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Air Traffic Management (ATM) ist ein komplexes System, das durch verschiedene Aspekte wie
mehrschichtige Management-Subsysteme, verschiedene Geschaftsmodelle far
Fluggesellschaften und ein dynamisches Umfeld herausgefordert wird. Diese Aspekte setzen
den geplanten Betrieb taglichen Stérungen aus, die zu verspateten Passagieren flihren.
Stoérungen einerseits und Systemiberlastung andererseits deuten darauf hin, dass ATM resilient
werden muss. Durch einen datengestitzten Ansatz arbeitet diese Dissertation an der
Konzeptualisierung der Resilienz des europaischen ATM-Netzes. Da die Systemresilienz mit
dem Situationsbewusstsein korreliert, schlagt diese Studie eine Netzwerkzustandsdefinition vor
und untersucht dann Lernmethoden, um bessere Vorhersagen zu extrahieren (Verspatung und
verspatete Fluge).
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Air Traffic Management (ATM) is a complex system challenged by different aspects such as
layered management subsystems, various business models for airlines, and dynamic
environment. These aspects expose planned operations to daily disruptions leading to delayed
passengers. Disruptions on one hand and system saturation on the other hand, suggest that ATM
needs to become more resilient. Through a data-driven approach, this thesis works on
conceptualizing the European ATM network resilience. Since system resiliency is correlated with
situational awareness, this study proposes a network state definition and then explores learning
methods to extract better predictions (delay and delayed flights).
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Summary

Air transportation is managed to accommodate more flights every day with solutions such
as new business models for airlines, but at cost of rising congestion. Solutions like low-cost
carriers stimulated the traffic demand to a higher growth rate. Such consequences exacerbate
the gap between demand and airspace capacity despite planning procedures. Congestion adds
to the complexity of air traffic management (ATM), that challenges planning phases of air
traffic flow and capacity management (ATFCM). Factors such as dynamic capacities and built-
in flexibilities expose the ATM system to emergent Demand-Capacity Balancing (DCB) issues.
In an exploratory attempt this study considers resilience as a systematic solution to cope with
emergent dynamics. A resilient system basically accepts the dynamic environment and tries

to manage the raised complexities with performance variability.

Resilience is intertwined with situational awareness. Thus, after conceptually modeling
the European ATM network (EATMN) resilience, a proposed methodology determines the
network state (based on large scale disruptions) and then the thesis delivers a prediction
method to assess reviving solutions against emergent imbalances. Most of emergent
disruptions (DCB issues) are currently managed by simulation-based assessments that require
high computational power and access to different data bases. In comparison, this study is a
data driven approach with statistical evaluations and supervised learning algorithms focused

on disruptions rather than constant monitoring of demand (traffic) and capacity.

Throughout the methodology chapter, network state is defined based on statistical
inferences and predictability of disruptions is improved by supervised learning. More
specifically, situational awareness is improved by daily network predictions from a deep
Convolutional Neural Network (CNN). The model exploits characteristics of disruptions such
as their spatio-temporal dimension. Furthermore. the resilient path to revive the network is an
accumulation of individual corrective actions (i.e. capacity regulations). Therefore, a Recurrent
Neural Network (RNN) is proposed to predicts the impact (delay) of corrective actions,

because at a higher granularity temporal dimension of data is more informative.

The conceptual achievements of the thesis support the operational need to declare solid
cases of network anomaly based on performance indicators while authorities such as the
European Aviation Crisis Coordination Cell (EACCC) rely on safety metrics. This paradigm
shift is on one hand evaluated by 2018 use cases and received expert feedbacks from an EU-
SESAR project. On the other hand, RNN results are evaluated against results from the deep
CNN model. In fact, the post-operational dataset (regulations from 2015 to 2018) show that a
network-wide prediction that is accumulated from RNN predictions has an accuracy of 97
percent for cumulative daily delays. This actively demonstrates that even if such a high
precision cannot be realized throughout operations, still the proposed approach not only
delivers an improved situational awareness but also enables the network manager to foresee

the network impact of submitted list of corrective regulations from local authorities.
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GLOSSARY

A-CDM
ACC

AD
ADP
ADR
ADS-B
AFP
AIM
AIRAC
AIS
ANM
ANS

ANSP
AO
APP
AR
ARTCC
ASM
ASMA

ASP
ASPM

ATC

ATCO
ATCSCC

ATFCM

ATFM

ATFM delay
(CFMU)

Airport Collaborative Decision Making

Area Control Centre. The part of ATC that is concerned with en-route traffic coming
from or going to adjacent centers or APP. It is a unit established to provide air traffic
control service to controlled flights in control areas under its jurisdiction.

Aerodrome

ATFM Daily Plan

Airport Departure Rate

Automatic Dependent Surveillance-Broadcast

Airspace Flow Program (US)

ATFCM Information Message (Europe)

Aeronautical Information, Regulation and Control

Aeronautical Information Service

ATFCM Notification Message (Europe)

Air Navigation Service. A generic term describing the totality of services provided in
order to ensure the safety, regularity and efficiency of air navigation and the
appropriate functioning of the air navigation system.

Air Navigation Services Provider

Aircraft Operator also referred as AU

Approach Control Unit

Alternative routing scenario

Air Route Traffic Control Center, the equivalent of an ACC in Europe.

Airspace Management

Arrival Sequencing and Metering Area. The volume around an aerodrome taken as a
reference for measuring the efficiency in handling the arrival flow. Typically, it is a
cylinder of 40 NM radius.

Arrival Spacing (US)

Similar to European NMIR, FAA Aviation System Performance Metrics is an online
access system (https://aspm.faa.gov) that provides data on flights to and from the
ASPM airports and all flights by ASPM carriers, including flights by those carriers to
international and domestic non-ASPM airports. All IFR and some VFR flights are
included.

Air Traffic Control. A service operated by the appropriate authority to promote the
safe, orderly and expeditious flow of air traffic.

Air Traffic Control Officer/Air Traffic Controller
Air Traffic Control System Command Centre (US) is a facility dedicated to balancing
the air traffic demand with system capacity (similar to DCB operations in Europe).

Air Traffic Flow and Capacity Management, extends ATFM to include the
optimization of traffic patterns and capacity management. Through managing the
balance of capacity and demand, the aim of ATFCM is to enable flight punctuality and
efficiency, according to the available resources with the emphasis on optimizing the
network capacity through the collaborative decision-making processes.

Air Traffic Flow Management, is established to support ATC in ensuring an optimum
flow of traffic to, from, through or within defined areas during times when demand
exceeds, or is expected to exceed, the available capacity of the ATC system, including
relevant aerodromes. In contrast to ATFCM, ATFM considers capacity as an input
constraint.

The duration between the latest requested (by AO) take-off time and the take-off slot
given by the CFMU. More specifically it is the difference between Calculated Take Off
Time and Estimated Take Off Time (CTOT-ETOT).
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ATFM Regulation

ATM

ATO

ATS

AU
Bad weather

CAA
CAS
CASA

CBA

CCF

CCSD
CDF
CDM
CDR
CFMU
CNN
CODA
CONUS
CTOP
CTOT
DCB
DCNN
DDR2
DOF

DRR
DSNA
DSP
DTW
EATMN
EC
ECAC

When traffic demand is anticipated to exceed the declared capacity in en-route control
centers or at the departure/arrival airports, ATC units may call for an “ATFM
regulations”. It is a requested time window with reduced entry rates for a reference
airspace.

Air Traffic Management. A system consisting of a ground part and an airborne part,
both of which are needed to ensure the safe and efficient movement of aircraft during
all phases of operation. ATM is comprised of functionalities such as of Air Traffic
Services (ATS), Airspace Management (ASM) and Air Traffic Flow Management
(ATFM).

Air Traffic Organization (US), is the operational arm of the FAA (similar to
functionality of Network Manager in EUROCONTROL).

Air Traffic Service. A generic term meaning variously, flight information service,
alerting service, air traffic advisory service and air traffic control service.

Airspace User also referred as Aircraft operator (AO).

For the purpose of this thesis, “bad weather” is defined as any adverse weather
condition (e.g. strong wind, low visibility, snow) which causes a significant drop in
the available airport capacity.

Civil Aviation Authority

Complex Adaptive Systems

Computer Assisted Slot Allocation (CASA) system is a part of the Enhanced Tactical
Flow Management System (ETFMS) which provides automatic message exchange in
the form of Slot Allocation Messages and other Air Traffic Flow and Capacity
Management (ATFCM) messages. CASA is triggered by activating a regulation.

Cross-Border Area, is an airspace restriction or reservation established over
international borders for specific operational requirements.

Combined Control Facility (US): An air traffic control facility that provides approach
control services for one or more airports as well as en-route air traffic control (center
control) for a large area of airspace. Some may provide tower services along with
approach control and en-route services. CCF also includes Combined Center Radar
Approach (CERAP) facilities.

Collaborative Constraint Situation Display (US)

Cumulative Distribution Function

Collaborative Decision Making

Coded Departure Route (US)

Central Flow Management Unit established in 1995 (See NMOC)

Convolutional Neural Network

EUROCONTROL Central Office for Delay Analysis

Continental United States, see US CONUS

Collaborative Trajectory Options Program (US)

Calculated take-off Time

Demand Capacity Balancing

Deep Convolutional Neural Network, or Deep CNN

Demand Data Repository

Date Of Flight, A date of flight shall be included in all messages (esp.in item 18 of
submitted flight plan) where the estimated off-blocks time is more than 24 hours in
advance, but not more than 120 hours (5 days) in advance the time at that message is
processed by the IFPS.

Disaster Risk Reduction

Direction des Services de la Navigation Aerienne, DSNA is the ANSP of France.
Departure Spacing (US)

Departure Tolerance Window

European ATM Network

European Commission

European Civil Aviation Conference
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EDCT

EEC
EOBT

ENAIRE
ENAV
ETA
ETFMS

EU

EUROCONTROL

EUROCONTROL
Member States
(2023)

FAA
FAA-ATO
FAB

FCA
FCFS
FDP
FEA
FEI
FIR

FL

FL

FMP

Estimate Departure Clearance Time. EDCT is a long-term Ground Delay Program
(GDP), in which the Command Centre (ATCSCC) selects certain flights heading to a
capacity limited destination airport and assigns an EDCT to each flight, with a 15-
minute time window.

EUROCONTROL Experimental Centre in Brétigny-sur-Orge, France
Estimated Off Block Time, the estimated time at which the flight starts to be pushed
back from the gate and start to taxi.

ENAIRE is the air navigation and aeronautical information service provider in Spain.
ENAV SPA, is the Italian ANSP with four Area Control Centers (ACC).

Estimated Time of Arrival

Enhanced Tactical Flow Management System (Europe) provides enhanced tactical
data to all operational stakeholders, regardless of national boundaries, language, or
equipment. ETFMS facilitates improvements in flight management from the pre-
planning stage to the arrival of the flight. It maximizes the updating of flight-related
data and thus improves the real picture of a given flight.

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxemburg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden and United Kingdom. All these 28 States are also Members of the
ECAC.

The European Organization for the Safety of Air Navigation. It comprises Member
States and the Agency.

Since 1963: Belgium, France, Germany, Luxembourg, Netherlands, United Kingdom;
Ireland (1965), Portugal (1986), Greece (1988), Malta (1989), Turkey (1989), Cyprus
(1991), Albania, Armenia, Austria, Bosnia and Herzegovina, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, Georgia, Greece, Hungary,
Ireland, Italy, Latvia, Lithuania, Malta, Moldova, Monaco, Montenegro, Norway,
Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
The former Yugoslav Republic of Macedonia and Ukraine. Comprehensive
agreement states: Israel (2016), Morroco (2016).

US Federal Aviation Administration

US Federal Aviation Administration - Air Traffic Organization

Functional Airspace Block (Europe) means an airspace block based on operational
requirements and established regardless of state boundaries, where the provision of
air navigation services and related functions are performance-driven.

Flow Constrained Area (US)

First Come First Serve principle

Flight data processing

Flow Evaluation Area (US)

Flight Efficiency Initiative

Flight Information Region. An airspace of defined dimensions within which flight
information service and alerting service are provided.

Flight Level; the altitude above sea level in 100-foot units measured according to a
standard atmosphere. Basically, a flight level is an indication of pressure, not of
altitude. Flight levels are used mainly above the transition level (e.g. FL135) and to
indicate altitude below the transition level, feet are used (e.g. 4000 ft).

Level capping scenario; this means that flights that meet certain conditions would be
subject to a restriction, e.g. all flights departing from ZZZZ must be at FLXXX or below
over point ENTRY. This is the most commonly used STAM.

Flow Management Position (also referred to as LTM: Local Traffic Manager). The
FMP’s role is, in partnership with the NM, to act in such a manner so as to provide the
most effective ATFCM service to ATC and AOs. Each FMP area of responsibility is
normally limited to the area for which the parent ACC is responsible including the
area(s) of responsibility of associated Air Traffic Services (ATS) units as defined in the
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FMS

FOQA

FRA

FTS

GDP

General Aviation

GS
IATA
ICAO
ICR
IFR

KPI

LR
LSTM
MAE
MAPE
ML

MSE
NAS
NATS
NextGen

NLP

NM
NMIR
NMOC

NN

NOP
NRP
OBT

OD
OPSNET

Percentile

PRC
PRU

Punctuality
RAD

RE

ReLU

RF

RFR

NM Agreement. However, depending on the internal organization within a State,
some FMPs may cover the area of responsibility of several ACCs, either for all ATFCM
phases or only for part of them. The size of individual FMPs will vary according to the
demands and complexities of the area served. [1]

Flight Management System

Flight Operational Quality Assurance data

Free Route Airspace

Fast Time Simulation (FTS) is a technique to estimate the capacity of each ATC sector.
Ground Delay Program (US)

All civil aviation operations other than scheduled air services and non-scheduled air
transport operations.

Ground Stop (US)

International Air Transport Association (www.iata.org)

International Civil Aviation Organization

Integrated Collaborative Rerouting (US)

Instrument Flight Rules; one of the two types of regulations that apply to flights (IFR
and VFR). Visual Flight Rules, is mostly for general aviation and small sized aircraft
such as Cessna Skyhawk. IFR flights include commercial flights and Cargo flights.

Key Performance Indicator

Linear Regression

Long Short-Term Memory

Mean Absolute Error

Mean Absolute Percentage Error

Machine Learning

Mean squared error

National Airspace System

National Air Traffic Control Services and Civil Aviation Authority of United Kingdom
The Next Generation Air Transportation System (NextGen) is the name given to a new
NAS due for implementation across the United States in stages between 2012 and 2025.
Natural language processing, is a field of research that studies the capabilities of
learning algorithms to enable a computer to "understand" the contents of documents.

Network Manager (EUROCONTROL) or Nautical Mile (1.852 km)

The Network Manager Interactive Reporting

EUROCONTROL’s Network Management Operations Centre located in Brussels
(formerly CFMU).

Neural Network

Network Operations Plan or Network Operations Portal

North American Route Program (US & Canada)

Off-Block Time is the time defined in the flight plan at which the flight leaves its
parking position with a push back.

Origin Destination, also referred as city pairs

The Operations Network is the official source of NAS air traffic operations and delay
data. The data is used to analyze the performance of the FAA's air traffic control
facilities.

A percentile is the value of a variable below which a certain percent of observations
fall. For example, the 80t percentile is the value below which 80 percent of the
observations may be found.

Performance Review Commission

Performance Review Unit (Europe) which is in charge of performance review report
(PRR).

On-time performance with respect to published departure and arrival times.

Route availability document

Resilience Engineering

Rectified Linear Unit

Random Forest

Random Forest Regression
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RL

RMSE

RNN

RR

R2

RTS

Separation minima

SESAR

SGD

SNN

Slot (ATFM)
STAM
STATFOR

STD

STW

Summer season

SVM
SVR
SWAP
Taxi-in
Taxi-out
Thales

TEMS
TMA

TMI

TOS

TSA

TSD

TV or TFV

UAV

UIR

us

US CONUS

VFR

Reinforcement learning & Reference Location

Root Mean Squared Error

Recurrent Neural Network

Rerouting scenario (Europe) & Required Reroutes TMI (US)

R squared; coefficient of determination

Real Time Simulation is a method of improving the ATC capacity estimation.

The minimum required distance between aircraft. Vertically usually 1,000 ft below
flight level 290, 2,000 ft. above flight level 290. Horizontally, depending on the radar,
3 NM or more. In the absence of radar, horizontal separation is achieved through time
separation (e.g. 15 minutes between passing a certain navigation point).

Single European Sky ATM Research (SESAR) project was set up in 2004 as the
technological pillar of the Single European Sky initiative. SESAR is founded by the
European Union and EUROCONTROL.

Stochastic Gradient Descent

Sequential Neural Network

A take-off time window assigned to an IFR flight for ATFM purposes

Short Term ATFCM Measure

Statistics & Forecasts Service

Scheduled Time of Departure

Slot Tolerance Window

IATA Summer schedule - begins on the last Sunday of March and ends on the last
Saturday of October.

Support Vector Machines

Support Vector Regression

Severe Weather Avoidance Plan (US)

The time from touch-down to arrival block time.

The time from off-block to take-off, including eventual holding before take-off.
Thales Group is a French multinational company that designs and builds electrical
systems and provides services for the different industrial sections including aviation.

Traffic Flow Management System (US)

Terminal Maneuvering Area

Traffic Management Initiative (US)

Trajectory Option Set (US)

Temporary Segregated Area

Traffic Situation Display (US)

Traffic Volume (Europe) A computer code used to identify the number of flights over
an airspace, point, aerodrome or set of aerodromes in order that they can be monitored
or regulated within the tactical/pre-tactical ATFCM.

Unmanned Aerial Vehicle

Upper Information Region

United States of America

The 48 contiguous States located on the North American continent south of the border
with Canada, plus the District of Columbia, excluding Alaska, Hawaii and oceanic
areas

Visual Flight Rules
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1. Introduction

Air transportation is constantly changing by adopting new technologies and hosting new
business models. In general, the demand for aviation services is increasing, and its persistent
growth is predicted by long-term forecasts (e.g. from EUROCONTROL [2] in Figure 1-1).
Although the actual data deviate from prediction, yet in normal environment demand is
growing at different rates. These predictions include factors such as economic growth, fuel
prices, load factors, high-speed rail network development and airline schedules' in three

scenarios (global growth, regulation & growth, fragmenting world).
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b) actual and forecasts for 2008-2025 (11 million IFR flights in 2018; i.e. +3.8% compared to 2017)
Figure 1-1 Growth of European IFR flights, [2]

The pessimistic scenario of fragmenting world addresses major safety issues such as
volcanic eruption in 2010 and COVID-19 pandemic. But COVID aftermath requires more
studies (as in [3] ) since fragmented world is no more considered as a pessimistic scenario with
regard to realities such as changed mentality in business models (e.g. digitalization and home-
office). Nevertheless, the risk of eventually facing a saturated Air Traffic Management (ATM)

1 The forecast ignores Emissions Trading Scheme (ETS) and Carbon Offsetting & Reduction Scheme
for International Aviation (CORSIA). DLR’s institute of air transport is studying the impact of

emissions in different aspects which are relevant to such predictions.
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1. Introduction

network is inevitable even in case of a pandemic, in which both traffic demand and airspace
capacity will be degraded simultaneously. In fact, during COVID-crisis, staff management at
Area Control Centers (ACCs) has been proved to limit capacity because staff availability for
different roles and working positions (such as executive and planner controllers) at any control

center is a key factor in airspace capacity.

Saturation risk can also be tracked in industrial forecasts such as Global Market Forecast
(GMF) from Airbus [4]. Despite having less relevance to ATM topics, industrial forecasts
provide a picture of fleet expansion. For instance, in Figure 1-2, Airbus predicts to deliver
more than 39 thousand new aircrafts in next twenty years. In the same time window, Boeing
also forecasts [5] to deliver almost 25 thousand new airplanes. A total of added 64 thousand

airliners will push ATM services to reach a much higher level of efficiency.

Number of aircraft

50,000 47,680

45,000
40,000

35,000 Grow

30,000

25,000 New deliveries

20,000

15,000 (L¥E(N Replace

10,000

5,000

0

Beginning 2019 2038 New Deliveries
Figure 1-2 Demand for new Airbus aircraft delivery by 2038, [4]

Similarly, ICAO (International Civil Aviation Organization) predicts that global revenue in
aviation will continue to grow annually at 4.1% rate (Figure 1-3) and this forecasted increase

is accompanied by a 3.9% increase rate for freight traffic from 2015 to 2035.

Although every long-term prediction serves a specific objective but in general there are
some factors that are missing such as Technology Readiness Level (TRL) or saturation limit.
Yet, hints of such aspects can be spotted in annual reports rather than predictions. For instance,
EUROCONTROL [6] reported some effects of congestion in 2018. It was observed that in top
30 busiest European airports, departure management was a challenge that led to a general
increase of the additional taxi-out times and ATC pre-departure delays. What intensifies this
is that such a degradation has been observed despite of solutions like Airport Collaborative
Decision Making (A-CDM) concept that supports Air Traffic Flow and Capacity Management
(ATFCM) to reduce delays, improve predictability and optimize the utilization of resources

[7].
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Figure 1-3 World Total revenue in aviation: history and forecasts, [8]. “*CAGR: Compound Annual Growth Rate

Upgrading industrial solutions are less likely to provide a total solution for congestion. This
claim is reinforced by Performance Review Report [6], that captured the highest inefficiencies
in 2018 for flights arriving at airport with modern solutions such as Frankfurt (FRA), Paris
Charles-de-Gaulle (CDG), London (LHR) and Paris-Orly (ORY).

Such observations remind that the rising pattern of demand in aviation cannot be efficiently
accommodated by relying only on different industrial solutions for different stakeholders. But
a systematic approach is needed to address efficiency in a saturated environment. This thesis
is an endeavor to explore a new perspective (i.e. resilience) to pave the way in resolving the
saturation problem. The methodology is based on a data driven approach and learning
models. The thesis claims that resilience is a sound choice with regard to complexity of
European ATM network. This chapter elaborates more on this claim in four sections: firstly,
statistics and figures are provided to review the dimension of increasing demand that leads to
growing delays; secondly, the major ATM procedures against delays are discussed to orient
the thesis approach and discuss obstacles and limitations. Next, the research question is
formulated with regard to current European research program, ATM resiliency and realization

of ATM as a system. This chapter is then concluded by providing the study outline.

1.1. Motivation
As mentioned the emerging problems of reaching the saturation level at ATM add to the
importance of efficiency. COVID experience implied that congestion is not necessarily a result
of excessive demand but also capacity shortages (e.g. ATC staffing issues due to infected
controllers) may still cause the same challenges that lead to longer delays. This section shortly
addresses the general growth of demand and delay prior to enumerating current traffic flow

management procedures in the following section.
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1. Introduction

1.1.1 Growing demand

Demand figures are showing an increasing trend in most congested airspaces in United
States and Europe. Such similarities are more evident in comparative reports that have been
published by a mutual effort from FAA and EUROCONTROL since 2009.

Comparative figures [1, 9] do imply that Europe has a bigger increase in its traffic demand.
Figure 1-4 takes the year 2000 as the baseline and shows the detrimental impact of 2008
economic crisis on both traffic situations. Europe experienced a faster recovery due to factors
of being an aggregated airspace with different economies compared to FAA in US that

provides services on national environment (Figure 1-5).
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Figure 1-4 Evolution of IFR traffic US vs Europe, [9]
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Figure 1-5 Faster IFR traffic growth in Europe with different states and economies, [9]

Such different geo-economic factors make FAA and EUROCONTROL to have different

planning horizons to accommodate the traffic demand. Compared to American ATM system,
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1. Introductionw

ATFCM in Europe is managed in four phases [10]: strategic, pre-tactical, tactical and post-
operations. These phases and their definition contribute to standardization of European ATM.
The reference day for these rolling phases is the target date (i.e. day of operations) at which
the actual flights take place. EUROCONTROL describes planning phases as follows:

e Strategic Flow Management includes research, planning and coordination
activities that are concluded seven days or more prior to the day of operations.
This phase considers procedures and measures toward early identification of
major demand/capacity imbalances (e.g. traffic axis management). The output of
this phase is the Network Operations Plan (NOP).

e Pre-Tactical Flow Management is applied during the six days prior to the day of
operations and consists of planning and coordination activities to study the
demand on target date, comparison against predicted capacity, and making
necessary adjustments to the strategic plan (e.g., sector configuration
management). Apart from coordination activities based on predictions and
available capacity a wide range of appropriate ATFCM measures is proposed in
form of ATFCM Daily Plan (ADP)'.

e Tactical Flow Management takes place on the day of operations and involves
adaptation and implementation of ADP into flight operations. The objective is to
ensure that strategic and pre-tactical corrective measures are the minimum
required to solve the DCB issues. The provision of accurate information is of vital

importance, since it feeds short-term forecasts that reveal the impact of events.

e Post Operational Analysis is the final step of analysis that investigates and
reports on operational processes. This phase compares the anticipated outcome
against the actual measured outcome, generally in terms of delay and route

extension with respect to performance targets.

These planning horizons are the actual procedures that eventually meet the expected
demand in discussed long-term predictions. Among all, tactical phase links plans and
predictions to records of performance. The last-minute demand predictions are done at this
phase, with the challenge to consider the cumulative uncertainty at a much higher granularity
than the whole European airspace. In fact, at tactical phase the load in each Traffic Volume?

(TV) with a limited capacity is predicted (Figure 1-6).

! These measures are offered to all stakeholders by different services such as ATFCM Notification Messages
(ANMs) and Initial Network Plan (INP).
2TV is a commonly used expression for number of flights over an airspace or a reference location (e.g. an
airports) in a specific time window.
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Figure 1-6 Distribution of demand uncertainty over a flight profile to enter a traffic volume, i.e. entry time, [11]

Figure 1-6 elucidates the different uncertainty distributions for a flight through different
prediction intervals. The distribution curves have different shapes before and after Actual
Take-Off Time (ATOT). This figure illustrates the dynamic uncertainty in a typical demand
prediction for a target flight in a specific TV (note that each flight trajectory connects multiple
TVs to reach the destination. In this approach, the cumulative value of predicted demand/load
at a target TV has different shapes based on selected prediction horizon. The uncertainty at
each TV is at much higher magnitude since a TV hosts multiple flights from different traffic

flows and entry/exit points.

The described uncertainty to foresee the demand for a couple of hours in tactical phase is
only a fraction compared to uncertainty of delivered plans from strategic and pre-tactical
phases when it comes to making decisions about delaying or rerouting a flight at day of
operations. Along with predicted saturation in long-term, the uncertainty of demand
prediction in tactical phase pushes the ATM community to seek innovative approaches to
control resonance of prediction errors in corrective measures that can trigger secondary

problems with delay.

1.1.2 Growing delay

The discussed growing demand and efforts to support real-time decision making are the
frontier of ATM evolution. Despite endeavors to modernize ATM in Europe and US, the
recorded data trends show a degraded delay figure (Figure 1-7). Comparative reports [9] on

different management methodologies almost outline similar challenges regarding delay.
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Figure 1-7 Reported annual delay and delayed flights in US and Europe, [9]

Figure 1-7 shows the increasing delays with a significant portion of delays to take more
than 15 minutes. Such delays are either ground delay (US terminology) or ATFM' delay
(European term). Although delay in US is higher but the number of delayed flights is much
more in Europe that might be due to different strategies. ATM authorities in US and Europe
decompose [9] the overall delay and number of delayed flights in Figure 1-7 as:

“in U.S.:
e 10% of the recorded delay is departure delay, that accounts for a bigger proportion (20%)
of the delayed flights;

e 10-15% of the recorded delay is ATC-related (TMI-L3 and TMI-L4); which is imposed
on 25% of the delayed flights.
o 75-80% of the recorded delay is ATFM-related (TMI-L2); and more than half (55%) of
the delayed flights are affected by this type of delay and
in Europe:
e 75-80% of total recorded delay (= 15 minutes) is from approximately half (45-55%) of

the delayed flights. The other half of the delayed flights experiences only small delays.

e Despite the large number of affected flights, the ‘small delays’ account for only 20-25%
of the total annual delay.

In both regions, if a flight is delayed, the cause most likely (75-80%) is an ATFM issue. In
Europe when traffic demand is anticipated to exceed the available capacity (in en-route sectors
or at airports) Air Traffic Control (ATC) units may contact the local Flow Management Position
(FMP) to initiate an ATFM measure or regulation. Flights that cross these areas receive an
ATFM delay with a new departure time from EUROCONTROL as the Network Manager
(NM). Basically [7]:

L Air Traffic Flow Management (ATFM)
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ATFM delay is defined as the duration between the last Estimated Take-Off Time (ETOT)
and the Calculated Take-Off Time (CTOT) allocated by the Network Manager. ATFM
delay comprises both Airport ATFM delay and En route ATFM delay.

ETOT is the airline’s requested departure time that is driven by a set of airline constraints.
These constraints depend on passengers, airline schedule, fleet management, or operational

limitations. ETOT has its own line of research that addresses concepts like punctuality.

CTOT is calculated by a mathematical model that considers active regulations. This
mathematical model is called Computer Assisted Slot Allocation (CASA) in Europe. CASA
indirectly takes in the request from airline in form of a filed flight plan (defining ETOT) and
with respect to active ATFM regulations assigns a departure slot (CTOT) as its output [10].

CASA algorithm is part of the Enhanced Tactical Flow Management System (ETFMS) that

generates CTOTs. EFTMS provides tactical data and has two main functions:

1. calculating traffic demand and occupancy counts based on the information from Initial
Flight Planning System (IFPS), and

2. balancing demand with regard to capacity and sequencing the flights by CASA.

ETFMS in European ATM system (similar to TFMS in US) performs a number of key
activities: flight and pre-flight data collection, flight activation monitoring, entry and sector
occupancy counting, flight profile calculations and data distribution. However, despite of
these centralized tasks the cost of delay to airlines is rising each year. As in Figure 1-8 (left)
while Air Navigation Service (ANS) provision costs remained almost at the same level for
airlines, en-route costs grow each year. Also, the increasing gap between annual en-route and
airport ATFM delay, Figure 1-8 (right), can be a sign of saturated traffic system that

significantly suffers from en-route capacity issues.
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Figure 1-8 Rise of en-route ATFM delay despite controlled ANS provision costs, [12]

29



1. Introductionw

Even in absence of Corona crisis, EUROCONTROL in Performance Review Reports' [12]
estimated that in 2019 twenty two percent of flights will be regulated (and most likely
delayed). Among which 5 percent are airport driven and 17% are en-route driven ATFM

delays. This leads to a total estimated 9.29 billion-euro cost for delays in 2019.

ETFMS in European ATM saves almost 80% of flights from delay. Conversely, the costs of
delay and its growing demand pattern warns a systematic challenge that 2018 traffic data
exposed (compare 2017 and 2018 delayed flights in Figure 1-8). Knowing that EFTMS has been
improved for years of its service through known performance areas (e.g. punctuality, capacity

and safety), the unsatisfactory results of accommodating flights in 2018 were off the charts.

In this thesis, system resiliency is explored with a distinction to consider resilience as a
performance topic rather than a safety aspect. This proposed approach requires better
justification of the scope. So far, data and reports from both US and European ATM are

reviewed. The next step is to clarify which region should be the focus of the study and why.

1.2. ATM procedures in Europe and US
Europe and US are the two busiest airspaces; yet their ATM system evolved differently.
Tablel-1, shows that while there are similarities in e.g. area and number of airports, European

ATM is facing more challenges compared to US, especially in terms of congestion [9].

Table 1-1 Comparison of European and American ATM dimension, [10]

Factor Europe US Comments

Area (million Km?) 11.5 10.4

Service Provider 37 1

En-route facilities 62 20

Airports with ATC services 406 517

Highly Congested airports (IATA Level 3) ~ 100 1 US: JEK

Congested airports (IATA Level 2) ~70 6 US: EWR, LAX, MCO,
ORD, SEA, & SFO

Average daily flights 28475 41874

Share of general aviation (IFR) 3.5% 19%

Figure 1-9 [9] shows major airports in both US (Continental United States - CONUS) and
Europe (European Civil Aviation Conference - ECAC). CONUS is on average accommodating
more flights while having significantly fewer congested airports that are scattered across the
country in contrast to Europe that hosts a central cluster of congested airports. Conversely,
both regions are using relatively similar approaches in ATM. In strategic phase, for instance

ECAC benetfits from considering following aspects:

e Flexibility: implementing Free Route Airspace (FRA) to allow airlines plan their

routes directly, without adhering to published route network.

1 PRR reports are post operational annual reports (e.g. PRR 2019 was published on 18. June 2020).
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e Airspace structure: regular RAD (Route Availability Document) updates that

include related references such as policies, procedures and route network.

e Operational planning: offering various scenarios of measures to combine
airspace organization, route flow restrictions, sector configuration plan, capacity

plan, rerouting plan and/or regulation plan.

e Event Management: defining temporary plans for south-west and north-east axis
flows, the ski season traffic flows as well as major sport events such as Olympic

games and military events.

Figure 1-9 FAA/ATO (CONUS) and EUROCONTROL covered area (ECAC), [9]

US on the other hand applies another set of procedures and solutions in strategic planning

that some can be listed as:

e North American Route Program (NRP) is agreed between US and Canada for
upper airspace (flight level 290 and above) is similar to FRA and allows flights to
choose flexible routes in the cruise phase (from 200 nautical mile after departure

until 200 nautical mile distance to arrival airport).

e Pre-defined routes are validated and coordinated solutions such as Severe
Weather Avoidance Plans (SWAPs) and Coded-Departure Routes (CDRs).

e Altitude segregation is the code name for deconflicting traffic flows by capping
and tunneling. Capping means assigning a lower than requested flight level and

tunneling is advising a flight to descend prior to the normal descent point.

Despite similarities in strategic phase, tactical phase is managed by procedures that are
more customized to regional patterns. There are characteristics that urge different systematic
perspectives to study ATM in each region. These drivers are for instance, meteorological
patterns, passenger demand, route network, airline business models and number of service

providers [9].
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Next rather than discussing mentioned drivers, applied managing processes for tactical

DCB are addressed based on comparison reports such as [9]. In US, the Air Traffic Control

System Command Center (ATCSCC) manages the flow of air traffic and minimize delays
while in Europe most of such procedures are administered by Network Manager Operation
Center (NMOC). On a local level such measures are implemented by either Combined Control
Centers (CCF) in US or ACCs in Europe. Examples of major procedures are categorized to
airport and en-route constraints, minimal adaptations, flow management and weather
prediction to provide an overview that is required for scoping this exploratory thesis and

definition the research question.

1.2.1 Airport constraints
e US, CONUS: inbound traffic to airports are managed either by Arrival
Spacing (ASP), Ground Delay Program (GDP) or Ground Stop (GS).
GDPs are mostly triggered by sustained airport capacity loss (due to
e.g. severe weather as in Severe Weather Avoidance Plan - SWAP).
Compared to GDPs, GS are not supposed to exceed more than 30

minutes.

e EU, ECAC: ATFM regulations manage airport traffic flows. Airport ATFM
regulations can be applied to a single aerodrome (AD) or to a set of aerodromes
(AZ) as Reference Location (RL). In most cases only arrivals are restricted.
Airport ATFM regulations with a non-zero rate (flight entering rate) are similar
to a GDP and those with a zero rate are same as GS (closed RL). In some cases,
an airport ATFM regulation starts off with a zero rate, that eventually increases
to accept a limited amount of traffic (low-rate). This is the equivalent of a
combined GS and GDP.

1.2.2 En-route constraints
e US, CONUS:

o Departure stop, similar to a GS that is being for instance, assigned to an

airway, fix, departure gate or sector;

o Airspace Flow Program (AFP), is a type of Traffic Management Initiative
(TMI) that is defined with similar parameters as of a GDP but AFP is
applied to a volume of airspace (referred to as Flow Constrained Areas-
FCAs);

o Flow Evaluation Areas (FEA) are 3-dimentional airspaces defined for a
period of time, with a filter for flights to evaluate the demand in
monitored airspace (in ECAC this is referred as a Hotspot). Note that the
airspace is not restricted but closely monitored. Both FEAs and FCAs
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provide reroutes to flights and are visible through e.g. Traffic Situation

Display (TSD) or collaborative constraint situation display (CCSD).

Required Reroutes (RR) is another TMI coupled with a delay program
and they are issued by departure, arrival or FCA entry time;

Collaborative Trajectory Options Program (CTOP), is a relatively new
procedure for DCB that automatically assigns delay and/or reroutes
flights to avoid FCAs. CTOP considers the preferences of airlines
(Trajectory Option Set, TOS) by taking a set of alternative routes (AR)

from airlines;

Integrated Collaborative Rerouting (ICR) is based on the FCAs and
allows the airlines to revise their trajectory preferences according to the
FCA and finally if the imbalance is not resolved, the traffic managers will

decide on the next action that can be recommended routes, RRs and AFPs.

o EU, ECAC:

o En-route ATFM regulations that can be applied on a specific airspace

volume (AS) or special point (SP) as the Reference Location (RL). Such a
regulation can limit all or a set of traffic crossing the RL (Referred to as a
TV). En-route regulations can be similar to AFPs if they impose delay or

in case of rerouting it can be in form of:

= Flight level capping (imposing vertical limitations),
* Required reroutes (RRs), or
* Alternative rerouting (AR) that opens a low rate through airspace
which normally is not accessible to the traffic flow.
Flight Efficiency Initiative (FEI) enables airlines to revise their flight plans
in search of more efficient trajectory. The cost of each trajectory can be

evaluated based on a criterion (cost): flight time, fuel, cost of delay.

Airspace Users Fleet Priorities and Preferences Processes (UDPP), similar
to CTOP in US, considers the priorities and preferences of airlines in both

en-route and airport collaborative processes.

1.2.3 Minimal adaptation

e US, CONUS: there is also the possibility of exchanging (subbing) the departure

time slots. The substitution process provides a way for airspace users to manage

their flights during a GDP, GS or AFP. Airlines can, for example, swap slots

between a high priority flight and a less important flight, reducing the delay on

one at the cost of increasing the delay for another flight of their own.
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e EU, ECAC: the same possibility is referred as slot swapping that also allows slot
extension. Airlines only request swaps concerning flights for which they operate

or where there is a formal agreement between two different airlines for swaping.

The differences between mentioned aspects of ATM in each region is also a result of
different traffic patterns (Figure 1-10). Not only the seasonal patterns are different both in their
shape and density but traffic flows and axes are different too. Figure 1-10 depicts the annual
flight hours per square kilometers to identify the traffic density [9]. Most of the congested
airports are located in central Europe while in US, they are mainly located at the coast lines
and US has less challenges to deal with weekly traffic patterns. Europe also has crossing traffic

axes in contrast to converging flows in US (Figure 1-11).
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Figure 1-10 Comparison of US and Europe traffic density and weekly variability, [9]

Annually, ICAO reports the traffic flow chart for all movements across the world and
Figure 1-11 cuts the European and US section of the global map [13]. The cross-traffic flows
over Europe and pointed converging flows to north-eastern coast of United States are evident.
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This crossing pattern of traffic flow in Europe and high number of service providers require
EUROCONTROL role as the Network Manager. NMOC is the ‘former Central Flow Management
Unit -CFMU operations room that manages one single flow management system over Europe together
with its partners, the airlines, airport authorities and air navigation service providers” [7]. The role of

NMOC is more transparent in ATFM and delay management that is discussed next.
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Figure 1-11 ICAO traffic flow map of 2018, showing cross shape traffic axis in Europe compared
to rather converging pattern in United States, [13]

1.2.4 Flow management: ATFCM regulation vs. TMI (Europe vs. US)

NMOC mission is to optimize traffic flows through DCB procedures. As provided by Figure
1-12, the DCB framework in different planning phases [14] benefits from constant updates on
both demand and capacity estimations and the uncertainty of factors such as weather and

staffing are persistence and eventually will affect the planned operation at tactical phase.

Some levels of uncertainty are intentionally built in to allow the required flexibility of
operations. A good example is the flight plan submission allowance for airlines up to 3 hours

before departure (or more specifically 3 hours to Estimated Off-Bock Time - EOBT).

The cost of such relaxations is more traffic complexity at tactical phase. For instance, the
implementation of FRA in European airspace improves the fuel efficiently but consequently
leads to unpredicted excessive demand for ATC capacity. In other words, since FRA allows
pilots to fly direct routes which were not originally filed in flight plans; in some cases, the pilot
request results in earlier entry times over adjacent sectors that tags them as intruders since they

are unexpected for local ATC units.
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Figure 1-12 ATM planning and ATFM Phases, [14]

Figure 1-13 maps the dynamic recursive cause and effect chain in tactical phase that is
triggered by demand-capacity imbalances (e. g. intruders). Both overloads and unused
capacity costs to airlines and ANSPs are managed through ATFCM measures in Europe and

TMIs in United States.

Such ATFCM or TMI measures are applied and requested by air traffic control centers in
US and in Europe by FMPs and applied after being authorized from NMOC. They can be
separated depending on the impact, whether it is affecting the airborne flights or penalizes
them before departure time. While similar to assigning a CTOT in Europe, in US an updated
Estimated Departure Clearance Time (EDCT) delays a flight; each region has a different
tolerance time window for assigning a delay [9]: the EDCT window is +5 minutes and the

CTOT Slot Tolerance Window (STW) is -5 to +10 minutes.

However, not every flight is restricted with a CTOT or EDCT. As an example, in Europe for
flights without an ATFM slot, the Departure Tolerance Window (DTW) for Actual Take-Off
Time (ATOT) is normally 30 minutes, from -15 to +15 minutes of Estimated Take Off Time
(ETOT) that can be extended in adverse conditions to 45 minutes (-15/+30min). In US at New
York area for example, similar controlling is applied through Departure Spacing Program

(DSP) that is planned to be replaced by 2026.
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Figure 1-13 DCB triggers and outcomes in tactical phase of ATFM, [9]

As reviewed there are various devised tactical procedures for DCB issues that each may be
caused by operational uncertainties. More specifically, weather induced uncertainties has a
different category both in terms of its nature and impact. Next section is dedicated to review
this aspect since despite the improved weather prediction models, incidents such as closure of
Istanbul airport due to adverse conditions on 24. Jan.2022 have and will significantly interrupt

the flight operations across Europe.

1.2.5
The limit at which day-to-day weather can be predicted is one of the drivers of demand-

Weather predictions

capacity imbalance. Experts of meteorology and atmospheric sciences argue this limit on
average, is about two weeks and large scale high-impact events such as hurricane tracks can
be predicted with an accuracy of 150 km up to 4 days in advance [15]. Such numerical weather
predictions (NWP) are an asset in pre-tactical rather than tactical phase of ATFM. For instance,
temporary bad weather situations are one of reasons that makes pilots request alternative
cruise flight levels, leading to unexpected demand and increased complexity of flight

trajectory at the day of operations.

But there are also other weather-related issues that can neither be predicted by NWPs nor
be detected and considered by delay assignment algorithms such as CASA. Factors such as
stability of airport facilities and management experience makes it a challenge to estimate the
duration of an airport closure (e.g. in case of a heavy snowfall). At Istanbul incident (on Jan
24%, 2022), the wrong initial assessment of airport suspension period, caused a lot of delays.
Although the airport was opened in 2019, a cargo terminal roof was collapsed because of heavy
snow, runways were blocked and airports ground services couldn’t be supported by the local

authorities since the access roads to the airport was also blocked.
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Nevertheless, even the precision of NWPs is highly dependent on initial conditions.
Sensitive dependence on initial conditions or Butterfly effect is pointed out by Lorenz [16]. His
investigations into predictability of the atmosphere led to introduction of chaos theory, strange
attractors and chaotic solutions that usually appear in nonlinear systems as of weather. Such
fundamental difficulties limit the precision of weather predictions and despite constant

improvements even same models provide different forecasts at different runs.

As an example, Figure 1-14a shows the results of ensemble Global Forecast System (GFS)
at different runs (P1 to P20) for temperature and the precipitation level as target values.
Despite of fixed geographical position and reference date, the divergent pattern for different
runs is evident for both target values. This uncertainty does not only concern the values of
predicted parameter but also it has a significant deviation in geographical span as shown in

so called Spaghetti figures (figure 1-14b).

n Lat: 48 Lon: 13 Fri,06MAR2020 06Z Ini: Thu,05MAR2020 00Z Val: Thu,12MAR2020 00Z

850 hPa Temp. in °C, 6h—Niederschlag in mm (Isohypsen: 516 55

SWAR T1MAR 3 MAR R Daten: Ensembles des GFS von NCEP
(C) Wetterzentrale
www welterzentrale.de

Date s GFS von NCEP Wetterzentr
a. Predicted Temperature (at 850 hPa Pressure) and b. Spaghetti graph of prediction runs that shows
precipitation level for 6th March as the reference date the geographical divergence for different runs of
the model
Figure 1-14 Divergence pattern of different runs (P1-P20 shown by different colors) for ensemble GFS model from
NCEP, [17]

Such uncertainties in weather forecasts in general are one of the reasons for flexibility in the
tactical phase of ATFM. Weather conditions are affecting both the airborne and ground
capacities. For instance, airborne flights may alter the flight trajectories to avoid weather
conditions. Such modified trajectories increase the workload for controllers and in some cases
creates secondary problems in other ATC units (adjacent sectors) that provide surveillance to

the same flight.

ko

38




1. Introduction

As discussed from different perspectives, there are many devised planning steps for a
smooth traffic flow. However, the rise of demand still challenges the saturated capacity and
no procedure is in place to resolve or monitor network issues other than extreme cases of a
pandemic for example. In Europe the risk of ignoring network awareness is much more
tangible since it is integrated from different states with various evaluation models in terms of

demand, capacity or weather.

The risks and simultaneously the potential benefits of current traffic patterns can be
realized by monitoring locally optimal ATFM measures and capture their impact on the
network (e.g. European ATM Network-EATMN). Such functionality is mainly projected on
top level authoritiesi.e. FAA/ATO (Air Traffic Organization is the operational arm of the FAA)
and NMOC. These operational units are the most relevant stakeholders to address and study
systematic improvements. Specially in Europe the exposure to secondary problems is higher
because 37 service providers (Table 1-1) request and apply numerous local optimal solutions
at tactical phase in absence of a network situational awareness. Throughout previous five sub-
sections, these solutions were investigated from different aspects and the conclusions are

offered below:

e  Why such local solutions need to be reviewed? Reported rise in demand figures
and its discussed uncertainties remind that the current system is reaching its
saturation level and it is time to reach out for revolutionary ideas for air traffic
management. But first a solid understanding of active solutions is needed to spot

potential directions of improvement.

e What is the cost of a saturated network? The rise of delay despite collaborated
processes in European (ECAC) and American (CONUS) skyj, is a sign that delay
management approaches such as CASA algorithm are not designed to be
consistent with new concepts (e.g. FRA) and need to be revised. This is observed
specially in summer 2018 that despite timely raised alarms about excessive

demand, delay figures significantly degraded beyond control;

e Why not invest on improving local solutions with current methods? Complexity
of dynamic traffic management is more significant in tactical phase. Both in
ECAC and CONUS there are controlled (e.g. flight plan modification) and
uncontrolled (e.g. weather) uncertainties that cannot be fully realized by

analytical and numerical methods.
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1.3. Problem Definition

In spite of exploratory nature of the thesis, the holistic problem of providing systematic
approach against European airspace saturation needs to be formulated more specifically.
Therefore, this section begins with describing ATM as a system. Consequently, life cycle stages
are considered to locate the phase at which the saturation problem needs to be addressed.
Saturation of a system is directly related to its adaptation capacity. System resiliency is the
concept that addresses the saturation in this regard and is interrelated to situational
awareness. Furthermore, the perspective from European research program is adopted to
identify and map system’s basic data flows. Such an understanding leads to a situational

awareness based on a data driven approach that avoids ATM complexity.

1.3.1 ATM as a system

In system engineering, ISO 15288 standard [18] man-made systems are designed to provide
stakeholders, services/products within defined environments. Therefore, Air Traffic
Management (ATM) is a standard system since it is the aggregation of airborne and ground-
based services (air traffic services-ATS, airspace management-ASM and air traffic flow
management-ATFM) [19] that are provided to four main categories of stakeholders (in

Europe):

NMOC: Network Manager Operations Center operated by EUROCONTROL,

e FMP: Flow Management Position representing the ANSP (air navigation service

provider) stakeholders that can be also designated by ACCs,

e APOC: Airport Operations Center representing the airport perspective since each

center is the core organizational unit responsible for airside operations, and

e FOC: Flight Operation Center (also known as Airline Operation Center-AOC)

represents the airline interests and hosts required functions for flight operations.

These categories are considered as a system-of-interest with defined roles and authorities
in ATM and all four are linked by different flows of information. In systems-of-interest,
humans play different roles in each group. For instance, FMP coordinators interact with
Collaborative Decision Making (CDM) processes in ATM.

Nevertheless, ATM as a system is getting closer to saturation level and retirement stage. In
absence of radical changes, ever growing capacity costs (e.g. improving navigation
infrastructures and building new airports) will change the opportunity of the rising demand
into an obstacle. Generally, a system has six stages in its life cycle (Figure 1-15) and retirement
is the last [20]. A resilient ATM system should constantly be engaged in support and concept
stages. The system provides sustained capabilities at support stage and any

needs/requirement for a new system-of-interest or modifications are recognized at concept
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stage. Establishment of EUROCONTROL in 1960 [21] serve as a good example of such changes

at concept stage.

Development Iteration and recursion possible on all paths
Concept [€=—>>|Production P Utilization Retirement

A i A
v

—>»|  Support

Figure 1-15 Stages of a system’s life cycle, [20]

EUROCONTROL started to acquire data, assess potentials and set strategies to support
European aviation (stage: development). More specifically to assist traffic management,
Network Manager (NM) role was established (stage: concept) that later started to operate
NMOC (stage: production). This center optimizes traffic flows by monitoring demand and
capacity. But while the numbers show a steady trend in traffic and delay figures (stage:
utilization), still the EATMN suffers from saturation specially in summer season (March-

October). This draws the attention to support stage.

According to ISO standard [20], “support stage includes processes related to providing
services that support utilization of the system-of -interest. This stage also includes processes
to use and monitor the support system itself, including the identification, classification, and
reporting of anomalies, deficiencies and failures of the support system and services”. The
given diagram in Figure 1-15 is showing the connection of support stage that is directional to
retirement stage but interacting with other stages except development. Because development

stage considers strategic needs while support stage deals with inspected issues at hand.

Saturation can result from unproportionate assessment of system load at concept stage. In
EATMN, firstly it was unrealistic to draw prediction figures at concept stage for upcoming 20
years knowing that it remains in service for much longer than 20 years. ATM should be
considered as a rolling system, which accommodates more and more flights every year and
provides ranges of solutions (i.e. vertical separation minima) as time goes by. Secondly,
predicting the load of the system means gathering tons of data that is both an acquisition
challenge and an analysis issue since there are different types of data with different

granularities.

Such challenges in Europe are addressed by international cooperative research programs
such as SESAR (Single European Sky ATM Research). In next section the contribution of
SESAR in EATMN is discussed to realize any conceptual approach against saturation.
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1.3.2 EATMN and SESAR

SESAR was launched in 2004 to not only define the challenges but also to develop and
deploy solutions to support EATMN performance. In 2007, SESAR Joint Undertaking (SJU)
was established to be responsible for modernization of EATMN. SJU started the first program
of research in 2008. SESAR-I continued until 2016 with 400 projects that took 20 million hours
to ensure the quality of deliverables to fit the operational needs [22]. SESAR-I successfully
delivered numerous industrial prototypes, operational and technical solutions but more

importantly a wide range of new questions, potentials and challenges were inspected.

SESAR 2020 was launched as the follower until 2024 with a budget of 1.6 billion Euros.
European Union and EUROCONTROL and other 19 members work together in a setting that
gathers regulatory bodies, airspace users, airports, ANSPs, manufacturing industry and
scientific community such as German Aerospace Center (DLR). Its target was to deliver a

‘modular and automated” ATM based on digital and virtual technologies in 4 key areas:
e Airport operations,
e Network operations,
e Air traffic services, and
e Technology enablers.

These key areas are planned as pipelines that transfer ideas to industrial solutions, in three
strands of Exploratory Research (ER), Industrial Research (IR), or validation & very large-scale
demonstrations. To the benefit of this thesis, the author as a concept expert have joined project
PJ09: DCB or ‘advanced demand capacity balancing’. The project supported the European
ATM master plan [23] that aims at providing an interoperable concept of European ATM in
which operations are built around a continuous sharing of data between actors, i.e. ANSPs,
airspace users (AUs), airports and NMOC. The focus towards performance ambitions of the
master plan to further develop DCB processes is addressed by improving collaborative
processes and mutual situational awareness. In essence one of work packages of PJ09 (network
performance) and this thesis share ideas such as focus on data flows and situational awareness.

Global thinking was focused through situational awareness at regional levels.

PJ09 focus was on performance driven DCB in a collaborative environment among actors.
Actors (systems-of-interest) are communicating through dataflows among each other. While
each dataflow serves a specific purpose, none is dedicated for a mutual situational awareness
at EATMN level. Figure 1-16, summarizes current main data flows in tactical phase. Among
all dataflows, ATFCM regulations represent results of collaborative decision-making
processes among all actors. Regulation data is constantly updated and published for all actors

in the course of tactical phase.
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Systematic model of European ATM Network
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Figure 1-16 Proposed European ATM network as a system. Such a model takes ATFCM regulations as feedback
loop that connects all stakeholders. The model avoids complexity of numerous direct data flows between
stakeholders.

ATFCM Regulations or measures are introduced in section 1.1.2 (growing delay) as a
method of matching traffic demand to available capacity by limiting the number of flights

planned to enter an airspace or aerodrome by ATFM delays [7].

PJ09 provided the chance to explore network performance improvements. Having
EUROCONTROL as a partner in this project assured that a better network wide situational
awareness is operationally motivated since NMOC experts in practice realized the need for a

conceptual improvement against saturation.

1.3.3 ATM resiliency

The constant update of regulations at tactical phase is a result of emergent behavior of
European ATM system. Emergent behavior is a complementary expression to resultant
behavior. Resultant behaviors are those dynamics that happen as a consequence of known
causal links. In contrast, emergent behavior is a response to unpredicted issues in large scale

systems usually with sub-systems as of European ATM.

Emergent disruptions have a direct relationship to complexity. Paries [24] describes the
emergence relative to the size and complexity of a system. EATMN is considered as both a

largescale and complex system with inevitable disruptions. These disruptions can be
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decomposed to components of the system for analytics but the coping mechanism is bounded

to following questions:
e How to realize an emergent disruption?
e  Which level of decomposition is needed to revive the system?

The first question is a bottom-up and the second one is a top-down challenge. Each system
has an identical answer based on available dataflows and provided level of control. In
EATMN, NMOC has the authority to control network issues and in tactical phase this can be
mostly realized through ATFCM regulations.

While both NMOC roles and Regulation data are active in daily operations, emergent
disruptions are not covered by resilience. Prior to this study, resilience was solely a safety
(rather than performance) topic. Instead robustness of operations was at focus, e.g. by
providing the mentioned flexibilities in flight plan submission. However, robustness is
addressing the predictable disruptions (resultant) in the planning phase and resilience is more
focused on system functionality and emergent disruptions (mostly in tactical phase). In fact, a
resilient system accepts the inevitable challenges of its dynamic states and adapts itself by

changing operational processes to maintain its core functionality.

In EATMN, the four mentioned systems-of-interest NMOC, ANSPs, airports and Airspace
Users (AUs) are interacting with each other through eight systems [25]:

1. Systems and procedures for airspace management.
2. Systems and procedures for air traffic flow management.

3. Systems and procedures for air traffic services, in particular flight data processing

(FDP), surveillance, data processing and human-machine interface systems.

4. Communications systems and procedures for ground-to-ground, air-to-ground

and air-to-air communications.
5. Navigation systems and procedures.
6. Surveillance systems and procedures.
7. Systems and procedures for aeronautical information services (AIS).
8. Systems and procedures for the use of meteorological information.

Extent of these systems defines, EATMN (here after also referred as network) high level of
complexity. The systems and procedures for ATFM is the most relevant in tactical phase
(Figure 1-16 is a simplified role base model of this subsystem). This part of network is the most
interactive systems in tactical phase and therefore taken as the frontier for detection and

resolving emergent disruptions.
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In conclusion, in order to improve the tactical operations, as an exploratory research this
thesis addresses the gap in coping mechanism against emergent disruptions by

conceptualization of network resiliency. The following statement reflects the aim of the study:

Considering the NMOC role and regulations data, the study firstly tries to model the
network as a resilient system(conceptually), then it proposes a mechanism to detect
network emergent disruptions and finally investigates the required level of decomposition
in reviving the resilient network. In other words, the following research objectives are
considered:

1. Demonstrate the idea of EATMN resiliency by a conceptual model;

2. Since the initial requirement of monitoring resilience is the situational
awareness, propose a mechanism to detect the network state that serves for
both current and reference states;

3. In order to revive the network from emergent disruptions, investigate the
required level of decomposition for corrective measures (so viel wie notig, so
wenig wie moglich: as much as necessary, as less as possible).

The data driven methodology of the thesis explores an alternative approach based on
statistical (Objective 2) and learning methods (Objective 3) in comparison to current
simulation-based approach in ATFM. As of today, DCB issues are declared as hotspots by
demand prediction models and tactical simulations. Hotspots are locally identified problems
across the network. By conceptualizing the EATMN as a resilient system, this work

demonstrates the benefit of inspecting ‘network” disruptions rather than “local” hotspots.

1.4. Study outline

The following chapters define the road map to realize the objective of the thesis: Chapter
two goes through resilience and its advantages over robustness, and is concluded by system
state and assumptions of the thesis. Third chapter, methodology, starts with objective 1 to
conceptually model the EATMN state. Next, the selection of regulations as a feedback loop is
described in realizing the second objective of the work. More specifically, a twostep statistical
analysis to detects tactical EATMN state is provided at first and then with regard to data
driven approach, two intermediate sub-problems on learning algorithms are devised to

associate second objective to the third:

Sub-problem I: a feasibility study on different learning techniques to estimate network

ATFM daily parameters from regulation data.

Sub-problem II: base on the result of sub-problem I, devise a solid supervised learning
algorithm that extracts the spatiotemporal dimension of regulations (Deep Convolutional
Neural Network- DeepCNN).

Chapter four (Resilient Path) along with an understanding of Complex Adaptive Systems

(CAS) addresses the third objective of the study on achieving the required granularity on
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predicting corrective actions (i.e. regulations) by providing a Recurrent Neural Network
(RNN) architecture that predicts ATFM parameters of each regulation (max granularity).
These predicted values are accumulated to deliver daily predictions at a network level so that
at any given time the Network Manager (NM) is able to evaluate a list of regulations. Chapter
five, provide results from all three objectives which are further discussed in chapter six. The
thesis is concluded by providing a brief overview of COVID pandemic and stating possibilities

for future works.
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Limited studies on resilience as a performance topic rather than a safety aspect is a reason
that this thesis is categorized as an exploratory research. This chapter reviews resilience and

system state in general and then narrows down to address EATMN.

In fact, EATMN as a complex system with eight subsystems is highly exposed to emergent
disruptions. As given in Figure 2-1, despite expected systematic disruptions, there is also a
seasonal pattern which is also reflected in delay figures in DCB issues. Generally, the rise of
delay is either a ramification of major disruptive events (e.g. strikes, unpredicted demand) or
a wave of airspace capacity limitations (e.g. prolonged weather issues). Studies on controlling
such disruptions tend to propose solutions for strategic or pre-tactical phases. For instance,
campanelli et al. [26] compared US and European air traffic networks by analyzing the
propagation of delays due to disturbances. Through agent-based models, their work on
different delay management systems (flight sequencing) conclude that a priority system in
ATFM is more efficient in avoiding congestion compared to a first-come first-served managing
protocol for flights. Similar studies in EATMN are less likely to address resilience in tactical

phase through a data driven approach.

But prior to discuss EATMN resiliency in tactical phase, it is crucial to locate resilient
performance against safety resilience and then differentiate robustness from resilience

(structural versus tactical solutions).

ATFM delay (min) Regulation Counts
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Figure 2-1 Statistical survey of regulations per AIRAC cycle to compare (a) total ATFM delay and (b)
regulation count. Apart from seasonal patterns, the figure shows that an increase in number of
regulations does not necessarily imply an increase in the ATFM delay (see annex B.1. for AIRAC cycles;
Data source: EUROCONTROL, NMIR reports).
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2.1. Resilience

The term resilience is described by a number of definitions, concepts and approaches in
different disciplines [27]. It has a strong bond with other concepts such as robustness, flexibility
and agility. The extended scope of resilience has evolved and became more mature through
specific stages. Hoffman [28] introduced resilience as ‘a high percentage of recovery after, but not
necessarily immediately after, a deformation’. His study also provided a definition for resilience as
a capability of a substance to return to its original state at some time after removal of the
deforming stress. Reviving time is a key aspect of both definitions, hence if the damage or
deformation is so extreme and abrupt that the object/system seizes to exist/operate, resilience

is not a topic anymore.

Another definition is introduced by Holling [29] that compared resiliency and stability to
develop the concept of resilience. It is coupled with the definition of disruption and based on
deformation time, the concept determines multiple states for disrupted systems [30]. A system
that faces (internal or external) forces is considered as resilient if its core functionalities are not
lost in a disrupted state. This perspective suits the dynamic nature of the EATMN with its

required operational flexibility for efficient services.

Moreover, resilience engineering (RE) was introduced by Hollnagel et al. [31] and charted
studies from different disciplines. RE is a focused paradigm on how safety managers can be
empowered to handle complexity under pressure. Its approach relies on safety as a dynamic
process of systems. Resilience engineering invests on strength of a system to compensate
effects of a disruption [32]. Such a system is considered to have control over its performance
variability. In other words, RE respects the performance variability by assessing both sets of
different system outputs: failures (extracting disruptions) and non-failures (detecting system

strengths).

Resilience engineering contributes to safety by improving performance in contrast to
lowering risks through applying constraints. In fact, traditional methods of accident analysis
and risk assessments are being compromised by more complex technologies in dynamic
systems. Therefore, current methods combine the technical aspects and human factors to
improve safety. In this regard, RE is using the principle of resonance to explain how the
variability of normal performance can (in dynamic ways) lead to disproportionate disruptions.
EUROCONTROL describes the resonance principle as:

‘Resonance: A principle that explains how disproportionate large consequences can arise
from seemingly small variations in performance and conditions [33]."
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For instance, RE is providing the base for methods such as Functional Resonance
Assessment Method (FRAM)! that has four principles:

e Success and failure equivalency: none of the processes in a system is meant to
produce failures. In other words, failures and successful outputs are generated

from the same system.

e Approximate adjustments: every planned activity needs some levels of adjustment
since resources, time and in general the actual situation is not the same as assumed

conditions in planning phase.

e Emergence: performance variability may build up on unexpected results, that
are disproportionally large and disturbing the whole system. An outcome is
emergent if it neither can be attributed to nor explained by (mal)functions of the

system.

e Functional resonance: that is an alternative to linear causality. It represents the
detectable signal that emerges from the unintended combination of the
variability of many signals. This explains how the variability of a number of
functions can reinforce each other, leading to excessive disturbance in
downstream functions. The consequences may spread through the system by

means of tight couplings rather than easily identifiable cause-effect links.

Among these principles, functional resonance is closer to systems like EATMN with
numerous local solutions, i.e. ATFM measures (capacity regulations) that might trigger

secondary problems.

Moreover, a study by Francis and Bekera [27] provided categories of resilience definitions
in different settings. They concluded that “resilience is a conceptual framework composed of
multiple dimensions. Absorptive, adaptive, and restorative capacities are at the center of what
a system needs to do and how it needs to respond to perceived or real shocks”. Considering
EATMN settings, these capacities/levels of resilience (Cook et al. [34]) can be modified as in
Table 2-1 to locate challenges at each ATFCM phase [35].

For instance, reliability and robustness of a system should be considered within the
strategic phase, since a complex system is able to implement structural solutions through
strategic plans. Generally, systems are more vulnerable at the strategic phase because of
possible broad consequences. A structural failure can shatter other resilience levels severely

(low rate but drastic impact).

' To read more about FRAM refer to [155] and for a ATM study consider [156].
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Table 2-1 Resilience Levels

Level Features ATFCM Phase
Absorptive  Robustness, Reliability strategic
e.g. Air Traffic Flow Management (ATFM) Procedural
Contingency Plan
Adaptive Consideration of adverse impacts, Anticipation of disruption, pre-tactical

Recognition of unanticipated events
e.g. Reaccommodation of network flows during an ATC strike

Restorative ~ Control measures, Conflict handling, Tactical
Cost estimation

e.g. STAM? measures

a. Short-term ATFCM measures (STAMs) include a set of automated support tools at the network level which detect hotspots
and disseminate the information to flow management positions in the ACCs.

Table 2-1 suggests that each type of DCB solutions can be improved according to a
corresponding level of resilience. Such a classification helps for an efficient selection of
corrective measures in different disrupted situations (or non-nominal states). Every system
has iterative processes at different intervals, therefore assuring a level of resilience for each

process varies in terms of effort, cost and impact domain.

Most recently, resilience has been defined through the European research project,
‘Resilience 2050" as the capacity to recover [quickly] from difficulties; toughness. In fact, ATM
resilience is defined as the capacity of the aviation system to behave as scheduled in spite of

incidences, so that flights arrive on time whenever they encounter a difficulty.

Along with the project Resilience 2050, DLR (German Aerospace Center) has also focused
on terminology of resilience in different disciplines. For instance, DLR [36] has addressed

following associated terms with resilience:

e Reference State: in order to be able to measure the resilience of a system there is
a need to identify deviations at first place. Rationally the planned status (also

referred as Nominal situation) of the system is considered as the Reference state.

e Current State: the status of the system which is captured by indicators at a given
time. It is compared against reference state to measure either resilience or

robustness of the system.

These states do not imply a static mode of the system but rather a domain in which the
system is considered to be functional. For example, a reference state is possible to be
defined by either single values of performance indicators, intervals or acceptable range
where performance indicators can vary.

e Disruptions and disturbances: despite the importance of clarifying disruptions
and disturbances, there is no general definition for them due to technical

complexity of each system. Nevertheless, a disruption can be considered as a state,
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where the deviation from the plan is sufficiently large to impose a substantial
change [37].

Note that the disruption does not have to be always negative but a resilient system is
considered to be able to capture opportunities too. In some cases, a disrupted state needs
to be realized so that the system can gain more or better outputs.

Similarly, a disruption can be expressed by thresholds. Adopted from available DLR
literature [38], disruptions can be defined using the approach introduced in ecology in
which a disturbance is defined as the cause (not the state) of stress and perturbation.

e Stress: the reactionary state of the system or the consequences of the disruption

on the system functionality that can be divided to:

o Survival: if the effect of the disruption is not severe and the system can

respond and damp the consequences through modifications.

o Lethal: if the system does/should not respond to the consequences of
disruption. In this case there is always a call for largescale modifications

and generally a lethal stress is regarded as a Crisis.

e Perturbation: this term is referred to the reaction of the system to imposed
changes. Based on the impact and severity of disturbance, two scenarios can be
defined: either system is partially engaged or every subsystem is affected.

Nevertheless, in case of a survival stress, perturbation can be:

o Transient: temporary solutions which are able to revive the system over

limited time and absorb the effects of disruption in system, and

o Permanent: the consequences are so severe that the system is forced to set
a new reference state through fixed modification solutions. A permanent
perturbation pushes the system into a new reference state to cope with a

lethal stress.

In summary, despite of provided definitions, classifications and approaches for system
resiliency, only a few attempts such as Resilience 2050 project was dedicated to ATM
resiliency. The project was executed by six academic and research institution in the absence of
industrial partners or European aviation authorities. As expected, the results are more
contributing to absorptive and adaptive rather than restorative level (Table 2-1) of ATM
resiliency. Consequently, a larger scope of transportation systems should be reviewed
regarding measurement of resilience. IEEE published a comprehensive review paper of such
studies in 2019 [39] that is addressed next.
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2.1.1 Resilience measuring methods

As provided in Figure 2-2, studies on transportation systems resiliency has been increased
over the past years. Among which the majority of the studies (44%) are related to resilience of
road networks. Other domains of research include freight transports, railway, maritime

networks, air traffic networks and multimodal transportations.

Publications per year

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year of Publication

Figure 2-2 Publications on resilient transportation systems per year, [39]

Share of studies on air transportation is reported [39] to be only 8% despite the availability
of multiple standard data types. But even with the rise in published papers from 2015
onwards, it seems that other modes of transport hosted more studies compared to air

transportation due to its complexity and extent.

Nevertheless, resilience metrics in transportation systems are either topological metrics
(mostly based on network graph theory) or those that consider attributes and performance of
the system. Metrics that evaluate the build-in ability of the system to act resilient are referred
as attribute metrics while those that measure dynamic reaction of the system (e.g. throughput

or network flow) are called as performance metrics.

As an example, in aviation, Yoo and Yeo [40], take an attribute-based metric to measure the
resilience of air transportation network in US. The metric addressed the adaptive capacity of
resilience to measure the ability of the network to replace a disrupted node with an adjacent

node.

Furthermore, in a network graph study, Jani¢ [41] proposed a resilient metric based on the
airport importance (relative to share of each airport in accommodating flights) and operated
flights by an airline. Janic¢ [42] later continued his work to assess resilience from another set of

indicators in a freight transportation systems, including: flights, profits, time of transport, and

the inventory cost at airports.

Another example of attribute metrics in topological models, is a commonly used metric:
size of giant component. It is calculated by determining the proportion of nodes that act as of
a cluster. In aviation domain [43, 40] it has been used to realize the impact of resilient strategies
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to maintain the network connectivity since the metric measures the network’s proportion that

can be travelled by air routes.

Critical component analysis also uses attribute metrics in resilient air transportation studies
[44]. This technique is important with regard to limited available resources in time of a
disrupted network. It sets priorities to assign resources to most crucial nodes of a network

either in strategic pre-cautionary planning or in post-disaster mitigation strategies.

It is important to notice that in almost all of the mentioned references, metrics do not
identify if a system is disrupted or not but rather assign a score to system resiliency. In fact,
the system vulnerability can be classified into two topics: the probability of having disruption
in the system and the magnitude of system disruption. Most cited works focus on the latter
that is also recommended by some classic studies [45, 46] on vulnerability. These studies claim
that measuring the consequences should be the primary objective. This objective is referred as
conditional vulnerability and most of the mentioned studies on resilience follow this line of
research and not the definition of disrupted system. As a result, this thesis is relying on
performance metrics rather than attribute metrics since the purpose of the work includes

network state definition.

Apart from type of resilient metrics, the contribution of this thesis in using system resiliency
becomes clearer by better clarification of system vulnerability, especially in terms of flexibility

and robustness. Therefore, next section is dedicated to distinguish robustness from resilience.

2.1.2 Resilience and robustness

Although to some extent resilience, robustness, stability and flexibility are used in the same
context but each is technically different. Resilience is a comprehensive term for the ability of a
system to handle changes, while robustness is more focused on the absorptive level of
resilience, as inherent resistance against stresses beyond normal system functionalities. Thus,
robustness is less likely to support performance variability in the tactical ATFCM phase.
EATMN belongs to complex networks that are counted as robust if basic functionalities remain
operational under the failure of sub-components. However, in order to provide an exclusive
and inclusive definition for resilience and robustness, the following general definitions are

provided:

e Robust System: A system is identified to be Robust, if it has the ability to
continue functioning in the presence of internal and external challenges without
fundamental changes to the system [47]; In other words, a Robust System is

designed to prevent possible failures.

e Resilient System: A resilient system accepts the inevitable challenges of its
dynamic structure and in case of a disruption, adapts itself by changing its

operational processes while continue its core functionality. This is also addressed
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in early definition of the word “Resilience” in Psychology [48] which is coming
from the Latin root, i.e. ‘resilire’, meaning "to jump back" or "to recoil." Hence, a
resilient system is based on early discovery and fast recovery from unpredicted (or

emergent) disruptions.

In other words, robustness indicates a system design to cover more uncertainties. But, the
improvement of system performance in order to empower system compensation during a
disruption is the key feature of a resilient system. Robustness in ATM is more investigated
from topological aspects and indicators. Such studies help to realize important local nodes in
a modeled ATM network [49].

In transportation networks, systems are subject to disruptions. Therefore, robustness and
resilience of such systems can be improved by means of increasing the redundancy as an
example. However, such measures and their associated investments can be very expensive. In
transportation networks, appealing sustainable and feasible solutions are generally based on
more effective management techniques. These techniques are highly relied on remodeling and

optimization of underlying complexity of the system.

Here system modeling is a technique that helps to realize system vulnerability and
recovery. Such a model should address different states of the system. States can be defined
according to many aspects such as life-cycle or performance levels. Next section discusses, the

system state that is defined by levels of performance.

2.2. System state
Resilience is a concept that deals with the functionality of a disrupted system. But with
regard to conditional vulnerability, the first step toward resilience is to realize the state of the

system. Devoe [50] provide a theoretic notion of system state in his book:

“at each instant of time, the system is in some definite state that we may describe with
values of the macroscopic properties we consider to be relevant for our purposes. The
values of these properties at any given instant define the state at that instant”.

This definition reminds that a system state can be expressed by a set of variables (i.e. key
indicators). But in case of a dynamic system, such a definition can lead to indefinite number
of states. Therefore, phase transition is a better alternative for complex systems such as
EATMN. These systems intentionally have a built-in degree of flexibility in its internal

environment.

Devoe also mentions an “equilibrium state” as a state that remains unchanged indefinitely
unless some external forces violates its internal environment. Theoretically, a sealed system

with zero interactions with the surroundings is named as an isolated system. In such a system
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if any change happens, the system will experience a series of reactions that concludes with a
new equilibrium state. In conclusion, “steady states” is noted by him, that is different from an

equilibrium state.

A steady system is regarded as constant for a period of time that it exchanges matters or
energy with its environment. As an example, one can consider a thermometer. Once the
thermometer is in contact with a cold or hot object (exchanging heat energy), it measures the
temperature accordingly (remain stable) without malfunction or (tangible) heat exchange with

the person using the thermometer.

Such a definition is more consistent to EATMN state definition since EATMN interacts with
different level of internal (e.g. passenger demand) and external forces (e.g. weather
uncertainties) without the need of major airspace closure. Consequently, in this thesis
addressed EATMN state is assumed to be under the category of steady states. In resilient
studies a key assumption is that the system at study has at least one steady state (disrupted

vs. nominal state).

The connection of steady states and resilience is better discussed in Disaster Risk Reduction
(DRR) studies. In fact, the combination of resilience and stability in general, motivated the

subject of disaster resilience, especially after the disastrous Tsunami of 2004 in Indian Ocean.

Coetzee et al. [51] mention the discussion of DRR and resilience. They also noted that the
definition of system resiliency as the ability to recoil (to bounce back) needs careful
consideration since a complete reset leaves the system vulnerable to similar disruptions in
future. The statement is not relevant to all levels of resilience (Table 2-1) but mainly a key
aspect in absorptive level. In restorative level of resilience, the resilient system is able to

maintain its core functionality while reducing the effects of disruption.

In other words, an improved steady state is not the goal at restorative level of resilience. As
illustrated by Figure 2-3, the initial state (So) and the final state (St) are not necessarily at the
same level of performance (Ft) but both are significantly improved states compared to the
disrupted state (Sa).
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Figure 2-3 System states and Resilience adopted from, [30]
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A review on system studies suggests that some distinguished the state of a system from its
mode. This difference does not apply to all systems. But as an example, in aviation, Baduel et
al. [52] focused their research on the definition of states and modes in a system engineering
context. The study contributed to the specification and design of system behavior. Based on

their analysis system states have the following aspects:
e Each state is able to characterize the system;
e each state is valid or considered at a given point of time or at a time window; and

e states are providing a specific kind of information, knowledge domain or system

design (e.g. operations, level of readiness, energy).

Similarly, one can conclude the following points about the “mode” of a system based on
their study:

e A mode also characterizes the behavior of a system;

e modes are defined for a set of conditions that is not necessarily a temporal

condition (e.g., specific states of the system); and

e modes express a behavior regarding a set of capabilities, functions or actions

(e.g., moving forward or backward, performing flight maneuver, etc.).

In other words, the state of a system is mainly a variable that can be measured and
quantified while the mode of a system is the label that tags a set of system behaviors that
are either activated intentionally or triggered by disturbances of the system.

Similar to the selection of a correct network definition, the description of non-nominal states
is relying on correct network impact description. For example, Cook et al. [53] described non-
nominal states as a phase transition. It refers to high number of locally interacting elements
causing a collective phase change. It is concluded that unlike other traffic systems (e.g. road
traffic networks) phase-transition behavior in air transportation systems requires more solid

definitions.

Nevertheless, in terms of network states, nominal and non-nominal conditions are not
similarly discussed in the literature. In their study on a passenger oriented and event-driven
model, Cook et al. [54] considered stochastic growth of average departure delay as an
indicated disruption against nominal conditions. In another attempt to study resilience of air
transportation system as an optimization problem, Filippone et al. [55] examined non-nominal
conditions in order to find the resilience path that is the most valuable chain of processes to
push the system back to nominal conditions. This microscale! study described a model for non-
nominal scenarios based on different quantifications of given key performance indicators
(KPIs).

! Microscale, Mesoscale and Macroscale studies are explained in next section.
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Notation of states is also studied in other domains of aviation such as aircraft maintenance
schedules. But in comparison to network states, there are significant differences in definition
of states and the dynamics. As an example, a recent study by Andrade et al. [56] applied
reinforcement learning (RL) for maintenance scheduling. The methodology takes a transition

function to relate different states at a cost (as of a Markov Decision Process). But in a network

state, there is no global set that contains all possible states. Even if such a set is given, the
complexity of parameters and unknown dynamic of intertwined operations at such a scale
pose a severe challenge in defining a transition function. In a similar study at delft university
[57], maintenance states are addressed by optimization. However, instead of a transition
function, the stochastic framework takes a two-phase state transition based on known

probabilities.

2.3. Assumptions and scope
To summarize, reviewed studies on resilience and air transportation system reveal some
gaps and guidelines in the literature. A summary of these potential research directions is

offered below:

e despite advantages of organizational efforts such as establishment of
EUROCONTROL in Europe, the air transportation system needs to consider

structural changes with respect to less cultivated concepts such as resilience;

e incidents such as delay peak in 2018 cannot be modeled by classic comparative
studies. Current European CASA algorithm based on first-come-first-serve

(FCES) is less efficient in case of a saturated network;

¢ resilience engineering with methods such as FRAM is providing better principles
for dynamics of air traffic flow management. For instance, functional resonance

is more relevant to emerging disruptions in ATFM;

e mapping of resilience levels and ATFCM phases, acts as a reference to locate
different mitigation approaches. It also helps to assess the impact and costs of

modifications at each resilience level;

e Importance of system state definition is discussed and supported by a review on
resilience measuring techniques. In aviation domain most studies on resilience
are dedicated to measuring resilience (by attribute metrics) as a mean to evaluate
imposed costs but the contribution of resilience as a detecting mechanism (by
performance metrics) is not addressed. Most studies focus on major disruptive

events and no study is dedicated to emergent disruptions;
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e lastly, the review of studies on system state and its mode, provided the visibility
that performance variability needs to be addressed in a system state context

rather than developing recovery scenarios in different system modes.

As discussed, resilience is a concept that is defined on the system level. EATMN is
considered as a system and this study aims at understanding its resilience. Therefore, the goal
of this exploratory study is to work on conceptualizing the EATMN resiliency as an attempt
to investigate the possibility and mechanism of addressing resilience in an ATFM context.
Secondly, the thesis is set to enhance performance of the network from a network manager
(NM, i.e. EUROCONTROL) perspective. The best practice as of today is the use of simulations
to predict demand-capacity imbalances and to evaluate the efficiency of capacity regulations.
This research is providing an alternative by machine learning based predictions instead of
simulations. Demand-capacity imbalances are addressed as network disruptions and capacity
regulations are regarded as reviving measures in a resilient ATM system while performance

metrics are used to measure network resiliency.

In general, the complexity and dimensions of the EATMN make it challenging to detect
disrupted network situations by monitoring procedures and operations. Thus, the term
emergent is used rather than the term resultant to describe such situations. Understanding
network states provides a better opportunity to investigate emergent disruptions rather than
resultant failures. Therefore, one of the objectives of the thesis is to propose a methodology to
capture emergent disruptions as a result of dynamic interactions among DCB actors in tactical

phase of operations.

Emergent forces in a network are more likely to happen in mesoscale or macroscale of the
ATM system. Cook et al. [53] defined three scales to investigate emergent interactions:
microscale, that only considers a single flight; mesoscale as an intermediate scale covering a
given airspace with many flights following a given set of rules e.g. as in a Terminal
Maneuvering Area (TMA) or in Air Traffic Control (ATC) sectors; and the largest scale is

macroscale.

A macroscale air transportation network can be considered at the level of regional, national
and supra-national networks, or even at the level of the global ATM system. As an example of
macroscale studies, impact of major external disruptions on an ATM network has been studied
by Lau et al. [58, 59]. Hosted by DLR-air transportation systems, they analyzed weather-
induced network disruptions that generally have adverse effects on network performance.
This study led to better understanding on interactions of ATM subsystems. But more
importantly it has intensified the necessity of implementing systematic concepts such as

resilience to an ATM network that supports stabilized functionality and performance levels.

Another known factor of macroscale studies on air transportation modeling and resilience

is the underlying data [60] and subsequent limitations. Therefore, this thesis has some basic
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assumptions toward understanding the mode (behavior) of the EATMN as a system. These

collected assumptions enable achieving higher levels of control over EATMN state:

e while in most studies on system resiliency, the key assumption is that the system
is already disrupted; this study is aimed at realizing if a system (EATMN) is

suffering from such a wide disruption;

e the scope is not covering sources of uncertainties in air transportation system
such as prediction of adverse weather situations or large-scale disasters (e.g.
volcano eruptions). The assumption is that such uncertainties are ultimately

reflected in demand-capacity imbalances;

e demand prediction topics and related indicators are avoided since the idea is to
quantify network state that eventually serves as a baseline to standardize

common ATM performance indicators;

e thesize of available ATM data and their update rates challenge the consolidation
of relevant data from different stakeholders. Therefore, selected basic descriptive
statistics at relevant stages of the study are considered to avoid excessive

complications;

e since the initial survey (Figure 2-1) verified seasonal patterns in ATFM delay,
historical data has been compared to understand current network state. This
approach is selected based on the fact that, although the network is always
impacted by different sources of uncertainties, imbalances are part of a finite set

of possibilities -which can be considered as recursive scenarios.

e as a proposed rule, emergent non-nominal states are declared based on control
intervals that assume network states as nominal in 99.3% (corresponding to 2.70)
of the cases. In fact, it is possible to investigate less or more severe disruptions

relative to control intervals by modifying this assumption.

Here major safety issues or significant performance losses are in focus to address network
resiliency. This reminds the different perspectives of resilience and robustness, since a
robust system is hardly designed to prevent circumstances with occurrence probabilities
of 0.7 percent and below. In other words, the control interval assumes that benefiting
from strategic and pre-tactical plans, the ATM network has the flexibility to cope with
disruptions up to 1.5 times of estimated imbalances (+ 1.5 Interquartile Range, i.e. 2.70).
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This chapter provides an overview on the methodological selections and the design of the
research. The main aspect in driving such decisions is the research problem. More, specifically,
it explains why and how the study is started with an exploratory design and extended to
assessments. Further, this chapter gives the procedures to selection of ATFCM regulations,
collect relevant data, analyze them and understand the European ATM network resiliency [61,
35, 62, 63, 64, 65].

Moreover, the close collaboration with international research organizations in the SESAR
Solution PJ09.01 “Network Prediction and Performance” fostered the methodology and its
operational benefits. Project PJ09 had 29 partners ranging from research organizations (e.g.
DLR, Thales), airports (e.g. Heathrow), major European ANSPs (e.g. NATS, DSNA, ENAIRE
and ENAYV), to airlines (e.g. Air France). Such a wide range of audience, enriched the
operational understanding of the different understanding of resilience in European aviation
community. Resilience is more perceived as a safety topic, but resilience (as studied in this
thesis) is also about performance. Performance in aviation is highly connected to indicators
such as delay which is further discussed in this chapter that explains the research design,
describes the EATMN state, predicts disruptions by learning methods, explains data collection
process and concludes by describing developed tools.

3.1. Research design

Considering three forms of research design: exploratory, descriptive and explanatory, this
thesis is following an exploratory theme since the concept of resilience is mainly described
from a safety engineering perspective [33]. Subsequently, resilience engineering [66] changed
the focus to performance management rather than safety concerns. However, in practice the
aviation industry still categorizes the resilience concept as a safety topic (also observed
through early brainstorming sessions of the SESAR project PJ09). In contrast to most studies
that consider resilience as a safety measure with attribute metrics, this thesis is set to be an

exploratory study on European ATM resiliency through performance metrics.

Exploratory studies are those conducted during the early stages of a research, mostly in
conceptualizing an idea or doing feasibility studies (as of framing the ATM resiliency). In
comparison, descriptive researches focus on well-established problems such as delay in air
traffic flow management. Explanatory researches explain why a particular phenomenon exists
to provide answers to its causality. The behavior of EATMN is resilient to some extent and the
first section of this chapter works on network state to illustrate this resilient behavior through

tactical situational awareness.
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3.2. EATMN state

EATMN is unique in its complexity due to numerous stakeholders, airspace configurations
and accommodated traffic volumes. As discussed previously, such a complexity challenges
both tactical visibility and the network resiliency in general. Therefore, in this section the
principle of performance variability used to determine network states. To this end,
performance metrics and indicators are required. However, due to the absence of a solid
baseline (or reference state), network state is proposed to be bound to consolidated. The
methodology is based on capturing the emergent disruptions as drivers of performance
variability. A key assumption and claim is that emergent disruptions across network are

revealed through capacity regulations as restorative mechanisms for tactical ATFM.

After describing the regulation data, this section addresses the network state definition at
two divided levels of macro and micro analysis. Macro analysis serves as a constant

monitoring scheme while micro analysis is only focused on disrupted states.

Based on capacity regulations the results show that proposed statistical approach is even
able to distinguish non-nominal disruptions to either crisis or critical states. The proposed
approach is then demonstrated by a data sample covering six months. Furthermore, to assess
the severity of non-nominal states, the probability distributions of different regulation types
are estimated. This section is then concluded by offering insights on long term network

resiliency based on estimated probability distributions.

The general overview of how resilience is bound to state of the system is emphasized in
Figure 3-1. Knowing the level of system performance at each given time (P(t)) the state can be
monitored based on the extent of disruption. The general assumption is that in the design
phase, the realistic assessment of system internal and external forces (in strategic and pre-

tactical phases) enables EATMN to maintain its functionality for most of its life cycle (remain

nominal).
P(t) S \P(t) < 0 \P(t) > 0
A 0 Robustness S Resiliency S
ot recovered "0 recovered

perturbation)

Resilience Path

critical

*S

Disruptive event
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Disruptions U

Reviving actions

network resiliency

time

Figure 3-1 Symbolic model showing the difference between robustness and resilience of a system and their
connection to system state. S represents the state of the system and P is the level of its performance.
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Figure 3-1 shows that a resilient network accepts the odds of performance loss beyond its
robustness (critical/crisis), yet still is able to revive its core functionalities through resilient
capacities to reach a new steady state (Srecovered). In order to realize such a resilient EATMN, the
proposed approach is to (I) find most contributing data that describes and contributes to
tactical situational awareness (measures levels of S), and then (II) make statistical inferences
for resilient decision-making (is the network degrading to a critical state or a crisis?), and (III)
develop monitoring measures, i.e. thresholds for network state identification (i.e. micro

analysis that informs on magnitude of disruption).

An unusual ATFCM situation or even crisis might be triggered by imbalances between
capacity and demand as a result of major capacity losses. Another trigger may be major failure
of information flow in at least one sub-system of the network [67]. Such situations are well-
planned and managed by NMOC. Guidelines are also available for local contingency planning
for national ANSPs in the event of failure or disruption of related services. These definitions
and such procedures are contributing to safety-lI perspective [68, 66]. Safety-I is more
concerned on failures or adverse outcomes and tries to enhance preventive mechanisms or
containing the consequences. Conversely, safety-Il perspective is more bounded to
performance levels since it is focused on successful outcomes (safe and efficient performance)
rather than mitigation plans. Safety-II considers performance as a variable, that leads to study
system characteristics to understand successful safety mechanisms. System resiliency and
safety-II perspective are more aligned as both rely on constant performance monitoring and

are not only focused on degradations.

In general, the complexity and dimensions of the EATMN make it challenging to detect
disrupted network situations through monitoring numerous procedures and operations.
Thus, the term emergent is used rather than the term resultant to remind that causal links are
not at focus. Understanding network states provides a better opportunity to investigate
emergent disruptions rather than resultant failures. Therefore, following sections provide a
proposed methodology for capturing emergent disruptions as a result of dynamic interactions

among DCB actors in the tactical phase.

In search of most contributing data-type different databases were compared with respect
to certain criteria (section 3.2.1). The acquired data are firstly used to provide statistical
inferences about network state in general (section 3.2.2) and secondly to provide a more

detailed overview on characteristics of identified non-nominal state (section 3.2.3).

3.2.1 Selection of regulation data (ANM data)
The consolidation challenge of relevant data from different stakeholders and update rates
is considered to be managed by basic descriptive statistics and several data-types and

databases were compared with regard to the following criteria:
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e Update rate: the database must be published throughout the tactical and pre-
tactical phase to be more relevant to decision making processes on the day of

operation,

e Granularity: selected data should be able to provide required precision to

understand types of disruption including spatial and temporal dimensions,

e Coverage: selected data shall be relevant and accessible by all layers of decision

makers across the European Civil Aviation Conference (ECAC) area.

According to the mentioned characteristics, delay statistics including reports from the
Central Office for Delay Analysis (CODA), statistics and forecasts (STATFOR) and those that
are published in the post-operational phase are not considered. Likewise, databases including
National Performance Reports (NPR) and ATFCM Statistics and Network Operations Reports
are only published for authorized users and cannot fulfill the coverage criterion. Among all
capacity (ATFCM) regulations denote the results of collaborative decision making. In fact,
regulation is a method of matching traffic demand to available capacity by limiting the number

of flights planned to enter an airspace or aerodrome [7].

ATFCM regulations are initiated based on the evaluation of ATFCM Daily Plans (ADP)
from the pre-tactical phase while being updated constantly in tactical phase. Regulations
correspond to network states in the restorative level of resilience and are accessible through
ATFCM Notification Messages (ANM) that are published by NMOC before the day of
operation. In contrast to ADP, ANMs are updated throughout the tactical phase. Moreover, it
is considered as official medium for the notification of ATFCM measures (regulations) to all
actors [69]. These messages are offered to provide a summary of planned measures and to
promulgate any specific instructions on them to represent each ATFCM regulation. Finally, as

ANMs fulfill all three criteria it has been selected to represent ATFCM regulations.

The evaluated amount of data at this stage of the study covers six months, from May to
October 2017. The investigated period of year is chosen as previous studies [70] on European
air transportation system revealed that network centrality measures for both air navigation
route network and airport network are significantly fluctuating from AIRAC! sixth cycle

(May) up to the end of eleventh cycle (October).

3.2.2 Macro analysis

To identify potential non-nominal states, a macro analysis is performed that is focused on
regulation counts (Step 1) and durations of active regulations in the tactical phase (Step 2).
Since the interest lies in emergent characteristics of non-nominal network states, the approach

is depending on the size of the assessed data sample. In other words, a benefit of statistical

1 Aeronautical Information Regulation And Control (AIRAC), see annex B.1.
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inferences is that based on sample size, statistics get different values with the same confidence
levels (i.e. different patterns can be monitored with different thresholds). This dependency
enables the realization of temporary patterns as well. This means that a non-nominal state is
able to be compared against various time frames of network performance. Here, ANM data
are analyzed in two different time frames: six-month (seasonal patterns) and single month

(weekly patterns).

As discussed in previously, resilience is about network behavior in disrupted conditions
and not only in degraded conditions. Therefore, in step 1 (counts) a two-sided control interval
is used to detect outliers because the intension is to monitor both negative and positive
deviations. Such incidents (positive disruptions: absence of regulations) may indicate an
impact of other factors (e.g. airline strikes). They may also provide the opportunity to update

performance baselines in terms of accommodated traffic demand.

In step 2 regulation durations are additionally evaluated as they provide more details on
the severity of a network disruption. Despite the relevance of number of affected flights to the
network state, the concrete number of affected flights per ANM is only available to all actors
in post-operational databases. Therefore, the only tactically available data are regulations,
from which their magnitude can be assessed by their duration. Consequently, outliers are
identified with respect to calculated mean and standard deviation as descriptive statistics of

regulations” duration per day.

The mean duration of published regulations represents the overall severity of the disrupted
network condition while standard deviation indicates the dispersion of the problem.
Depending on different combinations of mean and standard deviation values, non-nominal

states are classified to critical and crisis states (Figure 3-2) with the following definitions:

e C(ritical state: Regulations show large mean values (exceeding control intervals)
accompanied by significant large standard deviations. Such a condition emerges
when severe but local disruptions are affecting network operations. Hence such
states need NM support in collaboration among local actors of both ANSP and

airport networks to handle traffic flows.

Based on this definition and added dimension of activation time for regulations, both
nominal and critical states are broken down into more specific types of states when the
methodology is implemented into developed tools (see NetRes in annex C.2).

e Crisis state: Regulations show large mean values with rather small standard
deviations. The network is facing a wave of prolonged impacts restricting safe
operations. In such situations the loss of airspace capacity is so severe that the
number of available restorative measures is very limited. Accordingly, NMOC is

the main actor in handling the situation which is no longer a regional issue.
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Figure 3-2 Two-step model of network state detection. In macro analysis each day (a daily sample) is compared
against thresholds corresponding to selected reference sample (e.g. a month). Note the different procedures of
reviving a critical state and a crisis in EATMN.

In strategic planning horizon, different stakeholders are more concerned on reserving the
capacity and scheduling their resources in advance. In pre-tactical phase there is a need to re-
allocate the tasks and resources in accordance with latest updates of other stakeholders. Such
updates (Events, serious prolonged weather conditions, strikes or major technical problems in
resources such as maintenance issues) or disturbances may interact with each other and

potentially lead to adverse impacts that may span over multiple spatial and time scales [55].

As provided in Figure 3-2, the devised algorithm proposes a mechanism to capture network
states and only in case of a non-nominal situation, the algorithm proceeds to micro analysis
that improves the restorative level of resilience and provides analytics for absorptive and
adaptive levels of resilience. This model was also documented in PJ09 project [11] after being

presented to project partners (refer to section C.2.3 and Figure C-16 in annex).

3.2.3 Micro analysis
The micro analysis considers type of regulations and network states. Results also contribute
to overall robustness of an ATM network by realizing critical airspaces. For such an analysis,

the following challenges are identified and addressed:

e Data type: at tactical phase, publicly available data are ANM, ADP and Initial
Network Plan (INP) but the structure of ANM data is different from the ADP and

Initial Network Plan (INP) in terms of terminology and format.
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e Data precision: each ANM record (i.e. regulation) can be evaluated in terms of
the number of affected flights. In fact, the operational flexibilities on flight plans
and delay assignment algorithms result in different counts for regulated flights.

However, such details are published in the post operations reports.

e Temporal dimension: ANM data are updated in tactical phase by push messages
and accordingly contain ‘change’ and ‘cancellation’ records. But ADP is

presented as a reference document that serves as an input for tactical phase.

e Spatial dimension: ANM data are referenced to traffic volumes. A traffic volume
can be referred to an airspace, point, aerodrome or set of aerodromes, i.e. they
can be assigned to both ANSP and airport networks. Diversity in visualization of

data is covered by considering related ACC

that leads to homogenous set of reference locations.

With respect to mentioned challenges, ANM data is divided based on the regulation reason
or cause. As stated in the ATFCM user’s manual [10], causes of regulations are divided into 14
different categories. Major five types are considered including ATC capacity, ATC routings,
ATC staffing, aerodrome capacity and weather. The remaining nine categories are integrated

into a single type, named ‘Others’.

To provide secondary inferences on a critical state, initially the distribution of data is tested
by quantile-quantile plotting to understand the dispersion of regulation types and to realize
any similar distributional patterns among different regulation types. Figure 3-3 depicts the
comparison of each regulation type against normal distribution through estimated normal
cumulative distribution functions (CDF) on sample data. The advantage of the given plot is
that it shows different statistical aspects including the shift in scale or location, presence of
outliers and changes in data symmetry. The figure also shows the expected significant
deviation from fitted normal distribution of the integrated category of ‘Others’. Upon
declassification of mixed 9 regulation types, it has been realized that the regulation type ‘ATC
industrial action’ (mostly strikes) is the main driver of this deviation. Likewise, weather
regulations are proved to be far from best fitted normal distribution. Knowing the significance
of weather impact on ATM network, weather regulations are selected to demonstrate the
methodology in estimating the Probability Density Function (PDF). As the most challenging
type, weather regulations are proved to be from a skewed and heavy-tailed probability
distribution (Figure 3-4).
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Figure 3-3 Simultaneous comparison of ANM data against estimated normal distributions. Note the extended
distribution of Weather and ATC Capacity compared to other regulation types. Such regulations are expected to
have a heavy-tailed distribution.
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Figure 3-4 Sample histogram and estimated probability density function of regulations’ count from ANM data
(2017: 01.May-31.Oct).

For micro analysis, the counts of weather regulations in ANM data are plotted separately.
Results of initial sets of curve-fitting proved that the probability distribution curve is
considerably skewed and has an asymmetric multi-modal shape as given in Figure 3-4a. Such
distributions cannot be represented by parametric distributions like Poisson or Gamma.
Therefore, the use of Kernel density estimation with a normal smoother function is proposed.
It is a method for estimating PDF of samples from an unknown distribution. Kernel estimation

actually computes the probability of data by dividing the domain into intervals and then
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estimating PDFs for each. The final PDF is provided by merging them (Figure 3-4). Kernel
estimation relies on a probability function and a fixed bandwidth (denoted by bw). Dashed
curves are based on the best bandwidth that statistically minimizes the errors while black
curves show the bandwidths from the proposed correction method as estimations for: (a.)
weather (heavily skewed) and (b.) ATC capacity regulations (multi-modal). Note that for other

types of regulation there is no need to correct the bandwidth (as given in (c.) and (d.)).

Kernel density smoothing methods mainly differ from each other based on the kernel
function (K) used. In the case of using the PDF of normal standard distribution (zero mean
and unit variance), the smoothing is called normal kernel. Other common kernel smoothing
functions are called box, triangle and epanechnikov [71]. The final distribution is estimated by
cumulating the probabilities based on multiple estimated normal distributions for each

interval.

Normal kernel smoothing is used with the formulae given in equations (1), (2) and (3) that
are evaluated over each data point within the interval [xi — (bw/2), xi + (bw/2)]. As a normal
kernel, the error function (erf in equation 3) is used as it denotes the probability of observing
a random value in the interval [-X, x]. The equation given in (3) is needed for the computation
of CDF when they are transferred from a discrete into a continuous distribution. Cumulative

functions are later required to set thresholds for each regulation type.

Fow () = Bk [K (5] o
K(x) = \/% ej—c_z 2)

Erf(x) = \/%f_xx exp(—t?) dt (3)
f%exp (_sz) dx = %erf (\7_5) +C (4)

The distributions for weather and ATC capacity regulations as given in Figure 3-4 are with
regard to described normal kernel smoothing method. The right bandwidth is obtained from
minimization of errors. This statistical approach assures the best fit to the data but results

should be refined to be consistence with the operational understanding of the data.

From a pure mathematical perspective, it is well established to use minimization of errors
to select the best bandwidths. However operational understanding of the data reminds the

necessity of assuring the values of calculated bandwidth for each regulation type in our study.
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As given in Figure 3-4, statistically optimal values of bandwidths are specified by dashed
curves, but these bandwidths need to be verified as negative values cannot represent the
number of regulations on a given day (Figure 3-4a and 3-4b). The corrected bandwidth for
such type of regulations is actually the greatest integer less than (floor or round down) half of
the optimal bandwidth. Characteristics of such a corrected curve are more contributing to
identification of thresholds for detecting outliers in shuffled data. Also, less smoothing
decreases the loss of precision due to the probability of observing negative values which has

no added value.

It is also realized that for larger datasets the recommended bandwidth is even smaller since
the data size has a negative correlation with bandwidth. For other regulation types, no
correction was applied and the statistically optimal bandwidth is considered for estimating
the probability functions. Nevertheless, the screening of the results with both methods was

also considered for every type of regulation (Figure 3-4).

Once the probability density curve is extracted from the data, a second set of thresholds
according to reference confidence levels is calculated within the micro analysis. In the results

section values based on estimated CDFs are given (Table 5-1).

ANM messages can also provide spatial patterns of regulation types (Figure 3-5). Also,
potential relationships among types of regulations are addressed based on estimations in

micro analysis (see results section Figure 5-2).

Figure 3-5 projects regulation data on airspace volumes considering ACC areas of
responsibility. The borders for each ACC (relative to Cross Border Area- CBA) are gathered
from the EUROCONTROL’s Demand Data Repository (DDR2). On top of quantitative results
of the micro analysis, such figures provide geographical perspective for disrupted areas.
According to the given guidelines on regulation [10], each type can be interpreted differently
with regard to consequences it implies. ATC capacity regulations may include flights in
departure, arrival and en-route phases. Hence, the potential efficiency of such regulations is
expected to be high in resolving imbalances between demand and capacity (Figure 3-5a).
Moreover, weather regulations (Figure 3-5b) denote a reduction of planned capacity. These
regulations also affect departure, arrival and en-route segments but the prediction uncertainty

and available measures to counteract are quite different than ATC capacity.

71



3. Methodology

70°N " No. of Regulations ,Cg -
I 50-100 4
: | 100-300
- [__1300-500
I 500-800
[ 200-1000
I 1000+
’ S
SRR
5°°N - 3 reen e T i e S B
40°N| e
o
30°N ;9 P
H & : \-\.
ZOGN i i i i i \‘\\\‘
12°W 0° 12°E 24°E 36°E .

a. ATC Capacity c. ATC Routings e. ATC Staffing

Figure 3-5 ACCs and count of different ATFCM regulation types across Europe (May to Oct. 2017) based
on ANM data. Geographical patterns for five major regulation types are provided as heatmaps.

There are more specific regulations like ATC routing regulations (Figure 3-5c) that are only
applied to en-route flights. Similarly, aerodrome capacity regulations (Figure 3-5d) only affect
departures and arrivals, which are more contributing in understanding airport network
disruptions. Finally, ATC staffing regulations (Figure 3-5e) are less frequent across the
network. This category includes unplanned staff shortage and has signs of correlation with
other type of regulations. In the result section a closer look to potential causal relationship
among different types of regulations is provided. Generally, the study shows that regulation
types reveal even more detailed input for other levels of resilience with regard to different

affected flight phases and driving factors.

3.3. Disruption management procedures

As declared before, robustness of a system is the ability to avoid majority of failures. This
means that there are a number of cases that can be detected based on the information that are
used in design phase of the system. For instance, the underlying processes such as flight
scheduling, sequencing processes and optimization models, each have defined risk
management plans and contingency strategies to maintain functionality or minimize the
impact of possible failures. A good example of this case was recorded on 3rd of April, 2018 at
EUROCONTROL.

EUROCONTROL reported [72] that the flight plan data in the Network Manager’s (NM)
IFPS and Enhanced Tactical Flow Management System (ETFMS) was accidentally deleted on
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the day. The tactical operations were disrupted for a total of 12 hours and 40 minutes. The
ATFM procedural contingency plan (a robustness plan) was activated which included
precautionary reductions in ATC capacities and reduction of airport departure rates (ADR).
As the backup solution, EUROCONTROL activated the contingency site at the
EUROCONTROL Experimental Centre (EEC) in France to contain the impact. The robustness
of the system and designed risk assessments and contingency plans allowed the European
airspace to cancel only a few flights at the day and the negative impact was only captured by

excessive delays.

Similarly, for airlines, robustness is conceptualized in different ways so that for this
stakeholder majority of the deviations are contained in normal operations. One of them is the
designed buffer in scheduling process. Buffers are also referred as scheduling contingencies.
Table 3-1, provides an example to better understand different type of allowances in airline
scheduling. The “Off-block” buffer is allocated to the aircraft in getting from gate A to gate B.
The purpose of this buffer is to absorb off-block delays such as taxi, line-up, runway
sequencing (in ASMA- Arrival Sequencing and Metering Area) and airborne delays (such as
arrival management delays). Note that this type of buffer in Europe is consistent with the
duration of a departure slot (15 minutes). The “At-gate buffer” is considered to cover delays
incurred at destination to secure a punctual departure for the next leg of the aircraft. This type

of buffer is designed for ground delays and possible recovery between rotations of airplane.

Table 3-1 Timetable for an airplane to illustrate buffers

Leg  Scheduled Off- Scheduled Turn- Slack  At-gate
departure block arrival around time time buffer
buffer (min)

1 dep. A: 0730 15 arr. B: 0930 60 Omin 15 mins
2 dep. B: 1045 15 arr. A: 1300 65 Omins 10 mins
3 dep. A: 1415 15 arr. B: 1615 60 10 mins 5 mins
4 dep. B: 1730 15 arr. A: 1945 65 10 mins 0 mins

5 dep. A: 2100 15 arr. B: 2300 (out-stationed overnight)

Adopted from [73]

Nevertheless, it might be inevitable for a flight to wait for connecting passengers or crew
rotations before continuing to the next leg. Also, there might be an issue over the available
departure slots at the airport. “Slack time” is the built-in flexibility to absorb such

discrepancies for airlines.

Similarly, other stakeholders ensure some degrees of freedom in strategic planning phase
to deal with the concept of robustness. As mentioned before, this capacity of handling such

sorts of deviations is noted as absorption in Resilience Engineering.

However, terminology of industry does not clearly distinct robustness from resilience. a
quick glance at industrial solutions from related businesses confirms this. In Europe,
Lufthansa systems (one of the leading providers of IT services in the airline industry) offers a

number of different scheduling solutions to enhance airline abilities in their planning. These
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services often follow other objectives than what academia pursuits in resilience. To present the
bridge between business objectives and robustness/resilience objectives, a short review of a

tool from Lufthansa systems is given next.

Lufthansa in partnership with airlines offers NetLine/Plan tool based on 20 years of
experience in managing planning challenges. The tool’s primary goal is to maximize
profitability of an airline’s schedule. At the very first stage, airlines need to optimize their route
network. This is done by consideration of both market demand and other airspace users
(airlines). In fact, there is a need to not only optimize the connectivity of hubs but also to
monitor the route network!. In general, such solutions (designed to optimize airlines flight
planning procedures) are based on the ATM statistics of strategic phase (up to 18 months

before the day of operations) and market analysis in coping with following challenges:

e Connectivity of Hubs: slot constraints in managing the passenger streams in hubs
are one of the main issues for airlines, especially airlines that rely on more than
one hub in their operations. Consequently, solutions are offered in terms of

decision support systems to deal with raised issues on airline schedules.

e Route network: each airline needs a calculated visibility over flight schedules in
case of planning new routes. For instance, flight connections are managed and
scheduled by consideration of factors such as local traffic requirements, crow

rotation plan, and fueling options.

Most of the described aspects are challenges studied in the strategic phase of ATFM?2.
Strategic solutions offer robust flight planning procedures to maximize profit and prevent
failures. All robust solutions, specifically in ATM have an intrinsic flexibility which is essential
for a smooth traffic flow on the day of operation, hence slight deviations from plans and
schedules are anticipated in business solutions. The challenge is to control such flexibilities by
acceptable deviation tolerance levels for flight plans. Punctuality (not robustness or resilience)
is the dedicated topic in ATM that investigates adherence to these tolerance levels.

Nevertheless, Figure 3-6 shows the decreasing pattern of punctuality in both US and EU.

! This phase is covered by two solutions from Lufthansa systems: NetLine/Plan Hub optimizer and NetLine/Plan
Route optimizer
2 Strategic phase covers plans from several month up to 7 days before the day of operations.
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Figure 3-6 Arrival punctuality for main 34 airports. The vertical axis is showing the percentage of arrivals
delayed by less than or equal to 15 minutes vs published schedule, [9]

In Europe the decreasing pattern is mainly driven by factors such as en-route ATC capacity
shortage, adverse weather and ATC strikes (all regarded as disruptions in resilience). These
tactical factors cannot be fully absorbed by strategic robust planning because of required
flexibility. Implicitly, deterioration of such tactical issues may lead to network wide
disruptions. Therefore, resilience as a broader concept that accounts for system dynamics is

more capable than robust solutions in achieving higher level of control on EATMN states.

With regard to different levels of resilience, on top of effective strategic disruption
management procedures (absorptive level), the interdependencies should be modeled to reach
restorative and adaptive levels of resilience. From the Netline/Plan tool it is showed that the
leading industrial solutions use state of the art methodologies but to profitability and not
system resilience. This demonstrates that the announcement of detected EATMN states is less

likely to be properly addressed by industrial tools and solutions.

Therefore, the thesis is continued by taking a data driven learning approach to navigate its
exploratory research with trending methodologies across industry to keep the pace with
stakeholder needs in Europe. To model raised interdependencies from EATMN complexity

and its extent, this study investigates holistic learning methods based on enriched data flows.

3.3.1 Feasibility of machine learning approach

Perceiving EATMN in terms of resilience requires a closer look at its behavior. At network
level, the operational procedures that structure ATFM are fully established and constantly
updated through extensive research programs such SESAR. But such researches mainly

contribute to absorptive level of resilience rather than restorative level at tactical phase.

At restorative level, reaction time is limited and active situational awareness is crucial.
Compared to other complex systems, data availability in ATM enables Machine Learning (ML)
to contribute to required situational awareness. ML in regression and classification problems
is most effective when either the causal link cannot be defined or emergent behavior needs to
be monitored. In EATMN, both the use of numerous procedures by different ACCs and impact
of emergent disruptions such as weather conditions, motivate the use of ML to understand the

dynamics in each network state.
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Indeed a few studies are dedicated to take ML in addressing challenges of restorative level
of resilience, especially among American academia. For instance, Gorripaty et al. [74]
considered airport demand figures, capacity estimations and weather situation
(METeorological Aerodrome Report- METAR data) to find the most similar day to day-of-
operations. The methodology is based on a random survival forest model, that is a learning
method based on a feature selection mechanism to manage missing data or process noisy
features [75]. Their study takes data from 2011 to 2015 to offer a decision support tool for only
one airport at tactical ATFCM phase. In contrast to one airport, this section is focused on much
wider geographical span that contains 70 congested airports. At such a scale, complex
dynamics challenge the required computational power. ML methods benefit from huge
datasets on a process to learn from it. But required data fusion from different data types (i.e.
demand, capacity, weather, etc.) on top of numerous processes at tactical phase is less likely
to guide feasibility study at current scope. Instead, metrics such as delay seem to be more

instructive.

ML models for delay

The study of air traffic delay (i.e. a performance metric of resilience) is a live topic and in
US, the literature is more extended in predicting departure delay (in Europe equivalent to
airport delay as part of ATFM delay). For instance, Rebollo and Balakrishnan [76] used the
random forest algorithm to predict departure delay with the help of data from National
Airspace System (NAS). Their study estimated the network related delay on a certain Origin-
Destination (OD) pair. In a similar study by Kim et al. [77], Recurrent Neural Network (RNN)
was applied as deep learning method to predict aggregated delay.

In a joint study by SESAR (Europe) and NextGen (USA), Kravaris et al. [78] studied arrival
delays in a multi-agent system setting. Three different methods of alternative multi-agent
reinforcement learning were implemented. The work was further extended by experimental
results to study the significance of methods in a follow up paper [79]. Arrival delay was also
addressed as a predictability estimator by Montes et al. [80] in a ML study. Similarly, OD pairs
are initially clustered by a classification with density-based clustering algorithm. Then
regression models were applied for each cluster to predict delays. However, none of the

mentioned methodologies predicted delay on a network level but mostly on specific OD pairs.

In Europe, among unified databases and standard definitions, specific data types such as
ATFCM regulations are effective assets to resolve complexity of delay prediction on a network
scale. Despite the following advantages of regulation data, they are less explored in this

regard;

e Regulations are already classified to fourteen different types, meaning that the need for
clustering and a classification problem is already covered by available features of ATFCM
regulations;
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e ATFCM regulations can be planned both in tactical and pre-tactical phase of ATFM.
Therefore, application of ML methods can be extended to tactical phase depending on
the model inputs;

e Each regulation is defined for a reference location, which is not an OD pair or a specific
route but they are valid for an airspace block (i.e. a traffic volume). In fact the FMP which
proposes the regulations to resolve DCB problems is defining the reference location. This
aspect alone opens a new opportunity to set a comparative delay prediction study on an
agent-based model taking FMPs as agents rather than flights.

Subproblem-1I definition

Learning models are investigated from two defined sub-problems on feasibility (I) and
performance/prediction quality (II). Subproblem-I investigates the applicability of ML
methods in predicting ATFM delay with capacity (ATFCM) regulation data. As candidates of
two different families of learning mechanisms, a Sequential Neural Network and a Random
Forest Regression were applied to pre-processed data. Generally, neural networks belong to
pattern recognition models while random forests are an extension of decision trees in which

different features of data are handled as decision points.

In pre-processing some statistical features are calculated on reference locations (i.e. ACC)
from capacity regulation types. These calculated features were considered as added features
to input data in predicting normalized mean ATFM delay. Both models are coded in Python

3.6.8 environment by Keras library and Scikit-learn module.

Sequential Neural Network (SNN)
Sequential neural networks [81] build high-level features through their successive layers.
SNNs are linear stack of layers without any arbitrary graphs of layers such as parallel or

branching architectures.

Denoyer and Gallinari [81] denoted the structure of a SNN in comparison to NNs to
illustrate the advantage of SNN in using a sequence of transformation functions rather than a
global one in neural networks. These models have a Directed Acyclic Graph (DAG) structure

defined as follow:
e FEachnodenisin {ny, ..., nn}, where N is the total number of nodes of the DAG;
e nirepresents the root node (without any parent node);
e cnicorresponds to the it child of node n;
e leaf(n) is true if it is a node without children;

e Each node is associated to a particular representation space and act as layers in

classical neural networks

o the dimension of the root node is the dimension of the input layer,
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o if leaf(n) = true then the dimension of the leaf nodes equals the output

layer;

e Mapping functions (f,,, € F) transforms the input x in the node n to adjacent
node of m. The output produced by the model is a sequence of {-transformation

applied to the input like in a neural network; and

e Every node is also associated with a selection function, which is a probability
function denoted by P» that assigns a score for each child of node n. This function

defines a probability distribution (z) over the children of a given node.

The learning algorithm in case of a gradient decent, tries to minimize the error of expected
values from mapping and selection functions. Each chain of transformation functions from the
root node to a leaf is denoted by H in Equation 5. This equation evaluates the performance of
the SNN architecture (J) through the expected value (E) for a given 0 and vy as of parameters
for mapping (F) and probability (p) functions. Same parameters also serve in learning
procedure, that is formulated as an optimization problem on gradients (V) of output vectors
(Equation 6).

](9' y) = EP(x,H,y) [A(F(X, H)r 3’)] (5)

Vo, J(6,y) = f Vo, (P(H|x))ACF (x, H),y))P(x,y)dHdxdy (6)

From the same logic the proposed architecture is built with an input layer feeding four
hidden layers to converge into the output layer. The proposed SNN architecture allowed
experimenting on different activation functions at each layer and for the case of regulation
data, Rectified Linear Unit (ReLU) as the activation function for all layers led to better results.
The NN is then compiled by Adam [82] optimizer because it converges faster and requires
little memory requirements compared to normal SGD (stochastic gradient descent optimizer).
Adam is also a suggested algorithm for noisy gradients that is the case with regulation data

since delay can variate significantly due to temporary factors such as weather.

One of the reasons that Adam algorithm is efficient with noisy data is its choice of step size.
Step size (A;) at each iteration (t) is calculated based on the learning rate (a), exponential
moving averages of the gradient (momentum or m,) and squared gradient (v;) as given in

Equation 7.
A= a.my/ \/U—t 7)

a.(1—=Bp)/Vy1— B2 A=-B)>y1-5;
a ) 1-p1)=y1-5; (8)

|A] <
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Step size is bounded by two upper thresholds based on the chosen hyper parameters of
Adam (a,p; and B, ). Inequality 8, provides these thresholds based on fB; and f,, ie.
exponential decay rates for the moving averages (m.& v;). In other words, if the algorithm at
a time step reaches a gradient that has been zero at all previous time steps (severe sparsity),
Adam continues with larger step size than the specified learning rate. To illustrate, in case of

ap; =09&p, =0,999 the step size can jump to 3 times of the specified learning rate:

1-8 01 0.1

= = ~ 3.125 |
J1—-p, V0001 0,032

Such an advantage is an efficient asset in processing regulation data with important
outliers. As an instance Istanbul airport (LTFM) had a closure in Jan. 2022 due to heavy
snowfall and collapse of a cargo terminal roof. Airport authorities had problems in estimating
the required time for retrieving operations. Because LTFM is a busy hub in EATMN, many
flights had to be heavily delayed by network manager (11900 minutes on January 26 in Figure
3-7). Such incidents happen rarely but cannot be ruled out as an outlier specially if one
considers that high ATFM delays are recorded for the following day as well (10806 min for
27th).
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Figure 3-7 Istanbul airport (LTFM) daily delay on 27. Jan.2022 (EUROCONTROL- Aviation intelligence)
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Relying on the advantages of Adam over described characteristic of regulation data, the
algorithm’s performance is tested at three levels of learning rates (0.1, 0.01 and 0.001). Results
of experiments on fixed loss function (Mean Squared Error), indicated that a 0.01 rate delivers

better results in terms of computational time and calculated Root Mean Squared Error (RMSE).

Random Forest Regression (RFR)

To compare results from SNN (from pattern recognition models), RFR is explored (from
decision tree models). Despite stablished ATM procedures across Europe, that assure
acceptable level of performance for daily operations (robustness), emergent disruptions pose
unforeseen downfalls. A data science perspective translates this aspect as a system that

produces low-biased output but with a meaningful variance. Bagging (i.e. bootstrap

79



3. Methodology

aggregation) is an ensemble learning technique to reduce variance within a noisy dataset. The
name bagging comes from the sampling technique such that for every learning model (also
referred as weak learners) a subset of data is independently sampled (a data point can be

selected for more than one sample).

As an extension of bagging in ensemble learning, Tim Kam Ho [83] proposed a method for
extending decision tree-based classifiers. The method of random forests is based on building
multiple de-correlated trees (i.e. weak learners) in a randomly selected feature space. Breiman
[84] extended this method in machine learning knowing that the generalization error
converges as the number of trees in a forest grows. In his study it is proved that random forests
do not overfit and therefore they are promising in predictions (both in classification and

regression problems).

This can be statistically expressed by knowing that trees of a forest are identically
distributed, therefore every tree in a forest predicts with the same variance (0?). The average
of B trees has a 0?/B variance and since the trees are identically distributed (but not necessarily
independent) with positive pairwise correlation (p), the average variance is calculated by
(Equation 9)

Var = po? + B'Daz. 9)

When the forest grows (increased B) the second term approaches zero, i.e. the average
variance can be decreased by reducing the correlation among trees (p). In a random forest, this

is realized by random selection of input variables at each decision tree.

Random Forests (RF), compared to other classification and regression models, such as
logistic regression boosting and linear regression, deliver a superior performance [85].
Moreover, it has been applied in prediction of air traffic delays by Rebollo and Balakrishnan
[86]. Their work noted the advantages of RF as:

e automatic generation of variable importance,

¢ low sensitivity to outliers in the training data,

e efficient in cases that number of variables is large compared to number of samples.
With the intended small scale at feasibility check, i.e. limited number of available data

points for a given Area Control Center (ACC/FMP) over a year, and with consideration of

above-mentioned advantages, RFR is chosen to compare the results from SNN.

Data

At this early stage EUROCONTROL'’s post-operational data on ATFCM regulations is
acquired. A more comprehensive overview of regulation data is provided at section 3.4 (data
collection process). As the use-cases, capacity regulations from Langen FMP (EDGG) for the

years of 2016 and 2017 are selected. For each regulation twenty different parameters are
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recorded in the data structure. Since the purpose here is to only consider one FMP, the balance
between number of parameters (i.e. data features) and count of data points is less
proportionate and needed to be managed. Consequently, the number of parameters is reduced
by removal of less contributing features and some are expressed in form of indicators. As a
result, the set of features per regulation has been characterized as of Table 3-2. This reduced
set does not include any categorical features such as type of regulations. In other words, no
label encoding was required in data pre-processing. Also, each feature is normalized to assure
balanced learning for the estimators by avoiding any feature dominance. Daily average ATFM
delay is predicted value from the first five rows of Table 3-2 that form features per data point
in pre-processing (sum and average values are used in (11 and 12) since each FMP can have

multiple incidents of a regulation type on a day).

Table 3-2 Data Preparation (Features for feasibility study)

Code Formula Description Type/Class
TiM H regulated traffic * H Regulation Duration (min) Magnitude score of each FMP based on Magnitude
mean direct impact of regulated flights & idicator/input

H Activation Noti i . L .
EHRRIRL R Reg duration together with inverse relation

(10)  with activation notice?
M Y Regulated traffic * Y Regulation Duration (min) Cumulative version of TIM Magnitude
Y’ Activation Notice (min) idicator/input
(1)
T2RA Y MP Regulated traffic Time to recover (Applied) : measuring the ~ Time to Recover
Y. Activation Notice (min) (12)  direct impact of Most Penalized Regulated indicator/input
Traffic and inverse role of Activation notice
per regulation
D i Repmilation Dirion fmin Duration of ATFCM Regulation Time to Recover
parameter/input
LT L Activation Notice (min) Lag-Time (Activation Notice) Time to Recover
parameter/input
ATEM L ATEM delay (min) ATFM delay (airport and en-route) predicted variable
[output

# Activation Notice or Lag-Time is the time between the publication of a regulation and the time that the regulation becomes effective

Along with main parameters of ATFCM regulations, indicators are proposed in terms of
resilience. To avoid multiple features for limited data points, a feature selection is conducted
(among indicators and parameters) to focus on dominant features and Table 3-2 only provides
the selected set. The balance between input vector and number of data points result in less

computational effort and lower risks of overfitting.

The column ‘type/class’ in Table 3-2, identifies type of inputs the reduces set belongs to.
Both magnitude and time-to-recover, represent different aspects of DCB disruption’s severity
and will contribute to better situational awareness (esp. in case of a preferred weighted input
vector). Training and testing datasets are separated by a fixed rate (70% - 30%) for every case
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of Table 3-3. Among different types of regulations, weather regulations (WX) are intentionally

separated in different cases since its nature is from higher levels of uncertainty.

Results

The two methods of RFR and SNN are applied on twelve identical cases in terms of size of
input vector and respective year of data. Filtered data provide larger dataset in 2017 compared
to 2016 (Table 3-3). Nevertheless, SNN is verified to deliver better predictions in every case
(note the RMSE scores). Figure 3-8 and Figure 3-9 provide regression charts for two selected
cases (best SNN results). The recorded delay per capacity regulation is fluctuating even after
being normalized. Sequential plots in these figures show that SNN is less likely to be affected
by short term patterns. However, both RFR and SNN methods proved to be capable of
predicting extreme chaotic behavior of data points. This is expected from SNN, because data
is shuffled to eliminate effects of such data characteristics. But, RFR (regardless of data
shuffling) has higher prediction errors. Moreover, figures reveal that RFR is less efficient in

predicting high values of delay (sorted values) while SNN seems robust.

Table 3-3 Comparison of applied methods on different cases

CaseID WX Input feature RFR SNN Train Test
TIM T2M T2RA D LT score Score points  points
(RMSE)  (RMSE)

2017-10  Yes * * 0.1255 0.0787 281 121
2017-11  Yes * * * 0.1282 0.0762 281 121
2017-12  Yes * * * * 0.1262 0.0290 281 121
2017-13  Yes * * * * * 0.1265 0.0208 281 121
2016-10  Yes * * 0.1265 0.0981 206 89
2016-11  Yes * * * 0.1271 0.0907 206 89
2016-12  Yes * * * * 0.1282 0.0647 206 89
2016-13  Yes * * * * * 0.1283 0.0354 206 89
2016-00 No * * 0.0929 0.0914 168 72
2016-01 No * * * 0.0942 0.0890 168 72
2016-02  No * * * * 0.0724 0.0241 168 72
2016-03  No * * * * * 0.0718 0.0368 168 72

The feature importance vectors (Table 3-4) reveal the dominance of Lag-Time (LT) in
prediction of ATFM delay. But calculated RMSEs suggest to use all features to gain best
predictions. From a tactical point of view this dominance implies the importance of LT (time
difference between announcement of regulation and start of regulation). Basically, the system
is less resilient to sudden disruptions and this is actively reflected in delay as a consequence.
In comparison, the duration of a regulation (D in Table 3-4) is less contributing to prediction.
This reminds that such cases hint that current systems are not resilient to disruption as a

resilient system should suffer more from duration of a disruption. Also, such findings support
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the claim that regulations are able to represent a network behavior even when being studied
on a single FMP (here EDGG).

Table 3-4 Feature importance (2017 cases)

Case ID TIM T2M T2RA D LT
2017-10 - - - 0.0654 0.9345
2017-11 - - 0.0859 0.0592 0.8548
2017-12 - 0.0618 0.0548 0.0413 0.8419

2017-13 0.0037 0.0603 0.0516 0.0394 0.8448
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Figure 3-8 Regression chart (case 2017-13) best performance achieved by SNN among all cases on 2017 (including
weather regulations).
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Figure 3-9 Regression chart (case 2016-02) best performance achieved by SNN among all cases on 2016 (excluding
weather regulations).

Moreover, the extraction of weather induced regulations is observed not to be much
effective for SNN (compared to RFR); probably due to resulted reduction of training sets. But
in absence of weather induced regulations, both RFR and SNN tend to response better to more
input features. With weather induced regulations, SNN reaches better precision (esp. for 2016
cases) by considering both magnitude indicators (T1IM & T2M). Despite similarities of these
two indicators, RMSE improved significantly by adding T1M as an input. In contrast RFR
delivers same quality of predictions which is a reminder of fundamental differences of pattern
recognition models against decision trees. This difference is also evident of better performance
of SNN for 2017 cases with more data points (compared to 2016) while RFR tend to be neutral

against size of training and testing sets.
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Better performance of SNN is also illustrated by residual plots in Figure 3-10. Plotted
predicted values against residuals show a smooth dispersion for SNN compared to RFR. This
figure also implies that RFR suffers from increasing residuals for estimating bigger values of
delay. Experiments on different cases also justified that reduced feature space is proportionate

to size of data set since the achieved improvement after including forth feature is minimal.
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Figure 3-10 Residual plots, better performance of SNN compared to RFR.
Conclusion

In subproblem-I, different approaches in estimating the delay by some studies for US and
Europe were briefly reviewed. Two different learning techniques are tested to check the
feasibility of learning methods in delay prediction, on a controlled database (only EDGG). RFR
and SNN are chosen since each represent different classes of learning methodologies (decision
tree vs. pattern recognition). In contrast to previous studies that select OD pairs, experimenting
on 24 cases verified that capacity regulations not only can be used to predict delay but feature
importance values (Table 3-4) reveal that regulations represent same network behavioral
patterns even at smaller geographical span. Moreover, these preliminary set of learning
experiments [35], implied firstly the possibility of delay prediction without modeling causal
relationships, and secondly SNN'’s reliability that grows as the number of daily regulations

increase.

3.3.2 Customized learning model

In previous section, the feasibility of both learning models and use of regulation data has
been studied by preliminary experiments. This section invests more on extracting features of
regulation data at first and then seeks different learning approaches to find a baseline model.
Lastly, based on the data input and performance of investigated models a customized learning

architecture is designed in response to second aspect (prediction quality) of third objective.

Objective 3: In order to revive the network from emergent disruptions, investigate the
required level of decomposition for corrective measures.

In subproblem-I, regulations proved to represent network behavioral patterns even at a
geographically smaller scale compared to EATMN. However, compared to other tactical DCB

solutions (such as cherry picking) capacity regulations represent largescale corrective
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measures. Initial findings such as importance of lag-time in learning process, motivated the
study to invest more on regulations toward resilience at ATFM subsystems (EATMN has 8
subsystems [25]). Getting an overview of the most relevant procedures at ATFM is an active
research topic in the literature [87]. Therefore, regulation data are set to be investigated to

capture dynamics of network behaviors rather than modeling the entire complex ATFM.

Since the 3 objective is focused on emergent disruptions, prediction of delay and delayed
traffic are desired. Both indicators are categorized as performance metrics of resilience (and
not attribute metrics). Delay (ATFM delay) has a dedicated line of research. For instance,
Ivanov et al. [88] in an effort to resolve the en-route DCB problem, used a layered mixed-
integer optimization model to minimize delay across Europe. From an airline perspective,
their study considered delay propagation despite flight schedule buffers. Optimization
techniques are widely implemented for delay. Various techniques such as multi-objective
optimization [89], integer programming [90], and stochastic integer programming [91] are
explored under the category of delay assignment. There are also studies to minimize (ground)
delay by alternatives such as airborne delay [92]. Likewise, reducing cruise speed is proved to

reduce ground delay by up to 15% [93].

Such studies are focused on minimizing the ATFM and ground delays which is raised as
Flow Management Problem (FMP) by Odoni [94] in 1986. On a network level, cost benefits in
Europe are measured in 2007 [95] to be 80 million euros. From 2007 (793 million passengers
[96]) to 2018 (almost 1 billion passengers [97]) despite observed ATC productivity gains [98],
ATFM delay reached 25 million minutes with a substantial yearly increase (+64.5%). Statistics
of 2018 demonstrated that a network with optimized delay cannot necessarily be considered
as a resilient network since weather, staff shortages and ETFMS outage conspired to take
delays to the extreme. Alternatively, this study is aimed at predicting (not optimizing) delay

and delayed traffic to offer more situational awareness against emergent disruptions.

With regard to aviation advantage in data availability compared to other means of
transportation, ML has been used for delay prediction [99, 100, 101]. Some studies designed
learning architectures that combine different methods for delay prediction. For instance, Gui
et al. [102] merged Long Short-Term Memory (LSTM) and decision trees to enable their
approach in integrating different datasets (ADS-B!, weather, airport info). They reached a
90.2% accuracy by a random forest-based model (for a binary prediction). In a similar study
[103], LSTM and Support Vector Regression (SVR) were used to calculate the air traffic flow
instead of delay. They concluded that the LSTM architecture outperforms SVR, especially in
case of abnormal traffic flows. Their methodology was applied on selected air routes (OD

pairs).

However, regulation data have not been investigated specially in understanding emergent

behavior of EATMN. In subproblem-I the feasibility of a learning model based on regulation

! Automatic Dependent Surveillance-Broadcast (ADS-B)
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data, encourage this study to pursue more complex models that can learn better from different

aspects of regulations.

Subproblem-11 definition

Based on results of subproblem-I, next steps are revised to be twofold: firstly, to exploit
regulations as a rich datatype that encodes multiple interactions between subsystems of
network, and secondly, to predict the network performance in presence of large-scale capacity
regulations with a learning method. The proposed model is required to be developed such
that it can predict two network indicators: total ATFM delay and the number of delayed flights

(indicators that represent magnitude of disruption).
More specifically subproblem-II is intended to answer the following aspects:

1. To handle the modeling challenge of network; that is addressed by supervised
learning to avoid complexities of interaction in network’s subsystems;

2. To select the most relevant data; that is answered by capacity regulations since
each record encodes the result of different coordinated planning processes to
deal with a DCB issue at the day of operations (tactical phase). In this phase,
network resiliency is highly vulnerable to disruptions;

3. To capture the spatiotemporal dimension of network dynamics, that is
managed by a proposed deep convolutional neural network architecture.

Regulations are mainly studied in DCB and ATFM optimization approaches [104, 105, 106].
Data on regulations are available both at post-operational and tactical phases. Therefore,
different supervised models are tested next to: a) provide a baseline to assess quality of results,
and b) to select the best potential model for further development. This part of thesis is fostered
through a master thesis [107] and is separately published [62]. Primary results are concluded
with selection of random forest as the baseline since its accuracy is directly linked to forest size
(i.e. accuracy can be increased even up to overfitting). Furthermore, neural networks is chosen
because of its superior performance and intrinsic flexibility in learning from regulations
(reminding the results of subproblem-I). Such an approach guided the study to Convolutional
Neural Networks (CNN) which is further improved to propose a deep CNN with higher
prediction quality. The aforementioned steps (data preparation, setting a Random Forest (RF)
model as the baseline, and the design of the proposed deep CNN) are described in more details
in the following sections.

Subproblem-1I variables

Subproblem-I provided a better picture on choosing the right data range. The annual
growth of delay and regulation counts in presence of persistent seasonal patterns reminds that
model training set shall be limited to most recent years. 2018 stands out with the highest
number of regulations and the highest amount of delay. However, data from 2018 and 2017
are combined to construct a dataset with adequate data points for train/test sets (knowing that

supervised learning methods account for generalization of trained model). Every tested model
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is using this dataset to enable comparison of the results explored models. Section 3.4, describes

the data collection approach, data structure, and its characteristics in detail.

Input features

In subproblem-I (feasibility study), normalized mean ATFM delay was predicted. But the
main intention is to predict daily target values at day of operation (do). Such a predictability
matters most to network state definition based on pre-tactical regulations; in which the
learning algorithm tries to learn the dynamics of tactical phase as a black box. The described
methodology so far worked on the claim that regulations encapsulate these dynamics and
NMIR is a EUROCONTROL database that offers a post operational dataset on regulations.
Tactical regulations are published in form of ANM messages that has different structure but

with some common attributes as of NMIR.

From NMIR, a cut of desired data for 2018 and 2017 is acquired (let N be the number of
days in this cut), then regulations for each day are filtered out to only those that are being
activated before 06:00 UTC. Such a list of regulations is taken as the pre-tactical (doy -1)
regulations. Pre-tactical regulations for each do, are selected by filtering the attribute of
“requlation activation date”. Although the resolution of the dataset allows to break down to
hours, it has been refrained since with a coarse resolution, the pattern may disappear. In a final
step each day is reconstructed with daily aggregated attributes, specified weekdays and

respective AIRAC cycles (the input vector and its features for a given doy):

®  Ngeg: Number of active regulations for each do (i.e. regulations that their start

time is from pre-tactical phase (dop-1) up until 6:00 UTC in the tactical phase);
® Dgey: Average duration of all activated regulations at dop;

®  Nrpgce: Tactical regulations count (i.e. number of regulations with a start time from
0:00 up until 6:00 UTC);

e Nycc: Represents number of ACC with regulations from pre-tactical phase up
until 6:00 UTC at do;

e Rtype;: A family of 14 features (that each correspond to a regulation type as of
Table A-2 in annex). Rtype; is the total number of type i regulations across the

network (active regulations from pre-tactical up until 6:00 UTC at do);

e AIRAC: The AIRAC cycle (1 to 13) to which each do belongs. This feature is
mapped to NMIR data from a reference table (Table B-1);

In context of learning models, the AIRAC cycle should be considered as categorical data.
This is because AIRAC13 is not greater than AIRACI, or vice versa in any sense.
Therefore, this feature has to be encoded such that learning model can use it without
giving numerical significance to the AIRAC number. The one-hot encoding of Scikit-
learn [108] pre-processing module is used for this purpose. With such an encoding, any

87



3. Methodology

AIRAC is represented by a binary vector of length 13 and only one of the items in the
vector will have a binary high.

e Weekday: Similar to AIRAC, the seven weekdays are one-hot encoded resulting
in a binary vector of length seven. This feature is added with consideration of a
study from Sun et al. [70], that captured a weekday variation in the European air

transportation network connectivity.

Predicted values

The total daily ATFM delay and delayed traffic (also referred as Most Penalized (MP)
delayed traffic) are considered as the predicted values (i.e. labels) for the supervised learning
model. These values constitute the volume (delay) and extent (count of delayed flights) of
network disruption. More specifically target values for a given doyare total values at the end of
the day (24:00 UTC) as:

e Delay (min): Total daily ATFM delay in the network; and

e Delayed Traffic (flights): total number of delayed flights or daily MP delayed
traffic. A flight can be subject to more than one regulation on its route and in such
cases, only the most penalizing regulation is considered to impose a delay, i.e.

other regulations on the flight route are ignored.

Train-test split

In learning models, the size of the train and test sets needs to be proportionate since a
relatively large training set would increase the risk of overfitting while a small training set
challenges the generalization of the model and the prediction error will rise, especially in
absence of evident patterns in a scattered dataset. However, such a choice is not a point of
concern for this study, because of the persistent seasonal trend of regulations. The acquired
dataset (2017 & 2018) includes a total of 730 days (with more than 118 thousand regulations)
and is splitted by a 70-30 ratio for train and test sets.

Baseline: supervised learning models

ML is a suitable approach for dynamics of EATMN as a system with complex non-linear
structures that data acquisition is much more convinient than modeling the system. In
comparison to deterministic optimization models, ML applications are mainly about
generalization. These models consist of a combination of optimization cores and statistical

analysis in their algorithms.

According to the SESAR publications, the application of ML has gained more interest since
2017. Among different supervised learning approaches, applications of Neural Networks
cover more topics of ATM [109, 110]. NNs were used in different aspect, for instance to predict
the flight trajectories [111] and flight levels [112]. Along with NNs, decision tree based models
such as Gradient Boost Machines (GBM) are used to predict the runway occupancy count for
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asingle airport [113]. Gradient Boost and Recurrent Neural Network (RNN) are also addressed
in predicting take-off times [114].

RF (another example of decision tree models) has also been used for ATM topics such as
predicting the flight efficiency [115]. However, the prediction of daily delay and delayed traffic
at network level by learning techniques is rather remained as a gap. The closest work is in
[116], where a simple decision tree model was used to find the delay variations in a small

group of sectors instead of whole European airspace.

In order to foster the modeling approach and to select a baseline model, four different
supervised learning methods are applied on regulation data with the described features. The
selected baseline model will serve to assess the efficiency of final proposed model. These
explored methods are: RF, Linear Regression (LR), Support Vector Regression (SVR), and
Neural Network (NN). As these models are intended for comparison, similar performance

metrics are required.

Performance metrics

For regression problems, standard metrics such as Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R?) are more common. However, the
extended range of variations for delay and delayed traffic calls for a customized metric. In
selected dataset, daily delay varies from 1 958 to 327 795 minutes. Similarly, delayed traffic can
be as small as 117 flights and reach up to 10812 flights. These metrics treat the deviations
equally, but ignore the operational understanding of data. For example, a deviation of 50 000
minutes is not acceptable for an actual target value of 25000 minutes, but is considered as a
decent error when the target value is 350 000. Therefore, it is risky to rely on such metrics to
evaluate the overall performance of the model. This aspect is answered by following two

solutions:

e Mean Absolute Percentage Error (MAPE)
Similar to MAE, this metric is the average value of errors that is expressed in percentages.
Suppose yi is the actual value for which the prediction is i, then the MAPE is calculated
as:

100 < ly; — ¥l
MAPE = E ~ . 13
N ~ Yi ( )

e Evaluation per delay category
Delay records of 2017 and 2018 can be ordered to three categories of: low (first quartile),
moderate (2" and 3¢ quarlile), and high (last quartile) as given in Table 3-5. To achieve a
better insight on performance quality, evaluations for each model is calculated for per
category and overall values.
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Table 3-5 Categorization ranges for model performance evaluation

Category  Delay (min) Del?f}l,:;httgfﬁc
Low [0, 20 000) [0, 1250)
Moderate  [20 000, 80 000] [1 250, 4 650]
High (80000, =) (4 650, <)

Baseline models

The baseline model has been selected after comparison of individually tuned and evaluated
explored models (LR, SVR, RF and a NN architecture). Although trained individually,
simultaneous prediction of two target values leads to poor performance since delay and traffic
values have different ranges. If not tailored properly, this aspect imposes optimization
challenges, because the model through the general loss function mostly in a backward
propagation, tries to minimize the calculated prediction error. A multi-variate prediction
misleads the optimization model in favor of one of the predicted values. The particular reason
is that the correlation between delay and traffic is not intended to be provided to the learning
model, and the purpose here is to minimize the prediction error instead of understanding the

correlation.
The following options are considered to control the different scale of delay and traffic:

e Scaling the predicted values, with the cost of losing the operational
understanding of both delay and delayed traffic. Specially during an exploratory

phase, it makes the results to be less intuitive and more theoretical;

e weighted loss function, with weights that are required to be either pre-assigned
or learned. In absence of solid correlation, if these weights are set to be learned,
it leads to excessive complexity and more data points will be required to control

the relative error;

e or training separate models for each variable. The key advantage of this option
is that model can detect and learn different dependencies on input vector
(features). For instance, it might be the case that a specific type of regulation leads
to more delayed flights while another type is more persistent and cause longer
delays. Although the need for more datapoints is less crucial with this option,

but the cost is higher computational effort.

The 34 option serves the best to the limitation on dataset size and the interest of the
methodology, therefore for each learning method, two independent models are being trained
and tested. However, identical performance metrics and model design (e.g. cost functions or

activation functions) are used for both predicted values.
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Linear Regression (LR)

It is a basic prediction method to estimate a linear function of independent variables. In
general regression models take a response variable (Y) and search for an approximation
function on predictor variables (X). Approximation function can have different forms; a linear

regression assumes the function to be linear as in:

Y=ay+a X +¢, (14)

where awvand ou are constant coefficients or weights, and ¢ is a random disturbance or error. In
a LR learning model, the gradient descent optimization technique is typically used to find the

optimal coefficients that minimizes the error.

LR is used here to check a model with two key assumptions: linearity and normal
distribution of prediction error. Though it is expected that regulation features and the target
values are less likely to be in a linear relation but the model also considers ¢ as an independent
random variable with standard normal distribution [117]. The data are prepared, scaled and
splitted as described earlier and using the Scikit-learn library the model is trained on 511 days.
Table 3-6 (delay) and Table B-4 (delayed traffic) provide the model performance on train and

test sets.
Table 3-6 Performance of applied LR to predict delay.
Category Train Test
Days MAPE? R2 MAE? Days MAPE R2 MAE
Low 127 77.59 -5.81 8 744 55 92.51 -554 8562
Nominal 261 34.85 -0.14 13753 111 36.1 -0.33 14834

High 123 18.02 0.56 24329 53 22.53 026 27884
Overall 511 41.47 0.82 15054 219 46.98 0.77 16 417

2in percentage, ®minutes.

Similar performance in both train and test sets, demonstrate a stable model but in general
the performance is not convenient enough to account for a linear relationship between
variables. But the benefit of MAPE over other metrics is evident in Table 3-6. Even when
categories are ignored (overall), it still shows the poor quality of predictions, in contrast R?
(goodness-of-fit) indicate a relatively good prediction (i.e. 0.82 in training). Moreover, smaller
absolute errors in low category led to smaller MAE values exposing the risk of being
interpreted as a better prediction quality. This pattern which is observed also in Table B-4 is
emerged from the use of absolute error as the cost function. In other words, errors are
penalized similarly in different ranges of predicted values that lead to worst MAE values to

be at high category.
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Support Vector Regression (SVR)

Results from LR actively demonstrated that there is no linearity. Consequently, SVR (a
derivative of Support Vector Machines (SVMs) is explored next to assess the non-linearity.
SVRs are recommended for small and medium size datasets in presence of outliers. Assisted

by tunable hyper parameters, they search for the best prediction within symmetric thresholds.

Generally, SVR tries to find a function (hyperplane) that is surrounded by an error tube.
The idea of an error tube formulates the optimization problem to search for the flattest tube
that best approximates the hyperplane that contains most of the training data points (refer to
chapter 4 of [118]).

SVR hyper parameters are: kernel, C, epsilon, and gamma as briefly described below:

e Epsilon: defines the size of the tube in which the training loss function is equal

to zero. Value of epsilon controls the generalization of the model;

e (C: the regularization parameter that defines the extent to which the outliers are
to be penalized in fitting the model. A large penalization on outliers may result

in over-fitting and poor generalization;

e Kernel: a transformation function (a kernel) is used instead of a hyperplane in
case of an assumed nonlinearity between input features and the response
variable. A kernel can be either precomputed or linear, polynomial, sigmoid, and

Radial Basis Function (RBF). RBF is basically an exponential function;

e Gamma: is the assigned coefficient in case of a polynomial or exponential (RBF)
kernel. It is a positive value that defines the influence of each training sample (i.e.
curvature weight of the decision boundary). Higher values of gamma lead to a

more complex kernel and increase chances of over-fitting.

During the training phase, a grid search is performed to tune hyper parameters (in Scikit-
learn library). The following values constitute different combinations for the grid search (for
both delay and delayed traffic):

e Epsilon: 0.1, 05, 1.5, 2, 2.5;

e (C:1,100,5000, 8000 and 10 000;
e Kernel: ‘Linear’, ‘Poly” and ‘RBF’;
e Gamma: 0.01,0.1, 1, “auto’.

Despite same reference sets, using separate models for delay and delayed traffic lead to
different hyperparameters in grid search (Table 3-7). For instance, the significance of
nonlinearity for delay compared to delayed traffic is once more identified by the selection of a
polynomial kernel as the best kernel. In fact, the nonlinearity of delayed traffic is so complex
that SVR performs better with a linear kernel and maximum errors (C=10 000) compared to

either a polynomial or RBF case.
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Table 3-7 Best hyper-parameters for SVR.

Response value Epsilon C Kernel Gamma
Delay 2.5 5000 Poly 1
Delayed traffic 2 10000 Linear 0.1

Performance metrics of tuned SVR model (Table 3-8 and B-5) confirms similar pattern as
observed by LR along the lines of quality degradation over low category. In general, SVR
outperforms LR but the model seems to be rather overfitted for delay compared its
homogeneous behavior for delayed traffic. The values for hyperparameters, ie. lower
regularization parameter (C), polynomial kernel and bigger gamma provide a plausible reason
for a more complex model with overfitting.

Table 3-8 Performance of applied SVR to predict delay.

Category Train Test
Day MAPE2 R? MAE* Days MAPE R? MAE
Low 127 30.87 -0.06 2553 55 71.64 -40 7361

Nominal 261 11.31 0.7 4759 111 29.87 0.13 12068
High 123 12.42 0.57 18115 53 23.41 0.17 31753
Overall 511 16.44 0.88 7 426 219 38.8 0.78 15649

in percentage, ®minutes.

Despite better performance of SVR for delayed traffic (Table B-5: MAPE metric is 26.46%
for overall category in test set), the purpose of finding an approach with acceptable
performance for both delay and delayed traffic is yet to be fulfilled.

Random Forest Regression (RF)

As explained before, RF is a typical decision tree learning method that employs multiple
learners (weak learners) to generate a weighted prediction (strong learner) as the final result.
Ensemble learning is known to provide better generalization ability and more accurate
prediction [118].

Random Forests provides an average predicted value based on a set of noisy predictors
(trees) with relatively low bias. Generally, such a model reduces the variance of predictions
and can fit perfectly on training set by either unlimited depth (feature exploitation), or
unconstrained minimum samples for each split. Similar to other decision tree methods, RF
recursively selects a variable (split-point) to grow a forest of trees. However, in absence of
tuned hyperparameters, performance on test set is less likely to be satisfactory. The important

hyper-parameters and their significance are explained below:

e Number of trees: defines the number of estimators in a forest. Number of

estimators is in direct relation with generalization;
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e Maximum depth: controls the extent of splitting at each tree. Smaller depth
avoids chances of overfitting since it leads to low bias;

e Maximum features: sets the maximum number of features in splitting, because
selecting only a subset of features for building a regression tree minimizes the

over fitting risk;

e Bootstrap: allows creating random sub-samples of the main dataset with
replacement (same value can be used multiple times). It is a powerful statistical
technique for estimating a quantity from a data sample. RF is a bootstrap
aggregation (bagging) algorithm. In Scikit-learn library, this is a boolean variable

that if set to false, the whole dataset is used to build each tree without resampling.

RF is less sensitive to type of features since it aggregates the output from a number of weak
estimators. This understanding helps to balance the size of input vector and categorial features
such as AIRAC cycle and weekday are not required to be encoded. Based on such a reduced

input vector, a grid search is performed to find the best combination of hyperparameters from:
e Number of trees: 50, 70, 100, 130;
e Max_features: 2,4, 6, 8, 10;
e Max_depth: 5, 10, 20, 25, 50;
e bootstrap: True, False.

First impression from Table 3-9 is that Maximum depth is selected to be at highest. Higher
depth lead to better prediction, however such a choice exploited the training set (Table B-2 &
B-3 shows the overfitted model). Therefore, lower values for this parameter has been
separately tested and a value of 12 seems to avoid overfitting and delivers the best results on

test set (values below 12 are underfitted models).

Table 3-9 Best hyper-parameters for RF.

Response value  Tree counts  Max_features Max_depth Bootstrap
Delay 70 6 50 False
Delayed traffic 70 8 50 False

Table 3-10 and Table B-6 provide the performance metrics (max_depth is 12) for delay and
delayed traffic, respectively. The results imply that tuned RF model outperforms previous
models (SVR and LR).
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Table 3-10 Performance of applied RF to predict delay.

Category Train Test
Day MAPE: R?* MAE* Days MAPE R? MAE
Low 127 6.76 0.95 746 55 7415 349 7741

Nominal 261 1.96 1.0 776 111 26.2 024 10612
High 123 0.68 1.0 792 53 17.65 0.47 24263
Overall 511 2.85 1.0 772 219 36.18 0.85 13195

2in percentage, > minutes.

Table 3-10 demonstrates that RF as a decision-tree approach can fit on training set as if the
model is overfitted but the metrics on the test set assures that the model is not overfitted.
provide best performance so far baseline because of its tree-based approach. This was already
anticipated by results of feasibility study (subproblem-I) that verified the potentials of a tuned
RF model. Those results also manifested the nonlinearity and superior performance of a
sequential NN against random forest regression [35]. Therefore, as the last model for this

phase, same data structure is fed to a candidate NN.

Neural Networks (NNs)

In general, a neural network learns in a hierarchical order and their structure involves
multiple levels of abstraction for knowledge representation. NNs accumulate propagated
information through higher levelsin a sequential order such thatlearning at each layer is based

on statistical learning procedures at the previous layers (refer to chapter 7 of [118]).

In current discussion, it is clear that the prediction problem at hand is rather nonlinear
which NN basically manage by activation functions. A network can have different activation
functions at each layer in comparison to random forests that trees are identically distributed.
Furthermore, prediction errors are evaluated by cost (loss) function and through iterations,
optimization function pushes the network toward minimizing the errors. Each iteration is
performed on batches that are subsets of the training set. Once a batch is processed, each node
of every layer gets a new weight (learning). An epoch is completed when all the batches of a

training set are fed as inputs.

To implement a fully connected sequential NN with three hidden layers, Keras [119] (an
open source deep learning library of python) is used. The input layer has 38 neurons that
matches the length of input vector (features). The three hidden layers converge from 100 to 50,
and 25 neurons. A single neuron at the output predicts the delay or the delayed traffic for the
two separate models. Each layer uses Rectified Linear Unit (ReLU) as the activation function.
The model is trained with MAE cost function and Adam optimizer for 500 epochs with a batch
size of 30.

Considering the model performance in Table 3-11 (and Table B-7), the tested architecture is
not considered to be overfitted, since the metrics report similar quality of prediction for train

and test sets. Over the test set, even such a basic network remarkably performs with almost
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same quality as in RF. But compared to RF, NN has not exploited the training set and offers a

consistent model.

Table 3-11 Performance of applied NN to predict delay.

Category Train Test
Days MAPE? R?> MAE¢ Days MAPE R? MAE
Low 127 54.96 -252 5621 55 59.58  -298 5417
Nominal 261 25.33 026 10687 111 30.33 0.08 12334
High 123 21.01 0.36 28693 53 23.94 0.18 30975
Overall 511 31.65 081 13762 219 36.13 0.79 15108

in percentage, ®minutes.

Table 3-12 sums up all experiments that has been stated to this point. Performance of four
different regression approaches is expressed by MAPE for both delay and delayed traffic. It is
evident that all models had challenges in predicting lower category and precision improves
for bigger values. It is intuitive that higher target values benefit from a richer input vector
because of more regulations that are encapsulated in daily features. Nonlinear models such as
NN outperform linear models and Figure 3-11 confirms this claim by visualized dispersion of
predictions. Moreover, the optimization of RF hyperparameters not only led to higher
precision but also the scatter plot shows a steady narrow prediction error for both delay and

delayed traffic.
Table 3-12 Performance of explored learning models over test set.
Category Delay 2 Delayed traffic 2
LR SVR RF NN LR SVR RF NN
Low 9251 7164 7415 5958  64.28 5479 5595 4795
Nominal 36.1 29.87 26.2 30.33 22.0 20.76 1731  23.13
High 22.53 2341 1765 2394 9.9 11.1 11.64 9.75

Overall 4698 388  36.18 36.13  29.05 2646 2509 2573
2 measured by MAPE metric.

96




3. Methodology

¥ £ 1w s SVR .
T g ’ . e
T, = 8000 .t .y ¥
= g . ou’e a (]
=z 5 6000 ‘ﬁ % 1 SR .

I » A .
3 E 4,000 ) d > .
= 5 7 . o
B E 2,000 % . .
- 3 Re

& =

: g °™1 &r NN .
£l & /o s
é o A . . 8 4
g % 6,000 - * : : o
_ﬂ' e L]

.'g g‘ 4,000 | ¢ ° “§. o
;%‘ < e 5,
- b - . 3
& g 200
] ] ! =
——— — — - — . e : TS s
B e L L PO R R O P P P o
Actual delay (min) Actual delay (min) Actual delayed traffic (flights) Actual delayed traffic (flights)
(a) (b)

Figure 3-11 Scatter plots for prediction quality of learning models on test set. (a) delay, (b) delayed traffic.
Explored models perform better on delayed traffic due to its smaller range compared to delay. RF (Random
Forest) provides minimum errors with symmetrical low dispersion.

Clearly the result show that RF and NN deliver higher quality of prediction. Apart from
poor performance, LR is a linear model and SVR has less flexibility to be evolved to a more
complex architecture. Therefore, the study is guided to invest more on NNs respecting a
diverse range of architectures while RF is chosen as the baseline model knowing that with

tuned hyperparameters it gets closer to overfitting boundaries.

Proposed Deep Convolutional Neural Network (DCNN)

In the previous section, the pre-processing on data were arranged so that it provides an
aggregation of data features that can be fed to different models. The aggregation of data
ignores the spatiotemporal features to a great extent. But, the traffic flows connect separate
ACCs across Europe and regulated traffic volumes may lead to secondary effects on other
traffic volumes in adjacent airspaces. The propagation of this consequential impact is known
as network effect in ATFCM [116]. Such secondary effects can be perceived better by CNNs since
they are designed to capture different features of data (spatial ant temporal) through

convolutional layers.

CNNs are mainly employed for classification problems, especially in image processing,
where learning is about spatial characters (as of curves or sharp edges). Relatively few studies
try to extract spatiotemporal features by CNN. For instance, in intelligent transportation
systems, Bilong et al. [120] proposed a deep 3-dimensional CNN to extract the spatial and
temporal correlations. They evaluated the model with a database on taxi trajectories in New
York city. Similarly, a recurrent CNN is developed in a study by Wang et al. [121] to predict
the traffic speed and congestion. Their model integrated the spatiotemporal traffic speeds of

contiguous road segments as the input matrix.
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The architecture of such deep networks is identical in each study because deep networks
have higher degrees of freedom compared to other learning methods. In fact, apart from
hyper-parameters of CNN such as kernel size and stride, the model design can also be different
in selection of activation functions, optimization methods, etc. Before structuring a Deep CNN
to consider network effect by extracting deep characteristics of regulation data, one should

understand CNNs in general.

Why CNN? The obstacles of modeling the European ATM network has been addressed in
previous chapters. This thesis seeks intuition against deduction to learn the behavior of
EATMN as a measure to deal with dynamic complexities of intertwined ATFM operations. In
search of intuitive inference technique for prediction, the proposed methodology invests on
representation of regulation data as daily records. In fact, each daily data point that
encapsulates regulations can be considered like a daily image captured by a traffic camera at
an intersection. In this analogy a datapoint can have 14 different type of regulations just like
cars with different colors in an RGB image. Similarly, different ACCs can be mapped as of
different brands of cars, or large-scale weather conditions can be considered as presence of

pedestrians at intersection, etc.

Majority of applications of CNNs are dedicated to image processing applications with
highlights such as AlexNet (2012), VGGNet (2014), GoogLeNet (or inception V1, 2014).
Success of CNNs compare to SNNs are attributed to key advantages of parameter sharing and

sparse connections.

e Parameter sharing is the benefit of filters in convolutional layers. The assigned
value to each node is calculated upon a neighborhood (depending on the filer
size) and distinct values of the filter. Each convolutional layer has one filter (i.e.
kernel) to produce all nodes of the next layer. In an image processing task this
allows to consider features bigger than one pixel (e.g. one filter for curves and
another for sharp edges).

e Sparsity of connections means that not every neuron is connected to all neurons
of the previous layer. In fact, instead of having a dense layer (each node is
connected to all previous nodes) a filter is applied to a specific neighborhood
(extracting regional patterns rather than processing the whole input at once). In
other words. If the input is an image of 100x100 pixels, then the input vector has
10 thousand neurons and a dense layer will have 100 million (10*x10%) weighted
connections (learning parameters). In comparison a convolutional layer uses
same filter for all nodes of the next layer. Input of size 100x100 and a 25x25 filter
creates an output of only 76x76 (assuming that hyperparameters stride is 1 and
pad is 0).

Moreover, CNN as a neural network follows principally same algebra on loss function

(forward pass) and back propagation (updating weights). Each filter at a convolution layer
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acts as a dot product of a filter (w) and a subset of input vector (x), plus the bias term (Equation
15). The difference for CNN at this level is that output of each convolution layer is produced
by filter (f) and generated subsets of the input vector (function g in Equation 16).

Z=wlx+b, (15)

input Vector

z=f®@ )

f: applied filter at each convolutional layer,
g: the function that produces a chunk of input vector (signal).

(16)

In back-propagation of the loss function (L), same considerations are regarded in
calculation of the derivatives. In convolution layers derivatives of the loss function (L) from

the previous layer are achieved based on Equation 17 (Back-propagation).

(0L 9L 9Z)
— _*_
of = oz afl
JaL oL 9z (17)
— _*_
la 9z agJ

The loss from previous layer that needs to be backpropagated to other layers is denoted by
( az) since input of each layer is the output of the previous layer. Filter's group of partial

derivatives (E) is required for updating (learn) the filter values according to the learning rate

(Equation 18).

(18)
a: learning rate
i: iterations for a layer

Activation map is produced as the result of applying a filter on the input. It can be
considered as a matrix with values connecting a small region of the input to the filter. In fact,
each activation map is a compressed transformation that shares same parameters. The stack of
activation maps can be fed to a pooling layer. A pooling layer makes the representation more
abstract and manageable (down-sampling). There are different types of pooling layers such

as: maximum, minimum, average and adaptive pooling.

Pooling layers in deep learning offer translational invariance. This feature (mostly in
classification applications) allows the model to detect patterns regardless of their positions.
For instance, if a model is designed to count faces in a photo, it might encounter problems in

detecting faces in a selfie with faces from different orientations (Figure 3-12).
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a. Same orientation for faces b. Radial face orientation
Figure 3-12 Translational invariance by pooling layers in CNN; pooling allows the detection of patterns
regardless of their position, without pooling layers, the model is more efficient in face detection in a rather than b.

However, in case of enhancing EATMN situational awareness, both geographical vicinity
and time sequence are valuable and pooling layers are avoided to protect such inferences (esp.

that the model is a regression model and not a classifier).

In accordance to described aspects of convolutional networks, the input of the model needs
to be restructured but same database is processed such that results can be compared with
baseline model. Once the input data is structured to be fed into a convolutional network, other
adaptations were made to maximize the efficiency of the features because the architecture of

proposed DCNN benefits from deep learning.

Data preparation

From the same span of data (2017 and 2018), daily features representing each day are added
to include more features in the model. These are the same daywise features that were used for
baseline models (Subproblem-II variables) except regulation types that are included as

channels in DCNN. This results in a feature vector with a length of 24 to represent each day:
®  Ngeg, 5Reg/ Nrgce, and Nyce;
e AIRAC cycles that adds 13 encoded features, and
e weekdays that are converted into 7 encoded features.

Spatiotemporal feature map

In convolution layers, either Traffic Volumes (TVs) or ACCs can be used to construct the
spatial bins for feature map. However on a EATMN scale, TVs are at a lower granularity
compared to ACCs and builld up on the model’s complexity with no significant benefit. Even,
a division of the data over TVs limits the number of data points for learning. But taking ACCs
is a better compromise since it avoids detailed granularity while preserving the spatial
patterns of regulations in bins. Therefore, ACCs are extracted from TVS Id instead of TV Id
(Table 3-13).
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Table 3-13 Regulation’s dataset structure (NMIR)

Field Sample Entry Field Sample Entry
TVSId EDYYFMP Reg Activation Notice 2 98

TV Id MASBWST Reg Duration @ 42

Reg Id YBWSTO01 Reg Window Width 2 10

Protected Location Id EDYYBWST MP Regulated Traffic b 90

Protected Location Type Airspace Regulated Traffic b 93

Reg Start Time 01.01.2018 20:00:00  ATFM Delay = 259

Reg Truncated Start 01.01.2018 MP Delayed Traffic ® 24

Reg End Date 01.01.2018 21:40:00  Avg Delay per Regulated Trafficz 2.8

Reg Cancel Status Cancelled Reg Reason Name S - ATC Staffing
Reg Cancel Date 01.01.2018 20:42:21 = Reg Description (text)

Reg Activation Date 01.01.2018 18:22:19  Day of the Week Monday

2 in minutes, ?flight count.

For 88 different ACCs across ECAC area, each day is divided with a bin size of one hour to
also make the temporal bins (i.e. hour of the day and respective ACC are regarded as vertical
and horizontal position of a pixel in an image for CNN). Moreover, instead of merging all
regulations for each ACC at each time bin, 6 channels are set for different regulation types as
of Table 3-14. These definitions for spatiotemporal bins build a NxCxHxW matrix that can be
taken for a 2D convolution in Pytorch [122]. N corresponds to the number of days, C to the
number of channels, H is the time bins and W is the spatial bins.

Table 3-14 Defined channels based on regulation types.

Channel Regulation Type
1 C-ATC Capacity
2 S-ATC Staffing
3 G-Aerodrome Capacity
4 W-Weather
5 I-ATC Ind Action

M-Airspace Management, O-Other, P-Special Event
V-Environmental Issues, E-Aerodrome Services, T-ATC Equipment,
R-ATC Routings, A-Accident/Incident, N-Ind Action non-ATC

(o)}

For the activation function, a variation of ReLU function known as Leaky ReLU is taken in
activation maps, since it supports generalization for deep NNs [123]. Furthermore, the
proposed model uses Weighted Mean Absolute Error (WMAE) as the cost function to improve
predictions for low category of target values. These weights are calculated from a negative
exponential function (Equation 19), which delivers higher magnitude for low target values (i)

and flattens out for medium to large values.

-1
w; =25% y. /s (19)

i
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Model architecture

The proposed model was designed using an iterative process and is inspired by the model
in [120]. In their model, the authors have not explicitly reasoned why a large number of filters
(kernels) were used but it is clear that they used their model to process numerous frames of a
video in a pixel-wise video prediction task. Since a large number of filters significantly
increases the computational effort an initial architecture with few filters and layers is
implemented at first. Based on the performance of the model on test set, the filters and the

model architecture were iteratively improved to achieve the final proposed architecture.

For instance, dilation as a feature of deep learning proved to be efficient in improving the
results. A convolutional layer without dilation, applies the filter (or kernel) less on the edges
and more on the middle values of input matrix. This actively demonstrates that the model is
less sensitive to early hours of the day and the sequence of 88 ACCs, asserts less importance
on the first and the last ACC; i.e. these hours and ACCs are less exposed to learning. Dilation
rate mitigates this risk by specifying a spacing between values of a filter. For instance, in a 2D
space, a 3x3 filter takes 9 adjacent pixels of input image, but a filter with a dilation rate of 2,
takes 9 pixels out of 5x5 region as of a 5x5 filter that ignores every second column and row
(Figure 3-13).

11

LR o
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Left: 3x3 filter, dilation: zero; right: 6x6 input matrix Left: 3x3 filter, dilation: two; right: 6x6 input matrix

NI |[ALN
RINWIWIN |-

Figure 3-13 Dilation in convolutional layers; numbers inside each input matrix shows times that each cell has
been scanned by filter. Dilation assures fair usage of all values of input matrix.

The finalized architecture, (Figure 3-14 and Table 3-15) has two blocks of convolution filters
that are applied to six input channels (spatiotemporal feature maps). Each block has two
independent temporal and spatial filters, which are followed by a spatiotemporal filter to
check for correlated patterns. Second block has bigger filters that considers a longer time span
and a larger geographical area, therefore dilation is used to improve fair calculations. The
output of second block (which extracts deeper features) is then aggregated with a unit size

kernel to get a single channel.
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Figure 3-14 Proposed architecture for DCNN. Channels are set based on the regulation types and two blocks of
convolutional layers, which learn the spatiotemporal characters of regulations, [62].

The first block, that deals with temporal dimension is less responsive to different dilations
since there are no major activities at early morning hours as well as late hours of the night
(silent edges versus busy hours of the day). In contrast, second block is intentionally explored
by bigger filters and different dilations in search of correlated airspaces (ACCs). Moreover,
each block is creating a defined set of activation maps (6 and 12 for first and second block
respectively). The result of convolutional layers is flattened to a vector (by a 1x1 filter with
zero padding) and concatenated with daywise feature vector. This vector is processed by a
sequential neural network (SNN) with two fully connected layers (100 and 50 neurons). The
output of the model is a single neuron that predicts either delay or the delayed traffic.

Table 3-15 Outline of convolution layers in proposed DCNN architecture.

Layer Kernel Size Dilation Padding Type
1 (31) (L1) (1,0) time
2 (1,5) (L1) 0,2) ACC
3 (3,5) (1,1) (1,2) spatiotemporal
4 (5,1) (21) (4,0) time
5 (1,7) (1,2) (0,6) ACC
6 (5,7) (2,2) (4,6) spatiotemporal
7 (11) (1,1) (0,0 aggregation

3.4. Data collection process
This section describes the data domain, acquisition and sampling technique that formed the
input data for different part of the study. As mentioned before, the regulation data are selected
since they represent an encapsulated information about how the daily demand-capacity

imbalances are being managed at a large scale.
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3.41 ATFCM regulations & flight plans

Each ANSP is closely monitoring its capacity to accommodate the flight demand. The
demand itself is calculated based on the submitted flight plans from airlines. A flight plan
defines many characteristics of a flight but most importantly it declares the requested flight
route and the scheduled time of departure (STD) and estimated arrival (ETA) (flight profile).
The flight profile is a representation of the four-dimensional path that a flight is expected to
follow between departure and arrival aerodromes. The profile calculation is required to
validate the flight route, to determine the ANSP address list for message distribution that

further assist demand forecast.

In Europe the capacity is defined as the maximum number of aircrafts that can safely enter
an air traffic control sector in a specified period [124]. Each sector is a defined airspace region
for which an associated controller (or controllers) has ATC responsibility. ANSPs mostly use
fast time simulations (FTS) to estimate the en-route capacity which is actually a computer
modeling of controller workload. The results of simulations are then post-processed to
formulate the relationship between the number of entering aircrafts and controller workload

over a given period of time.

Knowing the demand (from flight plans) and the capacity (From FTS) enables the automatic
balancing between demand and capacity. But, on the day of operations (tactical phase) both
demand and capacity figures change. Because, FTS are not covering important factors such as
the complexity of the traffic, structure and geometry of the sector and their interactions; hence

‘Real-time simulations” or RTS are being used to improve capacity estimations.

Both FTS and RTS are done in strategic phase of ATFM. The latter considers the human
related elements such as cognition, thinking and judgement by accounting for operational
environment which pushes the process to be expensive and requires personnel training,
specific infrastructures and significant simulation time. Consequently, RTS is not an option for
all of the en-route capacity estimations. Another solution for capacity declaration is air traffic

controller workload model, for example:

e Sector Design and Analysis Tool (SDAT), developed by FAA, is an analytic
model used in United States. The model is focused on routine tasks, probabilistic
conflict resolution, sector scanning and planning. SDAT addresses both Planning
Controller (PC) and Tactical Controller (TC).

e Total Airspace and Airport Modeler (TAAM), developed by Preston Group
(Boeing), is a simulation model which is used in Germany and Switzerland. The
focus is on routine tasks, deterministic conflict detection and resolution. This

method accounts for TC only.

e Reorganized ATC Mathematical Simulator (RAMS), developed by
EUROCONTROL is based on controller (PC & TC) observation, and is focused
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on same aspects as TAAM. It has been applied in numerous European airspaces

and proved to be flexible and easy to use.

e Performance and Usability Modeling in ATM (PUMA), developed by NATS, is
also a simulation model which incorporates observation task analysis and
cognitive debrief. Yet unlike other models, it assumes that controllers can handle

more than one task simultaneously.

However, tactical phase is more dynamic to be fully modeled by different demand and

capacity prediction models. For instance, the challenges to capacity predictions are [73]:
e individual sector capacities,
o flexibility & adaptability of airspace (configuration and sectorization),
e staffing,
e tactical configuration management,

e exogenous factors (e.g. weather).

As a response to such challenges, in Europe ATFCM Regulations (also referred as
Regulations and Flow Regulations) are measures that are available to cope with demand-
capacity imbalances. A regulation is basically a restriction over the rate of flights being
authorized to enter a monitored sector. For instance, a regulation with zero-rate is in fact a
closed airspace (e.g. Temporary Segregated Area, TSA). In reference documents [7], it is

defined as:

Regulation is a method of matching traffic demand to available capacity by limiting the
number of flights planned to enter an airspace or aerodrome, achieved by the issuing of
departure slots (CTOTs).

A regulation is a potential cause for ATFM delay. ATFM delay can be assigned to a flight
based on the submitted flight plan. In Europe under the authority of the EUROCONTROL,
Network Manager (NM) is using a centralized flight plan processing service to organize flights
[125]. The service is provided by the integrated IFPS.

Each airline is required to submit flight plans to the IFPS for processing at least three hours
before the EOBT (Estimated Off-Block Time) where possible. The option to submit flight plans
in such a time window is assuring the required level of flexibility in tactical phase. IFPS accepts
flight plans that are filed even less than three hours ahead of departure time if operational
reasons restrict the normal submission. In general, IFPS accepts a submission up to a
maximum of 120 hours (Figure 3-15), ahead of its EOBT (item 18 of flight plan should include
Date Of Flight (DOF) in case of a flight plan for a future date).
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normal span
(120 hours)

|] EOBT

Flexibilty
(3 hours)

Figure 3-15 Allowance time to submit flight plans to IFPS.

When a message is submitted to the IFPS, a copy of the flight plan is sent by IFPS to the
Enhanced Tactical Flow Management System (ETFMS) where the flight information is being
analyzed with regard to all active flow regulations. If the flight is penalized with one of the
active regulations in its route, origin or destination, ETEMS assigns a delay to the flight by
issuing a CTOT to the flight. This delay is referred as ATFM delay.

The IFPS and ETFMS are separate systems; any message submitted to the IFPS
must be acknowledged before it is transmitted to the ETFMS, where any relevant
flow regulations may then be applied, thus the IFPS as the interface to airlines is not able
to assess the impact of flow requlations on flights [126].

Moreover, if the flight is close to its departure by the time that the regulation is activated
(or updated), ETEMS is not assigning a new delay to the flight. In fact, if the Off-Block Time
(OBT) is within the next 30 minutes this rule applies in ETFMS to protect the airport startup

sequence and avoids last minute change massages to the airline.

The final decision on the regulation implementation is for the responsible ANSP (also
referred to as respective ACC or FMP). However, the details on the regulation itself should be
coordinated with the NM. Sometimes a network measure (e.g. level capping, rerouting)

impacts more than one FMP and NM will be the responsible decision maker for the regulation.

After coordination with the FMP, the NM decides to activate regulations in those locations
where it is necessary. In ETFMS, regulations include the start and the end times, the

description of the location, the entering flow rate and similar parameters.

3.4.2 Covered domain

Since the thesis is addressing the resilience of EATMN, referred regulation data should
cover the geographic ECAC area. This indicates that all flights which are flying from IFPS zone
(IFPZ, see annex A.1) are considered for all active regulations. All submitted flight plans to
IFPS which are typically IFR flights are considered to define impacted flights. Also, each
regulation can be active for different durations (from hours up to several days). Therefore, the
reference time stamp for deciding on tactical regulations is the regulation start time and
regulation publication time. Lastly, full year cut of data is acquired because of known seasonal

demand patterns.
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3.4.3 Databases (NOP & NMIR)

FAA offers Aviation System Performance Metrics (ASPM) as an online system that collects
data from sources such as: Traffic Flow Management System (TFMS), Airline Service Quality
Performance (ASQP), CountOps and Flight Schedule Data System (FSDS). EUROCONTROL

also offers various data sources that in this study are considered against the following criteria:

e update rate: the database must be published throughout the tactical and pre-
tactical phase to be more relevant to decision making processes on the day of

operation,

e granularity: selected data should provide required precision to understand types

of disruption including spatial and temporal dimensions,

e coverage and accessibility: selected data should not only be accessible by all
layers of decision makers across the European Civil Aviation Conference (ECAC)
area but also collect data from ECAC to represent EATMN.

According to the mentioned characteristics, delay statistics including reports from CODA
(Europe), OPSNET (US), STATFOR and those that are published in the post-operational phase
are not considered. Likewise, databases including NPR and ATFCM statistics and network
operations reports are only published for authorized users and cannot fulfill the accessibility
criterion. However, a focus on capacity (ATFCM) regulations is promising since they denote
the results of collaborative decision making. In fact, a regulation is a method of matching traffic
demand to available capacity by limiting the number of flights planned to enter an airspace or
aerodrome (EUROCONTROL 2014).

In tactical phase, ATFCM regulations are initiated based on the evaluation of ATFCM Daily
Plans (ADP) from the pre-tactical phase and they are subject to constant updates if required.

Regulations correspond to network states in the restorative level of resilience.

ADP conveys the results of pre-tactical planning processes to the tactical phase of operation.
This plan is promulgated by means of INP and ANM [10] :

e INP (Initial Network Plan): informs the ANSPs and AUs about the congested
areas and suggests alternatives to avoid heavy delays. ANSPs act and organize
accordingly to maximize the airspace utilization and airlines consider suggested

routes or flight levels in filing their flight plans to optimize their operations.

e ANM (ATFCM Notification Message) is a message issued publicly to notify all
concerned of any ATFCM regulations. Some ANMs reflect regulations from the
ATFCM Daily Plan from pre-tactical phase. But the list of ANMs is constantly
being updated in the tactical phase to notify any new, changed or cancelled

regulation.
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ANMs are generated in pre-tactical and tactical phase. Post-operation records are stored
separately and is provided by Network Manager Interactive Reporting dashboard (NMIR) but

only to authorized users.

The Network Manager Interactive Reporting (NMIR) is a web interface allowing users
of NM systems to access a wide range of reports and statistical data on European
ATFCM archived data [127].

Tactically, ANM records are available both on NOP portal and CHMI (Collaboration
Human Machine Interface that offers authorized users real time information). Same online
tools also provide ATFCM Information Message (AIM) which is intended to notify NMOC
daily operations including possible disruptions. In this thesis AIMs are not used because of
the update rate and their format as text messages that serve as a description with much less

structured technical data.

There is no record of ANM messages in post operations but NMIR collects final regulation
data with complementary details. NMIR is offered to all ATM authorized actors, but because
universities and research institutes such as DLR are not typically considered as ATM actors,

an access tight is acquired for the thesis that can be used for follow up studies by DLR too.

3.4.4 Data characteristics

The purpose of ANMs is to provide the information related to implementation of ATFCM
measures and they are published by the EUROCONTROL’s network operations portal [12]. A
sample of an ANM record in NOP is given in Figure 3-16 and Table 3-16. The list is updated
by push messages when a new regulation is activated, a parameter of one gets changed, or
regulation is cancelled in the Enhanced Tactical Flow Management System (ETFMS). The tag

for type of push-message is stored in the field of ‘state’.

Table 3-16 ANM data structure

Field Sample Entry Field Sample Entry
Seq no 009 State New
FMP LFFFAD Published 12/03/2021 06:00
Regulation Id LFPNVD12 WEEF ¢ 12/03/2021 08:00
Flight Level 2 ALL UNT ¢ 12/03/2021 12:00
Reason ATC Capacity
RMKP Calibration flight
LFPN + LFPV Departures
2 Flight Level can also be e.g. “145-" to indicate that regulation applies to all levels below 14 500
feet,

b Remark, ¢ With Effect From, ¢ UNTil.
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eurocontrolint

arget Date 12/03/2021 5% (RN st |5

D (Tactical)
Type:|All  ~| FMP: Sort By:'l MP Identifier and Regulation Number - ]
Valid On 12/03/2021
Released 12/03/2021 09:46

12/03/2021 10:03:51 - 9 regulations

RMK calibration flight

LFPN + LFPV ARRIVALS
Seq no 009 State
FMP LFFFAD Published12/03/2021 06:09
Regulations Id LFPNVD12 WEF 12/03/2021 08:00
Flight Level ALL UNT 12/03/2021 12:00
Reason ATC Capacity
RMK calibration flight

LFPN + LFPV DEPARTURES
Seq no 001 State NEW
FMP LFMMAPP Published11/03/2021 16:46
Regulations Id MT4AT12 WEF 12/03/2021 10:00
Flight Level 145- UNT 12/03/2021 13:00
Reason ATC Capacity

ARRIVALS AND TRANSITS LFMT TMAW (ISTRES INACTIF)
Seq no 002 State NEW
FMP LFMMAPP Published11/03/2021 16:46
Regulations Id MT4AT12E WEF 12/03/2021 06:30
Flight Level - UNT 12/03/2021 08:00
Reason ATC Capacity

ARRIVALS AND TRANSITS LFMT TMAW (ISTRES INACTIF)
Seq no 003 State NEW

©EUROCONTROL 2016 nop.office@eurocontrolint  Legal Notice & Disclaimer

Figure 3-16 Snapshot of ANM list

The offered data structure in NMIR is extended as a post-operational data base (Table 3-
13). In this research both ANM and NMIR data on regulations are used with different
purposes. ANMs contribute to network state definition and NMIR records are used for

learning models.

In contrast to NOP/CHMI, NMIR allows to download all regulations for different years in
different formats (granularity is per day). The vacancy of ANM messages and their updates
are not offered as a data base. Therefore, a sampling technique is implemented to save public

ANM messages for each day in two granularities, daily and 10-min snapshots.

Daily records can be downloaded as limited post-operation records. Only the last status of
ANM list is stored temporary on the NOP portal (input for ANMStat tool). The 10-min
snapshots are acquired by writing an executable file (ANM Capture.exe). As provided in
Figure 3-17, once the written code is executed it will take a copy of active ANM list from NOP
portal every 10 minutes and save it in an excel sheet. Therefore, for each day there is an excel
file with sheets that each contains a copy of ANM list at a specific time. This allows to capture

any update with a granularity of 10 minutes at day of operation.
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Check List!

ANM Capture V2.0 X

Make sure you have done the following: (Then press OK)
- Create & Save xls file (Book1.xIsx) in Documents folder,
- Connect to VPN (recommended),

- Open NOP ANM window in Firefox,
- Start at the right time P = 10 (min).

Note: Display setting must be normal, ANM zoom set to 140%

Figure 3-17 ANM Capture, executable file

110




3. Methodology

111



4. Resilient Path (RNN)

4.1. Complex Adaptive Systems (CAS)

The concept of CAS involves a group of systems that basically possess two main characters:
evolving structure and moving target [128]. A typical CAS, evolves to adapt according to
changes of its environment and this will reflect on iterative update of targets. This
demonstrates that an optimal performance at some point does not necessarily lead to a global
optimal performance. As reported by MIT [129, 130], the topic of CAS is introduced back in
1980’s with an emphasis on crossing of traditional disciplinary boundaries. CAS provides an
alternative to the linear reductionist methodology in modeling systems, that relies on fixed
assumptions to simplify the modeling task. CAS benefits from computer aided simulations
instead. ATM network as described earlier is a complexity that results from the inter-

relationship, inter-action and inter-connectivity of its elements and environment.

In fact, EATMN is a CAS since it hosts complex disruptions that emerge as a result of
dynamic and nonlinear spatio-temporal interactions among its subsystems. The adaptability
of CAS is totally consistent with what has been conceptualized as a resilient behavior. A MIT
study [130] defines seven attributes for CAS and Table 4-1 provides the matching
characteristics of EATMN.

Table 4-1 EATMN as a Complex Adaptive System

CAS attribute EATMN characteristic

Distributed Control Four main Decision Makers (NM, ANSP, Airport, AU).

Emergent Order Emergent behavior of the network and performance variability are
discussed in section 2.1 (resilience).

Connectivity Flights and infrastructures such as route network and dataflows link
elements of EATMN.
Co-evolution rising demand or lost capacity trigger all actors to adapt their

resources to deliver services.

State of Paradox Operations in ATM has built in levels of flexibility which reminds the
idea of bounded instability in CAS.

Sensitive Despite of strategic and pre-tatcical plans, unpredictability of the
Dependence on network is a fact that is observed during volcanic ash in 2010 and
Initial Conditions ETFMS failure in 2018.

Far From This attribute is observed with daily traffic pattern adaptations. Not
Equilibrium only flights are rescheduled but also re-routed to avoid low weather

conditions, restricted areas, costly charging zones and etc.
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The idea of CAS is mainly discussed in American academics. Donohue from George Mason
university presented air transportation as CAS in 2003 [131] . Computer simulation brought
more attention to this topic; in 2009 a study from Purdue university [132] addressed the
network transition problem in air transportation by agent-based modeling to assess two
scenarios. Supported by increased computational capacity, researchers from Arizona state
university [133], were able to provide a more mathematical model to address the emergent

disruptions from the interoperability of system components.

In the same context, a PhD dissertation [134] considered the evolution of the airline route
network and its impact on air traffic delay through machine learning. At early 2016, DARPA!
focused assessing and predicting the complex emergent behaviors that constantly change
across time and space especially in aviation. The Complex Adaptive System Composition And
Design Environment (CASCADE) program tries to develop mathematical foundations of
system design to enable real-time resilient response in dynamic environments. Adaptive and

resilient urban infrastructure is one of the key focus areas in this program.

Other studies from George Mason university reviewed resilience in CAS. Roberts et al.
[135] used statistical approach to quantify risk of emergent behavior to reduce probability of
excessive costs. Punpuni-Lenss et al. [136] also studied the CAS resiliency but their approach

includes agent-based modeling rather than statistical approaches.

Most recently, Ordoukhanian and Madni [137], explored the resilience of a Multi-
Unmanned Aerial Vehicle (UAV) system in face of disrupting events. In their study, real-time
evaluations of resilience alternatives showed that multi-UAV system tactics dynamically
change the priorities of the system based on the system state. Similarly, in this research, the
state of the network is determined to capture the dynamic environment of EATMN but next,
instead of computer simulations or agent-based models, the focus is on ML predictions on

regulation’s impact that eventually enables real-time evaluation of restorative measures.

4.2. Recurrent Neural Network (RNN)

CAS benefits from evaluation of corrective measures and since EATMN can be considered
as a CAS, it is well established that any measure (i.e. capacity regulations), should be in
alignment with defined dynamic environment (network state). Therefore, similar to the
approach for UAV systems [137], capacity regulations in EATMN also need to be evaluated in

real-time but not by simulations.

This thesis addresses the need to evaluate corrective measures by predicting the impact of
ATFCM regulations through RNNSs. In previous sections, some supervised machine learning
methods (especially CNN) have been studied. But the focus is now shifted to predict
individual regulations by RNNs because not only primary results dedicated the degree of

! Defense Advanced Research Projects Agency
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tactical network evolution but also RNNs tend to be more capable of capturing the sequential

nature of regulations as time series.

Another important factor in deciding to continue with RNN is reference location of each
regulation (spatial dimension of data). Despite the demonstrated advantage of CNN in
predicting network parameters, CNN is less likely to outperform RNN in predicting
individual regulations. Each regulation is assigned to a specific TV which has a parent
reference location (i.e, either an elementary or a collapsed sector). The count of available
reference locations (Figure 4-1) is so high that will challenge CNN in extraction of spatial

patterns.

Figure 4-1 Sectors in European Sky: DLR-institute of air transport, NFE tool

RNN experiments on sequential data cover a wide range from word processing
applications such as translations [138] to anomaly detection in aircraft data. A study from
George Mason university [139] proposed a RNN model with LSTM cells to detect canonical
anomalies from Flight Operational Quality Assurance (FOQA) data. Therefore, before
designing the RNN it is important to locate other methodologies in the recent literature. Cited
works in Table 4-2, consider post operational data including flight schedules and trajectories
(ADS-B data). But the size of the datasets is not comparable to learning applications in Natural
Language Processing (NLP). NLP is the research area that most RNN applications are focused
on. Nevertheless, the studies continue with learning models and report significant capabilities

in delay predictions.

Also, it can be observed that some studies focus on flight delays over specific routes [140]
or a single airport [141]. The spatial domain is less likely to includes multi-national airspaces.

For instance, all cited works in Table 4-2 are applied to either US or china airspace.
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Table 4-2 Recent studies to predict delay with learning methods.

Author/Year Method(s) Target Data Notes
Gopalakrishnan & ANN, CART?, OD delay 2011-2012 7 features, trained on 2011, tested
Balakrishnan MJLSP on 2012 data, delay threshold:
[140]/2017 above 60 minutes.

Thiagarajan et al. NN, RF, Arrival &  2012-2016 Classification and regression
[142]/2017 GBoostc departure models are explored; 21 features for
delay departure delay & 36 for arrival
delay; data filtered to selected 15
airports.
Manna et al. [143]/2017 GBoost Arrival & Apr-Oct 8 features, data is filtered out by
departure 2013 size of delay (25 to 75 percentile).
delay
Yu et al. [141] /2019 Deep Belief N,  Departure  Jan-Mar  Data included 528 471 domestic
KNN, SVM, delay 2018 flights from a single airport, model
LR also encoded SVR.
Lin et al. [144]/2019 ConvLSTM  Trafficflow  Jul-Aug  Focus on both spatial and temporal
matrix 2014 dimension; total number of data

samples: 89 280; ADS-B data.

Gui et al. [102] /2020 LSTM, RF Departure  Dec 2018- 15 features including weather
delay May 2019 info; both classification and
regression; ADS-B data.

2 Classification And Regression Tree, " Markov Jump Linear System, ¢ Gradient Boost.

Modeling approaches is another key difference in studies. A study from MIT [140] took the
data from National Airspace System (NAS) of US to create a delay network for main 30
airports. Their study only considered delays bigger than one hour and concludes the superior
performance of ANN in classification (if a delay will occur or not). Thiagarajan et al. [142]
added the weather information as input features. Their prediction model considered 36
features for arrival and 21 features for departure delay. Despite using different feature
selection methods, they reported only a minor improvement in prediction accuracy (only 0.22)
but similar to this thesis, their study declared random forest and gradient boost method to be

efficient as classic models for both regression and classification.

Gradient boost was also applied by Manna et.al [143], but their approach in filtering the
data, significantly affected the quality of results. They cut the data for each day to be between
Q1-1.5+xIQR and Q3+1.5+xIQR (Inter-Quartile Range), where Q1 and Q3 are the 25 and 75
percentiles. Therefore, as given in Table 4-3, despite having a small dataset (less than a year)

and less features, their gradient boos method delivered significantly better results than [142].
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Table 4-3 Departure delay regression results by Gradient Boost method

Author MSE R?
Thiagarajan et al. [142]/2017 1218.75 0.055
Manna et al. [143]/2017 67.027 0.948

Size of the dataset is not regarded as an issue in contrast with what is generally expected
from supervised learning methods. In another study by Yu et al. [141] data is obtained from
one airport but the design of the model overcome this limitation. In their model, Deep Belief
Network is acting as a feature selection process that filters the input to a SVR that predicts
delays. The results showed that 99.3% of predictions have a tolerance of + 25 minutes from the

observed values.

Some studies [102, 144] rely on ADS-B data that provide a dataset with higher granularity,
especially on flight trajectory. Lin et al. [144], proposed a model (ConvLSTM) to capture
tempo-spatial correlation. After a transformation, almost 90 thousand data point constitute
the input dataset. However, the model predicts traffic instead of delay. But Gui et al. [102]
predicted flight delay by combining ADS-B data with weather, airport information, and flight
schedule. Their model was also based on the LSTM units that generally have four control gates,
i.e., input gate, forget gate, cell, and output gate. Conversely, the proposed LSTM [102] had
only limited dataset as input (max 1542 input sequences) and predicts delay as a classification
task.

Compared to aforementioned studies, the intention here is to finalize a RNN with LSTM
units to predict delay as a regression task and instead of ADS-B data, NMIR data are used to
cover EATMN for all airports/airlines. The required steps to build the RNN is rich enough
that this part of the thesis is fostered through a master thesis [145].

421 Data preparation

In this section, preliminary steps on NMIR data is described in different steps including
data transformations, feature encoding and splitting. Regulation of 2015 until 2018 are
obtained from NMIR to be processed for this section. Despite the time stamps that allows the
regulations to be studied in different sizes, the preference here is to have yearly samples rather
than monthly samples. This allows the model to learn seasonal patterns too. 2017 is selected

as the training set in comparison to 2018 that is rather risky with high traffic and delay figures.

Since RNN is a neural network the split ratio for training and testing needs to respect the

risk of over and underfitting similar to described CNN. Therefore, data is splitted to 70%,
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train set and 30% for the test set. To split the data set Scikit-learn from python programming
is used. The reference parameter for splitting the data is the target value (delay) that is ranging
from 0 to 32,795. The result of dividing the data into train and test subsets is given in Figure 4-

2. This figure shows that the splitting process assures similar distribution of subsets.

104

103 4

102

Regulation Counts

1014

10 4

10000 15000 20000 25000

ATFM delay (min)

Figure 4-2 Train and test set after splitting based on delay values, [145]

After splitting the data, the input vector needs to be prepared with regard to different types
of features. Although the data structure is same as Table 3-13, pre-processing considers three

types of features that are described in Table 4-4 and discussed individually.

Table 4-4 Different types of Feature in pre-processing

Feature Type Features

Scalable Regulation Duration (min); Regulation Window Width (min);
Regulation Activation Notice (min); Regulation Counter =

Recursive Regulation Activation Date; Regulation Start Time; Regulation End
Time; Regulation Cancel Date; Weekday; AIRAC =

Categorial TVS Id / EMP; Regulation Reason; Regulation Id, Protected Location ID;
Protected Location Type; TV 1d; Regulation Cancel Status; Regulation
Activation Date; Regulation Start Time; Regulation End Time; Weekday;
AIRAC 2,

2 AIRAC cycles and regulation counter are not provided in NMIR dataset.

Note: some features belong to more than one category since different encodings have been tested.

e Scalable features: those that require scaling, otherwise their different ranges push
the neural network to be biased in favor of features with bigger values. These
features are scaled by scikit-learn preprocessing library. Among different
provided functions, MinMaxScaler and StandardScaler are used in this section.
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The former transforms each value by its distance to reference point (minimum
value) and then scales it according to the range (max-min). The latter scaler, takes
the feature and transforms them to a standard normal distribution (u=0 & o =
1).

Regulation Counter is not a given feature in NMIR data structure. This feature is
designed to represent the number of active requlations in the network according to
algorithm 1.

Algorithm 1: Calculate regulation counts feature

Input: NMIR data
Output: Regulation Counter
Select the required features (regulation Activation Notice, TVS ID)
Sort the regulation according to activation notice time
Create empty columns for each scenario (3hrs, 4hrs, 12hrs and 24hrs)
n < total number of regulations
fori=1tondo
step 1. read the activation time (e.g. 13:00)
step 2. define relative time intervals for each reference scenario
(e.g. 10:00 to 13:00 for 3hrs scenario)
step 3. count number of active regulations for each time window of step 2
(e.g. 36 active regulations in last 3hrs)
step 4. Count only regulations with the same corresponding TVS ID for each time window
(e.g. 4 active regulations in same TVS ID in last 3hrs)
Step 5. Save calculated numbers in step 4 to corresponding column for each scenario
End

e Categorial features: these features are encoded with the same library with one-
hot encoder from the same library of scikit-learn. As described by algorithm 2, it

assigns a binary array with the length of number of possible categories.

Algorithm 2: One-Hot Encoding for categorial feature
Input: NMIR data
Output: transformed categorial feature
x <@ Select the categorial feature (e.g. regulation reason)
C <= Set of all possible values of x
n <= Number of all possible categories (e.g. 14 categories for regulation reas:
E < Create an empty binary array with the length n

fori=1tondo
if x == C then
Ea=1
else
Ea=0
end
return E (e.g. for a reason of second category, E=[01000000000 00 0])
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e Recursive features: these features deal with time, such as weekdays and hours.
Such features are sequential and are different to categorial features. It is
necessary to make the neural network realize this aspect. For example, a
categorial encoding of weekdays is ignoring the fact that Wednesday is 4™ day of

the week and is closer to Tuesday compared to Saturday.

This cyclic nature of the features can be considered by assigning values of a
periodic function such as sine or cosine functions [145]. Figure 4-3 is showing the

assigned values to 1440 (24x60) values each representing a minute of 24 hours.

0.25
0.00 -
—0.25 -
—0.50 -

—0.75 1

Assigned values from a sine function

—1.00 A

(¢] 200 400 600 800 1000 1200 1400

Minutes of a day

Figure 4-3 Sample of transformation for recursive features (sine function for regulation Start time), [145]

The figure, shows that this transformation is for example assigning values close
to zero for both 23:55 and 00:05 which original values are at a big distance to each
other (i.e. 1435 and 5). The transformation is done by the following algorithm in

which as an example a sine function is used to create the reference array:

Algorithm 3: Cyclic transformation for recursive feature
Input: NMIR data
Output: transformation matrix for recursive feature
x < Select the recursive feature (e.g. regulation start time)
C <= Set of all possible values of x
(e.g. time of the day as discrete values from 0 to 1440)
n <2 length of set C
E < Create an empty transformation reference matrix sized n x 2
fori=1tondo
Convert the feature value (Ci1) with Sin function

. . Ci
(i.e. E;; =sin (2 * T % 1440) )
Convert the feature value (Ciz2) with Cos function

. Ci
(i.e. E;, = cos (2 * T % 1440) )

end
return E
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In similar studies, datasets are sanitized by removing outliers [143, 140]. However, this
thesis is taking the network resilience as a core value, and outliers are therefore not treated as
noise. Also, in order to avoid vanishing or exploding gradient problem, the target value (delay)
has also been scaled by MinMaxScaler to a range of [-1,1]. The basic rule of backpropagation
in neural networks is that once the prediction is done all weights in layers will be updated
proportionate to the associated gradient. A large gradient will exponentially increase in
updating the weights of each layer (exploding). Similarly, a small gradient will exponentially

decrease (vanishing) as the model propagates back at each layer.

4.2.2 RNN architecture design

The model which presented here is finalized after an iterative design process in which
different aspects were considered. Since there is no practiced approach in calculating the
design parameters (such as number of neurons and layers), it is inevitable to start from an
arbitrary selection and then start an iterative process to improve the architecture. Table 4-5,
charts the design aspects that we [145] explored to improve the model.

Table 4-5 RNN model architecture design aspects

Design aspects Tested alternatives Result
Feature encoding Categorial vs. Recursive Recursive
Learning rate Constant vs. Dynamic Dynamic
Neurons at each layer Max 577 Range of neurons: 71 - 279
Number of layers Max 12 3 Dense & 3 LSTM layer
Optimizer Adam, SGD, Adadelta, Adam
Adagrad, Adamax, Nadam

Despite the fact that more layers (deeper network) is increasing the model generalization,
the depth of the model needs to be proportionate to size of dataset. NMIR data set on
regulations provides data for different years, but in aviation there are yearly and seasonal
traffic patterns that is from a different nature than e.g. available texts (data) for a RNN
application in NLP. Therefore, it is unrealistic to build a model with numerous layers and
here up to 12 layers has been checked. In fact, the main layout of the model is adopted from
the deep RNN in a Georgia institute of technology study [77] that offers four ways of forming
a deep RNN as:

e Deep input-to-hidden architecture that reduces the effect of non-linear
dimensionality that breaks the original input layers such that the underlying factors

of variation will be revealed;

e Deep hidden-to-output architecture is considered to be effective to extract variation

factors in the hidden state, that ultimately leads to easier output prediction;
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e Stack of hidden LSTM layers empowers a model to realize state transitions in
different timescales. This is the main advantage especially when the focus is on the

sequential patterns of the data, and

e Deep hidden-to-hidden transition architecture enables the RNN to learn a highly

nonlinear and non-trivial transition between the consecutive hidden states.

According to mentioned methods, different trials lead us [145] to choose the stack of hidden
LSTM layers to make the deep RNN model. The three LSTM layers are designed to converge
toward the output layer. In other words, the input layer has 140 neurons, then a dense layer
with 279 neurons is between the input layer and the stack of LSTM layers to learn from non-
sequential features. The core of the model to predict regulations delay are the 3 LSTM layers.
More LSTM layers slightly improved the quality of the predictions at a great cost of
computational time. These layers have 279, 140 and 71 LSTM units.

The attempt to add up to 3 more dense layers before the output layer (hidden-to-output)
but regardless of number of neurons at each layer no significant improvement was achieved.
As another alternative use of dropout layers are tested since they improve the model
generalization through preventing the model to overfit. However, results were not promising
enough and we changed the focus to investigate other design aspects such as learning rate,

optimizer function and encoding technique.

As expected, recursive encoding was proved to be more efficient (Table 4-6) since, apart
from loss of sequence, one-hot encoding of features leads to much higher dimensions for input
vector. For instance, ‘day of the week’ feature can be represented by adding only two (by Sin
and Cos transformation in Algorithm 3), compare to 7 extras by one-hot encoding (detailed
discussion is provided in [145]).

Table 4-6 Comparison of Cyclic vs. One-hot encoding transformations

Set Cyclic One-hot encoding
MAPE: RMSE* R? MAPE: RMSEP R?2
Train 1020 12792 0,973 8.47 121.51 0.975
Test 12.80 14938 0987  13.69 13199  0.985

in percentage, ®minutes.

Furthermore, two optimizers of Adam and Nadam are compared for chances of RNN
architecture improvement. Nadam is a variant of Adam optimizer that benefits from nesterov
technique [146] to improve the momentum component of the Adam algorithm. More
specifically, as Adam searches gradients in each iteration, the new value (6 or new update) for
the optimization function (f(0)) is calculated based on a momentum component and the

adaptive learning rate. Adam recalculates the momentum based on previous gradients (g, =
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Vo,_,ft(6:-1)) solely which is modified to be a decaying sum over previous updates (0 instead
of g) in Nadam. Basically, momentum is calculated based on both previous momentum and

current gradient (m; = U, , + a;9g;)-

At a higher computational time, Nadam showed a faster learning process in early epochs
as expected but as number of epochs grew, the algorithm showed stabilization problem into
reaching the minimum and the cost function started to oscillate and avoid further

convergence.

The proposed DCNN in Section 3.3.2, benefitted from Leaky ReLU (activation function)
and weighted Mean Absolute Error (WMAE) as the cost function. Here after realizing the
superior performance of Adam optimizer in RNN design with a constant learning rate of 0.001,

the focus is to improve model performance through experiments on learning rate.

Typically, a learning curve is expected to flatten by iterating over epochs until it reaches the
stop criteria. If it is determined to make sure that all epochs provide equal learning chances,
learning rate should decrease throughout the learning process. Two of the methods to achieve
a dynamic learning rates are, step decaying rate and time decaying rate. The former is basically
assigning a decrease rate at every selected number of epochs, while the latter continually
reduces the learning rate at each epoch. Keras [119] offers a dynamic decaying rate with two
control variables: count of epochs and decay rate (k). Figure 4-4 shows the used reduction of

learning rate with k=5 and the initial value of 0.001.
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Figure 4-4 Time decaying learning rate, [145]

Experiments with such a learning rate improved the performance of the model to the extent

that the delay per regulation can be predicted with an average tolerance of 6.73 minutes.

In order to capture the sequential aspect of regulation not only RNN is used but also
previous active regulations in the network is encoded to the input vector. To this end as

described by algorithm 1, four different scenarios (3, 4, 12 and 24 hrs) have been considered as
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additional input feature (i.e. regulation counter). Results (Table 4-7), show that the

consideration of regulations in past 12 hours are most effective in predicting the delay.

The precision of the results seems to become better as the input vector considers more
previous regulation (from 3 to 12 hrs) but consideration of the past 24 hours reduces the
accuracy of the predictions. This is operationally understandable. The pre-tactical planning is
putting corrective measures for the day of operation (24 hrs.) and it is true that the traffic
patterns in the afternoon is always highly dependent on morning situation (12 hrs.). This is
due to the airline schedules and plans for each aircraft that need to be realized by the end of
the day.

Table 4-7 RNN model: Comparison of MAPE? values for delay prediction in different Scenarios

Set Scenario
3hrs 4hrs 12hrs 24hrs
Train  10.20 9.70 843 10.53
Test 12.80 12.53 12.18 12.84

2in percentage.
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5. Results

Firstly, the implemented methodology to declare network state is given based on a use case
from selected subset of 2017 [61]. Then the results and discussions on measuring the network
disruption through learning methods is provided (with two divisions of feasibility study [64,
35] and DCNN implementation [62, 107]). The chapter is then concluded by results of RNN
model and its evaluation against results of DCNN [145]. Basically, this chapter demonstrates
the path to reach the goal of this exploratory research and provide added values by discussing
the findings toward a new network resiliency concept to enhance tactical situational

awareness. The following objectives are set to reach this goal:

e to propose the methodology of capturing emergent disruptions as a result of dynamic
interactions among DCB actors in the tactical phase,

e to define network state based on regulations as comprehensive data that present
emergent disruptions since regulations encode multiple interactions between
subsystems of network,

e to conduct a feasibility study on use of different learning methods in network
predictions based on regulation data,

e to propose a new learning architecture designed for predicting network disruptions in
terms of delay and delayed flights.

5.1. Network state

The described methodology in section 3.2 was applied to a subset of acquired ANM data
from 2017. Since the calculation is based on confidence levels, the two-sided thresholds are
estimated for different time horizons. Table 5-1, provides the upper and lower thresholds

regarding the confidence level (99.3%) for the day of operations.

Table 5-1 Calculated thresholds of initiated regulations and identified non-nominal states based on

ANM data (2017)
Time frame Thresholds Interval Outliers
Upper Lower  width -+
May 137 66 71 0 0
June 166 76 90 0 0
July 191 117 74 0 0
Aug. 168 110 58 1= 0
Sept. 150 98 52 16 e
Oct. 131 53 78 24 0
May-Oct. 184 53 131 1= 0

212. Aug. ©03.Sept. <27.Sept. 410.Oct. & 18. Oct. €22, July
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Listed incidents of outliers in Table 5-1, elaborates on the reasoning behind use of different
time-horizons. Although the application of larger time frames with identical confidence levels
results in wider control intervals, it is intended to account for short-term patterns. For instance,
the summer traffic pattern in July made the single month control interval unable to detect July
22nd as an outlier but it is indeed a disrupted day which is captured by the six-month time
frame. In fact, 36% of the 31161 flights were regulated and 22% were delayed with a total of
138818 minutes of delay [147].

In Table 5-1 positive and negative outliers are separated since negative outliers
(degradation) are days that exceed upper thresholds and positive outliers (excellence) are
those below lower thresholds. Positive outliers are subject to further investigation to set new
performance goals with respect to performance variability as the essence of Safety-II. This
allows detecting any kind of disruption including cases that the network successfully
accommodated to the planned traffic with only minor imbalances. Detected September 27,
2017 is a good example of a positive outlier in which from 33535 flights, only 9.6% were
delayed and total delay was 57425 minutes [147].

As described in Section 3.2.2 for each given daily set of regulations the mean and standard
deviation values are compared against reference cumulative values and if the calculated
values match any of the critical and crisis state definitions, the ATM network is statistically
considered to face a non-nominal state (Figure 3-2). In such cases, the second type of thresholds
are evaluated in micro analysis. This way the severity and characteristics of an identified non-

nominal state are assessed and the affected ACCs in the network are located.

In aforementioned use case, probability functions are estimated (Section 3.2.3) for all
regulation types based on the 99.3% confidence level (as of Figure 3-4) and the corrected
bandwidths are considered only for weather and ATC capacity regulations. For other types of

regulation, the bandwidths that minimize the estimation error are used.

Table 5-2 presents two days from different kinds of time frames to verify the result of macro
analysis and to show the benefits of the micro analysis in distinguishing types of critical states.
In both days, significant traffic demand was sufficiently large to push almost 30 percent of
flights to be regulated and the given definition of non-nominal states tags both days as critical.
In contrast to a crisis mode, the measured loss of capacity is reflected by various regulations
as a result of numerous local restrictions. Quantitatively, the 99.3% control interval is [101.8,
315.8] for the standard deviation and measured sigma values fall in the middle of the control
interval and declare a critical state. The significant degradation in EATMN at both incidents is

confirmed by post-operational report in Table 5-2.
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Table 5-2 Statistics of detected non-nominal states

Statistics Dates
12. Aug® 22.Julc
Mean duration (min) 182.67 157.9
sigma (min) 180.5 175
Traffic demand (flights) 2 31343 31161
Percent of flights Regulated = 29% 36%
Mean delay of all flights(min)2 2.9 4.5

a. Adopted from NM ATFCM Daily Summary (Post-ops).

b. Detected date based on thresholds for Aug.

c. Detected date based on thresholds for May-Oct.

d. Part of traffic demand passing through one or more regulations.

This table also shows similar demand rates at both dates, but July 2274 suffered from more
delays than August 12, Micro analysis investigates such differences as in Table 5-3. Estimated

Cumulative Distribution Functions (CDFs) describe totally different types of critical states.

On August 12%, along with ATC capacity and ATC rerouting regulations, the largest
number of aerodrome capacity regulations (for the observed six months of 2017) was
implemented to accommodate demand. This led the day to be a complex example of a non-
nominal state with significant loss of capacity. However, July 22" was different as high traffic
demand was impacted by major weather conditions pushing the total number of regulations
to 348 - almost three times of what was initially expected in pre-tactical phase. In fact, the day
constitutes a verified case of performance degradation as a result of adverse weather impact.
In other words, one is a case of excessive demand (airport network) while the other is reduced

capacity (en-route challenge).

Such cases contribute to understanding EATMN resiliency since they emphasize the
network manager’s role in actively managing unforeseen disruptions and their knock-on effect

throughout the tactical phase.

Table 5-3 Statistics of active regulations for detected non-nominal States

Dates Total (Pre- Total Weather ATC ATC Aerodrome Others
tactical) (Tactical) Capacity  Routing Capacity
22. Jul:
Counts 123 348 72 143 71 21 41
CDF (x)» ok ok 0.925 0.989 0.937 0.514 0.710
12. Aug:
Counts 128 285 6 130 80 32 37
CDF (x) % *HE 0.206 0.962 0.987 0.957 0.587

a. CDF (Cumulative Distribution Function) of observed number of regulations (or counts). Each regulation type has an identical
CDF function derived from kernel density estimation (micro analysis).
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Estimated distribution functions (Figure 5-1) is an asset in comparing different regulation
types but also reveal characteristics of regulation types. Aerodrome capacity and ATC staffing
regulations are less frequent at network level compared to ATC capacity, which proved to be
the dominant regulation type. Strategic restrictions on resources and infrastructures led to a
unimodal function for routing, staffing and aerodrome (airport) capacity regulations. In
contrast, more stochastic tactical imbalances reflect in multimodal distributions of weather and
ATC capacity regulations. Such figures are an asset to evaluate and compare resilient changes
at strategic level. For instance, it is evident that the current network planning is more resilient
toward ATC capacity regulations and least against weather induced disruptions because the
curve for ATC capacity is the flattest and the estimated curve for weather is multimodal and
skewed. A resilient long-term planning will ideally flatten the estimated curve for weather too.
Needless to say, the probability values are small at first glance, but this is mathematically

expected as the area below the curves has to be equal to one in probability functions.

Furthermore, possible correlations between different regulation types is investigated by
comparative heatmaps of pairwise combinations as in Figure 5-2. The results opened new
discussions; for example, the stretched increasing pattern in Figure 5-2a suggests the chance
of a causal relationship as if a certain range of staffing regulations induces ATC capacity
regulations over the network. However further studies are needed to evaluate such a causal
relationship between any pair of regulation types. For instance, the geographical locations and
traffic volumes at which these regulations are activated should be investigated since it possibly

reveals potential bottlenecks or traffic flow knock-on effects.
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Figure 5-1 Estimated probability density functions with selected bandwidth for each regulation type
(Cumulative Distribution Functions are plotted as inset with same dimensions on base plot axes). The figure
shows identical characteristics of each regulation type. As mentioned before, the bandwidth parameter is tested
and this figure shows the final set of curves that is divided into corrected (black) and optimal (blue) curves [61].
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Figure 5-2 Pairwise comparison of EATMN regulations based on their type (Probability density estimate of
bivariate data from May to Oct. 2017). a. the heatmaps suggest direct correlation between ATC capacity and Staffing
compared to significantly small correlation between weather and ATC capacity regulations. b. Most dense
probabilities from all possible pairwise-combinations; Low variance of aerodrome capacity and ATC staffing
regulations result in higher estimated probability densities. The effect of different data-ranges is also magnified in

weather vs. Aerodrome capacity regulations [61].

A comparative review of regulations contributes to a better understanding of network
behavior. For instance, the chances of having simultaneous weather issues and ATC capacity
regulations are so rare as if weather-induced ATFCM measures also remedy ATC capacity

limitations (Figure 5-2a).
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At the network level, ATC capacity regulations are a big part of tactically implemented
measures with different influences on other regulation types. For instance, an increase in the
number of ATC capacity regulations is most likely accompanied by a rise of ATC staffing
regulations (at relative scales). This is consistent with the general rule that ATC capacity
regulations are implemented when demand exceeds or complexity reduces expected capacity
and although one traffic controller will have reduced complexity but such a regulation affect

the entry rates for other segments of flight routes too.

In other words, the increased complexity can intensify unplanned staff shortages in
adjacent ACCs (cause of ATC staffing regulations). Likewise, staff shortages may reduce the
expected capacity within an ACC.

In contrast a rising pattern in the number of ATC capacity regulations is not expected to be
observed with a constant increase of aerodrome capacity regulations. This is aligned with the
fact that flights, as the key element of traffic flows, bind the en-route and airport demands.
The implication is that imposed limitations on en-route capacity will affect demand for
aerodrome capacities, especially when the large scale of the network is considered (that also

include arrival airports).

Another observation for less frequent types of regulation is the effect of limited span and
low variance of their data (Figures 5-2b and 5-1) that result in higher combined probability
densities (from Figure 5-2a to 5-2b, the scale of density bar moves from 104 to 10?).
Nevertheless, same speculating on causal relationships can be made as in the heatmap for ATC
staffing and aerodrome capacity regulations. However, in case of large difference in data-
ranges, this type of comparison is less productive (e.g. the heatmap for weather vs. aerodrome

capacity regulations).

5.2. Disruption prediction (DCNN)

Section 3.3.1 (Feasibility of machine learning approach) presented the results of applying
SNN and RFR on regulation data. Moving forward from predicting ATFM delay per ACC, the
thesis scaled up to a more comprehensive study by considering different supervised learning
models on network scale. The experiments led to selecting a RF model as the baseline model

and a deep convolutional neural network (DCNN) was proposed by benefitting from both
CNN and SNN layers.

Both baseline model and DCNN trials were trained on NMIR data with similar pre-
processing steps. The convergence of DCNN model is depicted by Figure 5-3. The model
performs and converges regardless of size of data input (similar trends for both train and test
sets). Along with expected shorter learning time and higher errors for test set, it has been

observed that after 100 epochs the learning curve has been flattened.
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In comparison to RF (Table 5-4) as baseline, DCNN delivers a significantly improve
performance. Predictions for the low category of target values gained maximum benefit.
MAPE improved 70% for delayed traffic and 60% for delay. The efficiency of the model
specially in low category demonstrates the advantage of introduced weighting method. In

general, the proposed architecture successfully improved the results by 50% (overall category

for delay).
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Figure 5-3 Learning curve of DCNN through training and testing phase. (a) Delay, (b) delayed traffic [62].

Table 5-4 Performance of DCNN model vs RF in testing phase.

Category Delay » Delayed traffic 2
DCNN RF DCNN RF

Low 28.3 74.15 17.21 55.95

Nominal 15.28 26.2 9.18 17.31

High 12.56 17.65 5.04 11.64

Overall 17.89 36.18 10.06 25.09
2 measured by MAPE metric.

Since MAPE is calculated based on relative percentage values, absolute errors are plotted
to investigate any patterns in wide range of target values. Figure 5-4 provides precision scatter
plots for both delay and delayed traffic in two columns. DCNN outperforms RF and smoothly
predicts the target values regardless of their category. RF scatter plot shows more dispersion

as the target values grow but DCNN delivers a steady quality of predictions.
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Such a performance can be contributed to many factors. A RF model with optimized
hyperparameters has a less complex structure and learn based on a decision tree with pure
probabilities of an accurate prediction. On the other side, DCNN has the advantages of
convolution layers and SNN in its architecture. While CNN layers work on spatiotemporal
features, the added stack of SNN layers enable the model to expect disruptive dynamics in
tactical phase (compared to a typical CNN model). These layers are reinforced by focus on
temporal characteristics of regulations by added vector of daily features. Since the architecture
intentionally focus more on temporal dimension, a validation on different data samples is

performed next.
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from baseline model (i.e., random forest): (a) delay, (b) delayed traffic; [62]
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Validation and discussion

The operational understanding on sequential nature of network disruptions is evident. But
the proposed data driven approach rely on big data sets. Therefore, the model was trained on
post-operational data of two consecutive years to predict the next year. Metrics in Table 5-5,
imply that the model performed better in predicting 2018. Although 2018 is reported to be the
highest figure of delay in recent years, such a behavior can be interpreted as a result of model
dependency on input vector, i.e. number of pre-tactical regulations. In 2018 on average, more
pre-tactical regulations were implemented per day and more traffic volumes (more ACCs)

were engaged. These characteristics enrich the input data specially for CNN part of DCNN.

Table 5-5 Validation results of DCNN model, [107]

Train set Target Delay Delayed traffic
MAPE: R? MAE* MAPE: R* MAE:
2015-2016 (70%) 2017 34.06 072 13273 16.56 0.89 400
2016-2017 (70%) 2018 21.47 091 11139 13.47 0.93 438

2in percentage, ®minutes, < flights.

In order to further investigate the impact of pre-tactical regulation counts on model, model
performance is plotted in different AIRAC cycles. Figure 5-5 provides the average daily MAPE
values for both delay and delayed traffic predictions. Despite high load of traffic and delay
over the summer season (AIRAC 5 to 10), DCNN is more accurate over these periods (scatter
plots for errors are given in Figure A-1). The descending pattern of MAPE over summer
suggests that the number of regulations is a key driver in prediction accuracy specially in
absence of traffic data. This is expected since proposed architecture is based on NN to capture
nonlinearity and more regulations indicates more data points from dynamic disruptions. The
inverse pattern of prediction accuracy and actual delay (inset in Figure 5-5) also confirms that
DCNN is more affected by number of regulations and perform better in summer. Another
observation from Figure 5-5 is that such an impact (regulation counts) seems to dominate the
effect of different ranges of delayed traffic and delay. During summer in 2018, high number of
regulations canceled out the gap between the quality of predictions for delayed traffic and

delay.

Other external factors can also affect the quality of predictions. For instance, the observed
errors in prediction of summer 2017 might be an effect of a change in delay calculations, which
was implemented by EUROCONTROL from April 2016 onwards [148].

Nevertheless, the enhanced prediction capability of DCNN model compared to RF is clear
and seasonal patterns are aligned with dynamics of EATMN in different AIRAC cycles. For

operational use cases, the prediction is most relevant for daily values and not a full year, hence
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the model is expected to generate smaller errors when compared to cumulative values of
MAPE.
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Figure 5-5 DCNN validation: prediction errors in different AIRAC cycles, [62]. More regulations in 2018

(especially during summer season) provide better prediction quality regardless of the expected high values for
both delay and delayed traffic

5.3. RNN validation and comparison with DCNN
Results from previous sections laid out the proposed mechanism for modeling EATMN as
aresilient system and the procedure in which capacity regulations were given to DCNN model
to predict daily ATFM delay (and daily delayed traffic). In essence, DCNN model is measuring
the magnitude of network disruptions.

DCNN took the pre-tactical regulations and predict end of the day situation. However,
there are many regulations that are implemented at the tactical phase upon request to revive
back from unexpected DCB issues. Therefore, the capability of NMOC to predict the impact of

each proposed tactical regulation is crucial in setting the operations on the resilient path.

Since the tactical regulations are from an interactive nature, the proposed RNN (which is
ideal for time series) was fostered through different aspects. These include cyclic
transformations, added AIRAC cycles that enrich NMIR raw data. Also, through dynamic
learning rates, Adam optimizer and different activation functions, the proposed RNN
architecture was reinforced in its prediction task.

Table 5-6 summarizes the performance of the customized RNN on training set from yearly
datasets. The quality degradation on validation set is not a surprise since training and
validation set are different in their sizes and 2018 is the recorded year with the most
regulations and scattered incidents of high delay regulations. unaccustomed to having 10 to

20 percent of same dataset to be used for validation purposes, RNN model is pushed to its
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limits with 2018 regulations that is almost double in size. But still RNN shows rather a stable
performance with a MAPE of 35.76%.

Table 5-6 Validation results of RNN model (2017 for 2018), [145]

Set Size MAPE2 MAEP? RMSEP?Y
Train 2017 (70%) 36 491 10.20 14.60 127.92
Validation 2018 66 136 35.76 34.05 168.47

2in percentage, ® minutes.

The scatterplot of this trial in Figure 5-6, reveals the extended range of delays and hints
about optimal range of target values. In other words, RNN model performs best on regulations
with expected delays from 5000 to 12000 minutes. Early findings of the thesis showed that
specific types of regulations (out of 14 different type) are more penalizing to the traffic (e.g.
weather and ATC-Capacity regulations) and since RNN lacks the capabilities of a CNN in
feature exploitation, the quality of predictions is decreasing for less frequent regulations with
smaller expected values of delay. Therefore, it is a challenge to the model to relate different

regulations (e.g. different locations, types, dates) with the same target value of delay.
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Figure 5-6 Scatter plot of prediction quality in validation phase, [145]

In the second trial, more training data is used to control the effect of different regulation
types. But because of increasing yearly patterns of network demand and relatively constant
figures of capacity, only data from past two consecutive years are considered. Such a limitation

is absent in other use cases of RNN on time series such as temperature predictions.

Table 5-7 completes previous table and firstly offers model performance on a homogeneous
30% validation set with lowest MAPE. For larger validation sets, the approach of using larger

training sets proved to be efficient. In these experiments, both validation and training sets are
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intentionally kept at similar sizes to avoid relaxing the model in prediction task such that
calculated MAPE are more comparable (for an average of 60 thousand predictions).The
improvement of predictions is evident for 2018 with a MAPE of 25.49 (-10%).

Table 5-7 Validation: RNN performance in predicting ATFM delay per regulation [145]

Train set Size Validation set size MAPE (%)
2017 (70%) 36 491 2017 (30%) 15 640 12.80
2017 (70%) 36 491 2018 (100%) 66 136 35.76
2015-2016 (70%) 52 330 2017 (100%) 52132 16.95

2016-2017 (70%) 66082 2018 (100%) 66136 25.49

There is an intrinsic complexity with data from 2018 that makes the prediction task for the
RNN to be more challenging compared to other years. In fact, Regulation statistics (Figure 2-1
& Table 5-8) show that there is a significant increase in number of regulations, delay and
delayed traffic. It should also be reminded that RNN is predicting individual regulations
(resilient path) compared to daily values for DCNN model (that contributes to network state
detection).

Table 5-8 Summarized NMIR statistics on regulations (2015-2019)

Year Counts Reg Duration ATFM Delay MP Delayed

(min) (min) Traffic
2019 62 798 10203 414 24132723 1444 527
2018 66 136 10201 611 25 623 133 1382176
2017 52 131 7 462 949 15 886 900 891 374
2016 42270 5 827 706 15576 691 814 678
2015 32484 4706 664 14 065 108 680 981

Hence, the result of RNN are required to be expressed in cumulative daily values when
compared to DCNN results. In Table 5-9, MAPE values are recalculated for RNN and the
achieved accuracy of 97% is not a result of a trained model on transformed daily values. In
fact, the positive and negative residual errors for each predicted regulation cancel each other

on daily values and a portion of RNN’s higher levels of accuracy is a result of this calculation.

Table 5-9 Validation: RNN vs. DCNN performance in predicting daily ATFM delay

Train set Validation set Model Accuracy (%)
2015-2016 (70%) 2017 (100%) RNN 97.59
2015-2016 (70%) 2017 (100%)  DCNN 65.94
2016-2017 (70%) 2018 (100%) RNN 97.88
2016-2017 (70%) 2018 (100%)  DCNN 78.53
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Another factor is the granularity of the data which was much higher for RNN model against
the cumulative input for DCNN. Practically, more data points were available to RNN
compared to DCNN and since both models are derivatives of neural networks, RNN has an
advantage in feedforward learning as learned weights are tailored by more iterations. This
claim is even stronger for predicted days of summer season in which each day has on average
of more than 100 regulations (1 data point for DCNN vs. 100 data points for RNN); a fact that

also leads to lower variance in predicted daily values.
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In sections 3.2 and 5.1 (methodology and results on network state), two main topics have
been covered. Firstly, the concept of resilience was customized in domain of European Air
Traffic Management (ATM) with a focus on the boundaries of resilience and robustness.
Secondly, in an attempt to improve tactical network resiliency based on performance
variability, the possibilities to define an ATM network state by a deeper understanding of its
performance dynamics were explored. This was achieved by network state definition according
to implemented local DCB solutions (i.e. capacity regulations). Definition of network states
expands our understanding of the enriched regulation data as a feedback loop on tactical plans
and intensifies the importance of NMOC role as the network manager that monitors all

European ACCs.

The selection of regulations was tailored by a survey on different databases. ATFCM
Notification Messages (ANM) data were selected since they reflect the result of corrective DCB
measures in tactical phase with the advantage of being published by push messages for all ATM
actors. To evaluate the quality of information an analytical tool (i.e. ANMStat, see Annex C.1.)
was developed in MATLAB. It enabled preliminary statistical evaluation of ANM messages.
Derived reports include outlier detection (days with extreme conditions), or estimated
probability distributions of different regulation types. ANMStat is capable to check various
aspects of ANM messages to understand the prominent data features (statistical, temporal and
geographical) and decide on target time horizon and most active FMPs for further analysis and

case study designs.

The methodology to define network state is comprised of a macro and a micro analysis based
on quantitative measures. Results were investigated further to characterize network states with
regard to regulation types and potential geographical patterns. Similarly, with acquired
knowledge from ANMStat, results were further evaluated according to different data spans.
From an operational standpoint, there are known monthly patterns (as in summer season) that
ATM actors anticipate. Therefore, different reference thresholds are tested to understand short-

term trends in traffic demand and to capture possible effects of different sample sizes.

In order to establish control thresholds, probability density functions (PDFs) of major
regulation types was estimated by normal kernel smoothing method. These thresholds were
evaluated by comparison of a use case with official reports. More specifically two detected non-
nominal dates were checked against both ATFCM daily summary reports and published Initial

Network Plans in micro analysis.

In order to address other levels of resilience, spatial mapping plots were then provided to
indicate a geographical reference for different type of regulations. Since the ATM network is
more flexible in pre-tactical and strategic phases such dedicated maps contribute to customized

mitigation plans to improve network resiliency. Moreover, estimated PDFs were tested by
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pairwise-comparison plots (Figure 5-1) in search of potential causal relationships. Observations
showed potential correlations among specific type of regulations (staffing and ATC capacity
for instance). More deterministic findings are an asset to network manager role to anticipate
secondary regulations at network level induced by large scale requests for a specific type of
regulation at local levels. However, dedicated studies are needed to monitor the consistency of

such relationships in different network states.

Guided by expert opinions (from SESAR project), the research then focused on reviving
measures (resilient path). In section 3.3.1 (feasibility of machine learning approach), the aim
was set on predicting impact of correction measures (i.e. regulation) rather than understanding
causes of disruptions and preventive mechanisms. The thesis invests on learning algorithms
for this task as it also contributes to achieving accurate situational awareness. Consequently,
different supervised learning methods are applied to regulation data, in contrast with other

studies that select city pairs and rely on traffic and demand figures.

On a network level, since the casual relationships between regulation is parked for future
studies, learning methods are chosen to benefit from prediction based on training data rather
than analytical methods or simulations with higher model complexities. For the feasibility
task, complexity of the prediction problem was reduced in two aspects. On one hand, only a
selected FMP (rather than whole network) is chosen because it is the key decision maker in
coping with DCB issues by capacity regulations. On the other hand, data is pre-processed to
modify input vectors with a combination of extracted indicators and parameters based on
operational understanding of ATFM disruptions’ severity. Another advantage of learning
approach with regulation data is its structure that eliminates the need for classification

methods and provides a straight forward approach on regression methods.

Even at a reduced dimension of a single FMP (Langen) with the historical data from 2016
and 2017, results [35] confirmed the added value of delay prediction by neural networks and

random forest regression.

In order to demonstrate the added value of results to network manager position, a tool was
coded in python (NetRes) that offers extracted indicators, network state mechanism and some
intuitive graphs in a stand-alone interface. NetRes (annex C.2) takes regulation data from two
sources: ANM messages and NMIR. Both databases almost offer similar data structures but
NMIR is post-operation and ANMs are tactical. NMIR only offers daily logs of regulations
while ANM is being updated through the day of operations with push messages. NetRes is
able to process each type of data for different tasks, NMIR to calculate thresholds and ANMs
for state definition. The tool is presented and delivered to SESAR community in PJ09 project
(Advanced Demand Capacity Balancing) and is documented under ‘Solution 1 — Network

prediction and performance’ [149].
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The study is then continued to invest more on learning algorithms with application of
different supervised learning methods at network scale. The prediction task at this stage
consider EATMN (and not only one FMP) and data is being fully considered without omitting
any feature of its structure (i.e. no cumulative indicators). After multiple design iterations, a
deep architecture based on convolutional and sequential neural networks (i.e. DCNN) is

finalized to serve as the disruption prediction model.

Through a deep learning process both spatial and temporal dimension of regulation data is
extracted by the model. The proposed model proved to be efficient in predicting both delay
and delayed traffic as the two consequences of applying capacity regulations. DCNN
significantly improved the prediction quality in comparison to an optimized RF model as the
baseline model. The data driven approach to predict daily delay, gives DCNN the advantage
to perform better in more dynamic situations, since a busy day with more pre-tactical

regulations provide more data points as the model input.

Finally, in search of evaluating the impact of individual regulations as corrective actions
(section 4.2), a recurrent neural network is designed with a focus on sequence of regulations.
The designed RNN, predicts regulation compared to DCNN which predicts daily values at the
end of the day. In other words, proposed RNN enables the impact assessment for each
regulation on demand. After understanding the network state and evaluating the level of
disruption at a network level by DCNN, the resilient path to revive the network requires the
RNN capability to predict the impact of each regulation as a corrective measure to cope with
DCB disruptions.

In summary, this exploratory research served as an attempt toward EATMN resiliency.
Conceptually, the study demonstrates that EATMN can be modeled as a resilient system.
Operationally, the thesis offers an alternative network prediction based on capacity
regulations and supervised learning methods. The results of the thesis are offered to both
academic experts (through peer reviewed publications) and industrial partners (in course of a
SESAR project).

6.1. COVID-19 pandemic
This study aimed for ATM resiliency by providing better networkwide situational

awareness in Demand Capacity Balancing (DCB). Incidents such as the volcano eruption in
2010 and COVID-19 pandemic in 2020 are challenges to different levels of resilience (Table 6-
1). The volcano eruption was a safety risk in the pre-tactical phase (adaptive level) and COVID-
19 is a large-scale issue in strategic phase (absorptive level). Similar incidents are mostly
regarded as safety challenges while the scope of current research is mainly on network
performance and DCB disruptions (restorative level). Perhaps, challenges like snowfalls in

142




6. Conclusion and Outlook

march 2013 are better examples to elaborate on the restorative level. Heavy snow hit Chicago
airport with 9,2 inches (23 cm) of snow that showered on one day (5" of march) [150] . Only
some days after, on 12t of march, snowfalls made Frankfurt airport to shut down its
operations. Same weather system continued to disrupt flights across northwestern Europe

leading to up to 50% cancellation rate at some airports [151].

Table 6-1 Resilience Levels

Level ATFCM Phase

Absorptive strategic
Adaptive pre-tactical
Restorative Tactical

Moreover, safety disruptions such as volcano eruption and pandemics have different
propagation and transition mechanisms. The volcanic eruption started on April 14" and
persisted for six weeks (end of May 2010). Volcanic ash is considered as a known hazard to
aviation and at the time of incident there were already mitigation plans based on satellite
measurements and advanced dispersion models. Yet at the first day of the eruption 8200 flights
were cancelled. Although, the sudden eruption was recognized at the restorative level, the
impacts persisted and escalated to adaptive level and even at absorptive level led to some
corrective procedures in mitigation plans. Almost a year later another volcanic eruption from
23 to 25" May 2011 happened (the Grimsvotn crisis, [152]) and the strategic corrections
efficiently limited the cancellations to 900 flights (out of a total of 90,000 expected flights).

Generally, a volcanic ash is a flight safety issue that in DCB terms, translates to an
unexpected loss of capacity (airspace closure) which can be mitigated by flight cancellation,
rerouting and capacity regulations. Therefore, such incidents are much closer to the scope of

this study compared to COVID-19 pandemic.

COVID pandemic was a passenger safety risk and unlike a volcanic eruption, no
technical/operational issues or capacity degradations were triggered. In contrast to emergent
disruptions it did not directly affected the European aviation at a specific date and didn’t start
at the restorative level. In fact, instead of arising from restorative to absorptive level with
strategic changes in case of a volcanic ash; the pandemic took the opposite direction and
disseminated to aviation sector from strategic decisions by European Commission (EC) and
head of states (limiting the spread of the virus through means of transportation). Decided
policies caused a reduction in airport operations and route restrictions. Line of such decisions
continued even a year after by network manager (EUROCONTROL) through 6-week

mitigation plans [153], i.e. strategic phase and adaptive level of resilience.

Moreover, ML approaches depend on sufficient data to learn. The aforementioned cases are
exceptions and there is no previous situation that learning models can learn from. In both
cases, the system is not suffering from delay but mostly flight cancelation, which is not

included in the scope of this work.
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6.2. Future works
As expected from an exploratory research, the thesis exposes a number of challenges that
are required to be studied in future. The follow up studies can be categorized into different

approaches:

e Concept: this thesis demonstrated the realization of performance variability is a
key aspect for a resilient network. The next step can be to further investigate
control mechanism on top of monitoring measures. Control mechanisms can be
better investigated by an agent base model that considers FMPs as controlling
agents. Such a study can still rely solely on regulation data (even in absence of
traffic data) because regulations are mainly proposed by FMPs and they are not
applied to OD pairs but on target traffic volumes;

e Method: the customized method of DeepCNN has two CNN and SNN
components. This architecture can be improved further by integrating
convolutional layers to a RNN. The resulting architecture is highly expected to
improve prediction quality especially by relying on achieved results from RNN
model in chapter 4. Current state of study shows that regulation data can be

considered for LSTM as time-series;

e Scope: since the results of pre-tactical phase of ATFCM are published as Initial
Network Plan (INP) it is possible to extend the model to adaptive level of
resilience. INP can be merged with traffic data from flight plans in pre-tactical
phase. Flight plans can be acquired from EUROCONTROL’s Demand Data
Repository (DDR2);

e Data: include and merge more datasets on capacity and traffic situations into the
learning models. These datasets can be acquired from Demand data repository
(DDR). More specifically planned flight plans and actual flight trajectories can
complement the regulation data from NMIR database. Such an approach
incorporates ideas from multimodal data fusion techniques such as early or late

fusion and are more beneficiary in network state identification.
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Annex A. Reference charts and lists

A.1. IFPS Zone (IFPZ)

IFPS Zone is the geographical zone in Europe that is used by Initial Flight Planning System
(IFPS). The system is operated by ECTL (NM) and process and distributes flight plans [125].
IFPZ covers the same area as ICAO Europe region as provided in following table. ICAO codes
in this table is same designation for ACCs which is a key feature of input vector in proposed

learning models.

Table A-1: IFPS message distribution (IFPS Zone) [125]

State Country IFPZ FIR/UIR ICAO
Code
Albania LA Yes Tirana LAAA
Armenia UD Yes Yerevan UDDD
Austria LO Yes Vienna LOVV
Azerbaijan UB Yes Baku UBBA
Belarus UM Copy Only Minsk UMMV
Belgium EB Yes Brussels EBBU/EBUR
Bosnia and Herzegovina LQ Yes Sarajevo LQSB
Bulgaria LB Yes Sofia LBSR
Croatia LD Yes Zagreb LDZO
Cyprus LC Yes Nicosia LCCC
Czech Republic LK Yes Prague LKAA
Denmark EK Yes Copenhagen EKDK
Estonia EE Yes Tallinn EETT
Finland EF Yes Finland EFIN
France LF Yes Paris LFFF
Reims LFEE
Brest LFRR
Bordeaux LFBB
Marseille LFMM
Georgia UG Yes Thilisi UGGG
Germany ED Yes Bremen EDWW
Langen EDGG
Munich EDMM
Rhein EDUU
Hanover EDVV
Greece LG Yes Athens LGGG
Hungary LH Yes Budapest LHCC
Ireland EI Yes Shannon EISN
SOTA EISN
Israel LL Yes Tel-Aviv LLLL
Italy LI Yes Rome LIRR
Brindisi LIBB
Milan LIMM
Latvia EV Yes Riga EVRR
Lithuania EY Yes Vilnius EYVL
Luxembourg EL Yes Brussels EBBU/EBUR
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State Country IFPZ FIR/UIR ICAO
Code
North Macedonia LW Yes Skopje LWSS
Malta LM Yes Malta LMMM
Republic of Moldova LU Yes Chisinau LUUU
Monaco (Marseille) LN Yes Marseille LFMM
Morocco GM Yes Casablanca GMMM
Netherlands EH Yes Amsterdam EHAA
Norway EN Yes Norway ENOR
Bodo Oceanic ENOB
Poland EP Yes Warsaw EPWW
Portugal LP Yes Lisbon LPPC
Santa Maria LPPO
Romania LR Yes Bucharest LRBB
Rostov FIR (Russian Federation) URR Copy Only
Kaliningrad FIR (Russian UMK Copy Only
Federation)
Slovak Republic LZ Yes Bratislava LZBB
Slovenia LJ Yes Ljubljana LJLA
Spain LE Yes Barcelona LECB
Madrid LECM
Canaries GCCC
Sweden ES Yes Sweden ESAA
Switzerland LS Yes Switzerland LSAS
Turkey LT Yes Ankara LTAA
Istanbul LTBB
Ukraine UK Yes L'Viv UKLV
Kyiv UKBV
Dnipropetrovsk UKDV
Odessa UKOV
Simferopol UKFV
United Kingdom EG Yes London EGTT
Scottish EGPX
Shanwick EGGX
Serbia and Montenegro LY Yes Belgrade LYBA

A.2. Regulation causes

Regulation types are also referred to as regulation causes in related documents such as the
ATFCM user manual [10]. Each regulation can be implemented based on a set of provided
guidelines. The coding also provides details on regulation location that declares the phase of
the delayed flight. In this study, these classes are only used for the learning models without
considering the flight phase.
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Table A-2: Description of different ATFCM Regulation types [10]

Regulation Code Regulation Guidelines
Cause location ?

Accident/incident A D, A Reduction of expected ATC capacity due to an aircraft accident
/incident.

ATC capacity C D,E A En Route: Demand exceeds or complexity reduces declared or expected
ATC capacity; Airport: Demand exceeds declared or expected ATC
capacity.

Aerodrome E D, A Reduced capacity due to the degradation or non-availability of

Services support equipment at an airport e.g. Fire Service, De-icing / snow
removal equipment or other ground handling equipment.

Aerodrome G D A Reduction in declared or expected capacity due to the degradation or

capacity non-availability of infrastructure at an airport. e.g. Work in Progress,
shortage of aircraft stands, etc. Or when demand exceeds expected
aerodrome capacity.

ATC industrial I D,E A Reduction in any capacity due to industrial action by ATC staff.

action

Airspace M D,E A Reduction in declared or expected capacity following changes in

management airspace / route availability due to small scale military active.

Industrial action N D, E A reduction in expected / planned capacity due to industrial action by

NON-ATC non-ATC personnel.

Other O D, E A This should only be used in exceptional circumstances when no other
category is sufficient.

Special event P D,E A Reduction in planned, declared or expected capacity or when demand
exceeds the above capacities as a result of a major sporting,
governmental or social event. It may also be used for ATM system
upgrades and transitions. Large multinational military exercises may
also use this reason.

ATC routings R E Network solutions / scenarios used to balance demand and capacity.

ATC staffing S D.E A Unplanned staff shortage reducing expected capacity.

ATC equipment T D,E A Reduction of expected or declared capacity due to the non-availability
or degradation of equipment used to provide an ATC service.

Environmental \% D,E A Reduction in any capacity or when demand exceeds any capacity due

issue to agreed local noise, runway usage or similar procedures. This
category should only be used with prior agreement in the planning
process.

Weather W D,E A Reduction in expected capacity due to any weather phenomena. This

includes where weather impacts airport infrastructure capacity but
where aerodrome services are operating as planned / expected.

@ Regulation Location code D: Departures, E: En-route and A: Arrivals
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Annex B. Supplement of DCNN

B.1.

AIRAC cycles from 2015 to 2018

Aeronautical Information Regulation And Control (AIRAC) cycles’ effective dates are

obtained from the International Civil Aviation Organization (ICAO) website [154] and

compiled as below:

B.2.

Table B-1. Schedule of AIRAC effective dates, 2015-2018.

2015 2016 2017 2018

08 Jan. 07 Jan. 05 Jan. 04 Jan.
05 Feb. 04 Feb. 02 Feb. 01 Feb.
05 Mar. 03 Mar. 02 Mar. 01 Mar.
02 Apr. 31 Mar. 30 Mar. 29 Mar.
30 Apr. 28 Apr. 27 Apr. 26 Apr.
28 May 26 May 25 May 24 May
25 June 23 June 22 June 21 June
23 July 21 July 20 July 19 July
20 Aug. 18 Aug. 17 Aug. 16 Aug.
17 Sept. 15 Sept. 14 Sept. 13 Sept.
15 Oct. 13 Oct. 12 Oct. 11 Oct.
12 Nov. 10 Now. 09 Nov. 08 Nov.
10 Dec. 08 Dec. 07 Dec. 06 Dec.

Overfitted RF model

Table B-2. Performance of applied RF to predict delay (max_depth = 50).

Category Train Test
Days MAPE: R? MAE* Days MAPE R? MAE
Low 127 0.0 1.0 0 55 77.04 -416 8100
Nominal 261 0.0 1.0 0 111 27.82 022 11208
High 123 0.0 1.0 0 53 18.45 047 24829
Overall 511 0.0 1.0 0 219 37.91 085 13724
in percentage, ®minutes.
Table B-3. Performance of applied RF to predict delayed traffic (max_depth = 50).
Category Train Test
Days MAPE: R? MAE* Days MAPE R? MAE
Low 129 0.0 1.0 0 52 56.20 -2.02 349
Nominal 256 0.0 1.0 0 113 17.84 0.66 437
High 126 0.0 1.0 0 54 11.86 0.44 765
Overall 511 0.0 1.0 0 219 25.47 0.91 497

2in percentage, bflights.
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B.3.

Learning performance (delayed traffic)

Table B-4. Performance of applied LR.

Category Train Test
Day MAPE R2 MAEP  Days MAPE R2 MAE
Low 129 4798  -2.63 360 52 64.28 -2.07 370
Nominal 256 21.06 0.59 503 113 22.00 0.46 569
High 126 11.42 0.56 727 54 9.90 0.62 617
Overall 511 25.48 0.91 522 219 29.05 0.9 533
2in percentage, ®flights.
Table B-5. Performance of applied SVR.
Train Test
Category
Day MAPE R2 MAEP  Days MAPE R2 MAE
Low 129 41.38 -1.86 308 52 54.79 -1.47 319
Nominal 256 18.69 0.62 457 113 20.76 0.5 536
High 126 12.82 0.37 835 54 11.10 0.52 697
Overall 511 22.97 0.9 513 219 26.46 0.9 524
2in percentage, “flights.
Table B-6. Performance of applied RF.
Category Train Test
Day MAPE R2 MAEP  Days MAPE R2 MAE
Low 129 0.0 1.0 0 52 55.95 -1.96 346
Nominal 256 0.0 1.0 0 113 17.31 0.68 427
High 126 0.0 1.0 0 54 11.64 0.46 749
Overall 511 0.0 1.0 0 219 25.09 0.91 487
2in percentage, *flights.
Table B-7. Performance of applied NN.
Category Train Test
Day MAPE R2 MAEr  Days MAPE R2 MAE
Low 129 31.02 -0.8 229 52 47.95 -1.46 286
Nominal 256 16.13 0.68 411 113 23.13 0.41 599
High 126 11.12 0.56 696 54 9.75 0.55 608
Overall 511 18.65 0.92 435 219 25.73 0.89 527

2in percentage, bflights.
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B.4. DCNN prediction performance
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Figure A-1 Comparative scatter plots for prediction quality of DCNN in different years. (a) Delay, (b) delayed
traffic. Model is more precise in predicting lower values. CNN validation: prediction errors in different AIRAC
cycles. More regulations in 2018 (especially during summer season) provide better prediction quality regardless
of the expected high values for both delay and delayed traffic.
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Annex C. Developed tools

In the course of thesis, two main tools have been coded for analysis of results and
visualization of the methodology. Such tools are required because of the exploratory nature of
the study that makes visual interfaces an asset in demonstrating the added values. MATLAB
is used to code the ANMStat and Python to code NETRES. Each of these tools are presented

in the following sections.

C.1. ANMStat

As the initial step to understand the regulations it is required to analyze the data from a
statistical point of view. Using MATLAB, the ANM messages are studied from different
aspects. ANM Stat is developed to facilitate the recognition of different characteristics of
regulations, specifically with the details provided in ANM records. As an intuitive tool, the

objective is to generate multiple analytical plots.

C.1.1. Purpose

The tool is designed to parse captured data from the ANM list. It parses daily ANM lists
from excel sheets and files into MATLAB (.mat) format, to start monthly analysis of the data.
Regulations can be studied by 26 different plots to provide insight on any monthly and
seasonal trends. Trends are observed by Survey-plots and analyzed by Net-vision plots
(Figure C-1). The latter include both statistical predictions as well as geographical
representation. The details of this extensive overview on all aspects of the ANM data is

provided next.
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4 ANMStat — X
Data Read & Save Survey Plots
From {yyyymm}: [ 201705

: Dispersion of ANMs Generate

To (yyyymm): 20171 3
Generate

Contin FL Score

Selected Months: 6 Generate

Regulation Type & Duration

i Generate
Parsed Month Regulation Type .

Progress:  §7% total: 50% FMP & Reg Score Generate

File Name: AMMData201705-201711.mat

Time Span Generate
Save
F ST ) LN
NetVision
Lag Time hh LT
QQ Plot Generate

Deutsches Zentrum
DLR fir Luft- und Raumfahrt
German Aerospace Center

Regulation Distribution PDF

Ocoe sz || w1 |[e || R |l &

Geo Span

Save Directory:
|D:ALY-320079'\Personal\Daneshga\MAT\Netstatus\Parsed Data

Figure C-1 ANM Stat interface

C.1.2. User interface
e Data read & save: user selects the span of the data in years and month. Parsing
of the data triggers the calculation of parameters needed to the other two sections
of the tool. All of the calculated parameters are saved as a mat file at the selected

directory.

e Survey Plots: once parsing is 100%, the tool is able to generate 6 types of
descriptive plots based on the different aspects of the regulation data in ANM

records with a daily precision. These plots include:

o Dispersion of ANMs: gives a total overview of different ANM counts
(Figure C-2), so that the load of regulations can be monitored. Range of
regulation counts are presented by box-plots and outliers are marked

(both for each month and for total parsed data).
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mostly blocked in which days of the input data. Four plots are generated

that two are dedicated to calculated severity scores and two heatmaps

show blocked flight levels for each day (e.g. Figure C-3)
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Figure C-3 ANM Stat, Flight Level Heatmap

o Regulation Type & Duration: provides four plots for “ATC Capacity,
ATC Rerouting, Weather and Other” categories. Each plot shows both the

duration and count of each type of regulation over days.

o FMP & Regulation Score: measured scores for different FMPs are plotted.
For instance, Figure C-4 shows number of regulations for five groups of
FMPs. This allows monitoring of different FMPs based on their saturation
level. More over this plot shows which groups of FMPs are comparable.
Such a figure checks if there are extractable information at Functional
Airspace Blocks (FAB) level. FABs are airspaces that are formed

regardless of states boundaries.
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Counts

* A-Class represents busiest FMPs:

e EGTTis the Upper Flight Information Region (UIR) for UK
and is managed by NATS,

e EDGG is the busiest of three german FIRs (Langen FMP)
and is managed by DFS;

* B-Class includes five next busiest FMPs combined: LECB
(Barcelona), LECM (Madrid), LFFF (Paris), LFRR (Brest) and
EHAA (Amsterdam);

= (C-Class is a group of other 19 FMPs based on their activities

* All other remaining FMPs in the ECAC area (54 FIRs and UIRs)

Support FMP Score (classification of FMPs)
T T T

250 T T T
Other ECAC FMPs: 54
C) 19 FMPs
B) LECB,LECM,LFFF,LFRR,EHAA)

200 A) EDGG (DFS FIR - LANGEN) 1
A) EGTT (NATS UIR - LONDON)

100 - n

01.05 01.06 01.07 01.08 01.09 01.10 01.11
Date (2017)

Figure C-4 ANM Stat, FMP Scores

o Time Span: generates plots to identify both outliers and standard ranges
for regulation duration. Moreover, it enables the detection of days with
maximum regulation duration and respective severity (standard

deviation) at a network level (Figure C-5).
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Figure C-5 ANM Stat, Time Span

NetVision: this panel of the tool (Figure C-6) is analyzing the data to provide
distribution curves and is also providing a geographical map to identify spatial

characteristics of blocked airspace.

SNy T, £ H
NetVision

Lag Time hh LT LID

QQ Plot Generate

Regulation Distribution | PDF | CDF |
Ocor [sa7 || || 4 |[e|[rR|[&|[s]| x|}
Geo Span . Map éi

PR
Figure C-6 ANM Stat, NetVision

o Lag time: two sets of plots provide a network level insight based on
activation notice, regulation duration, counts, and blockage time. These
plots assist the visualization of network resiliency and enables the user to
compare evolution of regulations in different time frames with a focus of
comparing planned and implemented regulations. Such plots are also an

asset in understanding the impact of different type of regulation types.
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LT button: four plots are provided to monitor the evolution of
planned network situation in pre-tactical phase and any other cuts
(tool allows to select different cuts of the day, e.g. -12 hrs). The
Lead Time is the activation notice as the difference between
regulation publish and start time (Figure C-7). Negative values
indicate updated regulations. if the update extends a regulation,
less adaptation time will impact airlines (resilience: time-to-
recover). Even if the update, relaxes a regulation it is still a cost of

lost capacity which may be challenging to retrieve.

LID button: 3 plots are generated for stacked regulation activation
notice, count of regulations and blockage duration. This option
helps to realize which type of regulation is planned earlier and
which ones cause longer blockage times and if there is a direct
ratio between count of regulations and blockage time per
regulation type (Figure C-8). Furthermore, such outputs provide
multi-dimensional means to spot network disrupted dates and to
better form statements on network behavior on different
regulation types. For instance, routing regulations tend to be
published earlier than other types of regulations in contrast to

weather induced regulations with minimum anticipation rate.
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o QQ Plot: provides Quantile-Quantile plots that is a statistical method to
compare fitted probability distributions against normal distributions.
User will be able to intuitively analyze estimated distributions for
different regulation types and presume if a specific regulation type is
more likely to have a Chi-squared distribution or a Weibull, Gamma or
Beta (Figure C-9). Other statistics such as Level of dispersion and domain

are aids to pick desired control thresholds.
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Figure C-9 ANM Stat, QQ plot [61]
o Regulation Distributions: a kernel estimation of probability distributions

is provided by these plots for different type of regulations (both
probability and cumulative distribution functions, i.e. PDF and CDF).
User is able to set different threshold for each plot (default value is 99.7%).
All regulation types are able to be plot either separately or combined (e.g.
Figure C-10, inset is the CDF with same axes): Weather (W), Industrial
action (e.g. strike), ATC Capacity (C), Rerouting (R), Aerodrome Capacity
(G), Staffing (S) and the rest of regulations are summed up in others

category (X).
0.06
0.05
>
2 .04
=
.-
A a0 L B0 100 120 140 %0 180 200
8 0.03
S ¢ —Weather (bw=3.00)
£ ~-ATC Cap (bw=6.00)
0.02f —Routeing (bw=3.87)
- Aero Cap (bw=2.21)
0.01k ---Staffing (bw=2.77)
’ —~Others  (bw=3.87)
0 o gz - - "N
-20 0 20 40 60 80 100 120 140 160 180 200

Number of regulations per day

Figure C-10 ANM Stat, Regulation Distribution (dimensions of inset are same as base plot), [61]
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o Geo Span: plots the input data on ECAC map to identifies airspaces with
different color-codes with regard to regulation counts (Figure C-11). This
enables identifying bottle-necks for different regulation types.
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C.1.3. Added value

As described in previous section, ANM Stat provides a much deeper understanding of
regulations. But more importantly it estimates the probability distributions and detects
outliers. Also, in terms of resilience, it provides the network visibility in post operational
phase. It allows to cluster different FMPs into comparable groups. Besides, on the post
operational analysis it avoids extraction of risky assumptions. For instance, in Figure C-12 it is

evident that planned regulations do not necessary lead to less blocked airspace.
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C.2. NETRES

In the course of the SESAR PJ09 project, the essential role of demonstrative tools became
more evident. The ATM experts in the project considered resilience as a safety topic (safety-I).
However, this thesis is set as an exploratory research on Safety-II resiliency that is more
focused on ATM network performance. The design of NETRES is proposed as an intuitive tool
(Figure C-13) to demonstrate relatively new exertion of network resiliency. The idea is
appreciated by experts in the SESAR project and NETRES proved its effective role in data
visualization. Also, it offers a unique advantage in describing the benefits of the research
objectives and the added value to ATM stakeholders, specially Network Manager role.

C.2.1. Purpose

Since the design of the NETRES foresaw some requirements, it is coded in python. These
requirements are; built-in availability for further development, ability to connect to non-
academic tools (with respect to close collaboration in SESAR) and compatibility in use of

machine learning platforms.

@ —— = = —— — = —————
- - I E - N )
&+ Network State loul_ ) =
input Data (NMIR csv) ‘ Browse | Load | Add

f Requl

e SI0S
& =
.

a
Network State Dev. Indicators: |-0.21 1.4021 |-0.41 |2.550
Duration Lag Time

Evolution of ATFCM Regulati 2
|| Pre-Tactical

Time2Recover

ATFM Delsy MFP Reguiated Domsin Impact
fimin} FLD LT min/FL

0 0 0.0 a0

Cumulative Estimated Metrics ~ Magnitude

17:26:01
Current Last Update
Figure C-13 NETRES, Demo screenshot

The tool is designed to provide a tactical network situational awareness by its interface.
Based on the regulations, it is able to measure some performance indicators and provide both

temporal and special views on ECAC area. The stand-alone tool shows the network state and
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allows to intuitively monitor the evolution of network disruptions during tactical phase. It is
designed as a follow-up from ANM Stat tool that brought the network evolution into focus
(Figure C-12).

C.2.2. User interface
e User input, NMIR: user selects the post-operational data from the NMIR
database. This set of data is used to derive thresholds for network state definition
and for calculation of resilience indicators. The selected datasets are parsed as

reference for impact evaluation of tactical regulations.

e User input, ANM: allows the evaluation of different ANM lists from tactical
phase. Once loaded, all of the values and figures in the tool is updated

accordingly.

e Intuitive display, ECAC Network state: this part of the interface provides two
comparative maps for pre-tactical (Figure C-14 right) and tactical phase (Figure
C-14 left snapshot for 25.03.2019 at 20:33). Boxed numbers on the plots show the
number of times that a regulation has been updated. Depending on the loaded
list of ANMs and ACC sectorization maps, each regulated sector is colored.
Regulation color-codes represent the relative reaction time (larger number

represents a worse CaSE)I

Duration

R — (20)
WEF-PUB

LagTime (WEF-PUB) is the time window from ANM publishing time until start of
regulation (The bigger the better).
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ECAC Network state visualization (FMP level: D/LT)

ECAC Network state visualization (FMP level: D/LT)

[
°
2
®

10

longitude
10

longitude

Figure C-14 NETRES, ECAC network state visualization

e Intuitive display, network evolution: similar to heatmaps, and with respect to
daytime, bar charts show the evolution of regulations from planned regulations
in pre-tactical phase to loaded tactical phase. Each bar represents number of
different active regulation types to better anticipate and observe disruption peak
times (Figure C-15). For instance, the tool shows time of expansion/resolution of

a weather situation and ATC strikes (marked as ATC Ind Action).

Evolution of ATFCM Regulations: 2240

|l Others
Staffing

|l Aero_Cap
Weather
ATC_Cap
Routeing
ATC Ind Action

Simultanious Regs

N
o

(=
o

O M AN M T IN ON 0O OH N M T 1D ON O O
L I I B I B . |

Time of Day (Precision: 60 minutes)

Figure C-15 NETRES, regulation evolution bar chart

¢ Quantitative display, NetState indicators: These indicators are expressed by

mean and standard deviation values. Each one is calculated per FMP and for
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different type of regulations. Four indicators are calculated for both duration and

lag time of regulations. For instance, the formula for mean duration is:

{Zrmp Zregrype (727)} /
N’

Hp = e (1)

U: upper bound of calculated threshold per FMP for each requlation type,

L: lower bound of calculated threshold per FMP for each regulation type,
x: current mean for each FMP per requlation type,
N: number of regulation types for all active FMPs.

U and L are derived from post-ops (NMIR), x and N are derived from tactical updates
(ANM list), and each FMP may simultaneously have multiple requlations with same
regulation type.

i o B o
Network State Dev. Indicators: |-0.211.402 |-0.41 |2.550

Duration Lag Time

Instructions:

tor their Behaviour
e noims (Thres
types. The set of

(mean
1earn

Figure C-16 NETRES, network state indicators

¢ Quantitative display, resilience indicators: these indicators (also mentioned
partly in Table 3-2) are measuring the network disruption (Figure C-13) and

expressed in two classes of magnitude and time-to-recover in Table C-1.

Table C-1 Resilience indicators that measure disruption

Name Code Formula

> Regulated Traffic*), Reg Duration

Magnitude (domain) MAGD —— - (22)
> Activation Notice

Y. ATFM Delay " HReg Duration 23)
Magnitude (impact) MAGI Y MP regulated Traffic  Uactivation Notice
Time-to-recover z Reg%dat,ed Tmf,fw . (24)

. T2RP Y Activation Notice

(imposed)
Time—.to—recover ToRA Y MP Re:gul('lted Trc'lffic (25)
(applied) Y Activation Notice
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e Intuitive Display, network state: derived from the values of cumulative Netstate
indicators, eight cases of network situations are classified into three major states:
nominal, critical and crisis. Each of eight cases (four nominals, three critical and
one crisis) is unique with respect to reviving strategy and its interpretation (Table
C-2).

Table C-2 Different network states

Case State Description

N1  Nominal Set of prolonged regulations are planned but corrective actions seen on
some ACCs (Regional issue).
(up: High, op:low, p;r:High, o,p:High) *

N2  Nominal Set of prolonged Regulations are planned (risk of secondary impacts).
(‘U.D: ngh, Op: lOW, Ui ngh, oy lOW)

N3  Nominal Major performance loss is expected in pre-tactical phase (e.g. standby for
severe weather or other predictable traffic flow management issue.
(MD: ngh, Op: ngh, Ui ngh, oy lOW)

N4 Nominal Major performance loss is expected in pre-tactical phase (e.g. multiple local
bottlenecks having flow management issues).
(‘U.D: ngh, Op: ngh, HiT: ngh, oy ngh)

C1 Critical ~ Set of prolonged Regulations may lead to significant loss of performance.
(‘U.D: ngh, Op: lOW, Ui lOW, oy ngh)

C2 Critical ~Performance loss can be significant based on the dispersion of regulation
across the network.
(MD: ngh, Op: ngh, Ui lOW, oy ngh)

C3 Critical ~ Parts of the network suffer from significant performance loss (e.g. multiple
local bottlenecks).
(up: High, op:High, pir:low, opp:low)

CR Crisis  Set of prolonged regulations limit network operations in upcoming hours.
(up: High, op:low, p;p:low, opp:low)

* Up: mean disruption time, op:standard deviation of blockage times for ACCs,
U.r: mean adaptation time, o;7:standard deviation of adaptation times for ACCs.

C.2.3. Added value

The design and demonstration of NETRES is recorded as an ATM operational and technical
content development produced by SESAR 2020 Project. Figure C-17, provides the European
Air Traffic Management Architecture (EATMA) model for network resilience [11] based on
NETRES tool. Moreover, the benefits of data analytics and use of machine learning techniques
in this tool draw the attention of NMOC to invest more on ML based solutions for managing

network performance.
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[NOV-5] Resilience
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Figure C-17 SESAR EATMA model: network resilience [11]

More importantly, this design is allowing the realization of tradeoff analysis between
different ANM lists, i.e. different corrective actions in form of capacity regulations. Also, as
this study serves as an exploratory research, NETRES is making the conceptualization of
network resiliency more transparent and provides the chance to build road-maps for such a

concept.

On a technical level, the logs of the tool can be further analyzed in term of calculated
indicators and network behavior in different network situations. Every time a new list is

selected by the user the tool records a csv log file that include:
e Date and time; corresponding to the evaluated ANM list as input,

e Net D Mean, Net_ D Std, Net_ L. Mean, and Net_L_Std; calculated values for
NetState indicators according to evaluated ANM list,

e T2RP, T2RA, MAGD and MAGI; resilience indicators of magnitude and time to

recover,

e MPR and ATFMD; predicted most penalized regulated flights and ATFM delay
at the end of the day which ANM list is from,
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e State and Comment; state records the assigned network state and the comment
field records the reference month of NMIR post-operational data that are loaded
in the tool to update all the values.
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