ADP) from the pre-tactical phase and they are subject to constant updates if required. 
Regulations correspond to network states in the restorative level of resilience. 

ADP conveys the results of pre-tactical planning processes to the tactical phase of operation. 
This plan is promulgated by means of INP and ANM [10] : 

 
 INP (Initial Network Plan): informs the ANSPs and AUs about the congested 

areas and suggests alternatives to avoid heavy delays. ANSPs act and organize 
accordingly to maximize the airspace utilization and airlines consider suggested 
routes or flight levels in filing their flight plans to optimize their operations. 

 ANM (ATFCM Notification Message) is a message issued publicly to notify all 
concerned of any ATFCM regulations. Some ANMs reflect regulations from the 
ATFCM Daily Plan from pre-tactical phase. But the list of ANMs is constantly 
being updated in the tactical phase to notify any new, changed or cancelled 
regulation. 
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ANMs are generated in pre-tactical and tactical phase. Post-operation records are stored 
separately and is provided by Network Manager Interactive Reporting dashboard (NMIR) but 
only to authorized users.  

 
The Network Manager Interactive Reporting (NMIR) is a web interface allowing users 
of NM systems to access a wide range of reports and statistical data on European 
ATFCM archived data [127]. 

Tactically, ANM records are available both on NOP portal and CHMI (Collaboration 
Human Machine Interface that offers authorized users real time information). Same online 
tools also provide ATFCM Information Message (AIM) which is intended to notify NMOC 
daily operations including possible disruptions. In this thesis AIMs are not used because of 
the update rate and their format as text messages that serve as a description with much less 
structured technical data. 

There is no record of ANM messages in post operations but NMIR collects final regulation 
data with complementary details. NMIR is offered to all ATM authorized actors, but because 
universities and research institutes such as DLR are not typically considered as ATM actors, 
an access tight is acquired for the thesis that can be used for follow up studies by DLR too.  

 

3.4.4 Data characteristics  
The purpose of ANMs is to provide the information related to implementation of ATFCM 

measures and they are published by the EUROCONTROL’s network operations portal [12]. A 
sample of an ANM record in NOP is given in Figure 3-16 and Table 3-16. The list is updated 
by push messages when a new regulation is activated, a parameter of one gets changed, or 
regulation is cancelled in the Enhanced Tactical Flow Management System (ETFMS). The tag 
for type of push-message is stored in the field of ‘state’.  

 

Table 3-16 ANM data structure 

Field Sample Entry Field Sample Entry 
Seq no  009 State New 
FMP  LFFFAD Published 12/03/2021 06:00 
Regulation Id LFPNVD12 WEF c 12/03/2021 08:00 
Flight Level a ALL UNT d 12/03/2021 12:00 
Reason ATC Capacity     
RMKb Calibration flight 

LFPN + LFPV Departures  
a Flight Level can also be e.g. “145-“ to indicate that regulation applies to all levels below 14 500 

feet,  
b Remark, c With Effect From, d UNTil. 
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Figure 3-16 Snapshot of ANM list 

 

The offered data structure in NMIR is extended as a post-operational data base (Table 3-
13). In this research both ANM and NMIR data on regulations are used with different 
purposes. ANMs contribute to network state definition and NMIR records are used for 
learning models.   

In contrast to NOP/CHMI, NMIR allows to download all regulations for different years in 
different formats (granularity is per day). The vacancy of ANM messages and their updates 
are not offered as a data base. Therefore, a sampling technique is implemented to save public 
ANM messages for each day in two granularities, daily and 10-min snapshots.  

Daily records can be downloaded as limited post-operation records. Only the last status of 
ANM list is stored temporary on the NOP portal (input for ANMStat tool). The 10-min 
snapshots are acquired by writing an executable file (ANM Capture.exe). As provided in 
Figure 3-17, once the written code is executed it will take a copy of active ANM list from NOP 
portal every 10 minutes and save it in an excel sheet. Therefore, for each day there is an excel 
file with sheets that each contains a copy of ANM list at a specific time. This allows to capture 
any update with a granularity of 10 minutes at day of operation.   
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Figure 3-17 ANM Capture, executable file 
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4. Resilient Path (RNN) 

4.1.  Complex Adaptive Systems (CAS) 
The concept of CAS involves a group of systems that basically possess two main characters: 

evolving structure and moving target [128]. A typical CAS, evolves to adapt according to 
changes of its environment and this will reflect on iterative update of targets. This 
demonstrates that an optimal performance at some point does not necessarily lead to a global 
optimal performance.  As reported by MIT [129, 130], the topic of CAS is introduced back in 
1980’s with an emphasis on crossing of traditional disciplinary boundaries. CAS provides an 
alternative to the linear reductionist methodology in modeling systems, that relies on fixed 
assumptions to simplify the modeling task. CAS benefits from computer aided simulations 
instead. ATM network as described earlier is a complexity that results from the inter-
relationship, inter-action and inter-connectivity of its elements and environment.  

In fact, EATMN is a CAS since it hosts complex disruptions that emerge as a result of 
dynamic and nonlinear spatio-temporal interactions among its subsystems. The adaptability 
of CAS is totally consistent with what has been conceptualized as a resilient behavior. A MIT 
study [130] defines seven attributes for CAS and Table 4-1 provides the matching 
characteristics of EATMN. 

Table 4-1 EATMN as a Complex Adaptive System 

 CAS attribute EATMN characteristic 

Distributed Control  Four main Decision Makers (NM, ANSP, Airport, AU).  

Emergent Order Emergent behavior of the network and performance variability are 
discussed in section 2.1 (resilience). 

Connectivity Flights and infrastructures such as route network and dataflows link 
elements of EATMN. 

Co-evolution rising demand or lost capacity trigger all actors to adapt their 
resources to deliver services. 

State of Paradox Operations in ATM has built in levels of flexibility which reminds the 
idea of bounded instability in CAS.  

Sensitive 
Dependence on 
Initial Conditions 

Despite of strategic and pre-tatcical plans, unpredictability of the 
network is a fact that is observed during volcanic ash in 2010 and  
ETFMS failure in 2018.  

Far From 
Equilibrium 

This attribute is observed with daily traffic pattern adaptations. Not 
only flights are rescheduled but also re-routed to avoid low weather 
conditions, restricted areas, costly charging zones and etc.    
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The idea of CAS is mainly discussed in American academics. Donohue from George Mason 
university presented air transportation as CAS in 2003 [131] . Computer simulation brought 
more attention to this topic; in 2009 a study from Purdue university [132] addressed the 
network transition problem in air transportation by agent-based modeling to assess two 
scenarios. Supported by increased computational capacity, researchers from Arizona state 
university [133], were able to provide a more mathematical model to address the emergent 
disruptions from the interoperability of system components.  

In the same context, a PhD dissertation [134] considered the evolution of the airline route 
network and its impact on air traffic delay through machine learning. At early 2016, DARPA1 
focused assessing and predicting the complex emergent behaviors that constantly change 
across time and space especially in aviation. The Complex Adaptive System Composition And 
Design Environment (CASCADE) program tries to develop mathematical foundations of 
system design to enable real-time resilient response in dynamic environments. Adaptive and 
resilient urban infrastructure is one of the key focus areas in this program.   

Other studies from George Mason university reviewed resilience in CAS. Roberts et al.  
[135] used statistical approach to quantify risk of emergent behavior to reduce probability of 
excessive costs. Punpuni-Lenss et al. [136] also studied the CAS resiliency but their approach 
includes agent-based modeling rather than statistical approaches.   

Most recently, Ordoukhanian and Madni [137], explored the resilience of a Multi-
Unmanned Aerial Vehicle (UAV) system in face of disrupting events. In their study, real-time 
evaluations of resilience alternatives showed that multi-UAV system tactics dynamically 
change the priorities of the system based on the system state. Similarly, in this research, the 
state of the network is determined to capture the dynamic environment of EATMN but next, 
instead of computer simulations or agent-based models, the focus is on ML predictions on 
regulation’s impact that eventually enables real-time evaluation of restorative measures.   

 

4.2.  Recurrent Neural Network (RNN) 
CAS benefits from evaluation of corrective measures and since EATMN can be considered 

as a CAS, it is well established that any measure (i.e. capacity regulations), should be in 
alignment with defined dynamic environment (network state). Therefore, similar to the 
approach for UAV systems [137], capacity regulations in EATMN also need to be evaluated in 
real-time but not by simulations.  

This thesis addresses the need to evaluate corrective measures by predicting the impact of 
ATFCM regulations through RNNs. In previous sections, some supervised machine learning 
methods (especially CNN) have been studied. But the focus is now shifted to predict 
individual regulations by RNNs because not only primary results dedicated the degree of 

                                                           
1 Defense Advanced Research Projects Agency  
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tactical network evolution but also RNNs tend to be more capable of capturing the sequential 
nature of regulations as time series.  

Another important factor in deciding to continue with RNN is reference location of each 
regulation (spatial dimension of data). Despite the demonstrated advantage of CNN in 
predicting network parameters, CNN is less likely to outperform RNN in predicting 
individual regulations. Each regulation is assigned to a specific TV which has a parent 
reference location (i.e, either an elementary or a collapsed sector). The count of available 
reference locations (Figure 4-1) is so high that will challenge CNN in extraction of spatial 
patterns. 

 
Figure 4-1 Sectors in European Sky: DLR-institute of air transport, NFE tool 

 RNN experiments on sequential data cover a wide range from word processing 
applications such as translations [138] to anomaly detection in aircraft data. A study from 
George Mason university [139] proposed a RNN model with LSTM cells to detect canonical 
anomalies from Flight Operational Quality Assurance (FOQA) data. Therefore, before 
designing the RNN it is important to locate other methodologies in the recent literature. Cited 
works in Table 4-2, consider post operational data including flight schedules and trajectories 
(ADS-B data). But the size of the datasets is not comparable to learning applications in Natural 
Language Processing (NLP). NLP is the research area that most RNN applications are focused 
on. Nevertheless, the studies continue with learning models and report significant capabilities 
in delay predictions.  

Also, it can be observed that some studies focus on flight delays over specific routes [140] 
or a single airport [141]. The spatial domain is less likely to includes multi-national airspaces. 
For instance, all cited works in Table 4-2 are applied to either US or china airspace.   
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Table 4-2 Recent studies to predict delay with learning methods. 

Author/Year Method(s) Target Data Notes 
Gopalakrishnan & 
Balakrishnan 
[140]/2017 

ANN, CARTa, 
MJLSb 

OD delay 2011-2012 7 features, trained on 2011, tested 
on 2012 data, delay threshold: 
above 60 minutes. 

Thiagarajan et al. 
[142]/2017 

NN, RF, 
GBoostc  

Arrival & 
departure 

delay 

2012-2016 Classification and regression 
models are explored; 21 features for 
departure delay & 36 for arrival 
delay; data filtered to selected 15 
airports. 

Manna et al. [143]/2017 GBoost Arrival & 
departure 

delay 

Apr-Oct 
2013 

8 features, data is filtered out by 
size of delay (25 to 75 percentile). 

Yu et al. [141] /2019 Deep Belief N, 
KNN, SVM, 

LR 

Departure 
delay 

Jan-Mar 
2018 

Data included 528 471 domestic 
flights from a single airport, model 
also encoded SVR.  

Lin et al. [144]/2019 ConvLSTM Traffic flow 
matrix 

Jul-Aug 
2014 

Focus on both spatial and temporal 
dimension; total number of data 
samples: 89 280; ADS-B data. 

Gui et al. [102] /2020 LSTM, RF Departure 
delay 

Dec 2018- 
May 2019 

15 features including weather 
info; both classification and 
regression; ADS-B data.  

a Classification And Regression Tree, b Markov Jump Linear System, c Gradient Boost. 

 

Modeling approaches is another key difference in studies. A study from MIT [140] took the 
data from National Airspace System (NAS) of US to create a delay network for main 30 
airports. Their study only considered delays bigger than one hour and concludes the superior 
performance of ANN in classification (if a delay will occur or not). Thiagarajan et al. [142] 
added the weather information as input features. Their prediction model considered 36 
features for arrival and 21 features for departure delay. Despite using different feature 
selection methods, they reported only a minor improvement in prediction accuracy (only 0.22) 
but similar to this thesis, their study declared random forest and gradient boost method to be 
efficient as classic models for both regression and classification.  

Gradient boost was also applied by Manna et.al [143], but their approach in filtering the 
data, significantly affected the quality of results. They cut the data for each day to be between 
Q1−1.5∗IQR and Q3+1.5∗IQR (Inter-Quartile Range), where Q1 and Q3 are the 25 and 75 
percentiles. Therefore, as given in Table 4-3, despite having a small dataset (less than a year) 
and less features, their gradient boos method delivered significantly better results than [142].  
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Table 4-3 Departure delay regression results by Gradient Boost method 

Author MSE R2 

Thiagarajan et al. [142]/2017 1 218.75 0.055 

Manna et al. [143]/2017 67.027 0.948 

 

Size of the dataset is not regarded as an issue in contrast with what is generally expected 
from supervised learning methods. In another study by Yu et al. [141] data is obtained from 
one airport but the design of the model overcome this limitation. In their model, Deep Belief 
Network is acting as a feature selection process that filters the input to a SVR that predicts 
delays. The results showed that 99.3% of predictions have a tolerance of ± 25 minutes from the 
observed values. 

Some studies [102, 144] rely on ADS-B data that provide a dataset with higher granularity, 
especially on flight trajectory. Lin et al. [144], proposed a model (ConvLSTM) to capture 
tempo-spatial correlation.  After a transformation, almost 90 thousand data point constitute 
the input dataset. However, the model predicts traffic instead of delay. But Gui et al. [102] 
predicted flight delay by combining ADS-B data with weather, airport information, and flight 
schedule. Their model was also based on the LSTM units that generally have four control gates, 
i.e., input gate, forget gate, cell, and output gate. Conversely, the proposed LSTM [102] had 
only limited dataset as input (max 1542 input sequences) and predicts delay as a classification 
task.  

Compared to aforementioned studies, the intention here is to finalize a RNN with LSTM 
units to predict delay as a regression task and instead of ADS-B data, NMIR data are used to 
cover EATMN for all airports/airlines.  The required steps to build the RNN is rich enough 
that this part of the thesis is fostered through a master thesis [145].  

 

4.2.1 Data preparation 
In this section, preliminary steps on NMIR data is described in different steps including 

data transformations, feature encoding and splitting. Regulation of 2015 until 2018 are 
obtained from NMIR to be processed for this section. Despite the time stamps that allows the 
regulations to be studied in different sizes, the preference here is to have yearly samples rather 
than monthly samples. This allows the model to learn seasonal patterns too. 2017 is selected 
as the training set in comparison to 2018 that is rather risky with high traffic and delay figures.   

Since RNN is a neural network the split ratio for training and testing needs to respect the 
risk of over and underfitting similar to described CNN.  Therefore, data is splitted to 70%, 
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train set and 30% for the test set. To split the data set Scikit-learn from python programming 
is used. The reference parameter for splitting the data is the target value (delay) that is ranging 
from 0 to 32,795. The result of dividing the data into train and test subsets is given in Figure 4-
2. This figure shows that the splitting process assures similar distribution of subsets.   

Re
gu

la
tio

n 
Co

un
ts

 

 

 
 ATFM delay (min) 

Figure 4-2 Train and test set after splitting based on delay values, [145]    

 

After splitting the data, the input vector needs to be prepared with regard to different types 
of features. Although the data structure is same as Table 3-13, pre-processing considers three 
types of features that are described in Table 4-4 and discussed individually.  

 

Table 4-4 Different types of Feature in pre-processing  

Feature Type Features 
Scalable  Regulation Duration (min); Regulation Window Width (min); 

Regulation Activation Notice (min); Regulation Counter a 

Recursive Regulation Activation Date; Regulation Start Time; Regulation End 
Time; Regulation Cancel Date; Weekday; AIRAC a 

Categorial TVS Id / FMP; Regulation Reason; Regulation Id, Protected Location ID; 
Protected Location Type; TV Id; Regulation Cancel Status; Regulation 

Activation Date; Regulation Start Time; Regulation End Time; Weekday; 
AIRAC a. 

a AIRAC cycles and regulation counter are not provided in NMIR dataset. 
Note: some features belong to more than one category since different encodings have been tested.  

 

 Scalable features: those that require scaling, otherwise their different ranges push 
the neural network to be biased in favor of features with bigger values. These 
features are scaled by scikit-learn preprocessing library. Among different 
provided functions, MinMaxScaler and StandardScaler are used in this section. 
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The former transforms each value by its distance to reference point (minimum 
value) and then scales it according to the range (max-min). The latter scaler, takes 
the feature and transforms them to a standard normal distribution (μ = 0 & σ = 
1).   

Regulation Counter is not a given feature in NMIR data structure. This feature is 
designed to represent the number of active regulations in the network according to 
algorithm 1. 

 

Algorithm 1: Calculate regulation counts feature 
Input: NMIR data 
Output: Regulation Counter 

Select the required features (regulation Activation Notice, TVS ID) 
Sort the regulation according to activation notice time 
Create empty columns for each scenario (3hrs, 4hrs, 12hrs and 24hrs) 
n  total number of regulations 
for i = 1 to n do  

step 1. read the activation time (e.g. 13:00) 
step 2. define relative time intervals for each reference scenario  
            (e.g. 10:00 to 13:00 for 3hrs scenario) 
step 3. count number of active regulations for each time window of step 2  
            (e.g. 36 active regulations in last 3hrs)   
step 4. Count only regulations with the same corresponding TVS ID for each time window 
            (e.g. 4 active regulations in same TVS ID in last 3hrs) 
Step 5. Save calculated numbers in step 4 to corresponding column for each scenario 

End 
   

 Categorial features: these features are encoded with the same library with one-
hot encoder from the same library of scikit-learn. As described by algorithm 2, it 
assigns a binary array with the length of number of possible categories.    

 

Algorithm 2: One-Hot Encoding for categorial feature 
Input: NMIR data 
Output: transformed categorial feature 

x  Select the categorial feature (e.g. regulation reason) 
C  Set of all possible values of x 
n  Number of all possible categories (e.g. 14 categories for regulation reason)
E  Create an empty binary array with the length n  
for i = 1 to n do  

if x == C(i) then 
E(i)=1   

else 
E(i)=0   

end 
return E (e.g. for a reason of second category, E = [0 1 0 0 0 0 0 0 0 0 0 0 0 0])  
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 Recursive features: these features deal with time, such as weekdays and hours. 
Such features are sequential and are different to categorial features. It is 
necessary to make the neural network realize this aspect. For example, a 
categorial encoding of weekdays is ignoring the fact that Wednesday is 4th day of 
the week and is closer to Tuesday compared to Saturday.    

This cyclic nature of the features can be considered by assigning values of a 
periodic function such as sine or cosine functions [145]. Figure 4-3 is showing the 
assigned values to 1440 (24x60) values each representing a minute of 24 hours.  
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Figure 4-3 Sample of transformation for recursive features (sine function for regulation Start time), [145] 

 

The figure, shows that this transformation is for example assigning values close 
to zero for both 23:55 and 00:05 which original values are at a big distance to each 
other (i.e. 1435 and 5). The transformation is done by the following algorithm in 
which as an example a sine function is used to create the reference array:  

Algorithm 3: Cyclic transformation for recursive feature 
Input: NMIR data 
Output: transformation matrix for recursive feature 

x  Select the recursive feature (e.g. regulation start time) 
C  Set of all possible values of x 
        (e.g. time of the day as discrete values from 0 to 1440) 
n  length of set C  
E  Create an empty transformation reference matrix sized n x 2 
for i = 1 to n do  
       Convert the feature value (Ci,1) with Sin function 
              (i.e.  𝐸,ଵ = sin ቀ2 ∗  𝜋 ∗  



ଵସସ
ቁ ) 

       Convert the feature value (Ci,2) with Cos function 
              (i.e. 𝐸,ଶ = cos ቀ2 ∗  𝜋 ∗  



ଵସସ
ቁ ) 

end 
return E  
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In similar studies, datasets are sanitized by removing outliers [143, 140]. However, this 
thesis is taking the network resilience as a core value, and outliers are therefore not treated as 
noise. Also, in order to avoid vanishing or exploding gradient problem, the target value (delay) 
has also been scaled by MinMaxScaler to a range of [-1,1].  The basic rule of backpropagation 
in neural networks is that once the prediction is done all weights in layers will be updated 
proportionate to the associated gradient. A large gradient will exponentially increase in 
updating the weights of each layer (exploding). Similarly, a small gradient will exponentially 
decrease (vanishing) as the model propagates back at each layer.  

 

4.2.2 RNN architecture design 
The model which presented here is finalized after an iterative design process in which 

different aspects were considered.  Since there is no practiced approach in calculating the 
design parameters (such as number of neurons and layers), it is inevitable to start from an 
arbitrary selection and then start an iterative process to improve the architecture. Table 4-5, 
charts the design aspects that we [145] explored to improve the model.  

Table 4-5 RNN model architecture design aspects 

Design aspects Tested alternatives Result 
Feature encoding Categorial vs. Recursive Recursive 
Learning rate  Constant vs. Dynamic Dynamic 
Neurons at each layer Max 577 Range of neurons: 71 - 279 
Number of layers  Max 12 3 Dense & 3 LSTM layer 
Optimizer Adam, SGD, Adadelta, 

Adagrad, Adamax, Nadam 
Adam 

 

Despite the fact that more layers (deeper network) is increasing the model generalization, 
the depth of the model needs to be proportionate to size of dataset. NMIR data set on 
regulations provides data for different years, but in aviation there are yearly and seasonal 
traffic patterns that is from a different nature than e.g. available texts (data) for a RNN 
application in NLP.  Therefore, it is unrealistic to build a model with numerous layers and 
here up to 12 layers has been checked. In fact, the main layout of the model is adopted from 
the deep RNN in a Georgia institute of technology study [77] that offers four ways of forming 
a deep RNN as:  

 Deep input-to-hidden architecture that reduces the effect of non-linear 
dimensionality that breaks the original input layers such that the underlying factors 
of variation will be revealed; 

 Deep hidden-to-output architecture is considered to be effective to extract variation 
factors in the hidden state, that ultimately leads to easier output prediction;  
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 Stack of hidden LSTM layers empowers a model to realize state transitions in 
different timescales. This is the main advantage especially when the focus is on the 
sequential patterns of the data, and 

 Deep hidden-to-hidden transition architecture enables the RNN to learn a highly 
nonlinear and non-trivial transition between the consecutive hidden states.  

According to mentioned methods, different trials lead us [145] to choose the stack of hidden 
LSTM layers to make the deep RNN model. The three LSTM layers are designed to converge 
toward the output layer. In other words, the input layer has 140 neurons, then a dense layer 
with 279 neurons is between the input layer and the stack of LSTM layers to learn from non-
sequential features. The core of the model to predict regulations delay are the 3 LSTM layers. 
More LSTM layers slightly improved the quality of the predictions at a great cost of 
computational time. These layers have 279, 140 and 71 LSTM units.  

The attempt to add up to 3 more dense layers before the output layer (hidden-to-output) 
but regardless of number of neurons at each layer no significant improvement was achieved. 
As another alternative use of dropout layers are tested since they improve the model 
generalization through preventing the model to overfit. However, results were not promising 
enough and we changed the focus to investigate other design aspects such as learning rate, 
optimizer function and encoding technique.  

As expected, recursive encoding was proved to be more efficient (Table 4-6) since, apart 
from loss of sequence, one-hot encoding of features leads to much higher dimensions for input 
vector. For instance, ‘day of the week’ feature can be represented by adding only two (by Sin 
and Cos transformation in Algorithm 3), compare to 7 extras by one-hot encoding (detailed 
discussion is provided in [145]).   

 

Table 4-6 Comparison of Cyclic vs. One-hot encoding transformations 

Set Cyclic One-hot encoding 
MAPEa RMSEb R2 MAPEa RMSEb R2 

Train 10.20 127.92 0,973 8.47 121.51 0.975 
Test 12.80 149.38 0.987 13.69 131.99 0.985 

a in percentage, b minutes. 

 

Furthermore, two optimizers of Adam and Nadam are compared for chances of RNN 
architecture improvement. Nadam is a variant of Adam optimizer that benefits from nesterov 
technique [146] to improve the momentum component of the Adam algorithm. More 
specifically, as Adam searches gradients in each iteration, the new value (θ or new update) for 
the optimization function (f(θ)) is calculated based on a momentum component and the 
adaptive learning rate. Adam recalculates the momentum based on previous gradients (𝑔௧ =
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∇ఏషభ
𝑓௧(𝜃௧ିଵ)) solely which is modified to be a decaying sum over previous updates (θ instead 

of 𝑔) in Nadam. Basically, momentum is calculated based on both previous momentum and 
current gradient (𝑚௧ = 𝜇షభ

+ 𝛼௧𝑔௧).   

At a higher computational time, Nadam showed a faster learning process in early epochs 
as expected but as number of epochs grew, the algorithm showed stabilization problem into 
reaching the minimum and the cost function started to oscillate and avoid further 
convergence.   

The proposed DCNN in Section 3.3.2, benefitted from Leaky ReLU (activation function) 
and weighted Mean Absolute Error (WMAE) as the cost function. Here after realizing the 
superior performance of Adam optimizer in RNN design with a constant learning rate of 0.001, 
the focus is to improve model performance through experiments on learning rate.   

Typically, a learning curve is expected to flatten by iterating over epochs until it reaches the 
stop criteria. If it is determined to make sure that all epochs provide equal learning chances, 
learning rate should decrease throughout the learning process. Two of the methods to achieve 
a dynamic learning rates are, step decaying rate and time decaying rate. The former is basically 
assigning a decrease rate at every selected number of epochs, while the latter continually 
reduces the learning rate at each epoch. Keras [119] offers a dynamic decaying rate with two 
control variables: count of epochs and decay rate (k). Figure 4-4 shows the used reduction of 
learning rate with k=5 and the initial value of 0.001.  
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Figure 4-4 Time decaying learning rate, [145] 

Experiments with such a learning rate improved the performance of the model to the extent 
that the delay per regulation can be predicted with an average tolerance of 6.73 minutes.  

In order to capture the sequential aspect of regulation not only RNN is used but also 
previous active regulations in the network is encoded to the input vector. To this end as 
described by algorithm 1, four different scenarios (3, 4, 12 and 24 hrs) have been considered as 
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additional input feature (i.e. regulation counter). Results (Table 4-7), show that the 
consideration of regulations in past 12 hours are most effective in predicting the delay.  

The precision of the results seems to become better as the input vector considers more 
previous regulation (from 3 to 12 hrs) but consideration of the past 24 hours reduces the 
accuracy of the predictions. This is operationally understandable. The pre-tactical planning is 
putting corrective measures for the day of operation (24 hrs.) and it is true that the traffic 
patterns in the afternoon is always highly dependent on morning situation (12 hrs.). This is 
due to the airline schedules and plans for each aircraft that need to be realized by the end of 
the day.  

 

Table 4-7 RNN model: Comparison of MAPEa values for delay prediction in different Scenarios 

Set Scenario  
3hrs 4hrs 12hrs 24hrs 

Train 10.20 9.70 8.43 10.53 
Test 12.80 12.53 12.18 12.84 

a in percentage. 
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5. Results 
Firstly, the implemented methodology to declare network state is given based on a use case 

from selected subset of 2017 [61]. Then the results and discussions on measuring the network 
disruption through learning methods is provided (with two divisions of feasibility study [64, 
35] and DCNN implementation [62, 107]). The chapter is then concluded by results of RNN 
model and its evaluation against results of DCNN [145]. Basically, this chapter demonstrates 
the path to reach the goal of this exploratory research and provide added values by discussing 
the findings toward a new network resiliency concept to enhance tactical situational 
awareness. The following objectives are set to reach this goal:  

 to propose the methodology of capturing emergent disruptions as a result of dynamic 
interactions among DCB actors in the tactical phase, 

 to define network state based on regulations as comprehensive data that present 
emergent disruptions since regulations encode multiple interactions between 
subsystems of network, 

 to conduct a feasibility study on use of different learning methods in network 
predictions based on regulation data,  

 to propose a new learning architecture designed for predicting network disruptions in 
terms of delay and delayed flights.   

  

 

5.1.  Network state 
The described methodology in section 3.2 was applied to a subset of acquired ANM data 

from 2017. Since the calculation is based on confidence levels, the two-sided thresholds are 
estimated for different time horizons. Table 5-1, provides the upper and lower thresholds 
regarding the confidence level (99.3%) for the day of operations. 

 

Table 5-1 Calculated thresholds of initiated regulations and identified non-nominal states based on 
ANM data (2017) 

Time frame Thresholds Interval 
width 

Outliers 
Upper 
thresh

Lower 
thresh

- + 
May 137 66 71 0 0 
June 166 76 90 0 0 
July 191 117 74 0 0 
Aug. 168 110 58 1a 0 
Sept. 150 98 52 1b 1c 

Oct. 131 53 78 2d 0 
May-Oct. 184 53 131 1e 0 

a 12. Aug.     b 03. Sept.     c 27. Sept.     d 10. Oct. & 18. Oct.  e 22. July 
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Listed incidents of outliers in Table 5-1, elaborates on the reasoning behind use of different 
time-horizons. Although the application of larger time frames with identical confidence levels 
results in wider control intervals, it is intended to account for short-term patterns. For instance, 
the summer traffic pattern in July made the single month control interval unable to detect July 
22nd as an outlier but it is indeed a disrupted day which is captured by the six-month time 
frame. In fact, 36% of the 31161 flights were regulated and 22% were delayed with a total of 
138818 minutes of delay [147].   

In Table 5-1 positive and negative outliers are separated since negative outliers 
(degradation) are days that exceed upper thresholds and positive outliers (excellence) are 
those below lower thresholds. Positive outliers are subject to further investigation to set new 
performance goals with respect to performance variability as the essence of Safety-II. This 
allows detecting any kind of disruption including cases that the network successfully 
accommodated to the planned traffic with only minor imbalances. Detected September 27th, 
2017 is a good example of a positive outlier in which from 33535 flights, only 9.6% were 
delayed and total delay was 57425 minutes [147].   

 As described in Section 3.2.2 for each given daily set of regulations the mean and standard 
deviation values are compared against reference cumulative values and if the calculated 
values match any of the critical and crisis state definitions, the ATM network is statistically 
considered to face a non-nominal state (Figure 3-2). In such cases, the second type of thresholds 
are evaluated in micro analysis. This way the severity and characteristics of an identified non-
nominal state are assessed and the affected ACCs in the network are located. 

In aforementioned use case, probability functions are estimated (Section 3.2.3) for all 
regulation types based on the 99.3% confidence level (as of Figure 3-4) and the corrected 
bandwidths are considered only for weather and ATC capacity regulations. For other types of 
regulation, the bandwidths that minimize the estimation error are used.  

Table 5-2 presents two days from different kinds of time frames to verify the result of macro 
analysis and to show the benefits of the micro analysis in distinguishing types of critical states. 
In both days, significant traffic demand was sufficiently large to push almost 30 percent of 
flights to be regulated and the given definition of non-nominal states tags both days as critical. 
In contrast to a crisis mode, the measured loss of capacity is reflected by various regulations 
as a result of numerous local restrictions. Quantitatively, the 99.3% control interval is [101.8, 
315.8] for the standard deviation and measured sigma values fall in the middle of the control 
interval and declare a critical state. The significant degradation in EATMN at both incidents is 
confirmed by post-operational report in Table 5-2. 
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Table 5-2 Statistics of detected non-nominal states 

Statistics Dates 
12. Aug b 22. Jul c 

Mean duration (min) 182.67 157.9 
sigma (min) 180.5 175 
Traffic demand (flights) a 31 343 31 161 
Percent of flights Regulated a, d 29% 36% 
Mean delay of all flights(min) a 2.9 4.5 
a. Adopted from NM ATFCM Daily Summary (Post-ops). 
b. Detected date based on thresholds for Aug. 
c. Detected date based on thresholds for May-Oct. 
d. Part of traffic demand passing through one or more regulations. 
 

 

This table also shows similar demand rates at both dates, but July 22nd suffered from more 
delays than August 12th. Micro analysis investigates such differences as in Table 5-3. Estimated 
Cumulative Distribution Functions (CDFs) describe totally different types of critical states. 

On August 12th, along with ATC capacity and ATC rerouting regulations, the largest 
number of aerodrome capacity regulations (for the observed six months of 2017) was 
implemented to accommodate demand. This led the day to be a complex example of a non-
nominal state with significant loss of capacity. However, July 22nd was different as high traffic 
demand was impacted by major weather conditions pushing the total number of regulations 
to 348 - almost three times of what was initially expected in pre-tactical phase. In fact, the day 
constitutes a verified case of performance degradation as a result of adverse weather impact. 
In other words, one is a case of excessive demand (airport network) while the other is reduced 
capacity (en-route challenge). 

Such cases contribute to understanding EATMN resiliency since they emphasize the 
network manager’s role in actively managing unforeseen disruptions and their knock-on effect 
throughout the tactical phase. 

 

Table 5-3 Statistics of active regulations for detected non-nominal States 

Dates Total (Pre-
tactical) 

Total 
(Tactical) 

Weather ATC 
Capacity 

ATC 
Routing 

Aerodrome 
Capacity 

Others 

22. Jul:        
   Counts 123 348 72 143 71 21 41 
   CDF (x)a *** *** 0.925 0.989 0.937 0.514 0.710 

12. Aug:        
   Counts 128 285 6 130 80 32 37 
     CDF (x) *** *** 0.206 0.962 0.987 0.957 0.587 

a. CDF (Cumulative Distribution Function) of observed number of regulations (or counts). Each regulation type has an identical 
CDF function derived from kernel density estimation (micro analysis).  
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Estimated distribution functions (Figure 5-1) is an asset in comparing different regulation 
types but also reveal characteristics of regulation types. Aerodrome capacity and ATC staffing 
regulations are less frequent at network level compared to ATC capacity, which proved to be 
the dominant regulation type. Strategic restrictions on resources and infrastructures led to a 
unimodal function for routing, staffing and aerodrome (airport) capacity regulations. In 
contrast, more stochastic tactical imbalances reflect in multimodal distributions of weather and 
ATC capacity regulations. Such figures are an asset to evaluate and compare resilient changes 
at strategic level. For instance, it is evident that the current network planning is more resilient 
toward ATC capacity regulations and least against weather induced disruptions because the 
curve for ATC capacity is the flattest and the estimated curve for weather is multimodal and 
skewed. A resilient long-term planning will ideally flatten the estimated curve for weather too. 
Needless to say, the probability values are small at first glance, but this is mathematically 
expected as the area below the curves has to be equal to one in probability functions. 

Furthermore, possible correlations between different regulation types is investigated by 
comparative heatmaps of pairwise combinations as in Figure 5-2. The results opened new 
discussions; for example, the stretched increasing pattern in Figure 5-2a suggests the chance 
of a causal relationship as if a certain range of staffing regulations induces ATC capacity 
regulations over the network. However further studies are needed to evaluate such a causal 
relationship between any pair of regulation types. For instance, the geographical locations and 
traffic volumes at which these regulations are activated should be investigated since it possibly 
reveals potential bottlenecks or traffic flow knock-on effects. 

  

 
 

Figure 5-1 Estimated probability density functions with selected bandwidth for each regulation type 
(Cumulative Distribution Functions are plotted as inset with same dimensions on base plot axes). The figure 
shows identical characteristics of each regulation type. As mentioned before, the bandwidth parameter is tested 
and this figure shows the final set of curves that is divided into corrected (black) and optimal (blue) curves [61].  
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a. selected comparison of regulations against ATC Capacity regulations 

 
b. selected pairwise comparison of regulations – Dominant values 

 
 

Figure 5-2 Pairwise comparison of EATMN regulations based on their type (Probability density estimate of 
bivariate data from May to Oct. 2017). a. the heatmaps suggest direct correlation between ATC capacity and Staffing 
compared to significantly small correlation between weather and ATC capacity regulations. b. Most dense 
probabilities from all possible pairwise-combinations; Low variance of aerodrome capacity and ATC staffing 
regulations result in higher estimated probability densities. The effect of different data-ranges is also magnified in 
weather vs. Aerodrome capacity regulations [61].   

A comparative review of regulations contributes to a better understanding of network 
behavior. For instance, the chances of having simultaneous weather issues and ATC capacity 
regulations are so rare as if weather-induced ATFCM measures also remedy ATC capacity 
limitations (Figure 5-2a). 
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At the network level, ATC capacity regulations are a big part of tactically implemented 
measures with different influences on other regulation types. For instance, an increase in the 
number of ATC capacity regulations is most likely accompanied by a rise of ATC staffing 
regulations (at relative scales). This is consistent with the general rule that ATC capacity 
regulations are implemented when demand exceeds or complexity reduces expected capacity 
and although one traffic controller will have reduced complexity but such a regulation affect 
the entry rates for other segments of flight routes too. 

In other words, the increased complexity can intensify unplanned staff shortages in 
adjacent ACCs (cause of ATC staffing regulations). Likewise, staff shortages may reduce the 
expected capacity within an ACC.  

In contrast a rising pattern in the number of ATC capacity regulations is not expected to be 
observed with a constant increase of aerodrome capacity regulations. This is aligned with the 
fact that flights, as the key element of traffic flows, bind the en-route and airport demands. 
The implication is that imposed limitations on en-route capacity will affect demand for 
aerodrome capacities, especially when the large scale of the network is considered (that also 
include arrival airports). 

Another observation for less frequent types of regulation is the effect of limited span and 
low variance of their data (Figures 5-2b and 5-1) that result in higher combined probability 
densities (from Figure 5-2a to 5-2b, the scale of density bar moves from 10-4 to 10-3). 
Nevertheless, same speculating on causal relationships can be made as in the heatmap for ATC 
staffing and aerodrome capacity regulations. However, in case of large difference in data-
ranges, this type of comparison is less productive (e.g. the heatmap for weather vs. aerodrome 
capacity regulations). 

 

5.2.  Disruption prediction (DCNN) 
Section 3.3.1 (Feasibility of machine learning approach) presented the results of applying 

SNN and RFR on regulation data. Moving forward from predicting ATFM delay per ACC, the 
thesis scaled up to a more comprehensive study by considering different supervised learning 
models on network scale. The experiments led to selecting a RF model as the baseline model 
and a deep convolutional neural network (DCNN) was proposed by benefitting from both 
CNN and SNN layers.  

Both baseline model and DCNN trials were trained on NMIR data with similar pre-
processing steps. The convergence of DCNN model is depicted by Figure 5-3. The model 
performs and converges regardless of size of data input (similar trends for both train and test 
sets). Along with expected shorter learning time and higher errors for test set, it has been 
observed that after 100 epochs the learning curve has been flattened.    
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In comparison to RF (Table 5-4) as baseline, DCNN delivers a significantly improve 
performance. Predictions for the low category of target values gained maximum benefit. 
MAPE improved 70% for delayed traffic and 60% for delay. The efficiency of the model 
specially in low category demonstrates the advantage of introduced weighting method. In 
general, the proposed architecture successfully improved the results by 50% (overall category 
for delay). 

 

 
                 (a) 

 
                (b) 

Figure 5-3 Learning curve of DCNN through training and testing phase. (a) Delay, (b) delayed traffic [62]. 

 

 

Table 5-4 Performance of DCNN model vs RF in testing phase. 

Category Delay a Delayed traffic a 
DCNN RF DCNN RF 

Low 28.3 74.15 17.21 55.95 
Nominal 15.28 26.2 9.18 17.31 

High 12.56 17.65 5.04 11.64 
Overall 17.89 36.18 10.06 25.09 

a measured by MAPE metric. 

 

Since MAPE is calculated based on relative percentage values, absolute errors are plotted 
to investigate any patterns in wide range of target values. Figure 5-4 provides precision scatter 
plots for both delay and delayed traffic in two columns. DCNN outperforms RF and smoothly 
predicts the target values regardless of their category. RF scatter plot shows more dispersion 
as the target values grow but DCNN delivers a steady quality of predictions. 
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Such a performance can be contributed to many factors. A RF model with optimized 
hyperparameters has a less complex structure and learn based on a decision tree with pure 
probabilities of an accurate prediction. On the other side, DCNN has the advantages of 
convolution layers and SNN in its architecture. While CNN layers work on spatiotemporal 
features, the added stack of SNN layers enable the model to expect disruptive dynamics in 
tactical phase (compared to a typical CNN model). These layers are reinforced by focus on 
temporal characteristics of regulations by added vector of daily features. Since the architecture 
intentionally focus more on temporal dimension, a validation on different data samples is 
performed next. 

 

 
(a) (b) 

 

Figure 5-4 Comparative scatter plots of prediction quality. Plots on top are from DCNN and the bottom plots are 
from baseline model (i.e., random forest): (a) delay, (b) delayed traffic; [62] 
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Validation and discussion 
The operational understanding on sequential nature of network disruptions is evident. But 

the proposed data driven approach rely on big data sets. Therefore, the model was trained on 
post-operational data of two consecutive years to predict the next year. Metrics in Table 5-5, 
imply that the model performed better in predicting 2018. Although 2018 is reported to be the 
highest figure of delay in recent years, such a behavior can be interpreted as a result of model 
dependency on input vector, i.e. number of pre-tactical regulations. In 2018 on average, more 
pre-tactical regulations were implemented per day and more traffic volumes (more ACCs) 
were engaged. These characteristics enrich the input data specially for CNN part of DCNN.  

 

Table 5-5 Validation results of DCNN model, [107] 

Train set Target Delay Delayed traffic 
MAPEa R2 MAEb MAPEa R2 MAEc 

2015-2016 (70%) 2017  34.06 0.72  13 273 16.56  0.89  400 
2016-2017 (70%) 2018 21.47 0.91 11 139 13.47  0.93  438 

a in percentage, b minutes, c flights. 

 

In order to further investigate the impact of pre-tactical regulation counts on model, model 
performance is plotted in different AIRAC cycles. Figure 5-5 provides the average daily MAPE 
values for both delay and delayed traffic predictions. Despite high load of traffic and delay 
over the summer season (AIRAC 5 to 10), DCNN is more accurate over these periods (scatter 
plots for errors are given in Figure A-1). The descending pattern of MAPE over summer 
suggests that the number of regulations is a key driver in prediction accuracy specially in 
absence of traffic data. This is expected since proposed architecture is based on NNs to capture 
nonlinearity and more regulations indicates more data points from dynamic disruptions. The 
inverse pattern of prediction accuracy and actual delay (inset in Figure 5-5) also confirms that 
DCNN is more affected by number of regulations and perform better in summer. Another 
observation from Figure 5-5 is that such an impact (regulation counts) seems to dominate the 
effect of different ranges of delayed traffic and delay. During summer in 2018, high number of 
regulations canceled out the gap between the quality of predictions for delayed traffic and 
delay. 

Other external factors can also affect the quality of predictions. For instance, the observed 
errors in prediction of summer 2017 might be an effect of a change in delay calculations, which 
was implemented by EUROCONTROL from April 2016 onwards [148].   

Nevertheless, the enhanced prediction capability of DCNN model compared to RF is clear 
and seasonal patterns are aligned with dynamics of EATMN in different AIRAC cycles. For 
operational use cases, the prediction is most relevant for daily values and not a full year, hence 
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the model is expected to generate smaller errors when compared to cumulative values of 
MAPE. 

 
Figure 5-5 DCNN validation: prediction errors in different AIRAC cycles, [62]. More regulations in 2018 
(especially during summer season) provide better prediction quality regardless of the expected high values for 
both delay and delayed traffic 

 

5.3.  RNN validation and comparison with DCNN 
Results from previous sections laid out the proposed mechanism for modeling EATMN as 

a resilient system and the procedure in which capacity regulations were given to DCNN model 
to predict daily ATFM delay (and daily delayed traffic). In essence, DCNN model is measuring 
the magnitude of network disruptions.  

DCNN took the pre-tactical regulations and predict end of the day situation. However, 
there are many regulations that are implemented at the tactical phase upon request to revive 
back from unexpected DCB issues. Therefore, the capability of NMOC to predict the impact of 
each proposed tactical regulation is crucial in setting the operations on the resilient path.   

Since the tactical regulations are from an interactive nature, the proposed RNN (which is 
ideal for time series) was fostered through different aspects. These include cyclic 
transformations, added AIRAC cycles that enrich NMIR raw data. Also, through dynamic 
learning rates, Adam optimizer and different activation functions, the proposed RNN 
architecture was reinforced in its prediction task.  

Table 5-6 summarizes the performance of the customized RNN on training set from yearly 
datasets. The quality degradation on validation set is not a surprise since training and 
validation set are different in their sizes and 2018 is the recorded year with the most 
regulations and scattered incidents of high delay regulations. unaccustomed to having 10 to 
20 percent of same dataset to be used for validation purposes, RNN model is pushed to its 
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limits with 2018 regulations that is almost double in size. But still RNN shows rather a stable 
performance with a MAPE of 35.76%.  

 

Table 5-6 Validation results of RNN model (2017 for 2018), [145] 

Set Size MAPE a MAE b RMSE b 

Train 2017 (70%) 36 491  10.20 14.60 127.92 
Validation 2018 66 136 35.76 34.05 168.47 

a in percentage, b minutes. 

The scatterplot of this trial in Figure 5-6, reveals the extended range of delays and hints 
about optimal range of target values. In other words, RNN model performs best on regulations 
with expected delays from 5000 to 12000 minutes. Early findings of the thesis showed that 
specific types of regulations (out of 14 different type) are more penalizing to the traffic (e.g. 
weather and ATC-Capacity regulations) and since RNN lacks the capabilities of a CNN in 
feature exploitation, the quality of predictions is decreasing for less frequent regulations with 
smaller expected values of delay. Therefore, it is a challenge to the model to relate different 
regulations (e.g. different locations, types, dates) with the same target value of delay.   
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Figure 5-6 Scatter plot of prediction quality in validation phase, [145] 

In the second trial, more training data is used to control the effect of different regulation 
types. But because of increasing yearly patterns of network demand and relatively constant 
figures of capacity, only data from past two consecutive years are considered. Such a limitation 
is absent in other use cases of RNN on time series such as temperature predictions.  

Table 5-7 completes previous table and firstly offers model performance on a homogeneous 
30% validation set with lowest MAPE. For larger validation sets, the approach of using larger 
training sets proved to be efficient. In these experiments, both validation and training sets are 
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intentionally kept at similar sizes to avoid relaxing the model in prediction task such that 
calculated MAPE are more comparable (for an average of 60 thousand predictions).The 
improvement of predictions is evident for 2018 with a MAPE of 25.49 (-10%). 

 

Table 5-7 Validation: RNN performance in predicting ATFM delay per regulation [145] 

Train set Size Validation set size MAPE (%) 
2017 (70%) 36 491 2017 (30%) 15 640 12.80 
2017 (70%) 36 491 2018 (100%) 66 136 35.76 

2015-2016 (70%) 52 330 2017 (100%) 52 132 16.95 
2016-2017 (70%) 66 082 2018 (100%) 66 136 25.49 

 

There is an intrinsic complexity with data from 2018 that makes the prediction task for the 
RNN to be more challenging compared to other years. In fact, Regulation statistics (Figure 2-1 
& Table 5-8) show that there is a significant increase in number of regulations, delay and 
delayed traffic. It should also be reminded that RNN is predicting individual regulations 
(resilient path) compared to daily values for DCNN model (that contributes to network state 
detection).    

Table 5-8 Summarized NMIR statistics on regulations (2015-2019)  

Year Counts Reg Duration 
(min) 

ATFM Delay 
(min) 

MP Delayed 
Traffic 

2019  62 798     10 203 414     24 132 723    1 444 527 
2018  66 136     10 201 611     25 623 133    1 382 176 
2017  52 131     7 462 949     15 886 900    891 374 
2016  42 270     5 827 706     15 576 691    814 678 
2015  32 484     4 706 664     14 065 108    680 981 

 

Hence, the result of RNN are required to be expressed in cumulative daily values when 
compared to DCNN results. In Table 5-9, MAPE values are recalculated for RNN and the 
achieved accuracy of 97% is not a result of a trained model on transformed daily values. In 
fact, the positive and negative residual errors for each predicted regulation cancel each other 
on daily values and a portion of RNN’s higher levels of accuracy is a result of this calculation.  

Table 5-9 Validation: RNN vs. DCNN performance in predicting daily ATFM delay  

Train set Validation set Model Accuracy (%) 
2015-2016 (70%) 2017 (100%) RNN 97.59 
2015-2016 (70%) 2017 (100%) DCNN 65.94 

2016-2017 (70%) 2018 (100%) RNN 97.88 
2016-2017 (70%) 2018 (100%) DCNN 78.53 

 



5. Results   
 

138 
 

5 

Another factor is the granularity of the data which was much higher for RNN model against 
the cumulative input for DCNN. Practically, more data points were available to RNN 
compared to DCNN and since both models are derivatives of neural networks, RNN has an 
advantage in feedforward learning as learned weights are tailored by more iterations. This 
claim is even stronger for predicted days of summer season in which each day has on average 
of more than 100 regulations (1 data point for DCNN vs. 100 data points for RNN); a fact that 
also leads to lower variance in predicted daily values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Results   

139 
 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 
 

6 

6. Conclusion and outlook 
In sections 3.2 and 5.1 (methodology and results on network state), two main topics have 

been covered. Firstly, the concept of resilience was customized in domain of European Air 
Traffic Management (ATM) with a focus on the boundaries of resilience and robustness. 
Secondly, in an attempt to improve tactical network resiliency based on performance 
variability, the possibilities to define an ATM network state by a deeper understanding of its 
performance dynamics were explored. This was achieved by network state definition according 
to implemented local DCB solutions (i.e. capacity regulations). Definition of network states 
expands our understanding of the enriched regulation data as a feedback loop on tactical plans 
and intensifies the importance of NMOC role as the network manager that monitors all 
European ACCs.  

The selection of regulations was tailored by a survey on different databases. ATFCM 
Notification Messages (ANM) data were selected since they reflect the result of corrective DCB 
measures in tactical phase with the advantage of being published by push messages for all ATM 
actors. To evaluate the quality of information an analytical tool (i.e. ANMStat, see Annex C.1.) 
was developed in MATLAB. It enabled preliminary statistical evaluation of ANM messages. 
Derived reports include outlier detection (days with extreme conditions), or estimated 
probability distributions of different regulation types. ANMStat is capable to check various 
aspects of ANM messages to understand the prominent data features (statistical, temporal and 
geographical) and decide on target time horizon and most active FMPs for further analysis and 
case study designs.  

The methodology to define network state is comprised of a macro and a micro analysis based 
on quantitative measures. Results were investigated further to characterize network states with 
regard to regulation types and potential geographical patterns. Similarly, with acquired 
knowledge from ANMStat, results were further evaluated according to different data spans. 
From an operational standpoint, there are known monthly patterns (as in summer season) that 
ATM actors anticipate.  Therefore, different reference thresholds are tested to understand short-
term trends in traffic demand and to capture possible effects of different sample sizes.  

In order to establish control thresholds, probability density functions (PDFs) of major 
regulation types was estimated by normal kernel smoothing method. These thresholds were 
evaluated by comparison of a use case with official reports. More specifically two detected non-
nominal dates were checked against both ATFCM daily summary reports and published Initial 
Network Plans in micro analysis. 

In order to address other levels of resilience, spatial mapping plots were then provided to 
indicate a geographical reference for different type of regulations. Since the ATM network is 
more flexible in pre-tactical and strategic phases such dedicated maps contribute to customized 
mitigation plans to improve network resiliency. Moreover, estimated PDFs were tested by 
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pairwise-comparison plots (Figure 5-1) in search of potential causal relationships. Observations 
showed potential correlations among specific type of regulations (staffing and ATC capacity 
for instance). More deterministic findings are an asset to network manager role to anticipate 
secondary regulations at network level induced by large scale requests for a specific type of 
regulation at local levels. However, dedicated studies are needed to monitor the consistency of 
such relationships in different network states. 

Guided by expert opinions (from SESAR project), the research then focused on reviving 
measures (resilient path). In section 3.3.1 (feasibility of machine learning approach), the aim 
was set on predicting impact of correction measures (i.e. regulation) rather than understanding 
causes of disruptions and preventive mechanisms. The thesis invests on learning algorithms 
for this task as it also contributes to achieving accurate situational awareness. Consequently, 
different supervised learning methods are applied to regulation data, in contrast with other 
studies that select city pairs and rely on traffic and demand figures. 

On a network level, since the casual relationships between regulation is parked for future 
studies, learning methods are chosen to benefit from prediction based on training data rather 
than analytical methods or simulations with higher model complexities. For the feasibility 
task, complexity of the prediction problem was reduced in two aspects. On one hand, only a 
selected FMP (rather than whole network) is chosen because it is the key decision maker in 
coping with DCB issues by capacity regulations.  On the other hand, data is pre-processed to 
modify input vectors with a combination of extracted indicators and parameters based on 
operational understanding of ATFM disruptions’ severity. Another advantage of learning 
approach with regulation data is its structure that eliminates the need for classification 
methods and provides a straight forward approach on regression methods.  

Even at a reduced dimension of a single FMP (Langen) with the historical data from 2016 
and 2017, results [35] confirmed the added value of delay prediction by neural networks and 
random forest regression.  

In order to demonstrate the added value of results to network manager position, a tool was 
coded in python (NetRes) that offers extracted indicators, network state mechanism and some 
intuitive graphs in a stand-alone interface. NetRes (annex C.2) takes regulation data from two 
sources: ANM messages and NMIR. Both databases almost offer similar data structures but 
NMIR is post-operation and ANMs are tactical. NMIR only offers daily logs of regulations 
while ANM is being updated through the day of operations with push messages. NetRes is 
able to process each type of data for different tasks, NMIR to calculate thresholds and ANMs 
for state definition. The tool is presented and delivered to SESAR community in PJ09 project 
(Advanced Demand Capacity Balancing) and is documented under ‘Solution 1 – Network 
prediction and performance’ [149].  
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The study is then continued to invest more on learning algorithms with application of 
different supervised learning methods at network scale. The prediction task at this stage 
consider EATMN (and not only one FMP) and data is being fully considered without omitting 
any feature of its structure (i.e. no cumulative indicators). After multiple design iterations, a 
deep architecture based on convolutional and sequential neural networks (i.e. DCNN) is 
finalized to serve as the disruption prediction model.    

Through a deep learning process both spatial and temporal dimension of regulation data is 
extracted by the model. The proposed model proved to be efficient in predicting both delay 
and delayed traffic as the two consequences of applying capacity regulations. DCNN 
significantly improved the prediction quality in comparison to an optimized RF model as the 
baseline model. The data driven approach to predict daily delay, gives DCNN the advantage 
to perform better in more dynamic situations, since a busy day with more pre-tactical 
regulations provide more data points as the model input. 

Finally, in search of evaluating the impact of individual regulations as corrective actions 
(section 4.2), a recurrent neural network is designed with a focus on sequence of regulations. 
The designed RNN, predicts regulation compared to DCNN which predicts daily values at the 
end of the day. In other words, proposed RNN enables the impact assessment for each 
regulation on demand. After understanding the network state and evaluating the level of 
disruption at a network level by DCNN, the resilient path to revive the network requires the 
RNN capability to predict the impact of each regulation as a corrective measure to cope with 
DCB disruptions.  

In summary, this exploratory research served as an attempt toward EATMN resiliency. 
Conceptually, the study demonstrates that EATMN can be modeled as a resilient system. 
Operationally, the thesis offers an alternative network prediction based on capacity 
regulations and supervised learning methods. The results of the thesis are offered to both 
academic experts (through peer reviewed publications) and industrial partners (in course of a 
SESAR project).  

 

 

6.1.  COVID-19 pandemic  
This study aimed for ATM resiliency by providing better networkwide situational 

awareness in Demand Capacity Balancing (DCB). Incidents such as the volcano eruption in 
2010 and COVID-19 pandemic in 2020 are challenges to different levels of resilience (Table 6-
1). The volcano eruption was a safety risk in the pre-tactical phase (adaptive level) and COVID-
19 is a large-scale issue in strategic phase (absorptive level). Similar incidents are mostly 
regarded as safety challenges while the scope of current research is mainly on network 
performance and DCB disruptions (restorative level).  Perhaps, challenges like snowfalls in 
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march 2013 are better examples to elaborate on the restorative level. Heavy snow hit Chicago 
airport with 9,2 inches (23 cm) of snow that showered on one day (5th of march) [150] . Only 
some days after, on 12th of march, snowfalls made Frankfurt airport to shut down its 
operations. Same weather system continued to disrupt flights across northwestern Europe 
leading to up to 50% cancellation rate at some airports [151].  

Table 6-1 Resilience Levels 

Level ATFCM Phase 
Absorptive strategic 
Adaptive pre-tactical 

Restorative Tactical 
 

Moreover, safety disruptions such as volcano eruption and pandemics have different 
propagation and transition mechanisms. The volcanic eruption started on April 14th and 
persisted for six weeks (end of May 2010).  Volcanic ash is considered as a known hazard to 
aviation and at the time of incident there were already mitigation plans based on satellite 
measurements and advanced dispersion models. Yet at the first day of the eruption 8200 flights 
were cancelled. Although, the sudden eruption was recognized at the restorative level, the 
impacts persisted and escalated to adaptive level and even at absorptive level led to some 
corrective procedures in mitigation plans. Almost a year later another volcanic eruption from 
23rd to 25th May 2011 happened (the Grimsvötn crisis, [152]) and the strategic corrections 
efficiently limited the cancellations to 900 flights (out of a total of 90,000 expected flights).  

Generally, a volcanic ash is a flight safety issue that in DCB terms, translates to an 
unexpected loss of capacity (airspace closure) which can be mitigated by flight cancellation, 
rerouting and capacity regulations. Therefore, such incidents are much closer to the scope of 
this study compared to COVID-19 pandemic. 

COVID pandemic was a passenger safety risk and unlike a volcanic eruption, no 
technical/operational issues or capacity degradations were triggered. In contrast to emergent 
disruptions it did not directly affected the European aviation at a specific date and didn’t start 
at the restorative level. In fact, instead of arising from restorative to absorptive level with 
strategic changes in case of a volcanic ash; the pandemic took the opposite direction and 
disseminated to aviation sector from strategic decisions by European Commission (EC) and 
head of states (limiting the spread of the virus through means of transportation). Decided 
policies caused a reduction in airport operations and route restrictions. Line of such decisions 
continued even a year after by network manager (EUROCONTROL) through 6-week 
mitigation plans [153], i.e. strategic phase and adaptive level of resilience.  

Moreover, ML approaches depend on sufficient data to learn. The aforementioned cases are 
exceptions and there is no previous situation that learning models can learn from. In both 
cases, the system is not suffering from delay but mostly flight cancelation, which is not 
included in the scope of this work. 
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6.2.  Future works  
As expected from an exploratory research, the thesis exposes a number of challenges that 

are required to be studied in future. The follow up studies can be categorized into different 
approaches: 

 Concept: this thesis demonstrated the realization of performance variability is a 
key aspect for a resilient network. The next step can be to further investigate 
control mechanism on top of monitoring measures. Control mechanisms can be 
better investigated by an agent base model that considers FMPs as controlling 
agents. Such a study can still rely solely on regulation data (even in absence of 
traffic data) because regulations are mainly proposed by FMPs and they are not 
applied to OD pairs but on target traffic volumes; 

 Method: the customized method of DeepCNN has two CNN and SNN 
components. This architecture can be improved further by integrating 
convolutional layers to a RNN. The resulting architecture is highly expected to 
improve prediction quality especially by relying on achieved results from RNN 
model in chapter 4. Current state of study shows that regulation data can be 
considered for LSTM as time-series; 

 Scope: since the results of pre-tactical phase of ATFCM are published as Initial 
Network Plan (INP) it is possible to extend the model to adaptive level of 
resilience. INP can be merged with traffic data from flight plans in pre-tactical 
phase. Flight plans can be acquired from EUROCONTROL’s Demand Data 
Repository (DDR2); 

 Data: include and merge more datasets on capacity and traffic situations into the 
learning models. These datasets can be acquired from Demand data repository 
(DDR). More specifically planned flight plans and actual flight trajectories can 
complement the regulation data from NMIR database. Such an approach 
incorporates ideas from multimodal data fusion techniques such as early or late 
fusion and are more beneficiary in network state identification.  

 

 

 

 

 

 

 



6. Conclusion and Outlook   

145 
 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

146 
 

R 

References 
 

[1]  FAA, EC and EUROCONTROL, "2015 Comparison of ATM-related performance: U.S. - 
Europe," EUROCONTROL Performance Review Unit and FAA-ATO, 2016. 

[2]  EUROCONTROL, "EUROCONTROL Seven-Year Forecast," 2019. 

[3]  V. Gollnick and C. M. Weder, "Die Covid-19-Pandemie–Anlass oder Ursache der 
Konsolidierungsphase in der Luftfahrt," Internationales Verkehrswesen, vol. 73, no. 1, pp. 24-29, 
2021.  

[4]  Airbus S.A.S, Global Market Forecast, Cities, Airport & Aircraft 2019-2038, Lavaur: Art & 
Caractère, 2019, p. 8. 

[5]  Boeing, "Commercial Market Outlook 2019 – 2038," Boeing , Arlington, 2019. 

[6]  EUROCONTROL Performance Review Commission (PRC), "Performance Review Report: An 
Assessment of Air Traffic Management in Europe during the Calendar Year 2017," 
EUROCONTROL, Brussels, 2018. 

[7]  EUROCONTROL, "EUROCONTROL ATM Lexicon," [Online]. Available: 
www.eurocontrol.int/atmlexicon. [Accessed 12 Feb 2020]. 

[8]  ICAO, "Long-Term Traffic Forecasts: Passenger and Cargo," International Civil Aviation 
Organization, Montreal, 2018. 

[9]  FAA & EUROCONTROL, 2017 Comparison of Traffic Management-related Operational 
Performance U.S./Europe, EUROCONTROL Performance Review Unit and FAA-ATO, 2019.  

[10]  EUROCONTROL, ATFCM USERS MANUAL, 22.1 ed., Brussels: EUROCONTROL, 2018.  

[11]  EUROCONTROL, SESAR PJ09 OSED-SPR-INTEROP – Part I, 00.02.01 ed., Brussels: 
EUROCONTROL, 2019.  

[12]  EUROCONTROL Performance Review Commission (PRC), "Performance Review Report: An 
Assessment of Air Traffic Management in Europe during the Calendar Year 2019," 
EUROCONTROL , Brussels, 2020. 

[13]  GIS-ICAO, "Air Traffic Flow Chart 2018," [Online]. Available: 
https://gis.icao.int/sgisweb/TRAFFICCOLOR/JPEG2/FLOWCHART2018greenblackOP.pdf. 
[Accessed 06 September 2019]. 

[14]  ICAO, Manual On Collaborative Air Traffic Flow Management (Doc 9971), 3rd ed., Montreal: 
International Civil Aviation Organization, 2018.  



References   

147 
 

R 

[15]  M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari and 
S. Stadtler, "Can deep learning beat numerical weather prediction?," Philosophical Transactions of 
the Royal Society A, vol. 379, no. 2194, 2021.  

[16]  E. M. Lorenz, "Deterministic Nonperiodic Flow," Journal of the Atmospheric Sciences, vol. 20, pp. 
130-141, 1963.  

[17]  Wetterzentrale. [Online]. Available: https://www.wetterzentrale.de/. [Accessed 12 10 2020]. 

[18]  ISO\IEC\IEEE, Systems and software engineering - System life cycle processes, 1st ed., Geneva: 
Institute of Electrical and Electronics Engineers, Inc., 2015.  

[19]  European Union, Regulation (EC) No 549/2004 of the European Parliament and of the Council of 10 
March 2004 laying down the framework for the creation of the single European sky, Official Journal of 
the European Union, 2004.  

[20]  ISO\IEC\IEEE, Systems and software engineering — Life cycle management, 1st ed., Geneva: 
Institute of Electrical and Electronics Engineers, Inc., 2018.  

[21]  EUROCONTROL, "about us," [Online]. Available: https://www.eurocontrol.int/about-us. 
[Accessed 13 05 2020]. 

[22]  Single European Sky ATM Research Joint Undertaking, "About SESAR - History," [Online]. 
Available: https://www.sesarju.eu/discover-sesar/history. [Accessed 14 03 2020]. 

[23]  Single European Sky ATM Research Joint Undertaking, European ATM Master Plan, Brussels: 
SESAR Joint Undertaking, 2015.  

[24]  J. Pariès, "Chapter 4: Complexity, Emergence, Resilience...," in Resilience Engineering: Concepts 
and Precepts, Ashgate, 2006, pp. 43-53. 

[25]  European Union, Regulation (EC) No 552/2004 of the European Parliament and of the Council of 10 
March 2004 on the interoperability of the European Air Traffic Management network (the 
interoperability Regulation), Official Journal of the European Union, 2004.  

[26]  B. Campanelli, P. Fleurquin, A. Arranz, I. Etxebarria, C. Ciruelos, V. M. Eguíluz and J. J. 
Ramasco, "Comparing the modeling of delay propagation in the US and European air traffic 
networks," Journal of Air Transport Management, vol. 56, pp. 12-18, 2016.  

[27]  R. Francis and B. Bekara, "A metric and frameworks for resilience analysis of engineered and 
infrastructure systems," Reliability Engineering and System Safety, vol. 121, pp. 90-103, 2014.  

[28]  R. M. Hoffman, "A Generalized Concept of Resilience," Textile Research Journal, vol. 18, pp. 141-
148, 1948.  

[29]  C. S. Holling, "Resilience and Stability of Ecological Systems," Annual Review of Ecology and 
Systematics, vol. 4, pp. 1-23, 1973.  



References   
 

148 
 

R 

[30]  D. Henry and J. E. Ramirez-Marquez, "Generic metrics and quantitative approaches for system 
resilience as a function of time," Reliability Engineering and System Safety, vol. 99, pp. 114-122, 
2012.  

[31]  E. Hollnagel, D. D. Woods and N. Leveson, Resilience Engineering: Concepts and Precepts, 
Aldershof: Ashgate, 2006.  

[32]  D. Furniss, J. Back, A. Blandford, M. Hildebrandt and H. Broberg, "A resilience markers 
framework for small teams," Reliability Engineering and System Safety, vol. 96, pp. 2-10, 2011.  

[33]  EUROCONTROL, "A White Paper on Resilience Engineering for ATM," EUROCONTROL, 
Brussels, 2009. 

[34]  A. Cook, L. Delgado, S. Cristobal and A. Blanch, "What Cost Resilience?," in Forth SESAR 
Innovation Days, Madrid, Spain, 25-27 November, 2014.  

[35]  R. Sanaei, A. Lau, F. Linke and V. Gollnick, "Machine Learning Application in Network 
Resiliency based on Capacity Regulations," in 2019 IEEE/AIAA 38th Digital Avionics Systems 
Conference (DASC), San Diego, USA, 8-12 September, 2019.  

[36]  O. Gluchshenko, "Definitions of Disturbance, Resilience and Robustness in ATM Contex," DLR, 
Institute of Flight Guidance, Braunschweig, 2012. 

[37]  J. Clausen, A. Larsen and J. Larsen, "Disruption Management in the Airline Industry - Concepts, 
Models and Methods," Informatics and Mathematical Modelling, Technical University of 
Denmark, DTU, Lyngby, 2005. 

[38]  E. J. Rykiel, "Towards a definition of ecological disturbance," Australian Journal of Ecology, vol. 
10, no. 3, pp. 361-365, 1985.  

[39]  Y. Zhou, J. Wang and H. Yang, "Resilience of Transportation Systems: Concepts and 
Comprehensive Review," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 12, 
pp. 4262-4276, 2019.  

[40]  S. Yoo and H. Yeo, "Evaluation of the resilience of air transportation network with adaptive 
capacity," International Journal of Urban Sciences, vol. 20, no. sup1, pp. 38-49, 2016.  

[41]  M. Janić, "Reprint of “Modelling the resilience, friability and costs of an air transport network 
affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, 
vol. 81, pp. 77-92, 2015.  

[42]  M. Janić, "Modeling the resilience of an airline cargo transport network affected by a large scale 
disruptive event," Transportation Research Part D: Transport and Environment, vol. 77, pp. 425-448, 
2019.  



References   

149 
 

R 

[43]  S. Dunn and S. M. Wilkinson, "Increasing the resilience of air traffic networks using a network 
graph theory approach," Transportation Research Part E: Logistics and Transportation Review, vol. 
90, pp. 39-50, 2016.  

[44]  A. Voltes-Dorta, H. Rodríguez-Déniz and P. Suau-Sanchez, "Vulnerability of the European air 
transport network to major airport closures from the perspective of passenger delays: Ranking 
the most critical airports," Transportation Research Part A: Policy and Practice,, vol. 96, pp. 119-145, 
2017.  

[45]  G. M. D'este and M. A. Taylor, "Network vulnerability: an approach to reliability analysis at the 
level of national strategic transport networks," The Network Reliability of Transport, pp. 23-44., 13 
Jan 2003 (reprint 2017 by Emerald Group Publishing Limited).  

[46]  K. Berdica, "An introduction to road vulnerability: what has been done, is done and should be 
done," Transport Policy, vol. 9, no. 2, pp. 117-127, 2002.  

[47]  G. W. Klau and R. Weiskircher, "Chapter 15 Robustness and Resilience," in Network Analysis: 
Methodological Foundations, Berlin-Heidelberg, Springer, 2005, pp. 417-437. 

[48]  R. F. Vernon, "A Brief History of Resilience," in Community Planning to Foster Resilience in 
Children, Boston, Springer, 2004, pp. 13-26. 

[49]  K. C. Pien, K. Han, W. Shang, A. Majumdar and W. Ochieng, "Robustness analysis of the 
European air traffic network," Transportmetrica A: Transport Science, vol. 11, no. 9, pp. 772-792, 
2015.  

[50]  H. Devoe, Thermodynamics and Chemistry, 2nd ed., Maryland: University of Maryland, 2020.  

[51]  C. Coetzee, D. Van Niekerk and E. Raju, "Disaster resilience and complex adaptive systems 
theory: Finding common grounds for risk reduction," Disaster Prevention and Management, vol. 
25, no. 2, pp. 196-211, 2016.  

[52]  R. Baduel, J. M. Bruel, I. Ober and E. Doba, "Definition of states and modes as general concepts 
for system design and validation.," in 12th International Conference on Modeling, Optimization and 
Simulation - MOSIM18, Toulouse, France, 27-29 June, 2018.  

[53]  A. Cook, H. A. Blom, F. Lillo, R. N. Mantegna, S. Micciche, D. Rivas, R. Vazquez and M. Zanin, 
"Applying complexity science to air traffic management," Journal of Air Transport Management, 
vol. 42, pp. 149-158, 2015.  

[54]  A. Cook, L. Delgado, G. Tanner and S. Cristobal, "Measuring the cost of resilience," Journal of 
Air Transport Management, vol. 56, pp. 38-47, 2016.  

[55]  E. Filippone, F. Gargiulo, A. Errico, V. Di Vito and D. Pascarella, "Resilience management 
problem in ATM systems as a shortest path problem," Journal of Air Transport Management, vol. 
56, pp. 57-65, 2016.  



References   
 

150 
 

R 

[56]  P. Andrade, C. Silva, B. Ribeiro and B. F. Santos, "Aircraft maintenance check scheduling using 
reinforcement learning," Aerospace, vol. 4, no. 8, p. 113, 2021.  

[57]  Q. Deng and B. F. Santos, "Lookahead approximate dynamic programming for stochastic 
aircraft maintenance check scheduling optimization," European Journal of Operational Research, 
vol. 299, no. 3, pp. 814-833, 2021.  

[58]  A. Lau, J. Berling, F. Linke and V. Gollnick, "Large-Scale Network Slot Allocation with Dynamic 
Time Horizons," in Eleventh USA/Europe Air Traffic Management Research and Development 
Seminar (ATM2015), Lisbon, Portugal, 23-26 June, 2015.  

[59]  A. Lau, "Air Traffic Flow Management in the Presence of Convective Nowcasting Information 
(Doctoral Dissertation)," German Aerospace Center (DLR), Cologne, 2017. 

[60]  X. Sun and S. Wandelt, "Chapter 9 - Network Modelling and Resilience Analysis of Air 
Transportation: A Data-Driven, Open-Source Approach," in Data-Driven Solutions to 
Transportation Problems, Amsterdam, Elsevier, 2019, pp. 227-245. 

[61]  R. Sanaei, A. Lau and V. Gollnick, "A study of Capacity Regulations to define European Air 
Traffic Management Network States," Transportation Planning and Technology, vol. 44, no. 4, 
2021.  

[62]  R. Sanaei, B. A. Pinto and V. Gollnick, "Toward ATM Resiliency: A Deep CNN to Predict 
Number of Delayed Flights and ATFM Delay," Aerospace, vol. 8, no. 2, p. 28, 2021.  

[63]  R. Sanaei, "Exploring Supervised Learning to Predict Air Traffic Delay in ATM Network 
Resiliency," in DLR WAW Machine Learning V, Wessling, Germany, 03-05 December. 2019.  

[64]  R. Sanaei, "Improving ATM Network Resilience with Machine Learning," in DLR WAW Machine 
Learning IV, Cologne, Germany, 06-07 June, 2019.  

[65]  R. Sanaei, "Resilient Systems or Being Cool!," in NextGen Conference, Potsdam, Germany, 25-27 
July, 2018.  

[66]  E. Hollnagel, Safety-I and Safety-II: The Past and Future of Safety Management, Farnham: 
Ashgate, 2014.  

[67]  European Union, COMMISSION REGULATION (EU) No 255/2010 of 25 March 2010 laying down 
common rules on air traffic flow management, Official Journal of the European Union, 2010.  

[68]  E. Hollnagel, J. Leonhardt, T. Licu and S. Shorrock, From Safety-I to Safety-II: A White Paper, 
EUROCONTROL, 2013.  

[69]  EUROCONTROL, "NOP portal," [Online]. Available: 
https://www.public.nm.eurocontrol.int/PUBPORTAL/gateway/spec/index.html. [Accessed 15 
Jan 2017]. 



References   

151 
 

R 

[70]  X. Sun, S. Wandelt and F. Linke, "Temporal evolution analysis of the european air 
transportation system: air navigation route network and airport network," Transportmetrica B: 
Transport Dynamics, vol. 3, no. 2, p. 153–168, 2015.  

[71]  E. Lehman, Elements of Large Sample Theory, New York: Springer, 1999.  

[72]  EUROCONTROL, "Network Manager outage on 3 April 2018: Summary brief," 
EUROCONTROL, Brussels, 2018. 

[73]  A. Cook, European Air Traffic Management: Principles, Practice and Research, Aldershot: 
Ashgate, 2007.  

[74]  G. Sreeta, M. Hansen and A. Pozdnukhov, "Decision support framework to assist air traffic 
management," in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, 
USA, 25-29 September, 2016.  

[75]  H. Ishwaran, U. B. Kogalur, E. H. Blackstone and M. S. Lauer, "Random survival forests," 
Annals of Applied Statistics, vol. 2, no. 3, pp. 841-860, 2008.  

[76]  J. J. Rebollo and H. Balakrishnan, "Characterization and prediction of air traffic delays," 
Transportation Research Part C: Emerging Technologies, vol. 44, pp. 231-241, 2014.  

[77]  Y. J. Kim, S. Choi, S. Briceno and D. Mavris, "A Deep Learning Approach to Flight Delay 
Prediction," in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, 
USA, 25-29 September, 2016.  

[78]  T. Kravaris, G. A. Vouros, C. Spatharis, K. Blekas, G. Chalkiadakis and J. M. C. Garcia, 
"Learning Policies for Resolving Demand-Capacity Imbalances During Pre-tactical Air Traffic 
Management," in German Conference on Multiagent System Technologies, Leipzig, Germany, 23-26 
August, 2017.  

[79]  C. Spatharis, T. Kravaris, K. Blekas, G. A. Vouros and J. M. C. Garcia, "Multiagent 
Reinforcement Learning Methods for Resolving Demand - Capacity Imbalances," in IEEE/AIAA 
37th Digital Avionics Systems Conference (DASC), London, UK, 23-27 September, 2018.  

[80]  R. B. Montes, A. D. Rojas, V. F. G. Comendador, R. A. Valdés and L. P. Sanz, "A Novel 
Predictability Performance Metric and Its Forecast Using Machine Learning Techniques," in 
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23-27 September, 
2018.  

[81]  L. Denoyer and P. Gallinari, Deep sequential neural network, arXiv preprint arXiv:1410.0510 , 2014. 

[82]  D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in 3rd International 
Conference on Learning Representations (ICLR 2015), San Diego, USA, 7-9 May, 2015.  



References   
 

152 
 

R 

[83]  T. K. Ho, "Random decision forests," in 3rd International Conference on Document Analysis and 
Recognition (ICDAR), Montreal, Canada, 14-16 August, 1995.  

[84]  L. Breiman , "Random Forests," Machine Learning, vol. 45, p. 5–32, 2001.  

[85]  T. Hastie, J. Friedman and R. Tibshirani, The Elements of Statistical Learning, second ed., New 
York: Springer, 2009.  

[86]  J. J. Rebollo and H. Balakrishnan, "Characterization and prediction of air traffic delays," 
Transportation Research Part C: Emerging Technologies, vol. 44, pp. 231-241, 2014.  

[87]  T. Kistan, A. Gardi, R. Sabatini, S. Ramasamy and E. Batuwangala, "An evolutionary outlook of 
air traffic flow management techniques," Progress in Aerospace Sciences, vol. 88, pp. 15-42, 2017.  

[88]  N. Ivanov, N. F. J. R. S. Starita and A. Strauss, "Air Traffic Flow Management slot allocation to 
minimize propagated delay and improve airport slot adherence," Transportation Research Part A: 
Policy and Practice, vol. 95, pp. 183-197, 2017.  

[89]  A. Montlaur and L. Delgado, "Flight and passenger efficiency-fairness trade-off for ATFM delay 
assignment," Journal of Air Transport Management, vol. 83, p. 101758, 2020.  

[90]  T. Bolić, L. Castelli, L. Corolli and D. Rigonat, "Reducing ATFM delays through strategic flight 
planning," Transportation Research Part E: Logistics and Transportation Review, vol. 98, pp. 42-59, 
2017.  

[91]  Y.-H. Chang, S. Solak, J.-P. B. Clarke and E. L. Johnson, "Models for single-sector stochastic air 
traffic flow management under reduced airspace capacity," Journal of the Operational Research 
Society, vol. 67, no. 1, pp. 54-67, 2016.  

[92]  L. Delgado and X. Prats, "En Route Speed Reduction Concept for Absorbing Air Traffic Flow 
Management Delays," Journal of Aircraft, vol. 49, no. 1, pp. 214-224, 2012.  

[93]  X. Prats and M. Hansen, "Green delay programs, absorbing ATFM delay by flying at minimum 
fuel speed," in Ninth USA/Europe Air Traffic Management Research and Development Seminar 
(ATM2011), Berlin, Germany, 14-17 June, 2011.  

[94]  A. R. Odoni, "The flow management problem in air traffic control," in NATO advanced research 
workshop on flow control of congested networks, Capri, Italy, 12-18 October, 1986.  

[95]  S. Carlier, I. de Lépinay, J.-C. Hustache and F. Jelinek, "Environmental Impact of Air Traffic 
Flow Management Delays," in ATM Seminar, Barcelona, Spain, 02 - 05 July, 2007.  

[96]  L. D. L. F. LAYOS, "Statistics in focus - Transport - Air passenger transport in Europe in 2007," 
Eurostat (European Commission), 2009. 

[97]  Eurostat, Energy, transport and environment statistics, Luxembourg: Publications Office of the 
European Union, 2020.  



References   

153 
 

R 

[98]  Performance Review Unit, "Technical note on ANSPs Productivity, ATFM delays and ATCOs 
working hours," EUROCONTROL, Brussels, 2020. 

[99]  M. Bardach, E. Gringinger, M. Schrefl and C. G. Schuetz, "Predicting Flight Delay Risk Using a 
Random Forest Classifier Based on Air Traffic Scenarios and Environmental Conditions," in 
2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, USA, 11-16 
October, 2020.  

[100] Z. Guo, G. Mei, S. Liu, L. Pan, L. Bian, H. Tang and D. Wang, "SGDAN-A Spatio-Temporal 
Graph Dual-Attention Neural Network for Quantified Flight Delay Prediction," Sensors, vol. 20, 
no. 22, 2020.  

[101] M. Zanin, Y. Zhu, R. Yan, P. Dong, X. Sun and S. Wandelt, "Characterization and Prediction of 
Air Transport Delays in China," Applied Sciences, vol. 10, no. 18, 2020.  

[102] G. Gui, F. Liu, J. Sun, J. Yang, Z. Zhou and D. Zhao, "Flight Delay Prediction Based on Aviation 
Big Data and Machine Learning,," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 
140-150, 2020.  

[103] G. Gui, Z. Zhou, J. Wang, F. Liu and J. Sun, "Machine Learning Aided Air Traffic Flow Analysis 
Based on on Aviation Big Data," IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 
4817-4826, 2020.  

[104] M. Melgosa, X. Prats, Y. Xu and L. Delgado, "Enhanced Demand and Capacity Balancing based 
on Alternative Trajectory Options and Traffic Volume Hotspot Detection," in 2019 IEEE/AIAA 
38th Digital Avionics Systems Conference (DASC), San Diego, USA, 8-12 September, 2019.  

[105] Y. Xu, X. Prats and D. Delahaye, "Synchronised demand-capacity balancing in collaborative air 
traffic flow management," Transportation Research Part C: Emerging Technologies, vol. 114, pp. 
359-376, 2020.  

[106] D. Bertsimas, G. Lulli and A. Odoni, "An Integer Optimization Approach to Large-Scale Air 
Traffic Flow Management," Operations Research, vol. 59, no. 1, pp. 211-227, 2011.  

[107] B. A. Pinto, Air Traffic Management (ATM) Network Awareness through Synchronization 
Analysis (Master Thesis), Hamburg: Hamburg University of Technology (TUHH), 2019.  

[108] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, A. Passos, D. Cournapeau and M. Brucher, "Scikit-learn: 
Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.  

[109] R. Mori and D. Delahaye, "Simulation-Free Runway Balancing Optimization Under Uncertainty 
Using Neural Network," in Ninth SESAR Innovation Days, Athens, Greece, 2-6 December, 2019.  

[110] A. Fernandez, D. Martınez, P. Hernandez, S. Cristobal, F. Schwaiger and J. M. Nunez, "Flight 
Data Monitoring (FDM) Unknown Hazards detection during Approach Phase using Clustering 



References   
 

154 
 

R 

Techniques and AutoEncoders," in Ninth SESAR Innovation Days, Athens, Greece, 2-6 
December, 2019.  

[111] Z. Wang, M. Liang and D. Delahaye, "Short-term 4D Trajectory Prediction Using Machine 
Learning Methods," in Sixth SESAR Innovation Days, Belgrade, Serbia, 28-30 November, 2017.  

[112] M. Poppe, R. Scharff, J. Buxbaum and D. Fieberg, "Flight Level Prediction with a Deep 
Feedforward Network," in Eighth SESAR Innovation Days, Salzburg, Austria, 3-7 December, 
2018.  

[113] D. Martinez, S. Belkoura, S. Cristobal, F. Herrema and P. Wächter, "A Boosted Tree Framework 
for Runway Occupancy and Exit," in Eighth SESAR Innovation Days, Salzburg, Austria, 3-7 
December, 2018.  

[114] R. Dalmau, F. Ballerini, H. Naessens, S. Belkoura and S. Wangnick, "Improving the 
Predictability of Take-off Times with Machine Learning," in Ninth SESAR Innovation Days, 
Athens, Greece, 2-6 December, 2019.  

[115] R. Marcos, R. Herranz, R. R. Vázquez, P. García-Albertos and O. G. Cantú Ros, "Application of 
Machine Learning for ATM Performance Assessment–Identification of Sources of En-Route 
Flight Inefficiency," in Eighth SESAR Innovation Days, Salzburg, Austria, 3-7 December, 2018.  

[116] B. PEŠIĆ LE FOLL, "Network Effect : A Possible Model to Highlight Interdependencies between 
Flow Management Regulations," EUROCONTROL, Brétigny-sur-Orge, 2005. 

[117] S. Chatterjee and A. S. H. Hadi, Regression Analysis by Example, 5th ed., Hoboken, New Jersey: 
John Wiley & Sons, Inc., 2015.  

[118] M. Awad and R. Khanna, Efficient learning machines, 1st ed., New York: Apress, 2015.  

[119] F. Chollet and others, "Keras," 2015. [Online]. Available: https://keras.io. [Accessed 19 February 
2020]. 

[120] B. Shen, X. Liang, Y. Ouyang, M. Liu, W. Zheng and K. Carley, "Stepdeep: a novel spatial-
temporal mobility event prediction framework based on deep neural network," in 24th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19-23 
August, 2018.  

[121] J. Wang, Q. Gu, J. Wu, G. Liu and Z. Xiong, "Traffic speed prediction and congestion source 
exploration: A deep learning method," in 2016 IEEE 16th International Conference on Data Mining 
(ICDM), Barcelona, Spain, 12-15 December, 2016.  

[122] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga 
and A. Lerer, "Automatic differentiation in PyTorch," in NIPS 2017 Autodiff Workshop, Long 
Beach, USA, 9 December, 2017.  



References   

155 
 

R 

[123] A. L. Maas, A. Y. Hannun and A. Y. Ng, "Rectifier nonlinearities improve neural network 
acoustic models," in International Conference on Machine Learning (ICML), Atlanta, USA, 16-21 
June, 2013.  

[124] L. Sillard, F. Vergne and B. Desart, "TAAM Operational Evaluation (project report," 
EUROCONTROL, Paris (Bretigny-Sur-Orge), 2000. 

[125] EUROCONTROL (Network Manager), IFPS Users Manual, 26.0 ed., Brussels: 
EUROCONTROL, 2022.  

[126] EUROCONTROL (Network Manager), IFPS Users Manual, 21.1 ed., Brussels: 
EUROCONTROL, 2017.  

[127] Network Manager Directorate (NMD), NMIR User Guide, 1st ed., Brussels: EUROCONTROL, 
2018.  

[128] J. H. Holland, "Complex adaptive systems," Daedalus, vol. 121, no. 1, pp. 17-30, 1992.  

[129] R. Dodder and R. Dare, "Complex Adaptive Systems and Complexity Theory: Inter-related 
Knowledge Domains," in ESD.83: Research Seminar in Engineering Systems, Cambridge, USA, 31 
Oct 2000.  

[130] S. Chan, "Complex Adaptive Systems," in ESD.83 Research Seminar in Engineering Systems, 
Cambridge, USA, 31 October-6 November, 2001.  

[131] G. L. Donohue, "Air Transportation is a Complex Adaptive System: not an aircraft design," in 
AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, 
USA, 14-17 July, 2003.  

[132] D. A. DeLaurentis and S. Ayyalasomayajula, "Exploring the synergy between Industrial 
Ecology and System of Systems to understand complexity: a case study in air transportation," 
Journal of Industrial Ecology, vol. 13, no. 2, pp. 247-263, 2009.  

[133] M. Haghnevis and R. G. Askin, "A modeling framework for engineered complex adaptive 
systems," IEEE Systems Journal, vol. 6, no. 3, pp. 520-530, 2012.  

[134] T. Kotegawa, Analyzing the Evolutionary Mechanisms of the Air Transportation System-of-
Systems using Network Theory and Machine Learning Algorithms (Doctoral Dissertation), 
West Lafayette: ProQuest LLC Purdue University, 2012.  

[135] B. Roberts, T. Mazzuchi and S. Sarkani, "Engineered Resilience for Complex Systems as a 
Predictor for Cost Overruns," Systems Engineering, vol. 19, no. 2, pp. 111-131, 2016.  

[136] G. Pumpuni-Lenss, T. Blackburn and A. Garstenauer, "Resilience in Complex Systems: An 
Agent-Based Approach," Systems Engineering , vol. 20, no. 2, 2017.  



References   
 

156 
 

R 

[137] E. Ordoukhanian and A. M. Madni, "Model-Based Approach to Engineering Resilience in 
Multi-UAV Systems," Systems, vol. 7, no. 1, p. 11, 2019.  

[138] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, 
"Learning phrase representations using RNN encoder-decoder for statistical machine 
translation," in Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 
Qatar, 25–29 October, 2014.  

[139] A. Nanduri and L. Sherry, "Anomaly detection in aircraft data using Recurrent Neural 
Networks (RNN)," in 2016 Integrated Communications Navigation and Surveillance (ICNS), 
Herndon, USA, 19–21 April, 2016.  

[140] K. Gopalakrishnan and H. Balakrishnan, "A Comparative Analysis of Models for Predicting 
Delays in Air Traffic Networks," in 12th USA/Europe Air Traffic Management Research and 
Development Seminar (ATM2017), Seattle, USA, 26-30 June, 2017.  

[141] B. Yu, Z. Guo, S. Asian, H. Wang and G. Chen, "Flight delay prediction for commercial air 
transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation 
Review, vol. 125, pp. 203-221, 2019.  

[142] B. Thiagarajan, L. Srinivasan, A. V. Sharma, D. Sreekanthan and V. Vijayaraghavan, "A machine 
learning approach for prediction of on-time performance of flights," in IEEE/AIAA 36th Digital 
Avionics Systems Conference (DASC), St. Petersburg, USA, 17-21 September, 2017.  

[143] S. Manna, S. Biswas, R. Kundu, S. Rakshit, P. Gupta and S. Barman, "A statistical approach to 
predict flight delay using gradient boosted decision tree," in International Conference on 
Computational Intelligence in Data Science (ICCIDS). IEEE, Chennai, India., 2-3 June, 2017.  

[144] Y. Lin, J.-w. Zhang and H. Liu, "Deep learning based short-term air traffic flow prediction 
considering temporal–spatial correlation," Aerospace Science and Technology, vol. 93, pp. 105-113, 
2019.  

[145] A. Lichtenwald, Prediction of European ATM Network disruptions by Recurrent Neural 
Networks (Master Thesis), Hamburg: Technical University of Hamburg (TUHH), 2021.  

[146] T. Dozat, "Incorporating nesterov momentum into adam," in International Conference on Learning 
Representations (ICLR 2016 - Workshop Track), San Juan, Puerto Rico, 2-4 May, 2016.  

[147] EUROCONTROL, "NMIR (Network Manager Interactive Reporting)," [Online]. Available: 
https://www.eurocontrol.int/dashboard/network-manager-interactive-reporting-dashboard. 

[148] EUROCONTROL (Network Manager), "Presentation of NM 20.0," EUROCONTROL, Brussels, 
2016. 



References   

157 
 

R 

[149] EUROCONTROL, "SESAR Solution PJ09-1: Validation Report (VALR) for V2," European 
Commission: Community Research and Development Information Service (CORDIS), Brussels, 
2019. 

[150] US Dept of Commerce, National Oceanic and Atmospheric Administration, National Weather 
Service, "A Look Back at the March 5th, 2013 Snowstorm and Historical Perspective," Chicago, 
IL Weather Forecast Office, 2013. [Online]. Available: https://www.weather.gov/lot/2013mar05. 
[Accessed 05 August 2021]. 

[151] M. Schultz, S. Lorenz, R. Schmitz and L. Delgado, "Weather Impact on Airport Performance," 
Aerospace, vol. 5, no. 4, p. 109, 2018.  

[152] European Commission, "Volcano Grimsvötn: how is the European response different to the 
Eyjafjallajökull eruption last year? Frequently Asked Questions," 28 May 2011. [Online]. 
Available: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_11_346. [Accessed 04 
July 2021]. 

[153] EUROCONTROL (Network Management Directorate), "European Network Operations Plan 
2021," EUROCONTROL, Brussels, 2021. 

[154] ICAO, "AIRAC," International Civil Aviation Organization, [Online]. Available: 
https://www.icao.int/Safety/information-management/Pages/AIRACAdherence.aspx. [Accessed 
20 September 2020]. 

[155] E. Hollnagel, FRAM - The Functional Resonance Analysis Method: Modelling Complex Socio-
technical Systems, Farnham: Ashgate., 2012.  

[156] R. Woltjer and E. Hollnagel, "Modelling and evaluation of air traffic management automation 
using the functional resonance analysis method," in International Symposium of the Australian 
Aviation Psychology Association AAvPA, Sydney, Australia, 18 August, 2008.  

 

 

 

 

 

 

 

 

 

 



 

158 
 

A 

Annex A. Reference charts and lists 

A.1. IFPS Zone (IFPZ)  
IFPS Zone is the geographical zone in Europe that is used by Initial Flight Planning System 

(IFPS). The system is operated by ECTL (NM) and process and distributes flight plans [125]. 
IFPZ covers the same area as ICAO Europe region as provided in following table. ICAO codes 
in this table is same designation for ACCs which is a key feature of input vector in proposed 
learning models. 

Table A-1: IFPS message distribution (IFPS Zone)  [125] 

State Country 
Code 

IFPZ  FIR/UIR  ICAO 

Albania  LA Yes Tirana  LAAA 
Armenia UD Yes Yerevan UDDD 
Austria LO Yes Vienna LOVV 
Azerbaijan UB Yes Baku UBBA 
Belarus UM Copy Only Minsk UMMV 
Belgium EB Yes Brussels EBBU/EBUR 
Bosnia and Herzegovina LQ Yes Sarajevo LQSB 
Bulgaria LB Yes Sofia LBSR 
Croatia LD Yes Zagreb LDZO 
Cyprus LC Yes Nicosia LCCC 
Czech Republic LK Yes Prague LKAA 
Denmark EK Yes Copenhagen EKDK 
Estonia EE Yes Tallinn EETT 
Finland EF Yes Finland EFIN 
France LF Yes Paris 

Reims 
Brest 
Bordeaux 
Marseille 

LFFF 
LFEE 
LFRR 
LFBB 
LFMM 

Georgia UG Yes Tbilisi UGGG 
Germany ED Yes Bremen 

Langen 
Munich 
Rhein 
Hanover 

EDWW 
EDGG 
EDMM 
EDUU 
EDVV 

Greece LG Yes Athens LGGG 
Hungary LH Yes Budapest LHCC 
Ireland EI Yes Shannon 

SOTA 
EISN 
EISN 

Israel LL Yes Tel-Aviv LLLL 
Italy LI Yes Rome 

Brindisi 
Milan 

LIRR 
LIBB 
LIMM 

Latvia EV Yes Riga EVRR 
Lithuania EY Yes Vilnius EYVL 
Luxembourg EL Yes 

 
 
 
  

Brussels EBBU/EBUR 
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State Country 
Code 

IFPZ  FIR/UIR  ICAO 

North Macedonia LW Yes Skopje LWSS 
Malta LM Yes Malta LMMM 
Republic of Moldova LU Yes Chisinau LUUU 
Monaco (Marseille) LN Yes Marseille LFMM 
Morocco GM Yes Casablanca GMMM 
Netherlands EH Yes Amsterdam EHAA 
Norway EN Yes Norway  

Bodo Oceanic 
ENOR 
ENOB 

Poland EP Yes Warsaw EPWW 
Portugal LP Yes Lisbon  

Santa Maria 
LPPC 
LPPO 

Romania LR Yes Bucharest LRBB 
Rostov FIR (Russian Federation) URR Copy Only 

  

Kaliningrad FIR (Russian 
Federation) 

UMK Copy Only 
  

Slovak Republic LZ Yes Bratislava LZBB 
Slovenia LJ Yes Ljubljana LJLA 
Spain LE Yes Barcelona 

Madrid 
Canaries 

LECB 
LECM 
GCCC 

Sweden ES Yes Sweden ESAA 
Switzerland LS Yes Switzerland LSAS 
Turkey LT Yes Ankara 

Istanbul 
LTAA 
LTBB 

Ukraine UK Yes L'Viv 
Kyiv 
Dnipropetrovsk 
Odessa 
Simferopol 

UKLV 
UKBV 
UKDV 
UKOV 
UKFV 

United Kingdom EG Yes London 
Scottish 
Shanwick 

EGTT 
EGPX 
EGGX 

Serbia and Montenegro LY Yes Belgrade LYBA 

 

 

 

 

 

A.2. Regulation causes 
Regulation types are also referred to as regulation causes in related documents such as the 

ATFCM user manual [10]. Each regulation can be implemented based on a set of provided 
guidelines. The coding also provides details on regulation location that declares the phase of 
the delayed flight. In this study, these classes are only used for the learning models without 
considering the flight phase. 
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Table A-2: Description of different ATFCM Regulation types [10]  

Regulation 
Cause 

Code Regulation 
location a 

Guidelines 

Accident/incident A D, A Reduction of expected ATC capacity due to an aircraft accident 
/incident.  

ATC capacity C D, E, A En Route: Demand exceeds or complexity reduces declared or expected 
ATC capacity; Airport: Demand exceeds declared or expected ATC 
capacity. 

 
 

Aerodrome 
Services  

E D, A Reduced capacity due to the degradation or non-availability of 
support equipment at an airport e.g. Fire Service, De-icing / snow 
removal equipment or other ground handling equipment. 

 

Aerodrome 
capacity  

G D, A Reduction in declared or expected capacity due to the degradation or 
non-availability of infrastructure at an airport. e.g. Work in Progress, 
shortage of aircraft stands, etc. Or when demand exceeds expected 
aerodrome capacity. 

 

ATC industrial 
action 

I D, E, A Reduction in any capacity due to industrial action by ATC staff. 
 
 

Airspace 
management 

M D, E, A Reduction in declared or expected capacity following changes in 
airspace / route availability due to small scale military active.  

 
Industrial action 
NON-ATC 

N D, E A reduction in expected / planned capacity due to industrial action by 
non-ATC personnel.   

Other O D, E, A This should only be used in exceptional circumstances when no other 
category is sufficient.   

 
Special event P D, E, A Reduction in planned, declared or expected capacity or when demand 

exceeds the above capacities as a result of a major sporting, 
governmental or social event. It may also be used for ATM system 
upgrades and transitions. Large multinational military exercises may 
also use this reason. 

  

  

ATC routings R E Network solutions / scenarios used to balance demand and capacity. 
ATC staffing S D. E, A Unplanned staff shortage reducing expected capacity. 

  
 

ATC equipment T D, E, A Reduction of expected or declared capacity due to the non-availability 
or degradation of equipment used to provide an ATC service.   

  
Environmental 
issue  

V D, E, A Reduction in any capacity or when demand exceeds any capacity due 
to agreed local noise, runway usage or similar procedures. This 
category should only be used with prior agreement in the planning 
process. 

  
  

Weather W D, E, A Reduction in expected capacity due to any weather phenomena. This 
includes where weather impacts airport infrastructure capacity but 
where aerodrome services are operating as planned / expected. 

  
  

a Regulation Location code D: Departures, E: En-route and A: Arrivals 
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Annex B. Supplement of DCNN  

B.1. AIRAC cycles from 2015 to 2018 
Aeronautical Information Regulation And Control (AIRAC) cycles’ effective dates are 

obtained from the International Civil Aviation Organization (ICAO) website [154] and 
compiled as below: 

Table B-1.  Schedule of AIRAC effective dates, 2015-2018. 

2015 2016 2017 2018 
08 Jan. 07 Jan. 05 Jan. 04 Jan. 

05 Feb. 04 Feb. 02 Feb. 01 Feb. 

05 Mar. 03 Mar. 02 Mar. 01 Mar. 

02 Apr. 31 Mar. 30 Mar. 29 Mar. 

30 Apr. 28 Apr. 27 Apr. 26 Apr. 

28 May 26 May 25 May 24 May 

25 June 23 June 22 June 21 June 

23 July 21 July 20 July 19 July 

20 Aug. 18 Aug. 17 Aug. 16 Aug. 

17 Sept. 15 Sept. 14 Sept. 13 Sept. 

15 Oct. 13 Oct. 12 Oct. 11 Oct. 

12 Nov. 10 Nov. 09 Nov. 08 Nov. 

10 Dec. 08 Dec. 07 Dec. 06 Dec. 

B.2. Overfitted RF model  

Table B-2. Performance of applied RF to predict delay (max_depth = 50). 

Category Train Test 
Days MAPEa R2 MAEb Days MAPE R2 MAE 

Low 127 0.0 1.0 0 55 77.04 -4.16 8 100 
Nominal 261 0.0 1.0 0 111 27.82 0.22 11 208 

High 123 0.0 1.0 0 53 18.45 0.47 24 829 
Overall 511 0.0 1.0 0 219 37.91 0.85 13 724 

a in percentage, b minutes. 

Table B-3. Performance of applied RF to predict delayed traffic (max_depth = 50). 

Category Train Test 
Days MAPEa R2 MAEb Days MAPE R2 MAE 

Low 129 0.0 1.0 0 52 56.20 -2.02 349 
Nominal 256 0.0 1.0 0 113 17.84 0.66 437 

High 126 0.0 1.0 0 54 11.86  0.44 765 
Overall 511 0.0 1.0 0 219 25.47 0.91 497 

a in percentage, bflights. 
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B.3. Learning performance (delayed traffic) 

Table B-4. Performance of applied LR. 

Category Train Test 
Day

 
MAPE

 
R2 MAEb Days MAPE R2 MAE 

Low 129 47.98 -2.63 360 52 64.28 -2.07 370 
Nominal 256 21.06 0.59 503 113 22.00 0.46 569 

High 126 11.42 0.56 727 54 9.90  0.62 617 
Overall 511 25.48 0.91 522 219 29.05 0.9 533 

a in percentage, b flights. 

 

Table B-5. Performance of applied SVR. 

Category 
Train Test 

Day
 

MAPE
 

R2 MAEb Days MAPE R2 MAE 
Low 129 41.38 -1.86 308 52 54.79 -1.47 319 

Nominal 256 18.69 0.62 457 113 20.76 0.5 536 
High 126 12.82 0.37 835 54 11.10 0.52 697 

Overall 511 22.97 0.9 513 219 26.46 0.9 524 
a in percentage, b*flights. 

 

Table B-6. Performance of applied RF.  

Category Train Test 
Day MAPE R2 MAEb Days MAPE R2 MAE 

Low 129 0.0 1.0 0 52 55.95 -1.96 346 
Nominal 256 0.0 1.0 0 113 17.31 0.68 427 

High 126 0.0 1.0 0 54 11.64 0.46 749 
Overall 511 0.0 1.0 0 219 25.09 0.91 487 

a in percentage, bflights. 

 

Table B-7. Performance of applied NN.  

Category Train Test 
Day

 
MAPE

 
R2 MAEb Days MAPE R2 MAE 

Low 129 31.02 -0.8 229 52 47.95 -1.46 286 
Nominal 256 16.13 0.68 411 113 23.13 0.41 599 

High 126 11.12 0.56 696 54 9.75 0.55 608 
Overall 511 18.65 0.92 435 219 25.73 0.89 527 

a in percentage, bflights. 
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B.4. DCNN prediction performance 
 

 
             (a)                              (b) 

 

Figure A-1 Comparative scatter plots for prediction quality of DCNN in different years. (a) Delay, (b) delayed 
traffic. Model is more precise in predicting lower values. CNN validation: prediction errors in different AIRAC 
cycles. More regulations in 2018 (especially during summer season) provide better prediction quality regardless 
of the expected high values for both delay and delayed traffic. 
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Annex C. Developed tools 
In the course of thesis, two main tools have been coded for analysis of results and 

visualization of the methodology. Such tools are required because of the exploratory nature of 
the study that makes visual interfaces an asset in demonstrating the added values. MATLAB 
is used to code the ANMStat and Python to code NETRES. Each of these tools are presented 
in the following sections.    

 

C.1. ANMStat 
As the initial step to understand the regulations it is required to analyze the data from a 

statistical point of view. Using MATLAB, the ANM messages are studied from different 
aspects. ANM Stat is developed to facilitate the recognition of different characteristics of 
regulations, specifically with the details provided in ANM records.  As an intuitive tool, the 
objective is to generate multiple analytical plots. 

 

C.1.1. Purpose 
The tool is designed to parse captured data from the ANM list. It parses daily ANM lists 

from excel sheets and files into MATLAB (.mat) format, to start monthly analysis of the data. 
Regulations can be studied by 26 different plots to provide insight on any monthly and 
seasonal trends. Trends are observed by Survey-plots and analyzed by Net-vision plots 
(Figure C-1). The latter include both statistical predictions as well as geographical 
representation. The details of this extensive overview on all aspects of the ANM data is 
provided next.    
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Figure C-1 ANM Stat interface 

 

C.1.2. User interface 
 Data read & save: user selects the span of the data in years and month. Parsing 

of the data triggers the calculation of parameters needed to the other two sections 
of the tool. All of the calculated parameters are saved as a mat file at the selected 
directory.  

 Survey Plots:  once parsing is 100%, the tool is able to generate 6 types of 
descriptive plots based on the different aspects of the regulation data in ANM 
records with a daily precision. These plots include:  

o Dispersion of ANMs: gives a total overview of different ANM counts 
(Figure C-2), so that the load of regulations can be monitored. Range of 
regulation counts are presented by box-plots and outliers are marked 
(both for each month and for total parsed data). 
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Figure C-2 ANM Stat, Dispersion Plot 
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o FL Score: provides an overview that clarifies which flight levels are 
mostly blocked in which days of the input data. Four plots are generated 
that two are dedicated to calculated severity scores and two heatmaps 
show blocked flight levels for each day (e.g. Figure C-3) 
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Figure C-3 ANM Stat, Flight Level Heatmap 
 

 

o Regulation Type & Duration: provides four plots for “ATC Capacity, 
ATC Rerouting, Weather and Other” categories. Each plot shows both the 
duration and count of each type of regulation over days.  

o FMP & Regulation Score: measured scores for different FMPs are plotted. 
For instance, Figure C-4 shows number of regulations for five groups of 
FMPs. This allows monitoring of different FMPs based on their saturation 
level. More over this plot shows which groups of FMPs are comparable. 
Such a figure checks if there are extractable information at Functional 
Airspace Blocks (FAB) level. FABs are airspaces that are formed 
regardless of states boundaries.  
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 A-Class represents busiest FMPs:  
 EGTT is the Upper Flight Information Region (UIR) for UK 

and is managed by NATS, 
 EDGG is the busiest of three german FIRs (Langen FMP) 

and is managed by DFS; 
 B-Class includes five next busiest FMPs combined: LECB 

(Barcelona), LECM (Madrid), LFFF (Paris), LFRR (Brest) and 
EHAA (Amsterdam); 

 C-Class is a group of other 19 FMPs based on their activities 
 All other remaining FMPs in the ECAC area (54 FIRs and UIRs) 

 

Figure C-4 ANM Stat, FMP Scores 
 

o Time Span: generates plots to identify both outliers and standard ranges 
for regulation duration. Moreover, it enables the detection of days with 
maximum regulation duration and respective severity (standard 
deviation) at a network level (Figure C-5).  
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Figure C-5 ANM Stat, Time Span 
 

 NetVision: this panel of the tool (Figure C-6) is analyzing the data to provide 
distribution curves and is also providing a geographical map to identify spatial 
characteristics of blocked airspace.  

 

 
Figure C-6 ANM Stat, NetVision 

 

 

o Lag time: two sets of plots provide a network level insight based on 
activation notice, regulation duration, counts, and blockage time. These 
plots assist the visualization of network resiliency and enables the user to 
compare evolution of regulations in different time frames with a focus of 
comparing planned and implemented regulations. Such plots are also an 
asset in understanding the impact of different type of regulation types. 
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 LT button: four plots are provided to monitor the evolution of 
planned network situation in pre-tactical phase and any other cuts 
(tool allows to select different cuts of the day, e.g. -12 hrs). The 
Lead Time is the activation notice as the difference between 
regulation publish and start time (Figure C-7). Negative values 
indicate updated regulations. if the update extends a regulation, 
less adaptation time will impact airlines (resilience: time-to-
recover). Even if the update, relaxes a regulation it is still a cost of 
lost capacity which may be challenging to retrieve.  

 

 LID button: 3 plots are generated for stacked regulation activation 
notice, count of regulations and blockage duration. This option 
helps to realize which type of regulation is planned earlier and 
which ones cause longer blockage times and if there is a direct 
ratio between count of regulations and blockage time per 
regulation type (Figure C-8). Furthermore, such outputs provide 
multi-dimensional means to spot network disrupted dates and to 
better form statements on network behavior on different 
regulation types. For instance, routing regulations tend to be 
published earlier than other types of regulations in contrast to 
weather induced regulations with minimum anticipation rate.  
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o QQ Plot: provides Quantile-Quantile plots that is a statistical method to 
compare fitted probability distributions against normal distributions. 
User will be able to intuitively analyze estimated distributions for 
different regulation types and presume if a specific regulation type is 
more likely to have a Chi-squared distribution or a Weibull, Gamma or 
Beta (Figure C-9). Other statistics such as Level of dispersion and domain 
are aids to pick desired control thresholds.  

 
 

Figure C-9 ANM Stat, QQ plot [61] 
o Regulation Distributions: a kernel estimation of probability distributions 

is provided by these plots for different type of regulations (both 
probability and cumulative distribution functions, i.e. PDF and CDF). 
User is able to set different threshold for each plot (default value is 99.7%). 
All regulation types are able to be plot either separately or combined (e.g. 
Figure C-10, inset is the CDF with same axes): Weather (W), Industrial 
action (e.g. strike), ATC Capacity (C), Rerouting (R), Aerodrome Capacity 
(G), Staffing (S) and the rest of regulations are summed up in others 
category (X). 

Pr
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 Number of regulations per day 

  
Figure C-10 ANM Stat, Regulation Distribution (dimensions of inset are same as base plot), [61] 
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o Geo Span: plots the input data on ECAC map to identifies airspaces with 
different color-codes with regard to regulation counts (Figure C-11). This 
enables identifying bottle-necks for different regulation types. 
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C.1.3. Added value 
As described in previous section, ANM Stat provides a much deeper understanding of 

regulations. But more importantly it estimates the probability distributions and detects 
outliers. Also, in terms of resilience, it provides the network visibility in post operational 
phase. It allows to cluster different FMPs into comparable groups. Besides, on the post 
operational analysis it avoids extraction of risky assumptions. For instance, in Figure C-12 it is 
evident that planned regulations do not necessary lead to less blocked airspace.   
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C.2. NETRES 
In the course of the SESAR PJ09 project, the essential role of demonstrative tools became 

more evident. The ATM experts in the project considered resilience as a safety topic (safety-I). 
However, this thesis is set as an exploratory research on Safety-II resiliency that is more 
focused on ATM network performance. The design of NETRES is proposed as an intuitive tool 
(Figure C-13) to demonstrate relatively new exertion of network resiliency.  The idea is 
appreciated by experts in the SESAR project and NETRES proved its effective role in data 
visualization. Also, it offers a unique advantage in describing the benefits of the research 
objectives and the added value to ATM stakeholders, specially Network Manager role.    

C.2.1. Purpose 
Since the design of the NETRES foresaw some requirements, it is coded in python. These 

requirements are; built-in availability for further development, ability to connect to non-
academic tools (with respect to close collaboration in SESAR) and compatibility in use of 
machine learning platforms.     

Figure C-13 NETRES, Demo screenshot 
 

The tool is designed to provide a tactical network situational awareness by its interface. 
Based on the regulations, it is able to measure some performance indicators and provide both 
temporal and special views on ECAC area. The stand-alone tool shows the network state and 
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allows to intuitively monitor the evolution of network disruptions during tactical phase. It is 
designed as a follow-up from ANM Stat tool that brought the network evolution into focus 
(Figure C-12). 

C.2.2. User interface 
 User input, NMIR:  user selects the post-operational data from the NMIR 

database. This set of data is used to derive thresholds for network state definition 
and for calculation of resilience indicators.  The selected datasets are parsed as 
reference for impact evaluation of tactical regulations.  

 User input, ANM:  allows the evaluation of different ANM lists from tactical 
phase. Once loaded, all of the values and figures in the tool is updated 
accordingly.  

 Intuitive display, ECAC Network state: this part of the interface provides two 
comparative maps for pre-tactical (Figure C-14 right) and tactical phase (Figure 
C-14 left snapshot for 25.03.2019 at 20:33). Boxed numbers on the plots show the 
number of times that a regulation has been updated. Depending on the loaded 
list of ANMs and ACC sectorization maps, each regulated sector is colored. 
Regulation color-codes represent the relative reaction time (larger number 
represents a worse case):  

ୈ୳୰ୟ୲୧୭୬ 

ି
                                                                     (20) 

LagTime (WEF-PUB) is the time window from ANM publishing time until start of 
regulation (The bigger the better). 



Annex C. Developed tools 

181 
 

C 

 
Figure C-14 NETRES, ECAC network state visualization 

 

 Intuitive display, network evolution: similar to heatmaps, and with respect to 
daytime, bar charts show the evolution of regulations from planned regulations 
in pre-tactical phase to loaded tactical phase. Each bar represents number of 
different active regulation types to better anticipate and observe disruption peak 
times (Figure C-15). For instance, the tool shows time of expansion/resolution of 
a weather situation and ATC strikes (marked as ATC Ind Action). 

 
Figure C-15 NETRES, regulation evolution bar chart 

 

 Quantitative display, NetState indicators: These indicators are expressed by 
mean and standard deviation values. Each one is calculated per FMP and for 
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different type of regulations. Four indicators are calculated for both duration and 
lag time of regulations. For instance, the formula for mean duration is:  

𝜇 =
ቄ∑ ∑ ቀ

ೃಷି௫

ೃಷିೃಷ
ቁோ்௬ிெ ቅ

𝑁
൘  ,                                                                 (21) 

 U: upper bound of calculated threshold per FMP for each regulation type, 
 L: lower bound of calculated threshold per FMP for each regulation type, 
x: current mean for each FMP per regulation type, 
N: number of regulation types for all active FMPs. 
U and L are derived from post-ops (NMIR), x and N are derived from tactical updates 
(ANM list), and each FMP may simultaneously have multiple regulations with same 
regulation type. 
 
 

 
 

 
 

Figure C-16 NETRES, network state indicators 
 

 Quantitative display, resilience indicators: these indicators (also mentioned 
partly in Table 3-2) are measuring the network disruption (Figure C-13) and 
expressed in two classes of magnitude and time-to-recover in Table C-1.  

 

Table C-1 Resilience indicators that measure disruption 

Name  Code Formula 

Magnitude (domain) MAGD 
∑ ோ௨௧ௗ ்∗∑ ோ ௨௧

∑ ௧௩௧ ே௧
.        (22) 

Magnitude (impact) MAGI 
∑  ୈୣ୪ୟ୷

∑  ୰ୣ୳୪ୟ୲ୣୢ ୰ୟ୧ୡ
∗

ஜౝ ీ౫౨౪

ஜఽౙ౪౬౪ ొ౪ౙ
. (23) 

Time-to-recover 
(imposed) 

T2RP 
∑ ோ௨௧ௗ ்

∑ ௧௩௧ ே௧
 .                               (24) 

Time-to-recover 
(applied) 

T2RA 

 
∑ ெ ோ௨௧ௗ ்

∑ ௧௩௧ ே௧
 .                   (25) 
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 Intuitive Display, network state: derived from the values of cumulative Netstate 
indicators, eight cases of network situations are classified into three major states: 
nominal, critical and crisis. Each of eight cases (four nominals, three critical and 
one crisis) is unique with respect to reviving strategy and its interpretation (Table 
C-2).  

Table C-2 Different network states 

Case State Description 
N1 Nominal Set of prolonged regulations are planned but corrective actions seen on 

some ACCs (Regional issue). 
(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝑙𝑜𝑤,   𝜇்: 𝐻𝑖𝑔ℎ,   𝜎்: 𝐻𝑖𝑔ℎ) ∗  

N2 Nominal Set of prolonged Regulations are planned (risk of secondary impacts). 
(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝑙𝑜𝑤,   𝜇்: 𝐻𝑖𝑔ℎ,   𝜎்: 𝑙𝑜𝑤) 

N3 Nominal Major performance loss is expected in pre-tactical phase (e.g. standby for 
severe weather or other predictable traffic flow management issue. 

(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝐻𝑖𝑔ℎ,   𝜇்: 𝐻𝑖𝑔ℎ,   𝜎்: 𝑙𝑜𝑤) 

N4 Nominal Major performance loss is expected in pre-tactical phase (e.g. multiple local 
bottlenecks having flow management issues). 

(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝐻𝑖𝑔ℎ,   𝜇்: 𝐻𝑖𝑔ℎ,   𝜎்: 𝐻𝑖𝑔ℎ) 

C1 Critical Set of prolonged Regulations may lead to significant loss of performance.  

(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝑙𝑜𝑤,   𝜇்: 𝑙𝑜𝑤,   𝜎்: 𝐻𝑖𝑔ℎ) 

C2 Critical Performance loss can be significant based on the dispersion of regulation 
across the network. 

(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝐻𝑖𝑔ℎ,   𝜇்: 𝑙𝑜𝑤,   𝜎்: 𝐻𝑖𝑔ℎ) 

C3 Critical Parts of the network suffer from significant performance loss (e.g. multiple 
local bottlenecks). 

(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝐻𝑖𝑔ℎ,   𝜇்: 𝑙𝑜𝑤,   𝜎்: 𝑙𝑜𝑤) 

CR Crisis Set of prolonged regulations limit network operations in upcoming hours. 
(𝜇: 𝐻𝑖𝑔ℎ,   𝜎: 𝑙𝑜𝑤,   𝜇்: 𝑙𝑜𝑤,   𝜎்: 𝑙𝑜𝑤) 

∗ 𝜇: mean disruption time,   𝜎: standard deviation of blockage times for ACCs,  
𝜇்: mean adaptation time,   𝜎்: standard deviation of adaptation times for ACCs.    
 

C.2.3. Added value 
The design and demonstration of NETRES is recorded as an ATM operational and technical 

content development produced by SESAR 2020 Project. Figure C-17, provides the European 
Air Traffic Management Architecture (EATMA) model for network resilience [11] based on 
NETRES tool. Moreover, the benefits of data analytics and use of machine learning techniques 
in this tool draw the attention of NMOC to invest more on ML based solutions for managing 
network performance.    
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Figure C-17 SESAR EATMA model: network resilience [11]  
 

More importantly, this design is allowing the realization of tradeoff analysis between 
different ANM lists, i.e. different corrective actions in form of capacity regulations. Also, as 
this study serves as an exploratory research, NETRES is making the conceptualization of 
network resiliency more transparent and provides the chance to build road-maps for such a 
concept. 

On a technical level, the logs of the tool can be further analyzed in term of calculated 
indicators and network behavior in different network situations. Every time a new list is 
selected by the user the tool records a csv log file that include:  

 Date and time; corresponding to the evaluated ANM list as input,  

 Net_D_Mean, Net_D_Std, Net_L_Mean, and Net_L_Std; calculated values for 
NetState indicators according to evaluated ANM list,  

 T2RP, T2RA, MAGD and MAGI; resilience indicators of magnitude and time to 
recover,  

 MPR and ATFMD; predicted most penalized regulated flights and ATFM delay 
at the end of the day which ANM list is from,   
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 State and Comment; state records the assigned network state and the comment 
field records the reference month of NMIR post-operational data that are loaded 
in the tool to update all the values.    
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