
Automated Integration of Safety Mechanisms into
Functional Software for Safety-relevant Systems

Rolf Schmedes[0009−0008−0326−1245], Gregor Nitsche[0000−0002−5232−0976],
Ralf Stemmer[0000−0002−8302−7713], Kim Grüttner[0000−0002−4988−3858]

German Aerospace Center, Germany {rolf.schmedes, gregor.nitsche,
ralf.stemmer, kim.gruettner}@dlr.de

Abstract. In the development of safety-relevant systems, the integra-
tion of safety software into functional software is crucial for reliable and
safe operation. This paper presents a novel semi-automated process de-
signed to integrate software safety mechanisms into safety-relevant sys-
tems efficiently. Leveraging a model-driven engineering approach, the
method initially separates functional and safety source code and then
subsequently combines them in a semi-automated weaving step, produc-
ing functionally safe source code, ready for compilation. This approach
incorporates expert safety engineering knowledge during the setup phase,
facilitating the integration process. The proposed methodology not only
enhances cost-effectiveness and reduces human error but also supports
the quick evaluation of various safety configurations. A proof-of-concept
implementation, demonstrated with an adaptive cruise control system,
illustrates the practical application and effectiveness of this method. Fu-
ture work will explore the preservation of timing behavior when retrofitting
safety mechanisms, potentially extending the applicability of this ap-
proach to further use cases.

Keywords: Model-Driven Engineering · Code Generation · Safety Soft-
ware · Embedded Systems

1 Introduction

Functionally safe software is designed and implemented to operate correctly and
reliably, especially in critical or hazardous situations where failures could result
in harm, injury, or damage. It aims to minimize the risk of failures and ensures
that the software behaves predictably, even in the presence of faults or errors.
Functionally safe software is the combination of functional software and safety
software.

The development of functionally safe software is in general a complex en-
deavour. Functional requirements and safety requirements can be contradictory
to each other and require a complex, holistic analysis. The same holds true on
a software level. Modifications to the functional code can impact safety mecha-
nisms and vice versa. Changes must be carefully analyzed to ensure they don’t
compromise safety requirements or introduce new risks. A systematic separation

2 Rolf Schmedes et al.

between functional and safety software could mitigate the complexity, increase
the maintainability and the likelihood of reuse.

In order to develop software for safety-relevant systems, it is essential to
adhere to international standards, such as IEC 61508[10] for general industrial
applications, ISO 26262[11] for automotive systems, or DO-178C[7] for avionics
software. These standards dictate a strictly systematic development process and
require the implementation of certain software safety mechanisms to minimize
risk. This results in a fixed set of safety mechanisms used in developing safety-
relevant systems aiming for certification. Depending on the required risk mini-
mization, more or fewer mechanisms from this set are relevant. However, because
safety software and functional software are closely integrated, reuse is uncom-
mon, and safety mechanisms are manually reimplemented for each project. This
presents an untapped potential for automation, which could lead to significant
cost savings.

Functional Code

Safety Code Weaving Functionally Safe Code

Compilation

Executable

Setup

Fig. 1: Fundamental Idea of the Approach

In this paper we present a semi-automated process for integrating software
safety mechanisms for safety-relevant systems. The basic idea is depicted in Fig-
ure 1. Functional source code and safety source code are initially considered sep-
arately. Both aspects of the source code are then combined in a semi-automated
weaving step, leading to a source-to-source transformation, which produces func-
tionally safe source code that can then be compiled as usual. Expert knowledge of
a safety engineer will be incorporated into the weaving step via a setup option.
The proposed approach enables the efficient and therefore more cost-effective
integration of safety software. In addition, the systematic and automated pro-
cedures allow for easy and quick evaluation of different safety configurations,
while reducing the likelihood for human error and improving the overall quality
of the code base. Moreover, the presented approach can be used for retrofitting
software safety mechanisms to existing systems since it works on already existing
source code.

The structure of this paper is as follows: First, the relevant context for the
problem and the selected software safety mechanisms are described in Section 2.
The approach section (Section 3) describes the process and the utilized mod-
els. A proof-of-concept implementation of the approach in C++ is then briefly
summarized in Section 4 using the example of an adaptive cruise controller. The
second to last Section 5 discusses related research work. Finally, the paper con-

Automated Integration of Safety Mechanisms into Functional Software 3

cludes by summarizing the results and offering suggestions for future research
and improvements.

2 Background

The background chapter is divided into two sections. First, it describes how
functionally safe software is usually developed. The second section presents an
overview of software safety mechanisms required by common standards.

2.1 State-of-the-Art Safety Engineering

Numerous safety standards exist to reduce the likelihood of safety-relevant sys-
tem failures. These standards offer guidelines for designing, implementing, and
maintaining such systems. The subsequent sections will provide an overview of
the IEC 61508 standard.

The fundamental principle of IEC 61508 requires that any safety-related sys-
tem should either function correctly or fail predictably and safely under all pos-
sible stated conditions. The standard outlines a thorough engineering process
known as the safety life cycle, consisting of 16 phases to achieve this objec-
tive. Beginning with analysis, progressing through principles for realization, and
concluding with stages related to system operation.

An essential aspect of this life cycle is a hazard and risk analysis, involving
a probabilistic failure approach to categorize the safety implications of a com-
ponent’s failure. It consists of three key stages: hazard identification, analysis,
and risk assessment. For the risk assessment, risk is considered as a function of
the likelihood of a hazardous event and the severity of its consequences. The as-
sessment can be done either with qualitative or quantitative analysis techniques.
This evaluation helps identify risks that need mitigation, enabling the design
of appropriate safety software and thereby reduces the likelihood of under- or
overuse of software safety mechanisms. The required risk reduction is then trans-
lated into a target safety integrity level (SIL). SILs are discrete levels (ranging
from SIL 1 to SIL 4) that represent the relative levels of risk-reduction provided
by a safety function. The underlying rationale for SILs is hereby as follows: to
achieve a higher risk reduction, the safety-related system must have a higher
reliability, which requires a correspondingly higher target SIL.

IEC 61508 and other relevant safety standards provide guidance on the se-
lection of software safety mechanisms to achieve a specified SIL. As a result,
there exists a recurrent set of software safety mechanisms frequently used in
the development of safety-related systems. An overview of those software safety
mechanisms is given in the next section.

2.2 Software Safety Mechanisms Commonly Used

To gather an understanding of the mechanisms that a semi-automated approach
for integrating software safety mechanisms would have to support, we first re-
viewed relevant international standards. The results of this research can be seen

4 Rolf Schmedes et al.

in the table below1. Relevant positions of the standards are referenced. The com-
patibility of those mechanisms with the presented approach will be discussed in
the next paragraphs of this paper.

Table 1: Software Safety Mechanisms in International Standards.
Name/Description Standards
Error detection codes IEC 61508–3 (C.3.2)

ISO 26262–6 (Table 4/5)
ISO 26262–10 (Table A.5)

Watchdog mechanism ISO 26262–6 (Table 4)
Range checks for input and output data ISO 26262–6 (Table 4)
Plausibility check ISO 26262–6 (Table 4)
Detection of data errors ISO 26262–6 (Table 4)
External monitoring facility IEC 61508–3 (Table A.2)

ISO 26262–6 (Table 4)
Majority voter IEC 61508–7 (A.1.4)

ISO 26262–5 (Table D.2)
Control flow monitoring ISO 26262–6 (Table 4)
Static recovery mechanism ISO 26262–6 (Table 5)
Self-test by software IEC 61508–2 (A.3.2)

ISO 26262–5 (D.2.3.3)
Graceful degradation IEC 61508–3 (C.3.8)

ISO 26262–6 (Table 5)
Independent parallel redundancy ISO 26262–6 (Table 5)

For the proof-of-concept implementation of this work, we implemented three
custom software safety mechanisms that cover a larger part of Table 1.

Contracts. This software safety mechanism is based on the Design by Contract
programming paradigm [13]. It can be used to perform checks on the input and
output variables of function calls in the form of assumptions and guarantees.
If the calling party fulfills the assumption of the contract, the function itself is
obligated to meet the guarantee. When the guarantee isn’t satisfied, the function
itself is to blame. If the assumption is not met, it is the fault of the calling party.
This approach of using contracts for runtime monitoring in C++ was already
published by us in [14]. Contracts can be utilized to perform range checks of
input and output data or plausibility checks as requested by safety standards
(see Table 1).

Dual Modular Redundancy. The dual modular redundancy (DMR) mech-
anism can be applied to function calls. If applied, the function is executed re-
dundantly. The results of both executions are then passed to redundant voter
components. If the results match, there is no error. If there is a discrepancy,
an appropriate error handling will be initiated. The DMR mechanism can be
1 Result of the SAFE4I project (01IS17032L)

Automated Integration of Safety Mechanisms into Functional Software 5

used for the detection of data errors, having a majority voter or as an external
monitoring facility.

Time Measurement and Control Blocks. In addition, a software safety
mechanism for analyzing, altering or monitoring the timing behavior of an ap-
plication has been implemented. It covers the watchdog functionality listed in
Table 1. The implementation is based on the work of Bruns et al. [6]. The mech-
anism is used for analysis purposes by measuring the execution time of a specific
program section. In addition, the mechanism can also ensure that a specified
execution time is not exceeded or it even allows to enforce a desired execution
time by forcing a program section to consume all of its specified time. This can
be helpful, e.g., if the environment expects a certain temporal behavior from the
application.

3 Approach

In this section we describe our proposed approach for the semi-automated in-
tegration of software safety mechanisms. The overall process of the approach is
depicted in Figure 2. The actual integration of software safety mechanisms hap-
pens as a source-to-source transformation where existing functional source code
is systematically extended by calls to software safety mechanism libraries. Possi-
ble integration points for mechanisms are found automatically by analyzing the
functional source code.

3.1 Prerequisites

In order for this source-to-source transformation to take place, the following
preconditions must be met. For one, the functional source code must be avail-
able for analysis and rewriting. Furthermore, software safety mechanisms (SSM)
must be implemented in a specific library-based manner and be accompanied by
a model representation, called SSM Model. This representation contains, among
other things, necessary information for the actual code changes during integra-
tion and allows for formulating requirements of the software safety mechanism to
the hardware/software environment. In order to check requirements automati-
cally during the integration process, the target platform has to be modelled
accordingly. The modelling process is called Target2Model and the resulting
model is labeled as Target Platform Model. Both can be seen in the upper
right part of Figure 2. They are depicted somewhat transparently since there is
no direct contribution to this part described in this paper.

3.2 Process

The process starts with automatically analyzing the functional source code to
find all possible integration points for software safety mechanisms. The result of
this analysis is the Application Model. The analysis itself is called Code2Model

6 Rolf Schmedes et al.

and is numbered as 1 in Figure 2. A detailed description of the model and its
automatic generation is provided in Subsection 3.3. Within a graphical user
interface, the safety engineer is now able to map available and compatible soft-
ware safety mechanisms to integration points. The SSM Model of the mecha-
nism defines what type of integration points are viable options. In addition,
requirements that the mechanisms have of the target platform will be checked
automatically against the Target Platform Model. Also, if the general func-
tionality of the software safety mechanism allows it, parts of the mechanism can
be mapped to hardware/software resources via configuration. The mapping of
a SSM Model to the Application- and the Target Platform Model is referred
to as Weaving while the required manual configuration by a safety engineer is
labeled as Setup in Figure 2. The result of the mapping is labeled as Final
Model. It contains all necessary information to rewrite and thereby safeguard
the functional source code.

Application Target Platform

Code2Model1 Target2Model

Application Model Target Platform Model

Weaving3

Setup2

Final Model Model2Code4

Final Application

Deployment5Executable
Optimization

Existing Source Code Hardware/Software Environment

Automatic Code Abstraction Modelling HW/SW Details

GUI for Safety Configuration

Rewriting existing Source Code

C++

Mapping of SSM to
Application

Mapping of SSM to
HW/SW Resources

Software Safety Mechanisms

SSM Model

SSM2Model1

Library-based Mechanisms

Modelling SSM Representation

Fig. 2: Overview of the Approach

The source code rewriting is called Model2Code in the overview figure. Based
on the previously generated model, calls to software safety mechanism libraries
are written to integration points in the functional source code. Depending on
the implementation of the mechanism, possible dependencies in the linking step
may need to be resolved. Otherwise, the deployment will happen as usual.

Automated Integration of Safety Mechanisms into Functional Software 7

3.3 Application Model

The Application Model serves to hold all information about the functional
source code required by the integration process. We determined the necessary
information on the basis of the previously identified software safety mecha-
nisms found in standards, listed in Table 1. Furthermore, the Application
Model is used for the visual abstraction of the functional source code, which
the safety engineer uses to determine where software safety mechanisms should
be integrated. For this reason, the control flow is part of the model since it
supports the decision-making, for example, as to what parts of the application
should potentially be executed redundantly or where a watchdog mechanism
should sensibly enforce timing constraints.

Statement

ExitStmt : Statement[]

Application

Function

Scope Control Flow Statement Function Call

1
1..n

1
1..n

*

*

1..n*

Fig. 3: Application Meta Model

Figure 3 shows the meta model of the Application Model. An abstraction of
the functional source code happens function-wise. In functions there are scopes,
which in turn can contain further scopes. Inside those scopes can be function
calls or control flow changing statements. Both have a common parent class,
that holds an adjacency list to store the actual control flow between statements.
As of now, two ways of integration points are supported. Mechanisms can be
applied to scopes and/or to function calls.

Automatic Code Abstraction. The automatic abstraction of the functional
source code happens in the Code2Model step of Figure 2. At first, the abstract
syntax tree (AST) of the code is generated. Integration points are then extracted
from the AST with the help of AST matchers. In order to gather the control
flow between the integration points, a source-level, intra-procedural control flow
graph is generated. Combined, these aspects form the Application Model.

4 Demonstration

Proof-of-Concept Implementation. We carried out a proof-of-concept im-
plementation to evaluate the concepts developed within this work. Tools for
abstracting and rewriting the functional source code were created on the basis

8 Rolf Schmedes et al.

of Clang LibTooling [5]. The AST Matching was realized with [2], the source-level
control flow graph was created with [3]. Also, we created a user interface as a
Visual Studio Code extension. The example Application Models in the images
below are actually screenshots from this extension. The source code rewriting
was realized with [4].

Adaptive Cruise Control Example. The proposed method is demonstrated
using source code excerpts from a simplified adaptive cruise control (ACC) sys-
tem. In particular, the function for updating the speed is considered. For the
demonstration, this chapter first describes a functional source code snippet of the
ACC and then shows the visual representation of the corresponding Application
Model. The actual changes in the C++ source code caused by the integration of
software safety mechanisms are described later.

The left side of Figure 4 shows the Update function. First, the control devia-
tion for the PID controller is calculated, which is then passed to the PID_calculate
function. The result of this function is the speed adjustment. A conditional state-
ment checks whether the new speed value would fall below a threshold value.
If so, the function DisableACC would deactivate the system. Otherwise, the
SetSpeed function passes on the new speed value to the actuating system.

0 // Update speed based on d i s tance us ing PID
1 void Update (double target , double curr_speed)
2 {
3 double speed_err = ta rge t − curr_speed ;
4 double speed_adj = PID_calculate (speed_err) ;
5
6 curr_speed += speed_adj ;
7
8 // Ensure speed i s within s a f e l im i t s
9 i f (curr_speed < 30 .0)

10 {
11 DisableACC () ;
12 }
13 e l s e {
14 SetSpeed (curr_speed) ;
15 }
16 }

Fig. 4: Functional Source Code and the Corresponding Visual Representation of
the Application Model

The right side of Figure 4 shows the visual representation of the Application
Model. The white nodes are integrations points. The grey nodes represent control
flow changing statements. The extensions user could select an integration point,
whereupon the software safety mechanisms catalog is presented. If an edge is
selected, all edges of the directly associated scope are highlighted, then the user
can select compatible mechanisms.

The example safety setup will be as follows: The PID_calculate function
will be safeguarded with a DMR mechanism, while a Time Measurement and
Control Block will ensure that the maximum execution time of DisableACC is
not exceeded. Finally, a Contract safety mechanism will be utilized to perform
plausibility checks on the SetSpeed function.

Automated Integration of Safety Mechanisms into Functional Software 9

The result of the automatic integration can be seen in Listing 1.1 and Fig-
ure 5. Applying mechanisms to non member function calls is very straightfor-
ward. To do this, the original function call is simply replaced with a wrap-
per function. The wrapper function is defined in an additional header file
(rg_config.hpp) which has to be included. It executes the software safety mech-
anism and the safeguarded function. This way, the perceived changes to the func-
tional code will be kept to a minimum. The wrapper function has the original
name, extended by a random suffix, as seen in line 6, 13 and 16. The source code
generation for the wrapper function, the rewriting of the original function call
and the include of the additional header file all happen automatically.

Applying mechanisms to member function calls is also possible, though it
is somewhat more complex. It requires passing the member function call as a
function object to the wrapper function using a lambda expression. After that,
the procedure is the same.

0 #inc lude " rg_conf ig . hpp"
1
2 // Update speed based on d i s tance us ing PID
3 void Update (double target , double curr_speed)
4 {
5 double speed_err = ta rge t − curr_speed ;
6 double speed_adj = PID_calculate_RG_1(speed_err) ;
7
8 curr_speed += speed_adj ;
9

10 // Ensure speed i s within s a f e l im i t s
11 i f (current_speed < 30 .0)
12 {
13 DisableACC_RG_2() ;
14 }
15 e l s e {
16 SetSpeed_RG_3(curr_speed) ;
17 }
18 }

Listing 1.1: Functional code after Weaving

Fig. 5: Application and
hardware model with ap-
plied mechanisms

Listing 1.2 shows the wrapper functions. If a software safety mechanism is
used, the necessary library includes (line 0 to 2) and function definitions (line 4
to 6) are added to the header file. Also, the boiler plate code for the respective
mechanisms are automatically generated and added. In the case of the DMR
mechanism (PID_calculate_RG_1), source code lines 8 to 18 were generated.
Lines 13 to 16 define the mapping to the hardware. Default values are initially
entered here, which must be configured accordingly by a safety engineer. Figure 5
shows how the tooling visually indicates the configured mapping through color
coding.

10 Rolf Schmedes et al.

DisableACC_RG_2 shows the application of the Time Measurement and Con-
trol Block. In line 24 the constructor of MaxExecutionTime is called and the
met object is created. This starts a monitoring thread that ensures a maximum
execution time. The wrapper function for the Contract mechanism had to be
omitted due to the limited page length.

0 #inc lude <dmr . hpp>
1 #inc lude <timing_analys i s . hpp>
2 #inc lude <scont rac t . hpp>
3
4 double PID_calculate (double e r r o r) ;
5 void DisableACC () ;
6 void SetSpeed (double speed) ;
7
8 // RG 1
9 // −−

10 i n l i n e double PID_calculate_RG_1(double e r r o r)
11 {
12 auto d = DTMR(f) ;
13 d .MapT0To(CPU: : ps7_cortexa9_0) ;
14 d .MapT1To(CPU: : ps7_cortexa9_1) ;
15 d . MapVoter0To (CPU: : ps7_cortexa9_1) ;
16 d . MapVoter1To (CPU: : ps7_cortexa9_0) ;
17 return d . Execute (e r r o r) ;
18 }
19
20 // RG 2
21 // −−
22 void DisableACC_RG_2()
23 {
24 auto met = MaxExecutionTime (2 , std : : chrono : : m i l l i s e c ond s (10)) ;
25 DisableACC () ;
26 }

Listing 1.2: Function wrapper for the DMR mechansim in rg_config.hpp

5 Related Work

This section first examines related work in general before focusing on aspect-
oriented programming and respective approaches.

One related approach that generally aims to separate the concerns safety
and functionality is the Universal Safety Format (USF) [8] [9]. USF supports a
model-driven development approach to automatically integrate software safety
mechanisms into functional software. USF provides a domain-agnostic meta-
model to describe the functional software as well as a transformation language,
the USF Transformation Language (UTL), which is capable of incorporating
mechanisms at model level. To bridge the gap between the domain-agnostic US-
F/UTL and the obviously domain-specific target system, appropriate tooling is
necessary. The approach presented in this paper should be seen as complemen-
tary and compatible with USF since the tooling described in this paper could
be used to apply the domain-agnostic methods of USF to a domain-specific pur-
pose. The main focus of USF lies on the metamodel and the respective model
transformations and not on the automated abstraction of existing source code or
on the code rewriting/code generation process. Therefore, these two approaches
complement each other.

Aspect-oriented programming (AOP) [12] is a programming paradigm that
follows similar objectives to the approach presented here. It allows developers
to modularize cross-cutting concerns, such as logging or error handling, which

Automated Integration of Safety Mechanisms into Functional Software 11

would otherwise span multiple modules. AOP separates these concerns from the
main codebase and promises cleaner source code. Although AOP has several
advantages, it has not yet established itself in hardware-oriented programming
in C/C++, despite efforts to do so [1]. An exhaustive consideration of the ap-
plicability of AOP to safety-relevant systems is beyond the scope of this paper.
Still, we will briefly discuss the relation to the ideas of this work. The approach
presented in this paper is highly related to AOP. However, the complexity is re-
duced compared to AOP due to the limited integration points for mechanisms,
though this also weakens the general ability to integrate source code into exist-
ing code bases. For the development of safety-relevant systems, the presented
approach offers a better balance between complexity and effectiveness. The key
difference from AOP is the combined, holistic view of functional source code,
software safety mechanisms, and the targeted hardware/software environment.

One approach that tries to address the matter of cross-cutting concerns in
embedded systems with the help of AOP can be found in [15]. Wehrmeister
et al. present a model-driven engineering approach that combines the unified
modeling language (UML) and AOP to improve encapsulation of concerns and
speed up the development process. The authors’ concept starts with a high-level
system specification in UML, which is extended by additional diagrams to allow
special modeling for AOP. In addition, this work uses a predefined set of aspects,
which includes reusable model and source code elements for extra-functional
requirements. During the modeling phase, these aspects can be applied to parts
of the functional model. Afterward, a script-based generation tool will generate
platform-specific source code. Model integration of aspects is not a part of this
approach. Moreover, the development process of this approach begins with a
modeling phase. The approach presented in this paper can be applied to existing
code bases.

6 Conclusion and Future Work

In this paper, we presented a model-based approach that utilizes a strict separa-
tion between functional and safety software to automatically integrate software
safety mechanisms into functional source code. A proof-of-concept implemen-
tation showcased the automatic analysis of functional source code for finding
possible integration points and demonstrated the source code rewriting.

It should be noted that the procedure currently supports two types of integra-
tion points — both the automatic functional code analysis and the mechanisms
implementations are tailored to this. This is, therefore, a limitation of the ap-
proach presented. However, this can be mitigated as follows: We consider the
mechanisms required by the standards to be generally compatible. Section 2.2
already pointed out that the mechanisms of this paper already cover a significant
part of Table 1. On the other hand, certain mechanisms will be too application-
specific to benefit from a library-based approach. This applies, for instance, to
the self-test, the static recovery, or the graceful degradation mechanism. Further
experiments shall be carried out on this matter.

12 Rolf Schmedes et al.

In addition, alternatives to the abstraction of functional software are to be
studied in the future. A query-like approach, similar to that known from AOP,
may be a beneficial extension to the approach. We expect that the presented
approach will prove to be particularly useful in two use cases: the preservation
of timing behavior of an application when retrofitting software safety mecha-
nisms and the creation of software tests for existing applications. Both will be
investigated in further studies. Moreover, a future evaluation will examine the
functional integrity after weaving, the effectiveness of the software safety mech-
anisms, their resource usage, and the overall applicability of the approach.

Acknowledgments. This work was partially funded by the German Ministry of Ed-
ucation and Research (BMBF) (grant number 01IS17032L).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References
1. Aspectc++, https://www.aspectc.org/
2. Ast-matcher, https://clang.llvm.org/docs/LibASTMatchersReference.html
3. Clang cfg, https://clang.llvm.org/doxygen/classclang_1_1CFG.html
4. clang::rewriter, https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
5. Libtooling, https://clang.llvm.org/docs/LibTooling.html
6. Bruns, F., Yarza, I., Ittershagen, P., Grüttner, K.: Time measurement and control

blocks for bare-metal c++ applications. ACM Transactions on Embedded Com-
puting Systems 20 (6 2021). https://doi.org/10.1145/3434401

7. DO-178C: Software considerations in airborne systems and equipment certification.
Standard, RTCA, Inc. and EUROCAE (2012)

8. Haxel, F., Viehl, A., Benkel, M., Beyreuther, B., Birken, K., Schmedes, R., Grut-
tner, K., Mueller-Gritschneder, D.: Universal safety format: Automated safety soft-
ware generation. International Conference on Model-Driven Engineering and Soft-
ware Development (2022). https://doi.org/10.5220/0010784200003119

9. Haxel, F., et al.: The universal safety format in action: Tool integration and prac-
tical application. SN Computer Science 4 (2023). https://doi.org/10.1007/S42979-
022-01532-Z

10. IEC61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems (e/e/pe, or e/e/pes). Standard, The International Elec-
trotechnical Commission, Geneva, CH (2010)

11. ISO26262: Road vehicles - functional safety. Standard, International Organization
for Standardization, Geneva, CH (2018)

12. Kiczales, G., et al.: Aspect-oriented programming. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 1241, 220–242 (1997). https://doi.org/10.1007/BFB0053381

13. Meyer, B.: Applying “design by contract”. Computer 25, 40–51 (1992). https://
doi.org/10.1109/2.161279

14. Schmedes, R., Ittershagen, P., Grüttner, K.: Towards distributed runtime moni-
toring with c++ contracts (2019). https://doi.org/10.1145/3312614.3312645

15. Wehrmeister, M.A., et al.: Aspect-oriented model-driven engineering for embedded
systems applied to automation systems. IEEE Transactions on Industrial Informat-
ics 9, 2373–2386 (2013). https://doi.org/10.1109/TII.2013.2240308

https://www.aspectc.org/
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/doxygen/classclang_1_1CFG.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/docs/LibTooling.html
https://doi.org/10.1145/3434401
https://doi.org/10.1145/3434401
https://doi.org/10.5220/0010784200003119
https://doi.org/10.5220/0010784200003119
https://doi.org/10.1007/S42979-022-01532-Z
https://doi.org/10.1007/S42979-022-01532-Z
https://doi.org/10.1007/S42979-022-01532-Z
https://doi.org/10.1007/S42979-022-01532-Z
https://doi.org/10.1007/BFB0053381
https://doi.org/10.1007/BFB0053381
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/3312614.3312645
https://doi.org/10.1145/3312614.3312645
https://doi.org/10.1109/TII.2013.2240308
https://doi.org/10.1109/TII.2013.2240308

	Automated Integration of Safety Mechanisms into Functional Software for Safety-relevant Systems
	1 Introduction
	2 Background
	2.1 State-of-the-Art Safety Engineering
	2.2 Software Safety Mechanisms Commonly Used

	3 Approach
	3.1 Prerequisites
	3.2 Process
	3.3 Application Model

	4 Demonstration
	5 Related Work
	6 Conclusion and Future Work

