
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Investigating
Evolving Ansatz VQE Algorithms

for Job Shop Scheduling

Daniel Alexander Leidreiter

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Investigating
Evolving Ansatz VQE Algorithms

for Job Shop Scheduling

Daniel Alexander Leidreiter

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller
Betreuer: Korbinian Staudacher

Xiao-Ting Michelle To
Justyna Zawalska (AGH University)
Sven Prüfer (DLR)

Abgabetermin: 12. Juni 2024

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Neuried, den 12. Juni 2024

. .
(Unterschrift des Kandidaten)

Abstract

The job shop scheduling problem (JSSP) is an important and much-researched combinator-
ial optimisation problem that is NP-complete for more than two machines [GJS76] [LKB77].
Many algorithms for solving it exactly and approximately exist. Recently, some research
has been done on using variational quantum algorithms (VQA) like QAOA or VQE to
approximately solve the JSSP [ARF+22] [KPS+23]. The hope is that such VQAs might
be able to find better solutions with less computational effort than classical optimisation
heuristics. In VQAs, a quantum circuit whose behaviour is controlled by parameter val-
ues is used to create a quantum state. Measuring the expectation value of that quantum
state with respect to the problem Hamiltonian yields its quality with respect to the op-
timisation problem. A classical optimisation algorithm is then used within VQAs in an
iterative loop to minimise the expectation value by adjusting the parameter values. This
procedure is repeated until a good solution to the optimisation problem is found. The para-
meterised quantum circuit used within a VQA algorithm is usually referred to as its ansatz.
It needs to be designed to provide a good amount of expressibility while avoiding barren
plateaus [CAB+21] [BCLK+22]. This is difficult and has led researchers to investigate ad-
aptive VQA methods, which, in addition to optimising the parameter values, also optimise
the structure of the ansatz [BCLK+22] [TCC+22]. Amongst these are evolving ansatz al-
gorithms like EVQE [RHP+19], MoG-VQE [CSU+20], and QNEAT [GTMS23], which use
evolutionary algorithms to achieve this goal. They have been shown to provide promising
results and to be remarkably noise-resistant, while using much smaller ansatz circuits than
typical for VQAs. These advantages might make them interesting for solving complex optim-
isation problems like the JSSP. Yet, it remains unclear how such methods scale to problems
of increasing size and complexity [TCC+22]. To alleviate this gap in current research, this
thesis investigates the scaling of evolving ansatz variational quantum eigensolvers for the
JSSP and compares it to the scaling of QAOA and VQE. To this end, the average solution
quality and the average number of expectation value evaluations needed for the algorithms
to converge are measured over multiple random JSSP problem instances for each problem
size. This entails the design of a method for generating random JSSP problem instances
and their translation into a Hamiltonian usable by the VQA algorithms. To limit the im-
pact of bad parameter choices on the performance of the VQA algorithms, hyperparameter
optimisation is applied before benchmarking.

vii

Contents

1. Introduction 1

2. Foundations 3
2.1. The Job Shop Scheduling Problem . 3
2.2. Gate-based Quantum Computing . 4

2.2.1. Qubits and Quantum Registers . 5
2.2.2. Quantum Gates and Entanglement . 7
2.2.3. Measurement . 9

2.3. Variational Quantum Algorithms . 11
2.3.1. Parameterised Quantum Circuits . 12
2.3.2. Hamiltonians . 13
2.3.3. Discrete Variable Encodings . 15
2.3.4. The Variational Quantum Eigensolver (VQE) 17
2.3.5. The Quantum Approximate Optimisation Algorithm (QAOA) 18

2.4. Classical Optimisation Algorithms . 19
2.4.1. Optimisation Problems . 19
2.4.2. Optimisation Algorithms . 20

3. Related Work 23

4. The Evolutionary VQE Algorithm 31
4.1. Overview . 31
4.2. Population . 31

4.2.1. Individual Genomes . 33
4.2.2. Random Gene Generation . 34
4.2.3. Population Initialisation . 36
4.2.4. Speciation and Population Diversity 36

4.3. Evaluation and Selection . 37
4.3.1. Last Layer Optimisation . 37
4.3.2. Fitness Score . 37
4.3.3. Selection of fit individuals . 38

4.4. Variation . 39
4.4.1. Parameter Search . 39
4.4.2. Topological Search . 39
4.4.3. Layer Removal . 39

4.5. Termination Criteria . 40

5. Encoding the JSSP as a Hamiltonian 41
5.1. Definitions . 42
5.2. Variables and Variable Encoding . 42

ix

Contents

5.3. Penalties . 43
5.3.1. Encoding Penalties . 43
5.3.2. Precedence Penalties . 44
5.3.3. Overlap Penalties . 44
5.3.4. Invalid Penalty Interactions . 45

5.4. Optimisation Goal . 45
5.4.1. Makespan Minimisation . 46
5.4.2. Early Start for all Operations . 46

5.5. Resulting Energy Landscape . 46

6. EVQE - Issues and Improvements 49
6.1. Individual Initialisation . 49
6.2. Selection Pressure . 52

7. Methodology 55
7.1. Objectives . 55
7.2. Performance Metrics . 55
7.3. Random Problem Instance Generation . 59

7.3.1. Generating a Single JSSP Instance . 59
7.3.2. Generating Datasets of JSSP Instances 59

7.4. Manual Algorithm Configuration Decisions 61
7.5. Automatic Algorithm Configuration . 63

7.5.1. SMAC3 . 63
7.5.2. Hyperparameters . 64
7.5.3. Configuring SMAC3 . 68

7.6. Benchmarking Procedure . 69
7.6.1. Real Quantum Hardware . 70

8. Results 73
8.1. Hyperparameter Optimisation . 73

8.1.1. QAOA Pareto Optimal Configurations 73
8.1.2. VQE Pareto Optimal Configurations 74
8.1.3. EVQE Pareto Optimal Configurations 75

8.2. Noiseless Simulation . 77
8.2.1. Termination Behaviour . 77
8.2.2. Solution Quality and Success Rate . 79
8.2.3. Convergence Speed . 81
8.2.4. Ansatz Complexity . 83
8.2.5. Comparison of EVQE Population Sizes 84

8.3. Noisy Simulation . 85
8.4. Real Quantum Hardware . 86
8.5. Discussion . 86

9. Conclusion and Future Work 91

A. Additional Figures 93
A.1. Example QAOA Ansatz . 93

x

Contents

A.2. Hyperparameter Optimisation Training Instances 94
A.3. 12 Qubit Benchmarking Instances . 95
A.4. 15 Qubit Benchmarking Instances . 96
A.5. 18 Qubit Benchmarking Instances . 97
A.6. 21 Qubit Benchmarking Instances . 98

B. Hyperparameter Values 99
B.1. QAOA Hyperparameter Values . 99
B.2. VQE Hyperparameter Values . 100
B.3. EVQE Hyperparameter Values . 101

List of Figures 103

Bibliography 111

xi

1. Introduction
Motivation

The modern world relies heavily on the efficient scheduling of tasks for many applications.
These range from applications in manufacturing and supply chain management to applica-
tions in railway transportation, healthcare, and many more [XSRH22]. With such a wide
array of applications, advances in scheduling optimisation algorithms may bring serious eco-
nomic benefits. As a result, scheduling optimisation has been an important issue in research
for many decades. One commonly researched scheduling problem therein is the Job Shop
Scheduling Problem (JSSP). Many classical algorithms for solving the JSSP and its many
variants, both exactly and approximately, exist [ZDZ+19].

With the increasing accessibility of real quantum computing hardware in recent years,
another area of research regarding the JSSP has been focused on quantum algorithms. It
is hoped that such quantum algorithms may increase the solution quality or the solving
speed when compared to classical algorithms. Due to the noisy and error-prone nature of
the current quantum computing hardware, much of this research has been focused on vari-
ational quantum algorithms (VQAs) like the Variational Quantum Eigensolver (VQE) or the
Quantum Approximate Optimisation Algorithm (QAOA). They use a classical computer to
iteratively optimise the rotation angle parameters of a quantum circuit so that the expecta-
tion value of the quantum state the quantum circuit produces is minimised with respect to
the problem Hamiltonian (a more detailed explanation of VQAs can be found in Section 2.3).
The way in which this quantum circuit is designed depends on the specific algorithm and
hugely impacts its performance.

This motivates VQA algorithms, which use tools from machine learning to find good
quantum circuit designs [TCC+22]. Among these are VQE algorithms, which use evol-
utionary algorithms to evolve a quantum circuit structure during the optimisation pro-
cess [RHP+19] [CSU+20] [GTMS23]. In this thesis, these algorithms will be referred to as
evolving ansatz VQE (EA-VQE) as an umbrella term1. While EA-VQE algorithms have
shown promising results so far, it is not yet clear how the additional effort to learn circuit
designs affects the algorithm’s scaling to larger problem sizes, especially when compared to
VQAs with fixed quantum circuits.

Research Questions

To alleviate this research gap, this thesis investigates the following Research Question (RQ)
and Sub Questions (SQ):

RQ: How do evolving ansatz VQE algorithms scale in terms of computational effort and
solution quality for job shop scheduling problems?
SQ: How does this scaling compare to QAOA and VQE?

1No such umbrella term seems to exist yet.

1

1. Introduction

Contributions

To answer the main research question, we investigate the EVQE algorithm [RHP+19] as a
representative of EA-VQE algorithms in general. We evaluate EVQE’s scaling by bench-
marking EVQE multiple times over various JSSP instances of increasing sizes. This enables
us to investigate how EVQE’s average performance scales over these increasing problem
sizes. In particular, we observe two main performance metrics. The first metric is the com-
putational effort needed by EVQE, which can be quantified by the number of times the
expectation value of the quantum state produced by the ansatz circuit is evaluated with
respect to the problem Hamiltonian. The second metric is the quality of the result found
by EVQE, which can be quantified by the likelihood of measuring valid or optimal solutions
from EVQE’s best quantum state. As a frame of reference that allows us to compare the
scaling results for EVQE to more established VQA algorithms, we run the same benchmarks
for both the QAOA and VQE algorithms.

As a prerequisite for these benchmarks, we implement EVQE in the open-source Python
library QUEASARS23 and implement improvements for EVQE where necessary. We also
implement a mapping for JSSP instances to the Ising Hamiltonian problem formulation,
which is needed by all the algorithms we investigate. Finally, we implement a random
problem instance generation method for JSSP instances, which enables us to generate a
dataset of problem instances for our benchmarks. Preceding the benchmarks, we then tune
the hyperparameters for all VQA algorithms that we investigate.

Structure

The theoretical foundations with respect to the JSSP, quantum computing hardware, VQAs,
and classical optimisation algorithms are explained in Chapter 2. Afterwards, the related
work in current research is examined in Chapter 3, and the EVQE algorithm is explained
in detail in Chapter 4. The encoding of the JSSP to an Ising Hamiltonian is detailed in
Chapter 5, and improvements to EVQE are proposed in Chapter 6. Given the groundwork
of the previous chapters, the methodology for our benchmarks is outlined in Chapter 7, and
the acquired results are presented and discussed in Chapter 8. Finally, we give our conclusion
and outline opportunities for future work in Chapter 9.

Acknowledgements

The QUEASARS Python library was developed as a part of the Quantum Mission Planning
Challenges (QMPC) project at the Mission Planning Group of the German Space Operation
Center (GSOC) within the German Aerospace Center (DLR). The QMPC project is funded
by the Quantum Computing Initiative, which in turn is funded by the federal ministry for
economic affairs and climate action (BMWK).

We gratefully acknowledge the computational and data resources provided through the
joint high-performance data analytics (HPDA) project “terrabyte” of the German Aerospace
Center (DLR) and the Leibniz Supercomputing Center (LRZ).

2QUEASARS is licenced under the Apache Licence 2.0.
3The QUEASARS GitHub repository can be found at: https://github.com/DLR-RB/QUEASARS

2

https://github.com/DLR-RB/QUEASARS

2. Foundations

In this chapter, we explain the theoretical foundations that are needed for understanding
this thesis. In Section 2.1, we explain the exact formulation of the JSSP. Following that,
we explain the basics of gate-based quantum computing in Section 2.2. We then go on to
describe how VQAs leverage gate-based quantum computers to solve optimisation problems
in Section 2.3. Finally, since VQAs employ classical optimisation algorithms, we give an
overview of classical optimisation algorithms in Section 2.4.

2.1. The Job Shop Scheduling Problem
A job shop is a type of manufacturing process in which small batches of products are pro-
duced to the customer’s requirements. The products often have to pass through multiple
manufacturing steps on machines in some specific order to finish their production [Bur17].
Scheduling the production steps for each job has the potential to significantly reduce costs
and increase the throughput of a job shop. This task is also referred to as job shop schedul-
ing [RJ16].

With some abstractions, this task yields the JSSP. In it, a set of jobs {J1, ..., Jn} needs
to be scheduled on a set of machines {M1, ...,Mm}. Each such job j consists of an ordered
sequence of operations [Oj,1, ..., Oj,kj]. Each operation in turn must be executed on a specific
machine without interruption for a specific processing duration pj,k. The goal of the JSSP is
to find a schedule in which no machine processes more than one operation at any time, the
order of the operations in each job is respected, and the time to finish all jobs (makespan)
is minimised [XSRH22].

As an example, take the JSSP instance with three jobs and three machines in Figure 2.1.

0 1 2 3 4 5 6
Time

job_1

job_2

job_3

Jo
bs

Problem Instance: example_instance

Machines
machine_1
machine_2
machine_3

Figure 2.1.: This figure shows a visualisation of the operation order in each job for an example
JSSP instance, with 3 jobs on 3 machines.

3

2. Foundations

0 1 2 3 4 5 6 7
Time

machine_1

machine_2

machine_3
M

ac
hi

ne
s

Scheduling Result: example_instance

Jobs
job_1
job_2
job_3

(a) Schedule with makespan 7.

0 1 2 3 4 5 6 7 8 9
Time

machine_1

machine_2

machine_3

M
ac

hi
ne

s

Scheduling Result: example_instance

Jobs
job_1
job_2
job_3

(b) Schedule with makespan 9.

Figure 2.2.: This figure shows a comparison of valid scheduling results with different
makespans for the JSSP instance shown in Figure 2.1. The schedule shown
in (a) is optimal. The schedule shown in (b) is suboptimal.

This figure visualises the structure of the unsolved scheduling problem by showing the oper-
ation order for each job horizontally from left to right. The colours of the operations indicate
on which machine they have to be processed, while the length of each operation’s bar shows
its processing duration.

A valid solution to the example problem instance can be found with a minimum makespan
of 7 (see Figure 2.2a), but other valid schedules with a worse makespan exist (see Figure 2.2b).
Notice that these figures, in contrast to Figure 2.1, display how the operations are scheduled
to the machines in a valid solution. In particular, these figures show, from left to right,
the schedule with which operations are processed on each machine, where the colour of the
operations indicates the job they belong to.

Going forward, the two types of plots shown here can be distinguished based on their
titles. Any plot titled “Problem Instance” with the jobs placed on the y-axis will show a
visualisation of an unsolved problem instance, whereas any plot titled “Scheduling Result”
with the machines placed on the y-axis will show a visualisation of a valid solution to a JSSP
instance. This distinction is further emphasised by the two plot types using different colour
schemes.

Since the JSSP’s inception, it has been applied to many real-world problems (e.g., semicon-
ductor manufacturing, automobile manufacturing, textile production), and many extensions
of the JSSP have been investigated to widen its applicability [XSRH22]. For simplicity’s
sake, this thesis will be limited to the basic JSSP variant outlined before, as it in itself is
already NP-complete when applied to more than two machines [GJS76].

2.2. Gate-based Quantum Computing

Quantum computing takes advantage of quantum effects, like entanglement, and the ability
of quantum systems to be in a superposition of states to gain speed-ups for certain problems.
Multiple approaches to quantum computing exist, but this thesis will limit itself to gate-
based quantum computing.

On gate-based quantum computers, quantum algorithms are expressed as quantum cir-

4

2.2. Gate-based Quantum Computing

q0

q1

2meas

H

0 1

(a)

q0

q1

2meas

H

0 1

(b)

q0

q1

2meas

H

0 1

(c)

Figure 2.3.: This figure shows a quantum circuit consisting of a quantum register of two
qubits (a), a classical register to store results (a), quantum gates (b), and meas-
urement instructions (c).

cuits. They consist of a register of quantum bits in some initial state (Figure 2.3a), a
classical register for storing measurements (Figure 2.3a), an ordered collection of quantum
gates (Figure 2.3b), and some measurement instructions (Figure 2.3c), which store their
results in the classical register. The following subsection will explain each of these compon-
ents of a quantum circuit to enable a closer discussion of algorithms for gate-based quantum
computers. These explanations are based on the literature by Homeister [Hom22] and Zy-
gelman [Zyg18].

2.2.1. Qubits and Quantum Registers
Qubits

Each quantum register consists of some number of quantum bits, which are also referred to
as qubits. The state |x⟩ of a single qubit can be described as a linear combination of the
basis states |0⟩ and |1⟩:

|x⟩ = α · |0⟩+ β · |1⟩ (α, β ∈ C) (2.1)
This linear combination can also be written as a two-dimensional complex vector:

|x⟩ = α · |0⟩+ β · |1⟩ = α ·
(
1
0

)
+ β ·

(
0
1

)
=

(
α
β

)
(α, β ∈ C) (2.2)

Only such linear combinations in which the so-called amplitudes, α and β, fulfil the fol-
lowing condition represent valid quantum states:

|α|2 + |β|2 = 1 (2.3)
This means that, in contrast to bits on a classical computer, which can only exhibit either

the 0 or 1 state, qubits can exhibit states that are in between |0⟩ and |1⟩. In such states,
the qubit is said to be in superposition.

When the state of the qubit is measured, the superposition cannot be directly observed.
Instead, the superposition collapses. If the measurement was done in the Z-basis, either the
state |0⟩ or the state |1⟩ will be measured with the probabilities |α|2 and |β|2, respectively.

5

2. Foundations

Disregarding an overall phase factor, a qubit’s state |x⟩ can also be represented in terms
of two angles, θ and ϕ:

|x⟩ = cos

(
θ

2

)
· |0⟩+ eiϕ sin

(
θ

2

)
· |1⟩ (0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π) (2.4)

This enables the state of a single qubit to be visually represented as a point on the surface
of a sphere with a radius of one (the so-called Bloch sphere). In this representation, the
coordinates of a qubit’s state are expressed with θ as the polar angle and ϕ as the azimuth
angle in a spherical coordinate system. The North Pole of the Bloch sphere represents the
state |0⟩, while its South Pole represents the state |1⟩. A visualisation of the state |0⟩ on the
Bloch sphere can be seen in Figure 2.4.

x
y

|0

|1

Figure 2.4.: This figure shows a Bloch sphere representation of the state |0⟩.

Quantum Registers

Quantum registers combine multiple qubits into one quantum system. The state |R⟩ of a
quantum register, which consists of n qubits, can be described as the linear combination
of N = 2n basis states. They arise from all possible combinations of the two basis states
|0⟩, |1⟩ for all n qubits. These basis states can be denoted as a bitstring or as a decimal if
the bitstring is interpreted as a binary number (see Equation 2.5). Note that in the bitstring
representation, the order of the bits in the bitstring is inverse to the order of the qubits, and
therefore, the right-most bit refers to the state of the first qubit.

|R⟩ = α00...0 · |00 . . . 0⟩+ · · ·+ α11...1 · |11 . . . 1⟩ (2.5)
= α0 · |0⟩+ · · ·+ αN−1 · |N − 1⟩

This linear combination can also be written as an n-dimensional complex vector:

|R⟩ = α0 · |0⟩+ · · ·+ αN−1 · |N − 1⟩

= α0 ·

1
0
...
0

+ · · ·+ αN−1 ·

0
...
0
1

 =

 α0
...

αN−1

 (2.6)

6

2.2. Gate-based Quantum Computing

When measuring the state of the quantum register, again, no superposition is observed.
Instead, when measuring in the Z-basis, the state |k⟩ (0 ≤ k ≤ N − 1, k ∈ N) is observed
with probability |αk|2. It also holds for any quantum register’s state that:

|α0|2 + · · ·+ |αN−1|2 = 1 (2.7)

2.2.2. Quantum Gates and Entanglement
Quantum gates are operations used to change the state of a quantum system. Any quantum
gate that operates on n qubits can be described as a matrix M of size N×N , where N = 2n.
The resulting state |x′⟩ from applying a quantum gate described by M to the state |x⟩ can
be calculated as a matrix vector product:

|x′⟩ =M · |x⟩ (2.8)

For any valid quantum gate, its matrix M must be unitary, which means that its adjoint
M † must be equal to its inverse M−1. This ensures that quantum gates are always reversible
and that no quantum information is lost. Additionally, it also ensures that the sum of all
measurement probabilities does not change and thus always remains one.

Single-Qubit Gates

Quantum gates acting on a single qubit can be understood as rotations of the quantum
state on the Bloch sphere. Take, for instance, the Pauli-X gate, which can be understood as
applying a rotation of π around the x-axis of the Bloch sphere:

q X X =

(
0 1
1 0

)
(2.9)

x
y

|0

|1

(a) |0⟩

x
y

|0

|1

(b) X · |0⟩

Figure 2.5.: This figure shows a qubit’s state before (a) and after (b) applying a Pauli-X
gate.

Similarly, the Pauli-Y and Pauli-Z gates apply a rotation of π around the y and z-axis of
the Bloch sphere respectively.

Another important single-qubit quantum gate is the Hadamard gate. It can be understood
as applying a rotation of π around the z-axis and then a rotation of π

2 around the y-axis of

7

2. Foundations

the Bloch sphere. From the basis states |0⟩ or |1⟩, the Hadamard gate changes the qubit’s
state to a superposition in which both |0⟩ and |1⟩ are equally likely to be observed:

q H H =
1√
2

(
1 1
1 −1

)
(2.10)

x
y

|0

|1

(a) |0⟩

x
y

|0

|1

(b) H · |0⟩

Figure 2.6.: Qubit state before (a) and after (b) applying a Hadamard gate.

One of the most general single-qubit gates is the U3 gate. It can be used to apply any
of the previously explained single-qubit gates. It takes three angles, θ, ϕ, λ ∈ [0, 2π], and
allows an arbitrary rotation around an arbitrary axis on the Bloch sphere. θ specifies the
magnitude of the rotation, whereas ϕ and λ specify the rotation axis:

q
, ,
U U3(θ, ϕ, λ) =

(
cos(θ2) −eiλ sin(θ2)
eiϕ sin(θ2) ei(ϕ+λ) cos(θ2)

)
(2.11)

Multi-Qubit Gates

To apply single-qubit quantum gates to a quantum register consisting of n qubits, n single-
qubit gates represented by the matrices M1, . . . ,Mn can be combined to a multi-qubit gate
represented by the matrix M using the tensor product. This has the effect of individually
applying the single-qubit gates to the qubits of the respective index:

M =Mn ⊗ · · · ⊗M1 (2.12)

If no gate should be applied for some qubits, the single-qubit identity gate can be used as
part of the tensor product:

q I I =

(
1 0
0 1

)
(2.13)

Multi-qubit gates, which are constructed in this way, affect the individual qubits without
interaction. Other multi-qubit gates cannot be constructed from single-qubit gates. They
enable state interactions between the qubits. Among these gates are controlled quantum

8

2.2. Gate-based Quantum Computing

gates. They typically act on two qubits, with one being the control and the other the
controlled qubit. They apply a state change to the controlled qubit only if the control qubit
is in state |1⟩. If the control qubit is in superposition, only the amplitudes of the basis states
in which the control qubit is |1⟩ are affected. In all cases, no state change is applied to
the control qubit. The most well-known controlled gate is the controlled Pauli-X gate (also
known as the CNOT gate), but any single qubit gate can be controlled in such a way:

q0

q1

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.14)

To demonstrate its effect, see the CNOT gate being applied to a two-qubit register, in
which the first qubit is in superposition and the second qubit is in state |0⟩:

CNOT ·
(

1√
2
(|0⟩+ |1⟩)|0⟩

)
=

1√
2
(|00⟩+ |11⟩) (2.15)

Before applying the CNOT , the state of the second qubit is independent of the state of
the first qubit. After applying the CNOT , the state of the second qubit depends on the state
of the first qubit. Such quantum states in which the states of the individual qubits are not
independent are also called entangled. This phenomenon is also referred to as entanglement.

Quantum Circuit Depth

If a quantum gate follows another quantum gate on the same qubit, the final state of that
qubit depends on the original state of the qubit and the two quantum gates applied to
it. Since each quantum gate is error-prone to a certain degree, errors over long sequences
of quantum gates can add up. Therefore, an important metric for quantum circuits is the
quantum circuit depth. The quantum circuit depth is the longest sequential chain of quantum
gates on which the final state of any qubit in the quantum circuit depends.

Take, for instance, the quantum circuit in Figure 2.3. The final state of the zeroth qubit
only depends on the Hadamard gate, as the control part of the CNOT gate does not change
the zeroth qubit’s state. For the first qubit, its final state depends on the Hadamard gate
and CNOT gate in sequence, as the effect of the CNOT gate is controlled by the state of
the zeroth qubit after the Hadamard gate has been applied. Therefore, the quantum circuit
in Figure 2.3 has a quantum circuit depth of 2, as the longest chain of dependence is two
quantum gates long.

2.2.3. Measurement

When measuring in the Z-basis, the state |k⟩ of a qubit or quantum register can be observed
with the probability |αk|2. The measurement has the effect of collapsing the superposition
to the state |k⟩. Therefore, after the state |k⟩ was measured, the amplitude αk is one, and
all other amplitudes are 0. This means that a subsequent measurement will certainly return
|k⟩ again.

9

2. Foundations

Since the result of the measurement is probabilistic, multiple measurements are needed to
get statistically relevant results. Due to the fact that the measurement collapses the super-
position, the quantum state needs to be prepared anew for each measurement. How many
measurements (also referred to as shots) are needed depends on the required certainty of the
results and the noise of the quantum hardware. The results of such repeated measurements
can be presented as a probability distribution over the observed states. Take, for instance,
the quantum circuit in Figure 2.3, which creates an equal superposition of the states |00⟩
and |11⟩. A simulated measurement of that circuit with 500 shots yields a probability dis-
tribution in which these states are nearly equally likely to be observed (see Figure 2.7).

00 11

0.00

0.15

0.30

0.45

Qu
as

i-p
ro

ba
bi

lit
y

0.494 0.506

Figure 2.7.: This figure shows the simulated measurement results (noiseless, 500 shots) of
the circuit in Figure 2.3.

Going forward, in this thesis, quantum circuit measurement will always refer to the process
of retrieving a probability distribution of states using multiple shots.

Observables

So far, the measurement process has only been described for measurements in the Z-basis.
In general, the single-shot measurement process can be described using an observable. An
observable is an operator described by a hermitian matrix. It specifies some measurable
aspect of a quantum system. Measuring the quantum system with respect to an observable
returns some eigenvalue λi of the observable and collapses the quantum state to the corres-
ponding eigenstate |ei⟩. The measurement of a single qubit with respect to the basis states
{|0⟩, |1⟩} can, for instance, be described by the Pauli-Z observable (see Equation 2.16), whose
eigenstates correspond to these basis states and whose eigenvalues are 1 for the eigenstate
|0⟩ and −1 for the eigenstate |1⟩.

σz =

(
1 0
0 −1

)
(2.16)

Other common single qubit observables are the Pauli-X observable σx (see Equation 2.17),
which allows measurement with respect to the basis states {|+⟩, |−⟩} (see Equation 2.18),
and the Pauli-Y observable σy (see Equation 2.19), which allows measurement with respect
to the basis states {|i⟩, | − i⟩} (see Equation 2.20).

10

2.3. Variational Quantum Algorithms

σx =

(
0 1
1 0

)
(2.17)

|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩ − |1⟩) (2.18)

σy =

(
0 −i
i 0

)
(2.19)

|i⟩ = 1√
2
(|0⟩+ i|1⟩) , | − i⟩ = 1√

2
(|0⟩ − i|1⟩) (2.20)

When measuring with respect to an observable, the resulting eigenvalue is probabilistic. If
multiple shots are used, an expectation value over the observed eigenvalues can be formed.
For a known state |ψ⟩ and an observable O, this eigenvalue can also be calculated as:

⟨ψ|O|ψ⟩ (2.21)

2.3. Variational Quantum Algorithms
Classical optimisation algorithms typically evaluate a finite number of solutions from the
search space during an optimisation step. Quantum optimisation algorithms, on the other
hand, can use quantum superpositions to their advantage. An example of this is Grover’s
algorithm [Gro96], which first creates an equal superposition over all solutions and then uses
repeated sequences of quantum operations to amplify the amplitudes (and thus the measure-
ment probability) of good solutions [Hom22]. The issue is that this process requires a lot of
quantum gates [CS20] [JNRV20], each of which is noisy and error-prone to a certain degree
on current quantum computers. This issue is common for complex quantum algorithms that
are purely executed on quantum hardware. Due to their generally large quantum circuits,
the quantum noise adds up quickly, which inhibits their usefulness on current quantum
hardware [WK20].

While such complex quantum algorithms are out of reach for current quantum hardware,
researchers still endeavour to make use of the current hardware’s capabilities [BCLK+22].
This leads to the idea of variational quantum algorithms (VQAs). These quantum algorithms
delegate a part of the computation to a classical computer, which allows their quantum
circuits to be much shorter. This is done in an iterative loop (see Figure 2.8), in which
the quantum computer is used to create a quantum state |ψ(θ)⟩ based on some parameter
values θ. That state is then measured, and a classical computer is used to evaluate and
improve the quality of that quantum state by changing the parameter values, based on an
objective function O [BCLK+22]. For classical optimisation problems, this can intuitively
be thought of as the quantum computer creating a superposition of possible solutions to
the optimisation problem. This superposition is then iteratively improved by the classical
optimiser so that solutions of increasing quality are more likely to be measured.

The following subsections explain how parameterised quantum circuits are used to create
quantum states |ψ(θ)⟩ based on parameter values θ and how Hamiltonians can be used to
measure and evaluate the quality of a quantum state with regard to an optimisation problem.
After that, the cornerstone variational algorithms, Variational Quantum Eigensolver (VQE)
and Quantum Approximate Optimisation Algorithm (QAOA), are explained.

11

2. Foundations

Initialise |ψ(θ)⟩
with parameters θ

Evaluate O(|ψ(θ)⟩)

arg minθ(O(|ψ(θ)⟩))

Figure 2.8.: This figure shows the general workflow of VQA algorithms, which is an iterative
loop. In it, a quantum state |ψ(θ)⟩ is created based on the parameter values θ.
This state is then evaluated using objective function O. Based on the resulting
objective value, the classical optimiser improves the parameter values θ.

2.3.1. Parameterised Quantum Circuits

In the previous sections on quantum computing, it was outlined that quantum gates can be
understood as rotations of the qubits’ states. Some rotation gates, like the U3 gate, provide
parameters that allow the user to specify the extent of the rotations that will be applied. A
parameterised quantum circuit is a quantum circuit that contains many such parameterised
gates, whose rotation angles are not yet predetermined.

q0

q1

2meas

1, 1, 1
U

2, 2, 2
U3

0 1

Figure 2.9.: This figure shows a parameterised version of the circuit in Figure 2.3 that uses
U3 gates.

To execute such a parameterised circuit, all rotation angles need to be populated, with the
resulting quantum state varying greatly based on the chosen parameter values. In the context
of VQAs, such a parameterised quantum circuit is called the VQA’s ansatz [CAB+21]. It
spans the search space of possible quantum states for the classical computer to optimise over.
Take, as an example, the parameterised quantum circuit in Figure 2.9. It is a parameterised
version of the quantum circuit in Figure 2.3, where the H gate has been replaced by a U3 gate
and the CNOT gate has been replaced by a controlled U3 gate. For some specific parameter
values, these gates act exactly like the H and CNOT gates, retrieving the same result (see
Figure 2.10a) as the non parameterised circuit (see Figure 2.7). A different result emerges
when changing only two parameter values (see Figure 2.10b).

12

2.3. Variational Quantum Algorithms

00 11

0.00

0.15

0.30

0.45
Qu

as
i-p

ro
ba

bi
lit

y
0.506 0.494

(a) [π
2
, 0, π, π, 3

2
π, π

2
]

00 01 11

0.0

0.1

0.2

0.3

0.4

Qu
as

i-p
ro

ba
bi

lit
y

0.242

0.4

0.358

(b) [2
3
π, 0, π, π

2
, 3
2
π, π

2
]

Figure 2.10.: This figure shows the simulated measurement results (noiseless, 500 shots)
of the circuit in Figure 2.9 for different parameter values. The parameter
values that were applied are shown below the individual figures in the order
[θ1, ϕ1, λ1, θ2, ϕ2, λ2].

2.3.2. Hamiltonians
A Hamiltonian H is an observable operator that describes the energy of a physical system.
Measuring its expectation value ⟨ψ|H|ψ⟩ for a quantum state |ψ⟩ yields the energy of that
quantum state [BCLK+22]. Hamiltonians can also be used to encode optimisation prob-
lems so that states with a minimum energy correspond to the solution of the optimisation
problem [Luc14]. One way to compose Hamiltonians is as a linear combination of Pauli
strings P̂ . Pauli strings are observables that consist of a tensor product of single-qubit Pauli
observables {σx, σy, σz} and single qubit identity operators [BCLK+22].

H =

M∑
k=1

ck · P̂k, (ck ∈ C) (2.22)

P̂ = ⊗n
j=1σj , (σ ∈ {σx, σy, σz, I}) (2.23)

Given a Hamiltonian composed of a linear combination of Pauli strings, its expectation
value can be retrieved as a linear combination of the expectation value of its composing Pauli
strings [BCLK+22].

⟨ψ|H|ψ⟩ =
M∑
k=1

ck · ⟨ψ|P̂k|ψ⟩ (2.24)

A Pauli string that is commonly used is the Zi Pauli string. It consists of only one Pauli-Z
observable and identity observables (see Equation 2.25). For an n-qubit quantum register, its
eigenvalues are −1 for eigenstates in which the i-th qubit is one. Conversely, for eigenstates
in which the i-th qubit is zero, its eigenvalues are +1.

Zi = In ⊗ · · · ⊗ σzi ⊗ · · · ⊗ I1 (2.25)

Since Hamiltonians describe the energy of physical systems, it seems natural to use models
of physical systems to encode optimisation problems as Hamiltonians. One such model is the

13

2. Foundations

Ising model, which was introduced in the context of ferromagnetism [Hom22]. In general, it
can model physical systems consisting of n elements sk, which can be in two discrete states
si ∈ {−1, 1}, with the energy of that system E(s) being based on the pairwise interaction of
the elements and some external factors. The energy of such Ising systems can be formalised
with Equation 2.26, where Ji,j describes the interaction between the two elements si and sj
and hi describes an external factor acting on si [Hom22].

E(s) =
∑

i<j≤n

Ji,j · si · sj +
n∑

i=1

hi · si, (sk ∈ {−1, 1}) (2.26)

To encode the Ising model as a Hamiltonian, one can use Pauli strings Zi to replace the
variables si from Equation 2.26 (si = −Zi). This results in Equation 2.27, which yields the
Hamiltonian describing the energy of the Ising system. Its eigenstates and eigenvalues match
the states and energy values of the system, as given by Equation 2.26.

Hising =
∑

i<j≤n

Ji,j · Zi · Zj +

n∑
i=1

hi · −Zi (2.27)

Crucially, any quadratic unconstrained binary optimisation (QUBO) problem (in which
functions in the form shown in Equation 2.28 are optimised) is easily transformed into the
form of the Ising model, by defining xi = si+1

2 [Hom22]. Therefore, any QUBO problem can
be expressed as an Ising Hamiltonian.

f(x) =
∑
i,j

Ji,j · xi · xj +
∑
i

hi · xi + c, (xk ∈ {0, 1}) (2.28)

Going forward, in this thesis, Hamiltonians for optimisation problems will be described
in the QUBO form, with the mapping from the QUBO to the Ising Hamiltonian being
automatically implied as described in this subsection.

Example: From QUBO to Hamiltonian

This section provides an example to illustrate the QUBO to Ising Hamiltonian conversion
process. The QUBO in this example is a minimisation problem with two binary variables
(see Equation 2.29). Its minimum is located at x0 = 0, x1 = 1.

min
x0,x1∈{0,1}

f(x) = x0 · x1 − 2 · x1 (2.29)

The next step is to substitute the variables xi ∈ {0, 1} with Ising variables si ∈ {−1, 1}
by defining xi = si+1

2 . The result of this step can be seen in Equation 2.30.

E(s) =
s1 + 1

2
· s0 + 1

2
− 2 · s1 + 1

2
(2.30)

With the QUBO minimisation task formulated as an Ising model, the next step is to
convert the Ising model to a Hamiltonian by substituting the Ising variables with Pauli Zi

strings (si = −Zi). Note that the 1s added to the Ising variables also need to be replaced by
Pauli identity strings I, which consist only of identities. The result of that conversion is a
Hamiltonian written as a combination of its constituting Pauli strings (see Equation 2.31).

14

2.3. Variational Quantum Algorithms

This formulation is sufficient for variational algorithms, as the expectation value of the
Hamiltonian can be calculated based on the expectation of its constituting Pauli strings.

H =
−Z0 + I

2
· −Z1 + I

2
− 2 · −Z1 + I

2
(2.31)

H =

0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −1

 (2.32)

Given Equation 2.31, one can also calculate the matrix representation of that Hamiltonian.
This calculation is done here only for explanatory purposes and is normally not done in
VQAs. The resulting matrix for the example Hamiltonian (see Equation 2.32) is a diagonal
matrix, which allows the direct read-out of its eigenstates and eigenvalues from the values on
its diagonal (highlighted in blue). To be exact, the n-th value on the diagonal, starting from
zero for the left-most value, is then the eigenvalue for the eigenstate |n⟩ in decimal notation.
For example, −2 is the eigenvalue for the state |2⟩, which, when written in binary, is the
state |10⟩. From the eigenstates, the state of the qubits, and thus the state of the binary
variables, can be determined by then reading the bits of the binary state in inverse order.
Therefore, in the state |10⟩, the variable x0 is 0 and the variable x1 is 1. The read-out of all
values on the Hamiltonian’s diagonal then yields Table 2.11. One can then plug the variable
assignments from Table 2.11 into the QUBO function in Equation 2.29, which shows that
the Hamiltonian’s eigenvalues match the results of the QUBO function exactly.

Eigenstate Corresponding Variable Assignments Eigenvalue
|00⟩ x0 = 0, x1 = 0 0
|01⟩ x0 = 1, x1 = 0 0
|10⟩ x0 = 0, x1 = 1 -2
|11⟩ x0 = 1, x1 = 1 -1

Figure 2.11.: This table shows the eigenstates and eigenvalues of the example Hamiltonian
(Equation 2.32) with the corresponding QUBO variable assignments.

2.3.3. Discrete Variable Encodings
A common way to express an optimisation problem as an Ising Hamiltonian is to formalise
it as a QUBO first. This is not easily doable for all optimisation problems. A common
issue is that many optimisation problems need discrete variables, which may represent more
than two possible values. An example of this are integer variables, like the start time of the
operations within the JSSP. These discrete variables cannot be represented using only one
binary QUBO variable. Instead, discrete variables need to be expressed using a collection of
binary QUBO variables each. Methods that achieve this are referred to as encodings.

Encoding a discrete variable onto a group of binary variables works by assigning each
value of the discrete variable a bit-value combination for the group of QUBO variables. If
these QUBO variables then take values matching an assigned value combination, this counts
as the discrete variable holding the value corresponding to that combination.

15

2. Foundations

Let us now refer to an encoded discrete variable consisting of n QUBO variables xi as
y. To be able to work with the variable y in the QUBO, the value it takes needs to be
accessible with at most a quadratic term. In the following, this term will be referred to as
c(y, v), which is 1 if y contains the value v and 0 otherwise (see Equation 2.33).

c(y, v) =

{
1 if y = v
0 if y ̸= v

(2.33)

If using n QUBO variables to encode the k choices offered by a discrete variable, it is the
case that if k < 2n, not all state combinations of the QUBO variables represent valid values
of the encoded discrete variable. Such states are invalid encoding states. In these states,
the function c(y, v) is not well-defined. In the QUBO formulation, such states need to be
penalised with a penalty term p(y) to avoid the minimisation procedure falling into such
states. It should be zero if the variable is in a valid state and greater than zero otherwise:

p(y) =

{
0 if y is valid
> 0 if y is invalid (2.34)

In the following, the one-hot encoding and the domain wall encoding are explained, based
on the work of Plewa et al. [PSR21].

One-Hot Encoding

In the one-hot encoding, a discrete variable y with k possible values is encoded in k binary
variables, so that if y takes its i-th value, only xi is 1 and all other binary variables that are
part of y are zero. An example of the one-hot encoding for a discrete variable y ∈ {0, 1, 2}
can be seen in Table 2.12.

x0x1x2 y

100 0

010 1

001 2

Figure 2.12.: This table demonstrates the one-hot encoding for a variable y ∈ {0, 1, 2}.

In the one-hot encoding, checking whether the variable y takes the i-th value vi is achieved
simply by checking the variable xi:

coh(y, vi) = xi (2.35)

For this encoding, each state in which more than one binary variable is one is invalid.
This can be penalised with the following penalty term:

poh(y) =

(
1−

∑
i

xi

)2

(2.36)

Domain Wall Encoding

In the domain wall encoding, a discrete variable y, which can take k different values, is
encoded in k− 1 binary variables. In this encoding, the i-th value of the variable is encoded

16

2.3. Variational Quantum Algorithms

by the first i variables x0, . . . , xi−1 being 1 and the other variables being 0. This encoding
is named after the so-called domain wall, which refers to the space between bits of differing
values, since in this encoding, the place of the domain wall encodes the variable value. An
example of the domain wall encoding for a discrete variable y ∈ {0, 1, 2, 3} can be seen in
Table 2.13. In the example, for the states y = 0 and y = 3, there is still a domain wall
because, in this encoding, the binary variables are preceded by an imagined bit, which is
always 1, and followed by an imagined bit, which is always 0.

x0x1x2 y

1|0000 0

11|000 1

111|00 2

1111|0 3

Figure 2.13.: This table demonstrates the domain wall encoding for a variable y ∈ {0, 1, 2, 3},
with | visualising the domain wall. The variable bits are preceded and followed
by an imagined bit in grey.

In the case of the domain wall encoding, whether the variable y takes the i-th value vi is
checked by taking the difference of the relevant two neighbouring binary variables to detect
whether a domain wall is present at that location:

cdw(y, vi) =

1− x0 if i = 0
xi−1 − xi if 0 < i < k − 1
xk−2 − 0 if i = k − 1

(2.37)

If a domain wall is detected at i, this check can, in principle, either be 1 if a one is followed
by a zero (10) or −1 if a zero is followed by a one (01). We will refer to the latter case as an
inverted domain wall. But since any state that contains an inverted domain wall is invalid,
the check can only return 0 or 1 in valid states. Generally, a domain wall encoding is in a
valid state if, including the imagined bits, it contains only one domain wall. Therefore, the
penalty term to penalise invalid domain wall states can be written as the number of domain
walls minus one:

pdw(y) =

(
−1 +

∑
i

c(y, vi)
2

)
(2.38)

2.3.4. The Variational Quantum Eigensolver (VQE)

The variational quantum eigensolver was proposed by Peruzzo et al. in 2014 [PMS+14].
Its purpose is to find an approximation of the eigenstate with the lowest eigenvalue for a
Hamiltonian, also called its ground-state, which, among others, has applications in chem-
istry as well as in material and drug design [PMS+14]. To achieve this, it makes use of
the variational principle, which minimises the upper bound for a Hamiltonian’s minimum
eigenvalue.

For a quantum state |ψ⟩ and a Hamiltonian H, this upper bound to the minimum eigen-
value is given by Equation 2.39 [TCC+22]. Since for a valid quantum state |ψ⟩, the product

17

2. Foundations

⟨ψ|ψ⟩ must be 1 due to the property of state normalisation from Equation 2.7, the expecta-
tion value ⟨ψ|H|ψ⟩ provides the upper bound to the minimum eigenvalue of the Hamiltonian.
This can be explained by the fact that, as explained in Subsection 2.2.3, ⟨ψ|H|ψ⟩ is the ex-
pectation over the eigenvalues of H that can be observed when repeatedly measuring |ψ⟩
with respect to the observable Hamiltonian H. As a result, when the expectation takes the
value E, eigenvalues of value E or lower must have been observed.

Emin(H) ≤ ⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(2.39)

The VQE algorithm exploits this fact by using a parameterised quantum circuit to initialise
a trial state |ψ(θ)⟩ based on some parameter values θ. It then uses a classical optimiser in
the variational workflow as outlined before to find arg minθ(⟨ψ(θ)|H|ψ(θ)⟩). This amounts
to finding parameter values that minimise the upper bound of the minimum eigenvalue,
which yields an approximation to the minimum eigenvalue and minimum eigenstate of the
Hamiltonian.

The VQE algorithm does not propose a specific parameterised quantum circuit (ansatz)
nor a specific qubit initialisation to fit all optimisation problems. Instead, both can be chosen
to fit the use case at hand. With regard to the qubit initialisation, this state is typically
chosen as all qubits being in state zero (|0⟩⊗n) [TCC+22]. It can also be advantageous to
select a superposition (H⊗n|0⟩⊗n) or even a state based on partial knowledge about the
solution as an initial state [BCLK+22].

A lot of research has been done on the ansatz choice for VQE. In general, the ansätze
from current research can be roughly classified into problem-inspired and hardware-efficient
ansätze [BCLK+22]. Problem-inspired ansätze derive their circuit structure from the prop-
erties of the problem to be solved. Hardware-efficient ansätze, on the other hand, are created
solely with the capabilities of the quantum hardware in mind and are not based on aspects
of the optimisation problem [TCC+22].

The capabilities of an ansatz can be discussed in terms of expressibility and trainability.
Expressibility refers to how much of the total state space the ansatz can reach, whereas
trainability refers to how easy it is to learn good parameters for an ansatz [TCC+22]. These
two properties have been shown to have an inverse relationship, meaning that in selecting a
good ansatz, a trade-off between expressibility and trainability has to be made [HSCC22].

A major inhibitor of the trainability of VQE ansätze is the barren plateau problem. This
refers to the phenomenon that, in some cases, the gradients of the objective function may
decrease exponentially [TCC+22]. This can make classical optimisation in such search
spaces computationally hard. It has been shown that both high expressibility [HSCC22]
and quantum circuit depth [WFC+21] can cause barren plateaus in VQE ansätze. As a
result, barren plateaus can inhibit both less expressible but deep problem-inspired ansätze
and more expressible but shallower hardware-efficient ansätze [WFC+21].

2.3.5. The Quantum Approximate Optimisation Algorithm (QAOA)

The quantum approximate optimisation algorithm was originally proposed by Farhi et al. in
2014 [FGG14]. Just like the VQE algorithm, its purpose is to find an approximation of the
ground-state eigenvalue of a Hamiltonian by minimising the upper bound for its minimum
eigenvalue. The difference from VQE is that in QAOA, the ansatz is designed in a way to

18

2.4. Classical Optimisation Algorithms

approximate the process of quantum annealing. As a result, QAOA is a special type of VQE
algorithm with strict design rules for the ansatz structure.

Quantum annealing is a quantum optimisation process on specialised quantum hardware.
It is based on the adiabatic principle, which states that a quantum system will remain in
its ground state if it is changed sufficiently slowly. Quantum annealing makes use of this
by initialising a quantum system in the ground state of a simple starting Hamiltonian Hs.
Over time, the system is then slowly changed to reflect the problem Hamiltonian Hp. As
long as this change is applied slowly enough, the final state of the system should be a ground
state of the problem Hamiltonian Hp [YRBS22]. This process can also be described by a
time-dependent Hamiltonian, where the time-dependent factors A(t) and B(t) decrease from
one to zero and increase from zero to one, respectively:

H(t) = A(t) ·Hs +B(t) ·Hp (2.40)
To approximate this process on gate-based quantum computers, QAOA uses an ansatz

that alternates between applying the initial (also called mixer) Hamiltonian HM and the
problem Hamiltonian HP [BCLK+22]. Each combined application of the mixer and problem
Hamiltonian forms one layer of the QAOA ansatz, governed by two parameter values, βi
and γi, respectively. The parameter values can be interpreted as the degree to which the
respective Hamiltonian is applied. Repeating those layers p times yields the QAOA ansatz,
which offers 2p parameter values to be optimised. The initial state to which this ansatz is
applied is typically the equal superposition state |+⟩⊗n [BCLK+22]. In combination, this
yields the QAOA’s trial state:

|ψ(γ, β)⟩ ≡ e−iβpHM e−iγpHP . . . e−iβ1HM e−iγ1HP |+⟩⊗n (2.41)
This is a discretisation of the continuous quantum annealing process, called trotterisation.
For small p, it is an approximation, while for p → ∞, this yields the quantum annealing
process exactly [BCLK+22].

2.4. Classical Optimisation Algorithms
VQAs need a classical optimisation algorithm to optimise the parameter values of the ansatz.
This section explains some foundations of classical optimisation algorithms in general and
adds some details on the SPSA algorithm and evolutionary algorithms, which are used within
this thesis.

2.4.1. Optimisation Problems
Optimisation is the minimisation (or maximisation) of an objective function f over a para-
meter vector x, where the individual parameter values may be constrained by equality con-
straints E and inequality constraints I. This can be formalised with Equation 2.42 [NW06].
Since minimisation and maximisation are exchangeable by changing the sign from f(x) to
−f(x), the following explanations will only focus on minimisation.

min x∈Rn f(x)

subject to ci(x) = 0, i ∈ E , (2.42)
ci(x) ≥ 0, i ∈ I,

19

2. Foundations

Optimisation problems can be distinguished based on several properties that impact the
best choice of optimisation algorithms. For instance, the parameter values can be discrete
or continuous, constrained or unconstrained, and the objective function can be linear or
non-linear [NW06]. Since in the context of VQAs the parameter values denote continuous
rotation angles, the corresponding classical optimisation problem is continuous. As rotations
are periodic in their effect, any real number is a valid rotation angle, which means that there
is no direct need to constrain the value range of the parameters in VQAs. Finally, the fact
that the objective function of VQAs has been shown to exhibit local minima [Nan19] [AK22]
implies that the objective function of VQAs is typically non-linear. This yields the clas-
sical optimisation task in VQAs as an unconstrained, continuous, non-linear optimisation
problem.

The best solutions for such an optimisation problem are global minima of the objective
function. A global minimum x∗ is a parameter vector for which no other parameter vector
with a lower objective function value exists [NW06]:

∀x ∈ Rn : f(x∗) ≤ f(x), (x∗ ∈ Rn) (2.43)

Often, finding the global minimum of an optimisation problem is a computationally hard
task. It can then be desirable to find a local minimum instead, which can be easier to find
and may represent a solution that is good enough. For a local minimum x′, it suffices that
no parameter vectors in its neighbourhood N (x′) have a lower objective value [NW06]:

∀x ∈ N (x′) : f(x′) ≤ f(x), (x′ ∈ Rn) (2.44)

2.4.2. Optimisation Algorithms
Optimisation algorithms solve optimisation problems iteratively. They start with an initial
guess of the parameter vector x. They then repeatedly create a new, likely improved, guess
from the previous guess. These guesses are also called iterates. This process is continued
until the algorithm terminates. The way in which this process is implemented varies between
optimisation algorithms [NW06]. Depending on whether optimisation algorithms try to find
a global or a local minimum, they can be classified as local or global optimisation algorithms.

Local Optimisation Algorithms

To find a local minimum close to an initial guess x, local optimisation algorithms often make
use of gradient information on the objective function. Such algorithms are called gradient-
based algorithms. They use the gradient information to make steps in the general direction
of the negative gradient −∇f from their current guess x. This allows such algorithms to
iteratively improve their guesses until they reach a local minimum in which the gradient is
zero. The simplest gradient-based method is the simple gradient descent algorithm, which
updates its guesses with a learning rate of η by following the direction of the negative gradient
directly: xn+1 = xn−η ·∇f(x) [TCC+22]. Other gradient-based methods use more intricate
update rules and sometimes even higher-order gradients.

Typically, gradient-based optimisation methods calculate the gradient of the objective
function analytically. For some objective functions, this can be expensive. It can even be
impossible if the exact objective function is unknown. In such cases, an approximation g(x)
of the gradient ∇f(x) can be calculated by sampling values from the objective function. A

20

2.4. Classical Optimisation Algorithms

common approach to this is to use the finite difference method [BCCS22]. It approximates
the gradient by introducing small differences for each parameter value individually and
observing the resulting changes in the objective function value. If the parameter values
are perturbed in both directions, this is also called the central finite differences method.
With this method, the i-th component of the approximated gradient [g(x)]i is defined as
follows, where σ is the size of the perturbation and ei is the unit vector, which is one in the
dimension i and zero elsewhere [BCCS22]:

[g(x)]i =
f(x+ σei)− f(x− σei)

2σ
(2.45)

This approximation method uses 2n evaluations of the objective function, where n is
the dimensionality of the parameter vector [BCCS22]. To prevent the number of function
evaluations from scaling with the parameter vector’s dimensionality, the simultaneous per-
turbation approximation can be used. It needs only two function evaluations to perturb all
parameter values simultaneously. The gradient is then assigned to the parameters based
on the measured difference and the extent to which each parameter was perturbed [Spa98].
With this method, the i-th component of the approximated gradient [g(x)]i is defined as
follows, where σ is the size of the perturbation and ∆ is the random perturbation vector,
which indicates the direction of the perturbation [Spa98]:

[g(x)]i =
f(x+ σ∆)− f(x− σ∆)

2σ∆i
(2.46)

When using simultaneous perturbation in a gradient descent optimisation algorithm to ap-
proximate the gradient, the resulting algorithm is called simultaneous perturbation stochastic
approximation (SPSA). Multiple papers on VQAs have found SPSA to be a well-performing
classical optimiser for VQAs [Loc22] [MFP+22] [BMWV+23].

Another way to deal with the unavailability of gradient information is to use local optim-
isation algorithms, which do not rely on gradient information at all. Such algorithms are
also called gradient-free algorithms. In classical optimisation, the choice of a gradient-free
optimisation algorithm typically limits the accuracy or expense of the optimisation when
compared to gradient-based methods [LMW19]. This is corroborated to some extent for
the use case of VQAs, where studies have shown that the gradient-based SPSA algorithm
frequently outperforms other gradient-free optimisation methods [MFP+22] [BMWV+23].

Global Optimisation Algorithms

Finding and identifying the global minimum of an objective function can be computationally
difficult for many optimisation problems [NW06]. As a result, meta-heuristics are commonly
used in global optimisation. Meta-heuristics are general-purpose optimisation algorithms
that do not employ problem-specific knowledge and thus are applicable to a wide range
of optimisation problems. They typically do not offer guarantees on finding the global
minimum and instead try to find as good a solution as possible while keeping their resource
usage efficient [SEBB22]. Among such meta-heuristics, the most common global optimisation
algorithms are population-based [RDD23]. That means that for each iteration step of the
optimisation, they evaluate a group of parameter guesses, which enables them to explore a
wider region of the search space. In evolutionary algorithms (EAs), which can be regarded

21

2. Foundations

as the state of the art in population-based optimisation [SEBB22], this iteration process is
inspired by biological evolution.

Evolutionary Algorithms

Biological evolution is based on two pillars: competition-based selection and mutation.
Competition-based selection refers to the fact that in a population of individuals that are
constrained by limited resources, natural selection favours those that compete most effect-
ively for these resources. The most effective individuals are then most likely to reproduce
and create offspring. Mutation refers to the fact that reproduction can introduce small, ran-
dom variations in the offspring. Over many generations, the combination of these processes
explores many variations while selecting for the most useful ones, pushing the general fitness
of the population to increase [ES15].

Population

ParentsOffspring

Selection

Variation

Replacement

Figure 2.14.: This figure shows the general workflow of evolutionary algorithms, in which
selection, variation, and replacement are used to, over many generations, im-
prove the fitness of the individuals within the population.

In EAs, individuals in a population represent a solution to the optimisation problem,
which is encoded in the individual’s genome. The effectiveness with which an individual
competes in the population is rated by a fitness function, which is typically closely related
to but not necessarily equal to the objective function to be minimised.

Mirroring biological evolution, EAs use an iterative loop of selection, variation, and re-
placement operations (see Figure 2.14) to increase the fitness of the individuals over many
generations and, as a result, find better solutions to the optimisation problem [BOM15].
Selection stochastically selects individuals from the population to serve as parents for the
next generation in a way that is biased towards selecting fitter individuals. From the se-
lected parents, new individuals are created as random variations of their parents, either by
mutation of single parents or by crossover of the genes of two or more parents. Finally, the
new individuals are used to replace all or some of the individuals in the previous population
to form the next generation of the population [BOM15]. The specifics of these operations
vary between EAs.

22

3. Related Work

In this chapter, an overview of the related work relevant to this thesis is given. To that
end, we first give a quick overview of current classical approaches to solving the JSSP. This
then motivates the investigation of quantum optimisation methods for solving the JSSP.
From these, the most relevant related work is on quantum annealing and VQA approaches
to solving the JSSP. The issues of the VQA approaches for solving the JSSP then lead to
research on general VQA approaches that adapt their ansatz circuit during the optimisation
procedure. From there, we identify a research gap, which motivates the main research
question of this thesis.

Classical Approaches

The state of the art on classical approaches for solving the JSSP has been reviewed many
times in the last two decades [JM+98] [GS06] [ÇB15] [ZDZ+19] [LHWK21]. Generally,
JSSP optimisation methods can be classified into exact and approximate solving meth-
ods [ZDZ+19] [LHWK21].

Exact methods are guaranteed to find an optimal solution to the JSSP problem. These
methods include, among others, branch and bound methods, as well as mixed-integer pro-
gramming [Lom65] [Man60]. Yet, since the JSSP is NP-hard, these algorithms cannot solve
the JSSP to optimality in polynomial time [GJS76] [LHWK21]. This leads to even medium-
sized problem instances taking a long time to solve. Take, as an example, mixed-integer pro-
gramming solving software such as CPLEX, GUROBI, or SCIP [IBM22] [Gur24] [BBC+23].
They have been shown to need up to an hour to solve JSSP problems with 15 jobs and 15
machines to optimality on a consumer-grade computer [KB16]. This can be an issue for
time-critical scheduling problems.

In such cases, approximate methods can be used. They are not guaranteed to find op-
timal solutions [LHWK21] but instead sacrifice optimality for efficiency. An illustration of
this fact can be seen in the work of Zhang et al., whose approximate algorithm was able
to find approximate solutions to JSSP instances with 15 jobs and 15 machines in less than
three minutes [ZLRG08]. Common approximate methods for solving the JSSP include con-
structive and meta-heuristic approaches [ZDZ+19]. The constructive approaches, like the
priority dispatch rule method, are heuristics that build a schedule step by step, starting
from an empty schedule [BM85]. The meta-heuristic approaches include approaches such as
evolutionary algorithms and tabu-search [FB91] [BC95].

Quantum Annealing Approaches

In the 1990s, quantum annealing was proposed as a heuristic for solving combinatorial op-
timisation problems (which also includes the JSSP) on specialised quantum computing hard-
ware [FGS+94] [KN98] [YRBS22]. While it has been shown that quantum annealing is not
yet capable of challenging the state of the art in classical optimisation algorithms, recent

23

3. Related Work

studies have shown that in some special cases, quantum annealing can outperform classical
heuristics [TAM+22] [JC23].

While this thesis is not focused on progress in quantum annealing, it is still valuable to
investigate how previous research on quantum annealing for solving the JSSP has dealt with
encoding the problem as a Hamiltonian.

In 2015, Venturelli et al. presented a foundational paper on solving the JSSP as a decision
problem using quantum annealing [VMR15]. Solving the JSSP as a decision problem means
that their quantum annealing approach only searches for valid JSSP solutions and does not
discern solutions based on the makespan (the time needed to finish all jobs). To achieve this,
they use a time-indexed problem formulation in which each operation o in a job is assigned
a collection of binary variables xo,t, (t ∈ {0, . . . , T}), each of which determines whether the
operation is scheduled to commence at t. Only one of the variables per operation may
be 1 at a time, as an operation cannot start at two different times. This can also be
understood as a one-hot encoding of the integer start time for each operation. Such binary,
time-indexed problem formulations are also known from mixed-integer linear programming
approaches [KB16]. The number of binary variables per operation is bounded by the choice
of T . Venturelli et al.’s QUBO Hamiltonian formulation then consists of penalty terms,
which increase the energy of invalid states. This includes penalty terms to penalise invalid
encoding states. It also includes quadratic penalty terms of the form α ·xo1,t1 ·xo2,t2 for each
combination of binary variables, where scheduling the operation o1 at t1 and scheduling the
operation o2 at t2 would result in a conflict. As long as the penalty weights α are chosen
to be bigger than zero, this yields a Hamiltonian in which all its ground-states have an
energy of 0 and are valid solutions to the given JSSP. Furthermore, all invalid states have an
energy greater than 0. Venturelli et al. further provide a way to prune the operation start
time variables xo,t by observing that an operation can never start before all its preceding
operations in a job have finished. They further observe that given a time limit T , any
operation cannot start so late that its subsequent operations in a job do not have sufficient
time to finish within the time limit. Therefore, the possible start times t of an operation are
bounded from below by the length of all operations that precede it and bounded from above
by T minus the length of this operation and all its subsequent operations in a job. With
this Hamiltonian formulation, Venturelli et al. were able to solve JSSP problem instances of
up to 6 jobs and 6 machines on a D-WAVE quantum annealer. While the quantum annealer
was slower than classical solvers, the authors were optimistic that future quantum annealers
might alleviate this.

Further benchmarks based on Venturelli et al.’s approach have been done by Carugno et
al. [CFC22]. They solved JSSP decision problem instances of up to 26 jobs and 26 machines
using both quantum annealing and classical optimisation algorithms. Their results were
mixed, with quantum annealing sometimes overperforming and sometimes underperforming
the classical solving algorithms.

An extension to Venturelli et al.’s approach for solving the JSSP has been provided by
Kurowski et al. [KWS+20], who use a sliding window to decompose a JSSP problem into
smaller sub-problems, which can more easily be solved on a quantum annealer. Kurowski
et al. tested this approach on a JSSP problem instance with six jobs and six machines, but
found that classical algorithms still outperformed their approach.

Other recent work on quantum annealing has approached solving other variants of the
JSSP, such as the single-stage JSSP, the dynamic JSSP, the flexible JSSP, or the dynamic
JSSP [AHY22] [SWGA23a] [SWGA23b] [SWK+24] [TZS24].

24

VQA Approaches

In comparison to research on quantum annealing, less research seems to have been done on
optimising scheduling problems by using variational quantum algorithms.

Plewa et al. have investigated the use of VQAs, namely QAOA and VQE, to optimise
workflow scheduling problems using quantum simulators [PSR21]. The workflow scheduling
problem instances they investigated contained 3−4 machines, 3−4 tasks, and needed 10−15
qubits. They compared the efficacy of different integer encodings, namely one-hot, domain
wall, and binary encodings. They found that the use of denser encodings, which reduce
the number of invalid states, can lead to better results and allow for the optimisation of
larger problem instances. When comparing the QAOA and VQE algorithms, Plewa et al.
found that for the workflow scheduling problem instances they investigated, VQE performed
better than QAOA but was more impacted by the choice of the classical optimiser than
QAOA. They also observed that increasing the ansatz depth of the VQAs too much led to
a deterioration of the obtained results. For QAOA, they found the optimal amount of layer
repetitions to be two, whereas for VQE, the optimal amount of ansatz layers was one.

Amaro et al. have also compared the performance of several VQA algorithms for op-
timising the JSSP on real quantum hardware [ARF+22]. Specifically, they investigated an
optimisation variant of the JSSP in which the last operation of each job is assigned a due
date (a specific time at which the operation should finish). The optimisation goal is then
not to minimise the makespan but to minimise the total deviation from the due dates, which
includes both finishing an operation too late or too early. Like Venturelli et al. in their
quantum annealing approach, Amaro et al. encode this problem as an Ising Hamiltonian
by using a one-hot encoding to map the operation start times to binary variables and then
adding penalty terms to increase the energy of invalid states. On top of that, they then add
an optimisation term to assign higher energies to states with a higher deviation from the due
dates. They then compared four VQAs, namely QAOA, VQE, VarQITE, and F-VQE, for
solving a problem instance that needed 5 qubits. They found that QAOA converged much
slower and had a lower probability of observing the ground state at the final measurement
than the other algorithms. Amaro et al. reasoned that this was partially due to the problem-
inspired QAOA ansatz not being suited to the quantum computing hardware, as the other

q0

q1

q2

q3

q4

0
RY

1
RY

2
RY

3
RY

4
RY

5
RY

6
RY

7
RY

8
RY

9
RY

10
RY

11
RY

12
RY

13
RY

14
RY

Figure 3.1.: This figure shows the hardware-efficient VQA ansatz used in Amaro et al.’s
comparison of VQA algorithms with two layer repetitions.

25

3. Related Work

algorithms all used the hardware-efficient ansatz shown in Figure 3.1. The other algorithms
all converged to states with a reasonable likelihood of measuring the ground state. As F-
VQE displayed the fastest convergence and highest likelihood of measuring the ground state,
Amaro et al. then focused on benchmarking F-VQE for larger problem instances needing up
to 23 qubits. For JSSP problem instances of increasing size, it could then be observed that
the convergence speed slowed and the likelihood of measuring the ground state decreased
significantly. This seems to imply that the optimisation landscape is challenging to optimise
over, even for the short hardware-efficient VQA ansatz used here.

Finally, Kurowski et al. [KPS+23] investigated the use of QAOA to optimise the makespan
of the JSSP using quantum simulators. As a base, they use the same Hamiltonian formulation
as Venturelli et al., to which they add a term that penalises solutions with a higher makespan,
so that states with a lower makespan are always assigned a lower energy than states with a
higher makespan. This penalty term consists of one penalty per job, of the form (nJ + 1)t,
where nJ is the number of jobs in the problem instance and t is the time at which the last
operation of the specific job is finished. Since it holds that nJ · (nJ + 1)t < (nJ + 1)t+1, the
sum of the individual penalties is always smaller for all jobs ending at t than even for one job
ending at t+ 1. With the problem encoded as a Hamiltonian, Kurowski et al. then employ
a strategy that exploits the fact that given a QAOA ansatz of p layers with good parameter
values, good initial parameter values for an ansatz of p+1 layers can be interpolated due to
patterns in the parameter values [VGS+20] [ZWC+20]. Kurowski et al. call this the educated
guess strategy. First, Kurowski et al. optimise the parameters, starting from random values,
multiple times to find good parameters for a QAOA ansatz with three layers. Once good
initial parameters are found, the amount of layers is increased, and the initial parameters for
the new ansatz are interpolated. Starting from the interpolated parameters, the parameters
are then optimised again. This loop is repeated until good enough measurement results are
found. Using this routine, Kurowski et al. were able to get high measurement probabilities
for the ground state of the Hamiltonian. But the fact that the authors determined 500
random initial points were needed to find good parameters for the three-layered ansatz
again seems to indicate that the optimisation landscape is challenging to optimise over for
the problem-inspired QAOA ansatz used here.

Adaptive Ansatz Approaches

As outlined in Section 2.3.4 on the VQE algorithm, the ansatz choice strongly influences
the trainability of any VQA. This is due to both hardware-efficient shallow ansätze and
problem-inspired deep ansätze being affected by vanishing gradients and bad local minima,
which makes learning good parameter values difficult [HSCC22] [WFC+21] [AK22]. The ex-
perimental results from the previous subsection seem to indicate that the VQA approaches
for solving the JSSP are likely not exempt from these problems. This makes it interesting
to investigate adaptive ansatz approaches that iteratively grow an ansatz during the optim-
isation process by selecting and appending operations to the ansatz that contribute most
towards minimising the objective function [TCC+22]. The hope is that such approaches can
alleviate issues such as barren plateaus and bad local minima by using shallower ansätze and
by adjusting the optimisation landscape during the optimisation process.

Among the first approaches suggested in this manner are the Adaptive Derivative As-
sembled Pseudo-Trotter ansatz VQE (ADAPT-VQE) algorithm and the Qubit-ADAPT-
VQE algorithm by Grimsley et al. and Tang et al. [GEBM19] [TSB+21]. These algorithms

26

were designed for the simulation of chemical systems. The ansatz of these algorithms is
initialised in an initial state suitable to the optimisation problem. Then a collection of unit-
ary operators is chosen, which can be used to extend the ansatz. In ADAPT-VQE, these
operators are selected to be fermionic operators suitable to the chemical system that is to
be simulated, whereas in Qubit-ADAPT-VQE, these are picked to be a selection of Pauli
strings. Both algorithms are then an iterative loop of operator selection and parameter
optimisation. The operators are chosen by separately extending the ansatz with each oper-
ator and determining for which operator the gradient at the current parameter values is the
steepest. This operator is then selected and added to the ansatz. Then, all parameter values
are optimised. This iterative loop terminates once the gradients for all operators fall below a
certain threshold. Claudino et al. found in their evaluation of ADAPT-VQE that while both
VQE and ADAPT-VQE provided solutions with good accuracy, ADAPT-VQE was much
more resilient with regard to the choice of the classical optimisation algorithm [CWMH20].
Grimsley et al. found in subsequent work that the combination of local optimisation and
adaptation of the search space, by growing the ansatz, makes ADAPT-VQE very resilient
to local minima and barren plateaus [GBB+23].

Inspired by the ADAPT-VQE algorithm, Zhu et al. introduced an adaptive ansatz ap-
proach for QAOA, which they called Adaptive Derivative Assembled Problem Tailored
QAOA (ADAPT-QAOA) [ZTB+20]. In their approach, they iteratively add QAOA lay-
ers and optimise the parameter values. The central aspect is that the mixer part of the
added QAOA layer is not fixed but chosen from a pool of mixer operators so that the gradi-
ent with the added QAOA layer is as large as possible. Zhu et al. used ADAPT-QAOA
to solve random Max-Cut problem instances and found that ADAPT-QAOA needed much
fewer ansatz layers than standard QAOA to converge to good solutions.

Another approach has been introduced by Bilkis et al.’s work on the Variable Ansatz
(VAns) algorithmic framework [BCV+23]. It treats the ansatz and parameter optimisation
tasks as two nested optimisation loops. The ansatz optimisation is the outer optimisation
loop, and it optimises discrete variables, which characterise the ansatz structure. This in-
volves adapting the ansatz, which can be done by ansatz insertion and ansatz simplification.
In ansatz insertion, a unitary operator is randomly selected from a pool of preselected operat-
ors. It is then, according to some rules, placed in the ansatz, with its parameters initialised,
so that the inserted unitary evaluates to the identity operator. In the simplification step,
superfluous quantum gates and quantum gates with a low impact on the objective function
are removed. Once a step in the outer optimisation loop has been done, the parameters are
optimised in the inner optimisation loop to evaluate how good the outer optimisation step
was. This then enables the outer optimisation step to be accepted or rejected. Bilkis et al.
tested VAns against VQE with hardware-efficient ansätze of comparable length and found
VAns to yield superior results. Using noisy simulations, they also found VANS to be much
less impacted by noise than the hardware-efficient VQE. The authors also expect that the
short circuits produced by VAns could mitigate the effect of noise-induced barren plateaus.

As can be seen from this related work, adaptive ansatz methods are promising because
they generally yield better results while using shorter ansatz circuits than non-adaptive
approaches. On top of that, preliminary results on their resistance to noise, local minima,
and barren plateaus also seem promising. Yet, due to their repeated parameter optimisation
as part of their iterative routine, they need a very high number of measurements of the
expectation value with respect to the problem Hamiltonian. This is especially an issue, as
access to real quantum hardware is still limited and expensive. It also calls into question

27

3. Related Work

whether the benefits of adaptive ansatz methods outweigh their added computational costs.

Adaptive Ansatz Approaches using Evolutionary Algorithms

Another type of adaptive ansatz approach that has recently gained significant attention is
the use of evolutionary algorithms to find both a good ansatz structure and good parameter
values [BCV+23]. In these evolutionary algorithms, each individual in a population repres-
ents an ansatz structure and its parameter values. Variation, selection, and replacement of
these individuals over multiple generations enables the search over multiple ansatz struc-
tures and parameter values in parallel. This lets these algorithms explore a wider range of
ansatz structures, which should make it less likely for them to be hindered by local min-
ima [RHP+19]. On top of that, the fittest ansatz structures often appear multiple times in a
population. This means that they are evaluated multiple times per generation, which should
average out the impact of quantum noise on good solutions [RHP+19].

The first approach proposed in that manner was the Evolutionary VQE (EVQE) algorithm
proposed by Rattew et al. [RHP+19]. In EVQE, the individuals consist of an ansatz circuit
consisting of a sequence of random circuit layers as well as the accompanying parameter
values. The circuit layers are constructed from U3, controlled U3 gates, and identity gates, so
that each qubit is modified by exactly one gate. For an example of an EVQE individual with
two layers, see Figure 3.2. The initial population is initialised with one random circuit layer
per individual. Mutations can then, with a certain probability, optimise all parameter values
of an individual, one circuit layer at a time. Other mutations can add new random circuit
layers or remove circuit layers to reduce the ansatz depth. Before evaluating the fitness of an
individual, the parameters of its last circuit layer are optimised. The fitness of an individual
is then based on the ansatz’s expectation value with respect to the Hamiltonian, penalised
by the ansatz depth and its controlled gate count. In their evaluation of EVQE, Rattew
et al. demonstrate that EVQE can produce ansätze that are up to 18 times shallower and
use up to 12 times fewer controlled gates than problem-inspired ansätze. They also showed
that EVQE learns to construct ansätze that are very noise-resistant, leading to EVQE being
significantly less affected by noise than VQE.

Similar to EVQE is the Multiobjective Genetic VQE (MoG-VQE) approach proposed by
Chivilikhin et al. [CSU+20]. In their approach, the ansatz of an individual is constructed

q0

q1

q2

q3

3.05, 6.07, 0.254
U

6.08, 5.21, 5.77
U

1.37, 5.6, 2.25
U3

I

3.35, 6.2, 5.02
U

0.596, 0.878, 0.875
U3

Figure 3.2.: This figure shows an EVQE individual with two circuit layers. The separation
between layers is indicated by the grey barriers.

28

Figure 3.3.: This figure illustrates the gate block structure used in the MoG-VQE al-
gorithm [CSU+20]. Combinations of multiple such gate blocks form an ansatz.

using multiple gate blocks (see Figure 3.3), where these gate blocks can be placed on any
two qubits of the ansatz circuit. The initial population is generated with individuals, which
can use either a structured or a random gate block placement. The mutations in MoG-
VQE only adapt the ansatz structure by either adding gate blocks at random positions in
the ansatz or by removing random gate blocks from the ansatz. Before the selection of
fit individuals, all parameters for all individuals are optimised. As fitnesses, Chivilikhin et
al. use both the expectation value and the CNOT gate count separately, as CNOTs are
particularly expensive and noisy operations. The individuals are then selected in accordance
with the multi-objective NSGA2 algorithm. Chivilikhin et al. compared their approach to
VQE using a hardware-efficient ansatz and found that MoG-VQE was able to reach accurate
solutions while using significantly fewer CNOT gates.

With the Quantum Neuroevolution of Augmenting Topologies (QNEAT) algorithm, an-
other approach similar to EVQE and MoG-VQE was recently presented by Giovagnoli et
al. [GTMS23]. In their algorithm, the gates in the ansatz of an individual can only be placed
according to a layered, fixed structure, with the genome of the individual determining which
of these gates is actually placed. See Figure 3.4 for an illustration of an example individual.
Its first layer showcases the full layer structure, with all possible quantum gates allowed
by the fixed structure being placed. The other layers adhere to the same structure but do
not contain all the gates that could be placed. Evolutionary mutations can then vary the
individual by adding gates to the ansatz, removing gates, or randomly perturbing the para-
meter values of the individual. In contrast to EVQE and MoG-VQE, the variation of the

Figure 3.4.: This figure illustrates the ansatz structure of the QNEAT algorithm. Taken
from Giovagnoli et al.’s paper on QNEAT [GTMS23] (CC BY 4.0 License1). In
the first layer of the individual, all possible gates are placed, showcasing the
structure of a layer. In the other layers, not all gates have been placed.

1https://creativecommons.org/licenses/by/4.0/

29

https://creativecommons.org/licenses/by/4.0/

3. Related Work

individual can not only be achieved with mutation but also with crossover. This combines
the gates and parameter angles from two parent individuals into a new individual based
on some crossover rules and randomness. Giovagnoli et al. then benchmarked QNEAT on
reinforcement learning and the Max-Cut combinatorial optimisation task. For combinatorial
optimisation, they compared QNEAT against QAOA and found that QNEAT was capable
of achieving similar accuracies to multi-layer QAOA while using significantly fewer quantum
gates.

In summary, evolving ansatz approaches improve on adaptive ansatz approaches by lever-
aging the advantages of the parallel optimisation of multiple ansatz structures. This could
enable evolving ansatz approaches to be even more resistant to noise, local minima, and bar-
ren plateaus. Yet, like the adaptive approaches, the evolving ansatz approaches also suffer
from the high amount of expectation value measurements they need. In fact, this problem
should even be more severe for evolving ansatz approaches due to their parallel approach,
which increases the number of evaluated ansatz structures per iteration drastically. Whether
the benefits provided by evolving ansatz methods are worth the cost likely comes down to
how evolving methods scale for increasing problem sizes and, as a result, increasing amounts
of qubits.

Research Gap and Research Question

Yet, with little conclusive research on both the scaling of adaptive ansatz and especially the
scaling of evolving ansatz methods, it remains unclear how beneficial such methods can be
for problem instances of increasing sizes [TCC+22]. This is an important gap in current
research. On top of that, it seems like neither adaptive ansatz approaches nor evolving
ansatz approaches have been applied to solve the NP-hard JSSP. This motivates this thesis
to investigate the scaling of evolving ansatz methods when applied to the JSSP, which yields
the main research question of this thesis:

How do evolving ansatz VQE algorithms scale in terms of computational effort
and solution quality for job shop scheduling problems?

To limit the extent of this thesis, this scaling is only investigated for the EVQE algorithm
presented by Rattew et al. [RHP+19]. Notably, two main factors influence this choice. The
first being that the evaluation of EVQE is more detailed when compared to MoG-VQE and
QNEAT, with only EVQE being evaluated in a noisy scenario. This makes the results shown
for EVQE seem the most promising. Secondly, the search space of possible ansatz structures
proposed in EVQE is less constricted and uses more general quantum gates than that of
MoG-VQE and QNEAT. This seems to indicate that of these algorithms, EVQE is the most
suitable for the general investigation of the scaling of evolving ansatz methods.

30

4. The Evolutionary VQE Algorithm

In this chapter, the EVQE algorithm, presented by Rattew et al. [RHP+19], is described on
a conceptual level as it is implemented for this thesis. This means that, in some cases, details
may be changed from the original EVQE algorithm. This is particularly the case where not
enough details were given in the original paper and gaps had to be filled in. To prevent
confusion, such changes will be clearly declared. This chapter starts with an overview of
the steps involved in the EVQE’s repeating evolutionary routine in Section 4.1. Following
that, the population and its individuals are explained in Section 4.2. Then the selection
procedure is explained in Section 4.3. Finally, the variation of the individuals is explained
in Section 4.4, and the termination criterion is explained in Section 4.5.

4.1. Overview
In Figure 4.1, the general steps involved in the EVQE algorithm are visualised. The state
of the EVQE optimisation process is represented by its population of individuals, which
improves as the evolutionary process continues. Each of these individuals represents a sep-
arate parameterised ansatz consisting of at least one circuit layer with an assignment of
parameter values. To increase the quality of the population over multiple generations, se-
lection, variation, and replacement are applied to the population. The selection is based
on the evaluation of the ansatz individuals. This involves optimising the last layer of all
individuals and then measuring their expectation values to gauge how good an individual is.
Once fit individuals have been selected, variation is then applied to create slightly different
individuals based on the selected individuals to create the next generation of the population.
Since the creation of new individuals only involves one parent per new individual, this is also
called asexual reproduction. The newly generated individuals of the new generation then
entirely replace the individuals from the previous generation. As can be seen in Figure 4.1,
this workflow of evaluation, selection, variation, and replacement forms a cyclic procedure,
where each turn equals one generation in the EVQE algorithm. This procedure is repeated
until a termination criterion determines that the optimisation process is done. This then
ends the procedure, and the best individual, therefore the best ansatz and parameter value
combination, is returned. Measuring the state provided by this ansatz should then offer, with
high likelihood, a good solution to the optimisation problem encoded in the Hamiltonian.

4.2. Population
The population of the EVQE algorithm consists of individuals, each of which represents an
ansatz structure with parameter values. In this section, it is first explained how the genome
of an individual codifies that information. Then it is explained how random genes (circuit
layers) are generated. This is then used to explain how the population is initialised. Finally,
speciation is explained, which is used to keep the population diverse.

31

4. The Evolutionary VQE Algorithm

Population

Expectation value
measurement

Last ansatz-layer
optimisation

Evaluation

Check for
termination

Return best
Individual

Selection

Parameter search

Topological search

Layer removal

Variation

Replacement

Figure 4.1.: This figure shows a graphical representation of the EVQE algorithm’s cyclical
evolutionary optimisation procedure.

32

4.2. Population

4.2.1. Individual Genomes

An individual in EVQE represents a parameterised ansatz circuit consisting of at least one
circuit layer and the accompanying parameter values. All the information necessary to con-
struct that ansatz circuit and populate the parameter values is stored within the individual’s
genome.

The most fundamental parts of the genome are genes. Each gene γk represents the struc-
ture of a unique parameterised circuit layer. As such, each gene is an assignment of quantum
gates, namely the U3 gate, the controlled U3 gate, and the identity gate, to the individual
qubits of the ansatz circuit, so that each qubit is assigned exactly one gate. For the purposes
of gate assignment, the control part of any controlled gate also counts as a gate. This means
that on a qubit controlling a gate, no other gate may be placed in the same gene. The
number of qubits in the ansatz is derived from the dimension of the Hamiltonian, which the
algorithm is meant to solve. The subscript k for the gene γk is the unique identifier of the
gene. Note that this only means that genes can be compared for equivalence. In particu-
lar, EVQE does not make use of a prespecified pool of genes. Instead, genes are randomly
generated when needed.

Within the genome of an individual, parameter values specific to that individual are ap-
plied to its genes. This application of parameter values to a gene γk yields a gene instance
γik for the individual i. Newly initialised gene instances start out with all parameters being
assigned the value 0. As the parameter values of the gene instances of an individual are adap-
ted throughout the evolutionary process, gene instances inherited from previous generations
will often contain non-zero parameter values.

The genome of an individual can then be fully described as a sequence of gene instances
gi =

(
γi1, . . . , γ

i
k

)
. An illustration of the distinction between genes, gene instances, and the

genomes they form, can be seen in Figure 4.2, which was created by Rattew et al. for their
paper on the EVQE algorithm [RHP+19].

If one writes U(γik) for the unitary operator, which the gene instance γik represents, then
the quantum state produced by the ansatz and parameter values encoded by the genome gi
is given by the following formula:

|ψgi⟩ = U(γik) · . . . · U(γi0) · |0⟩⊗n (4.1)

(a) γs (b) γt (c) gi = (γi
s, γ

i
t) (d) gj = (γj

s , γ
j
t)

Figure 4.2.: This figure illustrates the differences between genes, genomes, and gene instances
in EVQE [RHP+19]. (a) and (b) show two different genes γs and γt, each
representing a circuit layer, without fixed parameter values. (c) and (d) show
the genomes of two different individuals, i and j. They each consist of two gene
instances, highlighted by the grey boxes.

33

4. The Evolutionary VQE Algorithm

4.2.2. Random Gene Generation

Whenever a new gene instance needs to be initialised, either to extend a genome or initialise
a new genome, a random gene needs to be created as a base for that gene instance first.
Due to the fact that genes represent the structure of an ansatz layer consisting of quantum
gates, gene generation involves choosing quantum gates and assigning them to the individual
qubits of the ansatz. Since Rattew et al. do not outline their procedure for gate choice and
placement during the gene generation, we first outline our basic procedure for random gate
placement. After that, we discuss how the gate placement procedure can be adapted to
prevent redundant gates in the ansatz.

Basic Random Gate Placement Procedure

For the basic gate placement procedure, we choose between U3 and CU3 gates. We try to
assign gates fairly, so that a qubit should have the same chance of being assigned a CU3 or a
U3 gate. To achieve that, first, for each qubit, we randomly designate which type of gate can
be assigned to it. With an equal likelihood of 50%, it is either designated for the placement
of a U3 gate or a CU3 gate. To then place a CU3 gate on two qubits, two qubits are chosen
uniformly at random from the qubits designated for usage with CU3 gates. The CU3 gate is
then assigned to these two qubits, so that it is controlled by the first qubit and controls the
second qubit. These qubits are then removed from the list of designated qubits to prevent
any further gates being assigned to them. This procedure is repeated until no more than
one qubit remains designated for the CU3 gates. Since a CU3 gate cannot be assigned to
only one qubit, on this qubit and all other qubits designated for the placement of U3 gates,
U3 gates are placed. Figure 4.3 demonstrates the entire gate placement procedure for the
generation of a gene on 4 qubits.

(a) (b) (c)

Figure 4.3.: This figure illustrates the stages of the basic random gene generation. (a):
First, the qubits are either designated for a CU3 (red pentagon) or a U3 (blue
pentagon) gate with a 50% chance each. Then the CU3s are randomly placed
(b). Finally, the U3 gates are placed (c).

34

4.2. Population

Conditional Random Gate Placement Procedure

If a gene is generated to extend an already existing genome, the newly assigned quantum
gates extend the ansatz specified by that genome. In that case, care needs to be taken
during the gene generation to prevent the placement of redundant quantum gates, which do
not extend the capabilities of the ansatz. In particular, Rattew et al. list the following as
redundant gate placements: A U3 gate directly following a U3 gate on the same qubit is
redundant, as the same effect could be achieved by merely adjusting the parameters of the
first U3 gate. The same goes for a CU3 gate directly following another CU3 gate, on the
same qubits and in the same orientation. Such gate placements would increase the number of
parameters in the ansatz, without extending the reachable search space. Therefore, Rattew
et al. forbid such gate placements. The restriction of redundant gate placements can lead to
situations in which no gate can be assigned to a qubit. In that case, an identity gate can be
assigned to it. Due to the fact that after a CU3 gate, a U3 gate is always permitted to be
placed, no identity gate can ever be placed after a CU3 gate. The converse does not always
hold true. After a U3 gate, during the gate placement procedure, there may not be enough
qubits left to place a CU3 gate. This implies that an identity gate will only ever follow a
U3 gate. As a consequence, no U3 gate can be placed after an identity gate, as the identity
gate between the U3 gates would not prevent their redundancy.

To comply with this restriction on gate placements, slight modifications need to be made
to the basic random gate placement procedure if it is used when extending a pre-existing
genome. First, if a U3 gate or an identity gate is assigned to a qubit on the previous gene,
the same qubit may not hold a U3 gate on the newly generated subsequent gene. This means
that this qubit is directly designated as a CU3 qubit, without randomness. The same cannot
be done for CU3 gates on the previous gene, as another CU3 gate could be placed on the
same qubits but in the inverse orientation without being redundant. Therefore, the qubits
to which, in the previous gene, CU3s were assigned are again designated for use with U3s

(a) (b) (c) (d)

Figure 4.4.: This figure illustrates how a random gene is generated to follow the gene shown
in (a) without placing redundant gates. As shown in (b), following an identity or
U3 gate in (a), the qubits are directly designated as CU3 qubits (red pentagons).
Following a CU3 gate in (a), the qubits are randomly designated as either U3
(blue pentagons) or CU3 qubits (c). After the random gate placement, no gate
could be placed on qubit 3, leaving it with an identity gate, as shown in (d).

35

4. The Evolutionary VQE Algorithm

and CU3s with equal likelihood. During the placement of the CU3 gates, if a random CU3
placement is selected that is against the redundancy rules, it is discarded and re-drawn. If
an excess qubit designated for CU3 placement remains that cannot be designated as a U3
qubit due to the redundancy rules, an identity gate is placed on it. Figure 4.4 demonstrates
the entire conditional gate placement procedure for the generation of a gene on 4 qubits.

4.2.3. Population Initialisation
For the initialisation of the population, Rattew et al. specify that the population is initialised
with population_size many individuals. The genome of each of these individuals is initialised
to contain one gene instance derived from a random gene, with all parameter values set to
zero. This creates individuals, whose ansatz acts as the identity operator. As a result, the
state produced by all initial individuals is |ψgi⟩ = |0⟩⊗n.

4.2.4. Speciation and Population Diversity
An important feature of evolutionary algorithms is that their population allows them to cover
a wide area of the search space. This advantage can be lost if a particularly fit individual or
group of closely related individuals, over time, replaces all other individuals due to strong
selection pressure. In that case, the population loses its diversity and, as a result, its ability
to broadly explore the search space. This may lead to a premature convergence to a local
minimum. A way to combat this problem is to group genetically similar individuals into
so-called species and adjust the fitness of the individuals to penalise overtly large species so
that no species may take over the whole population.

This approach is followed by Rattew et al. [RHP+19]. To group the individuals into
species, a similarity measure between individuals is needed, which in evolutionary algorithms
is commonly referred to as genetic distance. For their genetic distance measure, Rattew et
al. use differences in the ansatz structure to quantify the similarity of individuals. This
is enabled by the asexual reproduction used in EVQE. Due to the asexual reproduction,
individuals only have one parent. In addition, the ansatz structure can only be changed
by adding or removing gene instances from the end of the genome, which will be further
explained in Section 4.4. As a result, the number of genes at the end of the genome that are
not shared between individuals roughly indicates how long ago the individuals diverged from
a shared ancestor. Rattew et al. calculate this by subtracting the number of gene instances
based on the same genes in the genome from the average number of gene instances in the
two individuals’ genomes. That calculation is shown in Equation 4.2. Note that ⌈x⌉ refers to
rounding x up to the next integer, |gi| refers to the number of gene instances in the genome
gi, and gi[k] refers to the k-th gene instance of the genome gi. Furthermore, Jgi[k] = gj [k]K
is a term that is 1 if the k-th gene instance of gi is based on the same gene as the k-th gene
instance of gj , and 0 otherwise.

δij = ⌈1
2
· (|gi|+ |gj |)⌉ −

 |gi|∑
k=1

Jgi[k] = gj [k]K
 (4.2)

Given this distance measure, Rattew et al. use a representative individual, called the
species representative, to represent the whole species. Any individual within the species,
declared by a species representative, must have a genetic distance to the representative that

36

4.3. Evaluation and Selection

is lower than the genetic_distance_threshold, which is set as a parameter of the algorithm.
To group the individuals into species, the following workflow is used for each individual in
the population:

1. Assign the individual to the first species, for whose species representative the genetic
distance to the individual is below the genetic_distance_threshold.

2. If there is no such species, assign the individual as a new species representative.

This speciation procedure is carried out each generation before the selection. To maintain
species continuity between generations, the initial set of species representatives used for this
process consists of one random species member from each species of the previous generation.

4.3. Evaluation and Selection
In this section, it is first explained why the parameters of the last gene instance of an
individual are optimised before measurement. Then it is explained which factors constitute
the fitness function. Finally, it is explained how the fitness function translates to selection
probabilities in the section on the selection procedure.

4.3.1. Last Layer Optimisation
In evolutionary algorithms, new individuals are created by the variation of previous individu-
als. The task of selection, then, is to select useful variations and filter out harmful variations.
One variation operator in EVQE is ”topological search”. It is explained in Subsection 4.4.2.
It creates offspring from individuals by appending a new gene instance to the end of their
genome. Importantly, this gene instance is initialised with all parameter values at zero, so
that the new gene instance acts as the identity operator. This means that the newly added
gene instance at the end of the genome does not change the behaviour of the ansatz and,
as such, does not impact its performance. This makes it impossible to discern whether the
newly added gene instance is useful or harmful. Therefore, to help evaluate the usefulness
of these variations for all individuals, the parameter values of their last gene instances are
optimised before determining their fitness. If a new gene instance gained by variation is
useful, this optimisation procedure should substantially improve the fitness of its individual,
making it more likely to be selected. Let us now define an operation opt(γik) → γi

′
k , which

uses a classical optimisation procedure, as explained in Section 2.4, to optimise the para-
meter values of exactly one gene instance to minimise the expectation value ⟨ψgi |H|ψgi⟩.
The last layer optimisation operation σ on a genome gi is then defined as follows:

σ :
(
γi1, . . . , γ

i
n

)
→
(
γi1, . . . , γ

i
n−1, opt(γ

i
n)
)

(4.3)
Note that the exact optimisation procedure used is not fixed in this specification. We

reflect this in our implementation, which allows the user to freely specify an optimisation
procedure, as long as it adheres to a specific interface.

4.3.2. Fitness Score
Once the last layers of all individuals in the population have been optimised, their fitness
scores can be calculated. In EVQE, the fitness score of an individual consists of three

37

4. The Evolutionary VQE Algorithm

main components. Namely, these are the individual’s expectation value with respect to the
Hamiltonian, which is penalised by both the count of gene instances in the genome |gi|
and the count of CU3 gates in the genome CU3(gi). These penalties bias the evolution
towards ansatz circuits, which are shallower and use fewer controlled gates. The extent of
the penalties is determined by the factors α and β, which are set as parameter values of
the EVQE algorithm. All values combined yield the basic fitness score for an individual i
(see Equation 4.4). Note that a lower fitness score is considered better here, as finding good
eigenstates of a Hamiltonian is typically a minimisation task.

fi = ⟨ψgi |H|ψgi⟩+ α · |gi|+ β · CU3(gi) (4.4)

To encourage genetic diversity in the population, this fitness is then adjusted based on
the amount of individuals |S(i)| in the species S(i), which is the species to which the indi-
vidual i belongs. Note that lower values for fi are better, and the fitness for individuals in
large species should be worse. Therefore, we adopt the following adjusted fitness fai , which
penalises individuals in large species by multiplication:

fai = fi · |S(i)| (4.5)

This is counter to the adjusted fitness formulation presented in Rattew et al.’s paper [RHP+19],
which seems to be an error in notation. It would lower the fitness value for large species and
thus improve the fitness of individuals in large species:

fai =
fi

|S(i)|
(4.6)

4.3.3. Selection of fit individuals

In EVQE, due to asexual reproduction, each offspring has one parent. Therefore, to fully
replace the individuals of the previous generation with new offspring, population_size many
individuals need to be selected as parents to seed the next generation. Rattew et al. specify
that the parents are randomly drawn from the population with replacement and probabilities
proportional to the adjusted fitness of the individuals. Yet, they do not specify the exact
method to map fitnesses to selection probabilities. Therefore, we defined our own fitness to
selection probability mapping.

To map the highest likelihood to the fitnesses with the lowest values, we first need to
invert the fitness values so that the fittest individual is actually assigned the largest value:

inv(fai) =
1

fai
(4.7)

The selection probability of an individual is then its fraction of the sum of all inverted
probabilities:

pselect(i) =
inv(fai)∑

j∈Population inv(f
a
j)

(4.8)

We employ Python’s random.choices method to sample population_size many individuals
with replacement according to the selection probabilities.

38

4.4. Variation

4.4. Variation
With the parents for the next generation selected, variation is applied to create offspring
from the parent individuals. The variation operators used for this are parameter search,
topological search, and layer removal. They are explained in more detail in this section. Each
variation operator can be understood as creating a modified version of an individual. For
each operator, there is a separate probability with which it will be applied to an individual,
given as a parameter to the EVQE algorithm. The exact manner in which these operators are
applied is not specified by Rattew et al. We implement it so that these operators are applied
in sequence for each individual. This means that if, for an individual, multiple variations
are chosen to be applied, the subsequent variations are applied to the individual resulting
from the previous variation. Consequently, the child individual may be the result of zero to
three mutations.

4.4.1. Parameter Search
In parameter search, all parameters of an individual are optimised. This is done gene instance
by gene instance in a random order. As before, during the optimisation of one gene instance,
the parameters of all other gene instances remain fixed. This procedure again makes use of
a classical optimisation procedure. In our implementation, the parameter search makes use
of the same classical optimisation procedure as the last layer optimisation, which is given to
the EVQE algorithm as a parameter. Formally, the parameter search can be characterised
as follows:

π :
(
γi1, . . . , γ

i
n

)
→
(
opt(γi1), . . . , opt(γ

i
n)
)

(4.9)

4.4.2. Topological Search
In topological search, a gene instance based on a randomly generated gene is added to the
individual. The parameter values of that gene instance are initialised to be zero, so that the
new gene instance acts as an identity operator. This has the advantage of not perturbing
the state of the individual, so that parameter searches in future generations can smoothly
continue from the individual’s current state. The topological search can be characterised as
shown in Equation 4.10. Figure 4.5 shows a visualisation of an example application of the
topological search operator to an individual.

τ :
(
γi1, . . . , γ

i
n

)
→
(
γi1, . . . , γ

i
n+1

)
(4.10)

4.4.3. Layer Removal
In layer removal a uniformly random number of gene instances k ∈ {1, . . . , n−1} is removed
from the end of the individual’s genome, where n is the number of gene instances in the indi-
vidual’s genome. This variation can change the fitness of an individual drastically. The layer
removal can be characterised as shown in Equation 4.11. Figure 4.6 shows a visualisation of
an example application of the layer removal operator to an individual.

ρ :
(
γi1, . . . , γ

i
n

)
→
(
γi1, . . . , γ

i
(n−k)

)
(4.11)

39

4. The Evolutionary VQE Algorithm

q0

q1

q2

1.63, 2.64, 4.76
U

4.92, 2.54, 3.21
U

3.67, 2.99, 1.91
U

(a)

q0

q1

q2

1.63, 2.64, 4.76
U

4.92, 2.54, 3.21
U

3.67, 2.99, 1.91
U

I

0, 0, 0
U3

(b)

Figure 4.5.: This figure shows an individual before (a) and after (b) topological search was
applied.

q0

q1

q2

0.974, 2.49, 0.648
U

5.77, 2.52, 0.418
U3

1.39, 4.81, 5.03
U3

1.08, 1.74, 3.37
U

(a)

q0

q1

q2

0.974, 2.49, 0.648
U

5.77, 2.52, 0.418
U3

(b)

Figure 4.6.: This figure shows an individual before (a) and after (b) layer removal for one
layer was applied.

4.5. Termination Criteria
For the termination, in our implementation, we enable three types of termination criteria.
The first termination criterion terminates after a fixed number of evolutionary generations.
The second terminates after a certain number of expectation value measurements have been
exceeded. This can be useful if access to real quantum hardware is expensive or limited. The
final termination criterion can be user-specified as long as it adheres to a certain interface.
This termination criterion receives the evaluation results for each generation and can, based
on these results, choose to terminate the optimisation. This allows the user to specify a wide
range of termination criteria. We employ this capability in our benchmarks to let the EVQE
algorithm run as long as it needs to converge. The exact termination criterion used for the
benchmarking procedure is explained in Chapter 7.

40

5. Encoding the JSSP as a Hamiltonian
In this chapter, it is explained how the JSSP, as defined in Section 2.1, can be expressed as
a QUBO problem. The QUBO problem can then in turn be converted to a Hamiltonian, as
explained in Subsection 2.3.2. To express the JSSP as a QUBO problem, the JSSP’s discrete
variables first need to be encoded into binary variables, as explained in Subsection 2.3.3.
From there, a quadratic function f(x) on the vector x of binary variables needs to be defined.
It needs to assign a value to each possible state of x that expresses the quality of the solution
to the JSSP instance, as provided by this state of x. This function should be designed in
such a way that finding argminxf(x) returns a state of x, which translates to an optimal
solution of the JSSP. Note that the goal is minimisation, which means that lower values are
better. We will refer to these values as energies to be more consistent with Hamiltonian
terminology. In particular, it is required that f(x) assigns:

• a high energy to all states of x that violate the encoding of the discrete variables

• a high energy to all states of x that translate to an invalid solution to the JSSP

• a low energy to all states of x that translate to a valid solution to the JSSP

• a lower energy to states of x that translate to valid solutions with lower makespans

To fulfil this requirement, we structure the quadratic function f(x) to consist of separate
terms. The term opt(x) describes the optimisation part of the function and yields lower
energies for better makespans. The term penc(x) penalises states in which encoded variables
do not contain valid values by yielding high energies for invalid encoding states. The term
pprc(x) penalises states in which at least one operation violates the precedence constraint
in between the operations of a job by yielding high energies for such states. An example
would be the second operation of a job starting before the first operation of a job. The
term povl(x) penalises states in which any two operations, which are executed on the same
machine, overlap. This is also done by assigning such states high energies. Summing all
these terms together yields the quadratic function f(x) as shown in Equation 5.1.

f(x) = opt(x) + penc(x) + pprc(x) + povl(x) (5.1)
To fulfil the requirements on the state energies, it is particularly important that Equa-

tion 5.2 holds. This ensures that invalid states are always of higher energy than valid states.

penc(x) + pprc(x) + povl(x) =

{
> max(opt(x)) if x is invalid
0 if x is valid (5.2)

To explain how the individual terms of the QUBO function f(x) are constructed, notations
are defined in Section 5.1. Then, the value ranges of the discrete variables and their encoding
is explained in Section 5.2. Afterwards, the construction of the penalty terms is explained
in Section 5.3. Finally, the optimisation term is explained in Section 5.4. An example of the
resulting energy landscape is then shown in Section 5.5.

41

5. Encoding the JSSP as a Hamiltonian

5.1. Definitions
As explained in Section 2.1, each job in the JSSP consists of an ordered sequence of opera-
tions, which are assigned a duration and a machine on which to execute. We define the set
of all operations in a JSSP instance as O, the set of all jobs in a JSSP instance as J, and
the set of all machines in a JSSP instance as M. We now define that each operation o ∈ O
is assigned a unique identifier i ∈ N. This allows specific operations to be denoted as oi.

To access relevant properties of each operation o, we define mappings from the operations
to their properties, so that machine(o) : O → M maps the operation to the machine on
which it is executed. We also define job(o) : O → J so that the operation is mapped to the
job to which it belongs. We further define duration(o) : O → N to map operations to the
duration for which they need to be processed and position(o) : O → N to map the operation
to its position within the ordered sequence of operations of the job.

As a useful shorthand, we also define Oj and Om to be the set of operations that are
executed on a specific job or machine respectively:

Oj = {oi ∈ O | job(oi) = j} (5.3)

Om = {oi ∈ O |machine(oi) = m} (5.4)

5.2. Variables and Variable Encoding
The goal of the JSSP is to schedule all operations in such a way that the time for all jobs to
finish (makespan) is as low as possible. This scheduling can be done by finding a good start
time t for each operation. We assume that both the start time t and the processing duration
of an operation can be specified in discrete time units, where the earliest possible start time
is 0. If the start time of any operation can be delayed indefinitely, there are infinitely many
possible start times to choose from. To combat this, like Venturelli et al., we introduce an
upper bound T for the makespan [VMR15]. This upper bound needs to be at least as large as
the minimum makespan of the problem instance to be solved. Otherwise, no valid solutions
can be found. Furthermore, it should not be chosen too large to prevent the number of
possible start times from becoming too large to be represented by the limited number of
qubits of a quantum computer. For real applications, the minimum makespan is typically
unknown, in which case, multiple optimisation trials with varying upper bounds would have
to be run to find a solution. For our benchmarks, we choose T based on knowledge of the
minimum makespan.

As Venturelli et al. showed, the upper bound enables the available start times for each
operation to be bounded by considering the length of the operations preceding and following
the operation in its job. The length of all operations preceding an operation in a job can be
defined as:

lenprc(oi) =
∑

oj∈Ojob(oi)
,

position(oj)<position(oi)

duration(oj) (5.5)

The length of all operations subsequent to an operation oi in the same job can also be
defined as:

42

5.3. Penalties

lenssq(oi) =
∑

oj∈Ojob(oi)
,

position(oj)>position(oi)

duration(oj) (5.6)

Note that the operations preceding an operation oi in a job need to be finished, before oi
can be scheduled to start. This means that lenprc(oi) provides the lower bound for the start
time of oi. Similarly, given the makespan limit T , both oi and all operations subsequent to oi
in this job need to be able to finish within T . This means that T −(duration(oi)+ lenssq(oi))
provides the upper bound for the start time of oi. As a consequence, the set of all available
start times for an operation oi can be defined as:

stimes(o) = {t ∈ N | lenprc(oi) ≤ t ≤ T − (duration(oi) + lenssq(oi))} (5.7)
In most cases, the set of available start times will contain more than two values. In such

cases, the discrete variable modelling the choice between those start times has more than
two states. This means that, as discussed in Subsection 2.3.3, the discrete start time variable
for each operation needs to be encoded onto multiple binary variables. In their approach,
Venturelli et al. have used the one-hot encoding [VMR15]. Yet, test results by Plewa et al.
have shown denser encodings to perform better during the optimisation process [PSR21].
Therefore, we choose to encode the discrete optimisation variables as domain wall variables.
Note that we assign the possible start times to the domain wall variable’s states in order.
Therefore, the first domain wall state 1|00 . . . 00 refers to the earliest possible start time, the
second domain wall state 11|0 . . . 00 refers to the second-earliest start time, and so on.

To distinguish the domain wall variables from the binary QUBO variables, we will refer
to the domain wall variable for representing the possible start times of an operation oi as
yoi . The vector of all domain wall variables for all operations oi is then referred to as y. The
function to check whether a domain wall variable yoi contains the value v: cdw(yoi , v) remains
as defined in Equation 2.37. The QUBO objective function can then also be rewritten in
terms of the variable vector y, which we will use for simplicity’s sake going forward:

f(y) = opt(y) + penc(y) + pprc(y) + povl(y) (5.8)

5.3. Penalties
In this section, the makeup of the individual penalty terms are explained. Note that to
regulate their interplay, we provide weighting parameters wenc, wprc, and wovl to increase or
decrease the weighting of certain constraints.

5.3.1. Encoding Penalties
To penalise invalid encoding states for all domain wall variables, we sum their penalty terms
pdw(yoi), as defined in Equation 2.38, for each individual domain wall variable. Note that
the individual penalty terms need to be adjusted by a scaling factor s(yoi) to prevent issues,
which will be explained in more detail in Subsection 5.3.4. The resulting penalty term is:

penc(y) = wenc ·

∑
oi∈O

s(yoi) · pdw(yoi)

 (5.9)

43

5. Encoding the JSSP as a Hamiltonian

5.3.2. Precedence Penalties
Violations of the precedence constraints occur when an operation of a job is scheduled to start
before one of its preceding operations is finished. To penalise such states, all combinations
of start time values that violate this condition need to be found. To formalise that, first the
set of tuples of directly subsequent operations is defined:

ssq_ops(Oj) = {(oi, ok) ∈ Oj ×Oj | position(oi) + 1 = position(ok)} (5.10)
Given two subsequent operations, the start time combinations for which they violate the

precedence constraint are then given by each combination in which the second operation
starts before the first operation has finished:

prc_viol(oi, ok) = {(ti, tk) ∈ stimes(oi)× stimes(ok) | tk < ti + duration(oi)} (5.11)
With these definitions, the penalty term, which applies penalties to all precedence con-

straint violations, is then defined as:

pprc(y) = wprc ·

∑
j∈J

∑
(oi,ok)∈

ssq_ops(Oj)

∑
(ti,tk)∈

prc_viol(oi,ok)

cdw(yoi , ti) · cdw(yok , tk)

 (5.12)

5.3.3. Overlap Penalties
Violations of the overlap constraint occur when two operations on a machine overlap due to
their scheduling, resulting in a machine having to process two operations at once, which is
impermissible. To check for all combinations of operations and start times that are imper-
missible, first the set of all possible operation combinations for a given machine is defined
in Equation 5.13. Note that the comparison of the identifiers i < k serves to ensure that
each combination of operations appears only once in pair(Om), as it excludes one of the two
possible orderings for each pair of operations.

pair(Om) = {(oi, ok) ∈ Om ×Om | oi ̸= ok ∧ i < k} (5.13)
Given a combination of two operations, the impermissible start time combinations are

then given by combinations that lead to operations overlapping at some point. These can
be identified by testing whether both operations start before the other has finished:

ovl_viol(oi, ok) = {(ti, tk) ∈ stimes(oi)× stimes(ok) | (5.14)
ti < tk + duration(ok) ∧
tk < ti + duration(oi)}

The penalty term for the overlap constraint violations can then be defined as:

povl(y) = wovl ·

∑
m∈M

∑
(oi,ok)∈
pair(Om)

∑
(ti,tk)∈

ovl_viol(oi,ok)

cdw(yoi , ti) · cdw(yok , tk)

 (5.15)

44

5.4. Optimisation Goal

5.3.4. Invalid Penalty Interactions

An important fact is, that the penalty formulations for both the precedence constraint and
the overlap constraint depend on cdw(y, v) only ever being zero or one. But as explained
in the section on encodings, if an inverted domain wall is placed on v, cdw(y, v) evaluates
to minus one. This means that the penalties in which cdw(y, v) is involved will flip their
sign due to cdw(y, v) becoming negative. If cdw(y, v) is now part of n precedence and k
overlap constraints with the respective weights wprc and wovl, this reduces the energy by
2·(n·wprc+k·wovl). At the same time, any domain wall variable containing an inverse domain
wall (. . . 0|1 . . .) must contain at least three domain walls, as its first and last imaginary bits
are fixed. This is showcased in the following, where | again denotes these domain walls:

1 . . . | . . . 0|1 . . . | . . . 0 (5.16)

Since the valid domain wall variable states contain only one domain wall, placing an
inverted domain wall increases the number of domain walls from one to three. This increases
the energy by 2 · wenc. Therefore, the destruction of the domain wall variable’s validity is
worth it if cdw(y, v) is part of n precedence and k overlap constraints and the following holds:

2 · wenc < 2 · (n · wprc + k · wovl) (5.17)

This leads to the reasoning for the scaling term s(yoi) in the encoding penalties, as shown
in Equation 5.9. Assume that the maximum number of constraints on any value of the
domain wall variable is known. Also assume that the encoding penalty weight is at least as
large as the other penalty weights (wenc ≥ wprc ∧ wenc ≥ wovl). In that case, multiplying
pdw(yoi) by s(yoi) = n + k + 1 ensures that destroying the domain wall variable always
worsens (increases) the energy. This is due to the fact, that destroying the domain wall
variable then increases the energy by 2(nk + 1) · wenc, which is larger than the maximum
decrease in energy 2 · (n · wprc + k · wovl).

5.4. Optimisation Goal

This section explains the formulation of the optimisation goal. As outlined beforehand, its
highest value for valid states should be lower than any of the penalty weights wenc, wprc, wovl.
This ensures that even states with the worst possible makespan are preferable to invalid
solutions. Furthermore, it must also be ensured that minimising the optimisation goal min-
imises the makespan of the solution. The formulation of the optimisation goal in this case
consists of two parts, the makespan minimisation term mmin(y) and the early start term
estart(y), whose relative influence is modified by a continuous factor γ in the range [0, 1].
The makespan minimisation term rewards states with a lower makespan, whereas the early
start term rewards states for starting all operations as early as possible. Both mmin(y) and
estart(y) are normalised to the value range [0, 1]. The maximum size of the optimisation
term is then regulated by the weight wopt:

opt(y) = wopt · ((1− γ) ·mmin(y) + γ · estart(y)) (5.18)

45

5. Encoding the JSSP as a Hamiltonian

5.4.1. Makespan Minimisation
For the makespan minimisation term, we follow the approach proposed by Kurowski et
al. [KPS+23]. As explained in Chapter 3, their approach involves applying a weight (nJ+1)t

to the last operation of each job, where nJ is the number of jobs and t is the time at which
the particular operation ends. To reiterate, since it holds that nJ · (nJ + 1)t < (nJ + 1)t+1,
the worst state of a lower makespan is always assigned a lower energy than a state with a
higher makespan. Let the set of the last operations of all jobs now be defined as:

last(O) = {oi ∈ O | ∀ok∈Ojob(oi)
: position(ok) ≤ position(oi)} (5.19)

Since the makespan minimisation term reaches its maximum value if all jobs end exactly
at the maximum makespan T , its maximum value is given as nJ · (nJ + 1)T . This allows
the makespan minimisation term to be normalised by division. This results in the following
term for mmin(y):

mmin(y) =

(∑
oi∈last(O)

∑
t∈stimes(oi)

cdw(yoi , t) · (nJ + 1)t+duration(oi)
)

nJ · (nJ + 1)T
(5.20)

5.4.2. Early Start for all Operations
To minimise the makespan, it is not enough to schedule the last operation of a job earlier, as
its preceding operations must also be scheduled earlier to prevent violations of the precedence
constraint. This can make it difficult for an optimiser to reduce the makespan if it can only
see the makespan as an optimisation goal, as scheduling the preceding operations earlier by
themselves is not rewarded. This motivates the introduction of the early start term, which
rewards the scheduling of all operations as early as possible.

Let enum(stimes(oi)) now be the set of all tuples (t, j) of the start times t ∈ stimes(oi),
each with a corresponding index j ∈ {0, . . . , |stimes(oi)| − 1}, so that a smaller index j
equals a smaller start time. Assigning this index as a weight to each start time for each
operation then provides a term, which encourages the scheduling of all operations as early
as possible. This term is also normalised by division. This results in the following term for
estart(y):

estart(y) =

∑
oi∈O

∑
(t,j)∈enum(stimes(oi))

cdw(yoi , t) · j∑
oi∈O |stimes(oi)| − 1

(5.21)

5.5. Resulting Energy Landscape
To showcase the energy landscape resulting from the QUBO construction, we visualise the
energy for all states of a small problem instance using 2 jobs and 2 machines. This instance
can be seen in Figure 5.1. The optimal makespan for this problem instance is 3. For the
QUBO construction, we select a makespan limit T of 4. We further choose wenc = 300, wprc =
150, wovl = 150. We also set wopt = 100 and γ = 0.25. The resulting QUBO needs eight
binary variables. As a result, it expresses the energy of 28 = 256 different states. In the
following visualisations, these individual states will be referred to by their integer index,
retrieved by reading the state bitstrings as an integer.

46

5.5. Resulting Energy Landscape

0 1 2
Time

j1

j2

Jo
bs

Problem Instance: minimal_instance

Machines
m1
m2

Figure 5.1.: This figure shows a small JSSP problem instance using 2 jobs and 2 machines.
Its minimum makespan is 3.

0 50 100 150 200 250
State Index

0

2000

4000

6000

8000

10000

En
er

gy

Energies of all States

Figure 5.2.: This figure visualises the full energy landscape for the small JSSP instance. The
red line denotes wopt = 100. Any state with less energy than that is valid.
All other states are invalid. It can be seen that the vast majority of states are
invalid.

Plotting the energy of these states in Figure 5.2 yields a very jagged energy landscape,
with the wide majority of states having high energies. Since most of the states are above
the maximum value wopt, which the optimisation term may take, it can be surmised that
the vast majority of the states are invalid.

This does not come as a surprise, as the QUBO formulation here employs four domain
wall variables with two qubits each. Each of those domain wall variables has only three valid
values. All possible combinations of these variable values yield only 34 = 81 valid domain
wall encoding states, which is less than a third of the 256 available states. Of course, the
valid domain wall states can in turn be invalid according to the scheduling rules of the JSSP,
which further drastically reduces the amount of valid states. This is showcased in Figure 5.3,
in which all energies larger than wopt (invalid states) are filtered out. This leaves only 14
states, which are fully valid in accordance with both the domain wall encoded variables and
the JSSP scheduling rules. Note that there are only two global minima, representing the
only solutions with a makespan of 3. Figure 5.4 shows the two schedules that achieve these
makespans. All other solutions yield a makespan of 4, which is why they exhibit much higher
energy values.

47

5. Encoding the JSSP as a Hamiltonian

0 50 100 150 200 250
State Index

30

40

50

60

70

En
er

gy

Energies of valid States

Figure 5.3.: This figure visualises the energy landscape for the small JSSP instance if all
energies larger than wopt = 100 are filtered out. The remaining energies are
energies for fully valid states. The global minima at x = 5 and x=80 both have
an identical energy of 22.9.

0 1 2 3
Time

m1

m2

M
ac

hi
ne

s

Scheduling Result: minimal_instance

Jobs
j1
j2

(a)

0 1 2 3
Time

m1

m2

M
ac

hi
ne

s

Scheduling Result: minimal_instance

Jobs
j1
j2

(b)

Figure 5.4.: This figure shows the solutions to the small JSSP instance with makespan 3.
These correspond to the global minima at (a) x = 5 and (b) x = 80 of the
QUBO’s energy landscape. Both represent ideal solutions with makespan 3,
differing only in their ordering of the jobs.

48

6. EVQE - Issues and Improvements

In this chapter, a few issues that were encountered during preliminary testing of the EVQE
algorithm are explained, and fixes to these issues are presented. These fixes take the form
of slight alterations to the EVQE’s optimisation procedure. In our implementation, we offer
these fixes as optional parameters for the EVQE algorithm.

6.1. Individual Initialisation
During preliminary tests of the EVQE algorithm on some randomly generated JSSP instances
(see Section 7.3 for more details), the EVQE algorithm mostly performed well. Yet, there
were some JSSP instances in which the EVQE algorithm seemed incapable of exiting the
state in which its individuals are initialised |ψi⟩ = |0⟩⊗n. One problem instance for which
this occurred is the JSSP instance with 2 jobs and 3 machines shown in Figure 6.1.

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_1

Machines
m0
m1
m2

Figure 6.1.: This figure shows a problematic JSSP problem instance with 2 jobs and 3 ma-
chines.

Running the EVQE algorithm to solve that problem instance, it was visible, that the
EVQE algorithm struggled to find better states than |0⟩⊗n. As it can be seen in Figure 6.2a,
this is evidenced by the fact that, during all generations, the expectation value of the best
individual only worsened. Further evidence is that, in the end, the best-found individual
is still mostly in the |0⟩⊗n state. This can be seen in Figure 6.2b, which showcases the
distribution of measured basis-states when measuring the best individual’s ansatz.

As a result, for this problem instance, we theorise that the state |0⟩⊗n is a local minimum
that is hard to leave for the EVQE algorithm. This seems logical, as in the zero state, each
individual domain wall variable contains only zero bits. That makes it a valid state for all
domain wall variables since it contains only one domain wall per variable: 1|0 . . . 00. As a
result, the zero state minimises the encoding penalty term of the Hamiltonian. Furthermore,
as explained in Section 5.2, for each operation, we assign the earliest possible start time to

49

6. EVQE - Issues and Improvements

0 2 4 6 8
generation

155

160

165

170

175

180
ex

pe
ct

at
io

n
va

lu
e

Best expectation value seen per EVQE generation

(a)

0 4 64

10
24 re
st

0.00

0.25

0.50

0.75

1.00

Qu
as

i-p
ro

ba
bi

lit
y

0.993

0.002 0.004 0.001

Final measurement for the best individual

(b)

Figure 6.2.: This figure demonstrates the issues of the EVQE algorithm during an optimisa-
tion run for the problem instance shown in Figure 6.1. (a) shows the expectation
value of the best individual for each generation. (b) shows the measurement res-
ult for the best individual found during the evolution. As it can be seen, EVQE
was incapable of finding better states than the |0⟩⊗n state.

the domain wall state consisting of only zeros. This means that the zero state also minimises
the optimisation term and the early start term of the Hamiltonian, as in the zero state all
operations are scheduled to start as early as possible. From this local minimum, finding a
state with a lower energy would involve rescheduling operations to start later, which worsens
the optimisation term, without violating the encoding validity. Depending on the number
of operations that need to be rescheduled at the same time to leave the local minimum, this
might be a harder or easier task, which explains why this issue is not encountered for all
problem instances.

To quantify how hard it is to leave the local minimum for this problem instance, we look
at how many bits need to be flipped to 1 at the same time to leave the local minimum and
reach a state with a lower energy. In Table 6.3, for the problem instance from Figure 6.1,
we list all states with a lower energy than the zero state, for which no more than five bits
from the zero state need to be flipped. We obtained these values by classically computing
the energy for each possible state and then filtering them accordingly. As can be seen, the
lowest number of bits that need to be flipped at the same time to reach a better state from
the zero state is 4. We believe that this step might be too complex for the classical optimiser
to reliably make with the very simple ansatz circuits of newly initialised EVQE individuals.

As a countermeasure, we propose two different initialisation schemes for new individuals
in the EVQE algorithm. Both of these try to initialise the individuals outside the zero state
to avoid this hard local minimum in the JSSP Hamiltonian.

The first proposal is to initialise the individuals with n ≥ 1 gene instances, whose para-
meter values are chosen uniformly at random from the range [0, 2π]. This ensures that the
individuals start out in a state other than the zero state. Furthermore, since the parameters
of each individual are randomly chosen, each individual represents a different initial state.
This enables the exploration of a range of initial states, with better initial states being more
likely to continue on into later generations.

50

6.1. Individual Initialisation

|ψ⟩ ⟨ψ|H|ψ⟩ bit flips needed
|000000000000⟩ 158.3 -

... 160.4− 8914.6 1 - 3
|010000010101⟩ 33.3 4
|010101010000⟩ 33.3 4
|010000110101⟩ 60.4 5
|010100010101⟩ 35.4 5
|010101010100⟩ 35.4 5
|010101110000⟩ 60.4 5
|110000010101⟩ 60.4 5
|110101010000⟩ 60.4 5

Figure 6.3.: This table shows eigenstates with their eigenvalues (energy) for the Hamiltonian
of the JSSP instance shown in Figure 6.1. Specifically, these are eigenstates with
energies lower than the energy of the zero state |0⟩⊗n, which need the fewest bit
flips to be reached from the zero state. For reference, it also contains the energy
of the zero state and the range of energies for all states, which only need up to
three bitflips.

The second proposal is to always prepend the ansatz of each individual with a fixed
operator Oinit, specified by the user. In that case, the state given by any individual is
modified to:

|ψgi⟩ = U(γik) · . . . · U(γi0) ·Oinit · |0⟩⊗N (6.1)

This approach seems less flexible than the first proposal, but it might be worth it if there
is a useful way to determine good initial states. This could, for instance, be the case if there
is prior knowledge of some aspects of possible solutions. A natural seeming choice for Oinit

would be one Hadamard gate per qubit, so that the initial state for each individual is the
superposition over all possible states |+⟩⊗n.

Further preliminary tests showed that the first approach often converges faster but can
sometimes get stuck back in the zero state local minimum. This seems to happen if one of
the individuals starts out too close to the zero state local minimum and the other individuals
are less fit, leading the individual in the zero state to dominate the population. This can
be alleviated by initialising the individuals using more than one gene instance with random
parameters per individual, which reduces the chance that any individual starts too close to
the zero state. For the second approach, while it converges slower, it seems less likely to fall
back into the local minimum. We theorise that the difference in convergence speed comes
down to the first method being able to explore a wide range of initial states. A visualisation
of the different convergence speeds on the JSSP problem instance from Figure 6.1 is shown in
Figure 6.4. It shows that using the initialisation with two random gene instances and random
parameters, EVQE finds an expectation value below wopt = 100 after two generations.
Prepending the individuals with Hadamard gates instead slows the convergence, so that
EVQE needs 6 generations to find an expectation value below 100. For the benchmarking of
the EVQE algorithm, we chose the first initialisation scheme with two random gene instances
per individual due to its fast convergence.

51

6. EVQE - Issues and Improvements

0 2 4 6 8
generation

100

200

300

400

500

600

700

800

ex
pe

ct
at

io
n

va
lu

e

Best expectation value seen per EVQE generation

(a) 2 initial layers, random parameters

0 2 4 6 8
generation

0

200

400

600

800

1000

1200

1400

1600

ex
pe

ct
at

io
n

va
lu

e

Best expectation value seen per EVQE generation

(b) prepended with Hadamard gates

Figure 6.4.: This figure shows two EVQE optimisation runs for the JSSP instance shown in
Figure 6.1. (a) uses an initialisation approach with two random gene instances
and random parameters for each initial individual. (b) uses an initialisation
approach by prepending Hadamard gates to each individual’s ansatz. (a) con-
verges faster, presumably due to its ability to explore a range of good initial
states. Note that the y-axis scales are different. (a) finds a state with an ex-
pectation value below 100 in generation 2, whereas (b) only finds such a state
in generation 6.

6.2. Selection Pressure

Another issue that we encounter is that further along during the EVQE optimisation process,
when most individuals are already relatively fit, the fittest individual in the population can
sometimes be lost in the selection process if it is not selected as a parent for the next
generation. This can revert the progress of one to a few generations and delay convergence.

This is possibly an issue of selecting individuals with likelihoods proportional to their fit-
ness, as used by Rattew et al. Such selection methods are also called proportional selection.
In particular, it is a known issue of proportional selection that there is a large selection pres-
sure if there are large differences between fitness values, but only a small selection pressure
if the fitness values do not differ very much [BOM15]. Selection pressure is the degree to
which fitter individuals are more likely to be selected over less fit individuals in the selection
process [BD95]. This aspect of proportional selection can be an issue for later generations
of the EVQE algorithm, in which much of the population is already reasonably good, but
further small improvements could still be found. To exemplify the issue, in Table 6.5, we
provide the fitness values for a fictional population of five individuals, where the fitness
values do not differ greatly. Like in EVQE, lower fitness values are better. The table also
contains the selection probabilities calculated as outlined in Section 4.3.3. In particular, the
fittest individual is not much more likely to be selected than the second-fittest individual,
showcasing the issue of a low selection pressure caused by proportional selection.

If these small differences in selection likelihood are an issue, ordinal selection can be used
instead of proportional selection. In ordinal selection schemes, instead of the absolute fitness
value of an individual, its ranking in the population is the basis for its selection likelihood. As

52

6.2. Selection Pressure

Fitness Selection Probability
30 24.6%
32 23.0%
40 18.4%
42 17.6%
45 16.4%

Figure 6.5.: This table shows selection probabilities for a population of five fictional in-
dividuals when using proportional selection as explained in Section 4.3.3. In
particular, it shows the issue of low selection pressure if the fitness values do
not differ greatly. See, for instance, the individual with fitness 30, which is only
slightly likelier to be selected as a parent than the individual with fitness 32.

a result, such ordinal selection schemes are not impacted by the fitness values only differing
by small amounts [BOM15]. A commonly used ordinal selection scheme is tournament
selection. In tournament selection, for each parent to be selected, a tournament is held. In
each tournament, k individuals are drawn from the population uniformly at random, with
or without replacement. The fittest of the individuals in the tournament is then selected as
a parent. If the individuals are selected without replacement, each individual can appear
at most once in each tournament. In that case, the k − 1 least fit individuals can never
be selected, as the kth individual in the tournament will always be better. If individuals
are selected for the tournaments with replacement, even the least fit individual can win the
tournament if it is selected k times in the same tournament and thus does not have to face
a better competitor. A visualisation of the tournament selection process with a tournament
size of k = 2 is shown in Figure 6.6.

Population:
30, 32, 40, 42, 45

40, 32 30, 40 32, 4045, 40 45, 42

32 30 40 32 42

Figure 6.6.: This figure illustrates the tournament selection process, with a tournament size
of k = 2, where five parents are selected from a population of five individuals.
The numbers represent the fitness values of the individuals. Five tournaments
are held to select five parents. The fittest individual for each tournament that
is selected as a parent, is highlighted in red.

The tournament size k is a hyperparameter, which specifies the selection pressure. For a
tournament size of 1, parents are selected uniformly at random, whereas increasing tourna-
ment sizes result in an increasing likelihood of selecting the fittest individual. A commonly
chosen tournament size is k = 2. In Table 6.7, we show the selection probabilities for the
same fictional population as in Table 6.5 when using tournament selection with replacement
and a tournament size of k = 2.

53

6. EVQE - Issues and Improvements

Fitness Selection Probability
30 36%
32 28%
40 20%
42 12%
45 4%

Figure 6.7.: This table shows selection probabilities for a population of five fictional indi-
viduals when using tournament selection with replacement and a tournament
size of k = 2. When compared to the selection likelihoods for the proportional
selection shown in Table 6.5, one can see that for small differences in fitness
values, tournament selection still applies a reasonable selection pressure.

To prevent selection issues when fitnesses start to equalise, we add tournament selection,
in which individuals are drawn with replacement, as an alternative to the proportional
selection as proposed by Rattew et al. With that, both the choice of whether tournament
selection should be used and the tournament size, are added to the list of parameters of our
implementation of the EVQE algorithm.

54

7. Methodology
In this chapter, the methodology for benchmarking the EVQE algorithm is explained. To
that end, the goals of this thesis are reiterated in Section 7.1. After that, the performance
metrics used to evaluate the algorithm’s performance are explained in Section 7.2. Then, in
Section 7.3, it is explained how we generate random problem instances to benchmark the
optimisation algorithms on. After that, we discuss the choices made when configuring the
algorithms for the benchmarks in Section 7.4. Following that, in Section 7.5, we demonstrate
how we use automatic algorithm configuration to set all hyperparameters that were not fixed
by our manual choices. Finally, with the benchmarking objectives, performance metrics,
problem instances, and algorithm configuration explained, we outline our benchmarking
procedure in Section 7.6.

7.1. Objectives
To investigate how the performance of Evolving Ansatz VQE approaches scales with in-
creasing problem sizes, we investigate the scaling of the EVQE algorithm while comparing
it with the more commonly used VQE and QAOA. To fulfil this goal, we need to run each of
these algorithms multiple times on problem instances of increasing size to gauge the average
performance of each algorithm on each problem size. This data can then be used to make
educated inferences on the scaling behaviour of the investigated algorithms. To achieve this,
we need:

• well-defined performance metrics;

• a set of problem instances of varying sizes;

• well-chosen hyperparameters for each algorithm;

• a rigorous benchmarking procedure.

Each of these items will be explained in more detail in the following sections of this chapter.

7.2. Performance Metrics
For the evaluation of optimisation heuristics and meta-heuristics, the performance metrics
of importance can be grouped into three classes. The first of these classes concerns the
quality of the solutions the heuristic finds, the second concerns the computational effort
needed to obtain these solutions, and the third concerns the robustness of the heuristic to
variations in the problem instances [BGK+95] [Tal09]. There are many ways to quantify
these performance metrics [Tal09], each with its own upsides and drawbacks, making the
choice of specific performance metrics difficult. In the following, we will explain our choice
of performance metrics for the computational effort, the solution quality, and the heuristic’s
robustness.

55

7. Methodology

Computational Effort

When empirically evaluating the computational effort needed to find the solution for an
optimisation problem, the computation time needed by the heuristic is a commonly used
performance metric. This has the drawback of being dependent on the computing hardware
used to run the heuristic [Tal09]. Another drawback in the context of evaluating VQAs using
a classical simulator is that the runtime depends strongly on the runtime of the simulation of
the quantum system. The issue is that the simulation of a quantum system generally has a
runtime exponential in the system’s size [Hom22]. Therefore, measuring the runtime of VQAs
over increasing problem sizes when using quantum simulators would show an exponential
increase in runtime due to the scaling of the quantum simulations. This would misrepresent
the quantum algorithms, as this effect would not appear when using real quantum hardware.

Measures for the computational effort independent of the heuristic’s runtime also ex-
ist. Remember that, as explained in Section 2.4, optimisation algorithms iteratively create
parameter vectors x as educated guesses that try to minimise the objective function f(x).
For each guess, the optimisation algorithm then needs to evaluate the objective function
for the parameter vector x to retrieve the quality of that guess. As a result, one runtime-
independent metric of computational effort is the number of times the optimisation heuristic
has to evaluate the objective function. According to Talbi, this is an acceptable measure of
computational effort if the effort for evaluating the objective function f is high and does not
depend on the parameter vector x that is evaluated [Tal09].

In VQAs, the objective function to be evaluated is the expectation value ⟨ψ(θ)|H|ψ(θ)⟩
for the parameter vector θ and the Hamiltonian H. This is done by measuring the ansatz
circuit repeatedly to approximate the expectation value. In particular, the measurement
effort to approximate the expectation value of the quantum state with respect to the problem
Hamiltonian scales polynomially with the size of the problem Hamiltonian [TCC+22]. This
means that evaluating the expectation value is expensive, so an effective VQA should query
the expectation value as few times as possible for a good runtime [BCLK+22]. As the effort
to approximate the expectation value scales with the Hamiltonian’s size, but an optimisation
run is done on a single, fixed Hamiltonian, the cost of evaluating the expectation value during
the optimisation procedure should not change depending on the parameter vector θ. Since
the expectation value evaluations are expensive but do not depend on the specific parameter
vector, the number of expectation value evaluations needed by a VQA is an acceptable
metric for its computational effort, according to the criteria outlined by Talbi [Tal09]. As a
result, we will use the number of needed expectation value evaluations as our metric for the
computational effort.

With the amount of expectation value evaluations fixed as the metric for computational
effort, the question remains until what point in the VQA optimisation procedure the ex-
pectation evaluations should be counted. To gauge the full computational cost of a VQA
run, one has to count all expectation value evaluations until the termination of the VQA
algorithm. We will refer to that count of expectation value evaluations until termination as
NEXP term. Yet, depending on the termination criterion, it can take some time to detect
that a VQA optimisation run no longer improves. In that case, the best-found solution was
already observed some time before the termination. Since we want to benchmark how fast
the VQAs find good solutions and not how well-chosen our termination criteria are, it seems
reasonable to only count the expectation value evaluations until the best solution found by
the VQA is reached. We will refer to that count of expectation evaluations as NEXP best.

56

7.2. Performance Metrics

Another point of interest is how quickly the VQAs progress within the optimisation pro-
cess. This can be quantified by observing, after how many expectation value evaluations,
the VQAs find expectation values below certain boundary values b.

Remember that measuring a quantum state with respect to an observable, like the Hamilto-
nian, yields some eigenvalue and an accompanying eigenstate, with the likelihoods depending
on the amplitudes of the quantum state. Over multiple such measurements, the expectation
value is then the weighted average of the observed eigenvalues weighed by their measure-
ment likelihood. Remember also that for an Ising Hamiltonian encoding a QUBO, the
eigenstates encode possible solutions, and the eigenvalues represent the energy of these solu-
tions. Therefore, the expectation value with respect to this Hamiltonian can be interpreted
as the weighted average over the energies for the solutions in the quantum state’s superposi-
tion. Since the weights in that weighted average are the measurement likelihoods, they must
be positive. As a consequence, if an expectation value E is measured for a quantum state,
there must be solutions with energy e ≤ E in the quantum state [Juk11]. In other words, if
the VQA, at any time, reports an expectation value, it must have found solutions with at
most that energy. This enables the choice of the following boundary values.

The first interesting boundary value is the lowest penalty weight employed in the Hamilto-
nian encoding, as explained in Chapter 5. Since the Hamiltonian is encoded in such a way
that each invalid solution has at least the energy of the corresponding penalty weight, each
solution with an energy lower than the lowest penalty weight must be valid. As a con-
sequence, once the expectation value for the quantum state falls below that boundary, that
quantum state must contain a valid solution with a non-zero measurement probability. We
refer to that boundary value as Ebval, and the number of expectation value evaluations
needed to fall below that boundary as NEXPval. The second interesting boundary value is
the lowest energy of any solution with a suboptimal makespan. This is due to the fact that
the Hamiltonian encoding was designed so that solutions with a higher makespan should
always have a higher energy than solutions with a lower makespan. As a consequence, if
one calculates the lowest energy for a solution with a suboptimal makespan, all solutions
with a lower energy must be solutions with an optimal makespan. Therefore, once the ex-
pectation value for the quantum state falls below that boundary value, that quantum state
must contain an optimal solution with a non-zero measurement probability. We refer to
that boundary value as Ebopt and the number of expectation value evaluations needed to fall
below that boundary as NEXPopt Note that the boundary value Ebval is easily known, as it
follows from the penalty weights set by the user in the Hamiltonian encoding. The boundary
value Ebopt, on the other hand, is not normally known, as finding it involves calculating the
energies for all solutions to a problem instance, which effectively solves the instance to op-
timality. We only calculate it to evaluate the optimisation progress of the VQA algorithms.
Figure 7.1 now visualises the concepts discussed so far using an example optimisation run
of EVQE on a JSSP problem instance needing 21 qubits.

Solution Quality

As explained in Section 2.3, after a VQA finishes its optimisation routine, its quantum system
is measured one final time, yielding a probability distribution of states, each of which is a
possible solution to the problem to be solved. We ensure that this final measurement is
done using the best parameter values observed during the whole VQA routine. To gauge the
quality of the final state yielded by the VQA, we can then look at the measurement likelihoods

57

7. Methodology

of good solutions. In particular, we will distinguish the total measurement likelihood Pval for
all states that are valid solutions to the JSSP instance and the total measurement likelihood
Popt for all optimal solutions to the JSSP instance. The latter are solutions whose makespan
matches the minimum makespan of the JSSP instance. Note that optimal solutions are a
subset of valid solutions. Therefore, it always holds that Popt ≤ Pval.

Heuristic Robustness

Since there is no consensus on how to define the robustness of a heuristic [Tal09], we will
not attempt to define a specific metric here. Instead, for our benchmarks over multiple
problem instances, we report if there are any large inconsistencies in the performance of a
VQA between problem instances.

2000 4000 6000 8000 10000
Expectation Value Evaluations

102

103

Ex
pe

ct
at

io
n

Va
lu

e

EVQE Run History Example

Figure 7.1.: This figure shows the optimisation history of an example run of the EVQE
algorithm. Each point in the plot shows the best expectation value found during
a generation of the evolutionary algorithm and the total number of expectation
value evaluations used at the end of that generation. The red horizontal line
shows the energy boundary for valid states Ebval, while the blue horizontal line
shows the energy boundary for optimal states Ebopt. As can be seen in the graph,
EVQE first provably found valid solutions in the third generation (highlighted in
red), first provably found optimal solutions in the fifth generation (highlighted
in blue), found its best expectation value in the 7th generation (highlighted
in yellow), and terminated after 9 generations (highlighted in brown). This
amounts to the following amounts of expectation value evaluations: NEXPval =
2387, NEXPopt = 6102, NEXP best = 7844, NEXP term = 9810

58

7.3. Random Problem Instance Generation

7.3. Random Problem Instance Generation

In this section, it is explained how a benchmarking dataset of random JSSP problem in-
stances is generated. To that end, we first explain how to generate a JSSP instance of a
specific size in terms of the number of jobs and machines from a random seed. Then it is
explained which workflow and filtering criteria are applied to generate and select relevant
problem instances.

7.3.1. Generating a Single JSSP Instance

In previous work by Taillard et al., it has been outlined how random JSSP instances can
be generated, where in each job each operation is exactly assigned one machine [Tai93].
Taillard et al.’s approach consists of two main parts. The first is that each operation of a job
is randomly assigned a processing duration from a predetermined range. The second is the
random assignment of a unique machine to each operation of a job. Note that it is assumed
that each operation of a job needs to be assigned exactly one unique machine from the set
of available machines and that there are exactly as many operations per job as available
machines. As a result, the random machine assignment can be understood as a random
ordering of the available machines for each job.

Our approach to the random generation of JSSP instances follows the general idea of the
approach described above, with two main changes. First, instead of assigning the processing
duration uniformly at random from the wide range [1, 99] as proposed by Taillard et al., we
assign the processing duration p with the probability distribution P shown in Equation 7.1.
This is necessitated by the fact that we need compact problem instances so that encoding
them as a Hamiltonian does not need overtly many qubits. We still allow processing dur-
ations of 2 with a limited likelihood to prevent the problem instances from being entirely
uninteresting.

P (p) =

{
0.75 if p = 1
0.25 if p = 2

(7.1)

For assigning machines to the operations of a job, we use Python’s random.shuffle
method to generate a random machine assignment.

The whole generation process, as described above, in our implementation is seeded by one
user-specified integer value. This makes the process deterministic for a given seed and a
given number of jobs and machines. This allows the repeated retrieval of the same problem
instance if the same seed, same number of jobs, and same number of machines are specified.

7.3.2. Generating Datasets of JSSP Instances

In the following, the size (x, y) will refer to JSSP instances with x jobs and y machines. To
generate datasets of JSSP instances, we randomly generate 1000 JSSP instances with the
seeds s ∈ {0, . . . , 999} for each problem size. In particular, we generate instances for the
sizes (2,3), (3,2), (3,3), (3,4), and (4,3). For each problem instance, we use the classical
SCIP solver [BBC+23] to find its optimal makespan. This then enables us to filter the
JSSP instances by whether they are interesting and by whether they can be encoded into a
Hamiltonian with a manageable amount of qubits.

59

7. Methodology

The first filter criterion we check for is that the optimal makespan of a problem instance
is longer than the length of any of its jobs. This ensures that in the problem instance, at
least one operation has to be scheduled to start later than its earliest start time to find a
valid solution. If this is not the case, all operations in the problem instance can start at
their earliest possible start time, making the problem instance trivial to solve and, as such,
uninteresting. For the second filter criterion, we create the problem Hamiltonian for the
JSSP instance with a makespan limit that is the optimal makespan plus one. We consider a
JSSP instance permissible if, using that makespan limit, its Hamiltonian requires at most 30
qubits. Finally, we try to filter out invariants of already-seen JSSP instances, which encode
the same problem but with different job or machine names attached.

Following this procedure and grouping the instances first by their number of operations
and then by the number of qubits they use, we gain the following number of JSSP instances

12 15 18 21 24 27 30
number of qubits needed

0

5

10

15

20

25

30

35

nu
m

be
r o

f i
ns

ta
nc

es

Randomly generated JSSP instances with 6 operations

(a) Number of JSSP instances with six operations

18 21 24 27 30
number of qubits needed

0

20

40

60

80

100

nu
m

be
r o

f i
ns

ta
nc

es

Randomly generated JSSP instances with 9 operations

(b) Number of JSSP instances with nine operations

24 25 26 27 28 29 30
number of qubits needed

0

20

40

60

80

100

nu
m

be
r o

f i
ns

ta
nc

es

Randomly generated JSSP instances with 12 operations

(c) Number of JSSP instances with twelve operations

Figure 7.2.: These figures show the number of randomly generated problem instances, which
satisfy our filtering criteria, distributed over the number of qubits that they
require: (a) shows the number of problem instances with 6 operations; (b) shows
the number of problem instances with 9 operations; and (c) shows the number
of problem instances with 12 operations.

60

7.4. Manual Algorithm Configuration Decisions

in our datasets: Figure 7.2a shows the distribution of JSSP instances with six operations
over the number of qubits they use. Figures 7.2b and 7.2c show the same distribution for the
nine and twelve operation instances. As can be seen in these figures, problem instances of
different sizes cover different numbers of needed qubits. To enable our scaling investigation
to cover problems of increasing complexity, we will use JSSP instances with six operations
for the qubit numbers 12 and 15, JSSP instances with nine operations for the qubit numbers
18 and 21, and JSSP instances with twelve operations for all numbers of qubits larger than
that.

7.4. Manual Algorithm Configuration Decisions
VQAs consist of many parts, for each of which decisions and hyperparameters need to be
set to dictate their exact behaviour. While we let many of these hyperparameters be set by
automatic algorithm configuration, for some we made deliberate design choices beforehand.
This section outlines the most important of these choices and explains their reasoning.

Choice of Classical Optimiser

One central choice, which affects the behaviour of variational quantum algorithms, is the
choice of the classical optimisation routine employed to optimise the parameter values of the
ansatz. Some comparative studies on classical optimisers in the context of VQAs have been
done [BMWV+23] [Loc22] [MFP+22] [PJSPP21] [SMM23]. They generally found that the
choice of the classical optimiser both strongly impacts the performance of the VQAs and
their resistance to quantum noise. Two strong candidates emerging from these comparisons
are the COBYLA and the SPSA optimisers. COBYLA outperforms SPSA in noise-free
contexts, whereas SPSA tends to be much more noise-resistant than COBYLA, leading it to
perform better in noisy contexts [PJSPP21] [SMM23]. Even though Rattew et al. employ
COBYLA in their paper as the optimiser of choice for the EVQE algorithm, we choose
to use the SPSA optimiser. This is due to the fact that we opt to use the same classical
optimisation algorithm for EVQE, VQE, and QAOA, so that performance differences do
not come down to differences in the classical optimisation method. Employing COBYLA
could then mean that in noisy benchmarks, VQE and QAOA would be handicapped due
to COBYLA’s susceptibility to noise. The implementation of SPSA we use stems from the
Python package qiskit_algorithms of the Qiskit framework [Qis23].

Termination Behaviour

To decide when to terminate the optimisation process, we employ two limits. The first is a
bound on the number of total expectation value evaluations the VQA may make. We set
these to high values to act as a contingency to prevent the optimisation algorithms from
running indefinitely. The second limit is a termination criterion, which involves the change
in the expectation value between subsequent optimisation iterations. In the case of QAOA
and VQE, this is the change in expectation value between subsequent SPSA iterations.
For EVQE, this is the change in the best observed expectation value between subsequent
generations. Specifically, we want to terminate the optimisation process once the expectation
values over multiple iterations are stable, as this seems to imply that the VQA is stuck in a
local or global optimum and will not go on to find better expectation values. To detect that,

61

7. Methodology

we look at the magnitude of the change in the expectation value between iterations relative
to the magnitude of the expectation values themselves. Let the best expectation value at
iteration i of the optimisation be denoted as Ei, then the relative change in expectation
value at iteration i, ∆Ei can be written as:

∆Ei =
|Ei − Ei−1|

|Ei−1|
(7.2)

We configure QAOA and VQE to terminate once ∆Ei falls below 0.01 for ten consecutive
iterations. Meanwhile, we configure EVQE to terminate once ∆Ei falls below 0.01 for two
consecutive iterations. We chose this less strict termination criterion for EVQE because its
iterations (generations) are much more expensive in terms of expectation value evaluations,
and we want to prevent it from running too long after it has already converged.

Target Function

As explained in Section 2.3, normally in VQAs, the value to be minimised by optimising the
parameter values θ is the expectation value ⟨ψ(θ)|H|ψ(θ)⟩. It is the expectation over meas-
ured eigenvalues when repeatedly measuring the state |ψ(θ)⟩ with respect to the Hamilto-
nian. Yet another measure, the so-called Critical Value at Risk (CVaR), can be used as
well [BNR+20]. It is motivated by the fact that if, in the final state produced by the VQA,
a good solution can be measured with a reasonable likelihood, the measurement likelihood
of other worse solutions does not matter greatly. As a result, the idea of the CVaR measure
is to derive the expectation value not over all measured eigenvalues but only over the best
quantile α of the measured eigenvalues. To be exact, the CVaR is defined as shown in Equa-
tion 7.3, where X is a random variable, FX is its cumulative density function, and α ∈ (0, 1]
denotes the quantile.

CVaRα(X) = E
[
X|X ≤ F−1

X (α)
]

(7.3)

Using the CVaR has been shown to be beneficial for QAOA and VQE [BNR+20] [ARF+22].
This seemed to hold true in our preliminary tests. We also found using the CVaR measure
to be beneficial to EVQE as it helped reduce the occurrence of premature convergences to
local minima. We theorise that this is due to the fact that the CVaR value enables the
classical optimiser to explore worse parts of the search space to some degree without being
penalised, which helps it escape from local minima.

Due to the benefits offered by the CVaR measure, we opt to use the CVaR measure
in all benchmarked VQA algorithms. Specifically, we choose to set α to 0.5, as Amaro et
al. [ARF+22] have done in their comparative benchmark of QAOA and VQE against F-VQE.
This means that only the best 50% of the measured eigenvalues are part of the expectation
value. As a result, we expect the VQAs to find final states with the measurement likelihood
of good solutions bounded from above at 50%, as the VQAs are not rewarded to increase
the measurement likelihood above 50%.

QAOA, VQE: Implementation and Ansatz

For QAOA and VQE, we use implementations from qiskit_algorithms [Qis23]. In the
QAOA implementation, given a user-specified number of desired layer repetitions, the ansatz
is automatically generated based on the Hamiltonian at hand. For the small JSSP instance

62

7.5. Automatic Algorithm Configuration

from Figure 5.1, the accompanying QAOA ansatz with one layer can be seen in Figure A.1
in Appendix A. With the VQE implementation, the user has to specify an ansatz layer
structure, and the number of layer repetitions. For the layer structure, we use the same
structure as Amaro et al. [ARF+22] (see Figure 3.1 in Chapter 3), as they have shown
that this layer structure works reasonably well for solving the JSSP with VQE. For both
algorithms, we defer the choice of the number of ansatz layers to the automatic algorithm
configuration.

7.5. Automatic Algorithm Configuration
Both the classical optimiser employed in VQAs and the VQAs themselves offer many hyper-
parameters, which need to be well-chosen to enable the VQAs to work well. A further source
of hyperparameters are the weights used to encode the problem Hamiltonian. These can alter
the structure of the search space traversed by the VQAs and thus ease or harden the optim-
isation task. In particular, it might even be the case that different search space structures
might be more or less suited for different VQAs. As a result, for each VQA we investigate
(i.e., QAOA, VQE, and EVQE), we optimise the hyperparameters of the classical optim-
iser, the quantum heuristic, and the Hamiltonian together to improve its performance. To
ensure that training the hyperparameters does not overfit on any specific problem instance,
which would hamper the usefulness of the VQA, we train the hyperparameters over a set
of training problem instances. This task in the research literature is also called algorithm
configuration. In particular, given an algorithm A with hyperparameters, a collection of
problem instances I, and a cost function c, the task of algorithm configuration is finding
values for the hyperparameters that minimise c over the problem instances in I [HHLB11].
To explain our hyperparameter optimisation methodology, we first explain our choice of the
SMAC3 [MKM+22] algorithm configuration software. We then explain the hyperparamet-
ers that we need to optimise. Finally, we explain how we configure SMAC3 to find good
hyperparameters.

7.5.1. SMAC3
The task of algorithm configuration involves running the VQAs using varying hyperpara-
meter configurations repeatedly over multiple problem instances to gauge their perform-
ance. Since each optimisation run of a VQA is expensive in runtime due to the computa-
tional effort involved in quantum simulations, we use the algorithm configuration library
SMAC3 [MKM+22], which offers multiple advantages for configuring algorithms with high
runtimes. In particular, SMAC3 is very economical in the number of times it needs to run
the VQA to find good configurations. One reason for this is that SMAC3 employs Bayesian
optimisation. This means that during the optimisation process, it models the search space
based on already-observed configurations. It uses this model to gauge which regions of the
search space are particularly promising to sample from for improved configurations, which
reduces the number of needed samples to find a good configuration. A further benefit of
SMAC3 is that it uses racing. This means that it discards bad configurations early and
only runs configurations repeatedly to evaluate them more accurately if they are promising
candidates. Finally, since SMAC3 was specifically developed for algorithm configuration, it
supports optimisation over multiple problem instances and multi-target cost functions. The
latter fact allows us to optimise for configurations that both maximise the quality of the

63

7. Methodology

final state distribution and, at the same time, minimise the number of needed expectation
value evaluations.

7.5.2. Hyperparameters
Since evaluating configurations is expensive in runtime, we use educated guesses to restrict
the value ranges for each hyperparameter from which SMAC3 may choose as far as possible.
This narrows the space of possible configurations and should help SMAC3 find good config-
urations faster. In the following, we outline the hyperparameters offered by the Hamiltonian
encoding process, the SPSA optimiser, as well as the EVQE, VQE, and QAOA algorithms.
For each hyperparameter, we mention its data type, explain its effect, and give a value range
for SMAC3 to choose from. The data type is specified next to the hyperparameter name in
square brackets. Since some hyperparameters only apply to some quantum algorithms, we
colour-code the hyperparameters. Grey hyperparameters are hyperparameters that we do
not optimise but instead choose a fixed value for. The black hyperparameters are optimised
for each VQA. Finally, blue hyperparameters are only optimised for EVQE, while green
hyperparameters are only optimised for QAOA and VQE.

Hamiltonian Weightings

The hyperparameters for the Hamiltonian encoding process are the weights used to set
the relative importance of the individual terms within the Hamiltonian. These have been
explained in detail in Chapter 5.

optimisation term weight [Float]
This weight wopt describes the maximum energy a valid state may have. We set this
value to 100.

encoding penalty weight [Float]
This weight wenc ensures that all invalid encoding states have at least energy wenc.
We let SMAC3 choose it from the range [110, 1000]. The lower bound ensures that the
valid states (up to energy 100) are always better than the invalid states. The upper
bound of 1000 was chosen due to the fact that a penalty more than 10 times the size
of wopt seems excessive.

precedence constraint penalty weight [Float]
This weight wprc ensures that all states that violate the precedence constraint have at
least energy wprc. With the same reasoning as for the encoding weight, we let SMAC3
choose it from the range [110, 1000]. We also constrain its value so that it can never
be chosen to be higher than wenc. This is done to prevent invalid interactions of the
penalty terms.

overlap constraint penalty weight [Float]
This weight wovl ensures that all states which violate the overlap constraint have at
least energy wovl. We also let SMAC3 choose it from the range [110, 1000]. We also
constrain its value to never be higher than wenc.

early start term importance [Float]
The optimisation term consists of the makespan and early start optimisation terms,

64

7.5. Automatic Algorithm Configuration

whose relative importance is weighted by a factor γ. Specifically, γ determines what
portion of the optimisation term is made up of the early start term. We let SMAC3
choose this factor from the range [0.1, 0.5]. We define the upper bound to limit the
early start term from becoming more important than the makespan term. The lower
limit was chosen due to our belief that dropping the early start term entirely would be
detrimental to the optimisation process.

SPSA

The implementation of SPSA from the Python package qiskit_algorithms [Qis23] offers
many hyperparameters. We exclude hyperparameters that concern the approximation of
second-order gradients, as second-order gradient approximation in SPSA does not seem to
be commonly used in research on VQAs.

maxiter [Int]
This is the maximum number of times that SPSA approximates the gradient and
updates the parameter values. SPSA may use less than maxiter iterations if a termin-
ation criterion is hit beforehand. For the usage of SPSA in EVQE, since it will be used
many times as a subroutine, we let SMAC3 choose it from a relatively low range of
[10, 50]. This is meant to prevent EVQE from becoming too costly, due to the overtly
high number of SPSA iterations. For QAOA and VQE, since SPSA is run only once in
their routine, we do not want to terminate prematurely based on maxiter. Therefore,
we set maxiter high enough so that our termination criterion based on the number of
expectation value evaluations will always trigger first.

perturbation [Float]
SPSA approximates the gradient by randomly perturbing the parameter values and
measuring the resulting changes in the expectation value. This hyperparameter de-
termines by how much the parameter values are perturbed. In Equation 2.46, it is
designated as σ. We let SMAC3 choose the perturbation from the range [0.01, 0.5],
as previous research on SPSA in the context of VQAs has shown that it needs a
perturbation and learning_rate larger than typical in other applications such as
classical machine learning [Loc22].

learning_rate [Float]
Once SPSA has approximated a gradient, the learning_rate determines to what
extent the parameters are updated in that direction. We also let SMAC3 choose it
from the range [0.01, 0.5].

resamplings [Int]
Normally, SPSA perturbs the parameter values in two opposite directions and makes
two expectation value measurements to approximate the gradient. If a more accurate
gradient approximation is wanted, this gradient approximation can be repeated mul-
tiple times, with their average yielding a more accurate gradient. This hyperparameter
determines how often the gradient is approximated. We let SMAC3 choose it from the
low range of [1, 4] to prevent the individual SPSA iterations from becoming too costly
in terms of the number of needed expectation value evaluations.

65

7. Methodology

trust_region [Bool]
This is a boolean hyperparameter that, if enabled, prevents overtly large update steps.
This is done by scaling the update step vector to size 1, if its size would otherwise
exceed 1. We let SMAC3 choose it from the values {TRUE ,FALSE}.

blocking [Bool]
This boolean hyperparameter determines whether the update step should be rejected
if it worsens the expectation value too much. We let SMAC3 choose it from the values
{TRUE ,FALSE}.

allowed_increase [Float]
If blocking is enabled, this hyperparameter determines what increase in expectation
value is considered as worsening the result too much. We let SMAC3 choose it in the
range [0, 500].

termination behaviour [Int]
The main termination criteria for EVQE, VQE, and QAOA were outlined in Section 7.4
and remain fixed during the algorithm configuration procedure. For VQE and QAOA,
this termination criterion is the termination criterion for SPSA, due to SPSA being
the main part of their optimisation routine. But for EVQE, this termination criterion
does not concern SPSA directly, as SPSA is only a repeated subroutine of EVQE. As
a result, there is still a need for a termination criterion for the SPSA optimiser within
EVQE. We define this termination criterion just like for QAOA and VQE. But since
in EVQE, it is not entirely clear how quickly the SPSA subroutine should terminate,
we let SMAC3 choose how often ∆Ei must fall below 0.01 consecutively for SPSA to
terminate. We let SMAC3 choose this value from the range [2, 10].

last_avg [Int]
qiskit_algorithm’s implementation of SPSA normally returns the parameter values
and expectation value seen just before termination, even if better ones were encountered
before. The last_avg hyperparameter adjusts this behaviour so that the average of the
last k parameter values and the expectation measured for these average parameters are
returned. Since for QAOA and VQE we read out the best parameter values and expect-
ation value seen during the entire SPSA optimisation run, last_avg does not impact
them. For our implementation of EVQE, such a readout is not easily doable without
making it less compatible with other classical optimisation algorithms. As a result, our
implementation of EVQE uses the results as returned by qiskit_algorithm’s SPSA,
meaning that the last_avg hyperparameter impacts EVQE. Therefore, we let SMAC3
choose last_avg for EVQE in the range [1, 4].

EVQE

EVQE, as explained in Chapter 4, offers many hyperparameters to tweak its behaviour. Keep
in mind that for the hyperparameter optimisation, we already include the improvements
outlined in Chapter 6.

population size [Int]
The population size determines how many individuals are contained in EVQE’s

66

7.5. Automatic Algorithm Configuration

population. Decreasing it reduces the number of expectation evaluations per genera-
tion, as fewer individuals are needed to be varied and evaluated. On the other hand,
increasing it helps the evolutionary algorithm explore a larger area of the search space.
We fix it at 10 for the hyperparameter optimisation process, as we do not want SMAC3
to reduce the population size too much when it tries to reduce the number of ex-
pectation value evaluations. Instead, the effect of the population size is investigated
manually during the benchmarking.

genetic distance [Int]
The genetic distance roughly determines by how many genes individuals may differ
and still be part of the same species. This value should not be set too large, so that
dissimilar individuals cannot be considered to be of the same species. We let SMAC3
choose it from the range [1, 3].

α penalty [Float]
The α penalty determines to what extent the fitness of an individual is adjusted based
on the number of gene instances (circuit layers) in its genome. Increasing this penalty
should lead to shallower ansatz circuits but make the search for good ansatz circuits
more difficult. We allow SMAC3 to choose it from the range [0, 0.4].

β penalty [Float]
The β penalty determines to what extent the fitness of an individual is adjusted based
on the number of CU3 gates in its genome. Increasing this penalty should lead to
fewer controlled gates in the ansatz but make the search for good ansatz circuits more
difficult. We allow SMAC3 to choose it from the range [0, 0.4].

likelihood of topological search [Float]
This hyperparameter determines the likelihood with which a gene instance (circuit
layer) is added to an individual during the variation step of EVQE. To allow EVQE
to explore sufficient amounts of ansatz circuits, we found, in preliminary testing, that
this value should not be too small. We allow SMAC3 to choose this likelihood from
the range [0.4, 0.8].

likelihood of parameter search [Float]
This hyperparameter determines the likelihood with which all parameters for all circuit
layers of an individual are optimised using repeated calls of the classical optimisation
subroutine during EVQE’s variation step. This variation operator is very costly in
terms of expectation value evaluations due to its repeated calls of the classical optim-
isation subroutine. As a result, we limit its likelihood and let SMAC3 choose it from
the range [0, 0.5].

likelihood of layer removal [Float]
This hyperparameter determines the likelihood with which gene instances are removed
from an individual’s genome during EVQE’s variation step. To prevent individuals
from being pruned too often, which will hurt the search for good ansatz circuits, we
let SMAC3 choose it from the limited range of [0, 0.15].

tournament size [Int]
As discussed in Section 6.2, the tournament size modifies the selection likelihoods of

67

7. Methodology

individuals as parents for the next generation. Increasing the tournament size increases
the likelihood of selecting fit individuals. To keep the population diverse, it should not
be set too large. We let SMAC3 choose it from the two values {2, 3}.

QAOA / VQE

Apart from the hyperparameters offered by the Hamiltonian encoding process and the clas-
sical optimiser, for QAOA and VQE, there is only one additional hyperparameter to optimise.

ansatz layer repetitions [Int]
As explained in Section 2.3, the ansätze of QAOA and VQE consist of repeating ansatz
layers. Increasing the number of ansatz layers increases the expressibility of the ansatz
but may make them more difficult to optimise. For both QAOA and VQE, we let
SMAC3 choose the number of the ansatz layer repetitions from the range [2, 4].

7.5.3. Configuring SMAC3
To configure SMAC3 to optimise the hyperparameters for EVQE, VQE, and QAOA, we need
to define what cost functions it should minimise, over which problem instances it should
minimise them, and how it should run the VQA algorithms to evaluate configurations.

Cost Functions

SMAC3 needs cost functions to map optimisation runs of a VQA to scalars, which indicate
the quality of the VQA run to SMAC3. These cost functions must be defined so that lower
scalar values represent better VQA runs, as SMAC3 only supports minimisation.

For our purposes, there are two main goals for SMAC3 to optimise. The first is the
likelihood of measuring good solutions to the JSSP in the final state measurement, and the
second is the number of expectation value evaluations needed throughout the optimisation
run. The number of expectation value evaluations is already a scalar value, where lower
values are better. Therefore, it can be reported directly to SMAC3. The measurement
likelihoods of good solutions are less straightforward to encode in a scalar cost function since
higher likelihoods for good solutions are better and there are different solution qualities to be
distinguished. In particular, one needs to discern the measurement likelihoods for suboptimal
and optimal solutions, as we prefer solutions with an optimal makespan over solutions with
suboptimal makespans. To deal with both facts, we define the ’inverse state quality’ as
starting from 100 and subtracting 1 for each percent of measurement likelihood for optimal
solutions and 0.5 for each percent of measurement likelihood for suboptimal solutions. This
yields a value that is 100 if no valid solution can be observed and 0 if the measurement
likelihood for optimal solutions is 100 percent. Since with suboptimal solutions, no value
lower than 50 can be reached, the inverse state quality also encourages SMAC3 to find
configurations that tend towards finding optimal solutions. As an example, if the likelihood
of measuring optimal solutions is 25% and the likelihood of measuring suboptimal solutions
is 50%, the corresponding inverted state quality is 100 − (1 · 25 + 0.5 · 50) = 50. In an
equation, the inverse state quality can be defined as follows, where Popt is the likelihood of
measuring optimal solutions and Psubopt is the likelihood of measuring suboptimal solutions:

ISQ = 100 ∗ (1− (Popt + 0.5 · Psubopt)) (7.4)

68

7.6. Benchmarking Procedure

Since EVQE grows its ansatz circuits during its optimisation procedure, there are two
more cost functions that should be considered for EVQE. These are the number of layers in
the ansatz circuit of the best individual and the number of CU3 gates in the ansatz circuit
of the best individual. These should be considered cost functions, as otherwise SMAC3
might find configurations that unnecessarily encourage adding too many layers or controlled
gates to the ansatz circuit. This would hamper EVQE’s applicability on real quantum
hardware. As both are already scalar values, where lower values are better, both can be
directly communicated to SMAC3 as is.

Problem Instances

As problem instances for SMAC3 to optimise over, we use 5 random JSSP problem in-
stances, containing 6 operations, which need 12 qubits, from our pre-generated dataset of
problem instances. Visualisations of these training instances can be found in Figure A.2 in
Appendix A.

Run Configuration

We configure SMAC3 so that for each algorithm, it executes at most 2500 optimisation
runs. For each of these optimisation runs, we configure the termination criteria of the VQA
algorithms to terminate after at most 30,000 expectation value evaluations. This is done to
prevent bad configurations from running indefinitely. Furthermore, for each hyperparameter
configuration that SMAC3 evaluates, we configure it to run at least two optimisation runs and
at most 20 optimisation runs. The purpose of this is that it should discard no configuration
prematurely but also not spend overt effort on evaluating any configuration.

7.6. Benchmarking Procedure

Since EVQE needs many expectation value evaluations and free-of-charge access to quantum
computing hardware is currently very limited, we run our benchmarks using the qiskit_aer
quantum simulator of the qiskit quantum software framework [Qis23]. Unless otherwise
specified, we use the noiseless statevector simulation method. It exactly calculates the amp-
litudes and, thus, the measurement probabilities for the quantum state |ψ⟩ produced by a
given ansatz. This then allows the exact computation of the expectation value with respect
to the problem Hamiltonian. Due to the fact that these simulations are computationally
intensive, we run them highly parallelised on the High Performance Data Analytics platform
’terrabyte’, which is jointly operated by the DLR (German Aerospace Center) and LRZ
(Leibniz Supercomputing Center).

Before the benchmarks, we run the hyperparameter optimisation as described in the pre-
vious section for each of the VQAs. We then employ the best-found hyperparameter config-
uration for each algorithm in all the subsequent benchmarks.

From there, we distinguish benchmarks with two different goals. The first and main goal is
to investigate and compare the scaling of computational effort and result quality of the VQAs
over increasingly large problem sizes. The second goal is to compare how noise-resistant the
VQAs are.

Finally, we obtain results for an EVQE optimisation run on real quantum hardware.

69

7. Methodology

Scaling Benchmarks

To gauge the scaling of the VQAs, we run each VQA 25 times for each of the problem sizes
of 12, 15, 18, and 21 qubits. We limit the number of expectation value evaluations the
VQAs may take per optimisation run to 15,000 to prevent excessive runtimes on the larger
problem instances. For each problem size, these optimisation runs are equally distributed
over five problem instances of that size. The problem instances used for benchmarking can
be seen in Appendix A in Figure A.3 for 12 qubits, Figure A.4 for 15 qubits, Figure A.5
for 18 qubits, and Figure A.6 for 21 qubits. The problem instances were drawn randomly
from our pre-generated dataset of JSSP instances. Care was taken to avoid overlap with the
training instances used for the hyperparameter optimisation. Finally, for each optimisation
run, we store the history of expectation value evaluations and the final state measurement,
which enables us to derive the metrics explained in Section 7.2.

We follow this procedure once for QAOA and VQE each. For EVQE, we follow this
procedure three times with different population sizes. Once with a population size of 5,
once with a population size of 10, and once with a population size of 20. This enables us
to gain insight on how the population size affects the performance and scaling of the EVQE
algorithm. Following this, we will refer to these different configurations of EVQE as EVQE5,
EVQE10, and EVQE20. Where no number is specified, EVQE refers to EVQE10.

Noisy Benchmarks

So far, we have used statevector simulations, which are perfectly noiseless. For the noisy
benchmarks, we introduce shot noise to the statevector simulation. Shot noise is based on
the fact that the measurement of expectation values and state distributions for a quantum
state is done via repeated probabilistic measurements of the quantum state (the so-called
shots) [WCA+24]. For statevector simulations, shot noise can be approximated by sampling
k shots using the measurement probabilities calculated by the simulator. The fewer shots
are used, the less accurate the simulated measurement results may be. We run each VQA 25
times on the 18 qubit problem instances for each of 1024, 256, and 64 shots per measurement.
These optimisation runs are again equally distributed over the same five problem instances as
used in the scaling benchmarks. Furthermore, the number of expectation value evaluations
is again capped at 15,000.

7.6.1. Real Quantum Hardware
As EVQE needs many more expectation value evaluations than is feasible with IBM’s free
tier access to quantum hardware, we ourselves are not able to run EVQE on real quantum
hardware. Thanks to E.ON Digital Technology, who have more extensive access to IBM
quantum computing hardware and who were interested in running and evaluating our im-
plementation of EVQE in QUEASARS, we were able to retrieve results on real quantum
hardware.

Since this optimisation run is meant as a proof of concept on real quantum hardware, it
is done for a small problem instance shown in Figure 7.3, which needs only 8 qubits. Fur-
thermore, EVQE is configured with a population size of 5. It is also configured to terminate
after three generations. The quantum circuits are run on IBM Quantum’s ibm_nazca 127
qubit quantum computer, with 512 shots per measurement and no error mitigation.

70

7.6. Benchmarking Procedure

0 1 2 3
Time

j0

j1

Jo
bs

Problem Instance: Simple Instance

Machines
m0
m1

Figure 7.3.: This figure shows the problem instance used for the optimisation run on real
quantum hardware. Its optimal makespan is 4, and it needs 8 qubits to optimise
with a makespan limit of 5.

71

8. Results

In this chapter, we present the results for the hyperparameter optimisation and the bench-
marks as outlined in the previous chapter. The results for the hyperparameter optimisation
are presented in Section 8.1, the results for the noiseless simulations are presented in Sec-
tion 8.2, and the results for the noisy simulation are presented in Section 8.3. Finally, in
Section 8.5, the results are discussed.

8.1. Hyperparameter Optimisation
In this section, the results of the hyperparameter optimisation are presented. For the hy-
perparameter optimisation, we used multiple cost functions. As a result, for a configuration
to definitely be better than another, it needs to be better with regard to all cost functions.
Therefore, there can be multiple best configurations, none of which is definitely better than
the other, with each of these configurations representing a trade-off between the cost func-
tions. In multi-objective optimisation, such solutions are called Pareto optimal and said
to be part of the Pareto set, which is the set of solutions for which no better solution
exists [BOM15].

As a result, SMAC3 does not find a single best configuration but instead returns a Pareto
set of the best configurations it finds. It is then our task to select a configuration from the
Pareto set that, in our opinion, represents the most acceptable trade-off between the cost
functions. To ease that choice, we plot the main costs, namely the inverted state quality
and the number of expectation value evaluations until termination, for each configuration
candidate in the Pareto set. Since each configuration was evaluated by SMAC3 multiple
times, we can plot both the mean and the quantiles of the observed costs. This helps to
evaluate how reliably a configuration solves the training problem instances.

8.1.1. QAOA Pareto Optimal Configurations
For QAOA, SMAC3 found five best configurations during its optimisation procedure. These
five configurations and their cost values can be seen in Figure 8.1. Neither of these con-
figurations obtained particularly good inverted state qualities (ISQ), with their respective
inverted state quality mean, ranging from about 98 to about 92. Remember that the best
possible ISQ is 0, while the worst possible ISQ is 100. This indicates that neither of the
QAOA configurations, on average, found valid or optimal solutions with high measurement
probabilities. When comparing the configurations, small improvements in the average ISQ
between configurations come at the cost of large increases in the average number of needed
expectation value evaluations. This seems to hint at the fact that QAOA is having serious
difficulties finding quantum states with larger measurement likelihoods of valid or optimal
solutions. Therefore, we choose the configuration numbered 1 in Figure 8.1, as slight im-
provements in measurement likelihoods do not seem to be worth an increase in the number
of expectation value evaluations by a factor of two to five.

73

8. Results

0 1000 2000 3000 4000 5000 6000
Expectation Value Evaluations

65

70

75

80

85

90

95

100

In
ve

rte
d

St
at

e
Qu

al
ity

0 1
2

34

QAOA Configuration Candidates

Figure 8.1.: This figure shows the average cost values for the best QAOA hyperparameter
configurations found by SMAC3. Lower values are better for both the inverted
state quality and the expectation value evaluations. The error bars show the
0.1 and 0.9 quantiles of the cost values, respectively. The triangles denote the
absolute minimum and absolute maximum of the ISQ observed for each config-
uration. The individual configurations are numbered to ease referencing them.

The hyperparameter values for all configuration candidates can be found in Table B.1 in
Appendix B. While discussing each chosen parameter value in detail is out of scope, we make
some remarks on the parameter values chosen in configuration 1. In particular, SMAC3 chose
3 layer repetitions for configuration 1. For the other configurations in the Pareto set, the
layer repetitions varied between 2 and 3 layers. No configuration increased the number of
layers to 4. This seems to fit with previous findings by Plewa et al. [PSR21] that increasing
the number of ansatz layers is not always beneficial. Furthermore, for configuration 1, a
high SPSA perturbation of 0.28 and a high SPSA learning rate of 0.46 were chosen, which
seems to fit with previous findings that SPSA benefits from large perturbations and learning
rates [Loc22]. Another interesting observation is that the QAOA Pareto set configurations,
including configuration 1, tend to enable SPSA’s blocking feature, which prevents bad para-
meter updates steps. SMAC3 enabled this feature only for QAOA, indicating that the search
space spanned by QAOA’s ansatz is particularly difficult to navigate.

8.1.2. VQE Pareto Optimal Configurations
For VQE, SMAC3 found eight best configurations during its optimisation procedure. The
configurations and their respective cost values can be seen in Figure 8.2. While the range of
needed expectation value evaluations for the VQE configurations is similar to that of QAOA,
the VQE configurations found better final states than QAOA. This can be seen in the mean
ISQ for the configurations, which ranges from about 45 to about 10. The fact that for each
configuration, the mean ISQ falls below 50 means that, on average, each configuration finds

74

8.1. Hyperparameter Optimisation

1000 2000 3000 4000 5000
Expectation Value Evaluations

0

20

40

60

80

100

In
ve

rte
d

St
at

e
Qu

al
ity

0

123
4
5

6 7

VQE Configuration Candidates

Figure 8.2.: This figure shows the average cost values for the best VQE hyperparameter con-
figurations found by SMAC3 over all their optimisation runs. Lower values are
better for both the inverted state quality and the expectation value evaluations.
The error bars show the 0.1 and 0.9 quantiles of the cost values, respectively.
The triangles denote the absolute minimum and absolute maximum of the ISQ
observed for each configuration. The individual configurations are numbered to
ease referencing them.

states with at least some measurement likelihood for optimal solutions. This is due to the
fact that an ISQ below 50 can only be reached if the state contains optimal solutions. It
can also be seen that up to configuration 5, increased numbers of needed expectation value
evaluations lead to strongly improved mean ISQ values. But after configuration 5, further
increases in expectation value evaluations only yield slight improvements in ISQ. As a result,
we choose configuration 5, as it seems to be the best trade-off between the number of needed
expectation value evaluations and the quality of the resulting state.

The hyperparameter values for all VQE configuration candidates can be found in Table B.2
in Appendix B. Like for our chosen QAOA configuration, VQE configuration 5 again employs
relatively high SPSA perturbation and learning rate values of 0.21 and 0.26, respectively.
Furthermore, configuration 5 employs only 2 ansatz layer repetitions, which is the minimum
number of ansatz layers SMAC3 was allowed to choose. Interestingly, all VQE configurations
apart from 6 and 7 employ only 2 ansatz layer repetitions. Only the configurations 6 and
7 employ 3 ansatz layer repetitions. This seems to indicate that increasing the number of
ansatz circuit layers too much is not worth it for the given training problem instances.

8.1.3. EVQE Pareto Optimal Configurations
For EVQE, SMAC3 found nine best configurations during its optimisation procedure. Seven
out of these nine configurations, with their respective cost values, can be seen in Figure 8.3.
The other two configurations are omitted from the figure, as they were much worse than the

75

8. Results

rest in expectation value evaluations and state quality. To be exact, they needed more than
20,000 expectation value evaluations and only got an ISQ of about 80. For comparison, all
other EVQE configurations remained below 12000 expectation value evaluations and below
inverted state qualities of 50. SMAC3 still returned the ”bad configurations” as part of the
Pareto set, as they achieved very low ansatz depth and CU3 counts, which are the additional
cost functions we defined for EVQE. A low-depth ansatz with few CU3 gates is not useful if
it is not suited to finding good solutions, so we discarded these two configurations.

From Figure 8.3 it is clear, that the EVQE configuration candidates found by SMAC3 are
sufficiently good at finding good final states, as for all configurations, the mean ISQ is far
below 50. Like for VQE, for EVQE, an increase in the mean expectation value evaluations
used per configuration yields improvements in the mean ISQ. Yet, these improvements are
less pronounced, with configuration 3 barely yielding any improvement over configuration
1, even though it uses close to twice the number of expectation value evaluations. Config-
urations 4, 5, and 6 improve the mean ISQ over configuration 1, but they also need twice
to thrice the number of expectation value evaluations. As a result, we choose configuration
1 as it needs few expectation value evaluations while providing good ISQ scores with less
variance than the configurations 0, 2, and 3.

The hyperparameter values for all configuration candidates can be found in Table B.3 in
Appendix B. Just like for QAOA and VQE, for configuration 1 and all other configurations,
SMAC3 used very high perturbation and learning rate values for SPSA.

2000 4000 6000 8000 10000 12000 14000
Expectation Value Evaluations

0

10

20

30

40

50

60

70

In
ve

rte
d

St
at

e
Qu

al
ity

0

1 2 3
4

5 6

EVQE Configuration Candidates

Figure 8.3.: This figure shows the average cost values for the best EVQE hyperparameter
configurations found by SMAC3 over all their optimisation runs. Lower val-
ues are better for both the inverted state quality and the expectation value
evaluations. The error bars show the 0.1 and 0.9 quantiles of the cost values, re-
spectively. The triangles denote the absolute minimum and absolute maximum
of the ISQ observed for each configuration. The individual configurations are
numbered to ease referencing them.

76

8.2. Noiseless Simulation

8.2. Noiseless Simulation
For the evaluation of the scaling of EVQE, VQE, and QAOA over increasing problem sizes,
we ran each algorithm 25 times for each of the problem sizes 12, 15, 18, and 21 qubits. In
the following, we will first evaluate the termination behaviour of the algorithms. Then we
will evaluate how successful the algorithms were and how good the quantum states found
by the VQAs are. Following that, we discuss how quickly the VQAs converge to the various
boundary values we defined. Finally, we evaluate the impact of the population size on EVQE.

We will often use box plots to aggregate the results of the 25 optimisation runs per
problem size. These box plots are always defined as follows: The horizontal line within the
box denotes the median of the result values. The lower and upper edges of the box denote
the 0.25 and 0.75 quantiles of the result values. The lower and upper whiskers of the boxes
denote the minimum and maximum of the result values.

8.2.1. Termination Behaviour
For each VQA optimisation run, we kept track of the number of expectation values the VQAs
needed to evaluate until they were terminated by our termination criterion. As explained
in Section 7.2, we refer to that count as NEXPterm . For each problem size and VQA, we
aggregate the 25 obtained NEXPterm values using box plots. The results of this are shown
in Figure 8.4. Intuitively, as long as the termination criterion is well-behaved, we would
expect the NEXPterm values to increase over each problem size for all algorithms as the
computational effort to solve more complicated problem instances rises. Such a behaviour
can be seen for EVQE, which is shown in Figure 8.4 with the blue box plots.

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0

2000

4000

6000

8000

10000

12000

14000

NE
XP

_t
er

m

Expectation Value Evaluations until Termination

Algorithm
EVQE
VQE
QAOA

Figure 8.4.: This figure shows the number of expectation value evaluations needed for the
algorithms to terminate over multiple problem sizes. Since for each problem size,
each algorithm was run 25 times, box plots are used to aggregate the individual
results. The lower and upper edges of the boxes show the 0.25 and 0.75 quantiles,
respectively. The horizontal line within the boxes shows the median, and the
whiskers extending from the box show the minimum and maximum values.

77

8. Results

For VQE, shown with the red box plots, the termination criterion seems to mostly work
well for the problem sizes of 12 and 15 qubits. From 18 qubits upwards, VQE never seems
to terminate, leading it to always run into the 15000 expectation value evaluation limit.
This is the case even though VQE does find good solutions, as we will discuss in the next
subsection. Having a closer look at an individual optimisation run of VQE in Figure 8.5a,
it becomes obvious that the fact that VQE does not terminate stems from the expectation
values varying strongly between optimisation iterations. Since our termination criterion is
based on the stability of expectation values between iterations, these swings in expectation

0 2000 4000 6000 8000 10000 12000 14000
Expectation Value Evaluations

101

102

103

104

Ex
pe

ct
at

io
n

Va
lu

e

Example VQE Runhistory for 18 Qubits

(a)

0 2000 4000 6000 8000 10000 12000 14000
Expectation Value Evaluations

102

103

Ex
pe

ct
at

io
n

Va
lu

e

Example QAOA Runhistory for 18 Qubits

(b)

2000 4000 6000 8000 10000
Expectation Value Evaluations

102

Ex
pe

ct
at

io
n

Va
lu

e

Example EVQE Runhistory for 18 Qubits

(c)

Figure 8.5.: These figures show one optimisation run for VQE (a), QAOA (b), and EVQE
(c) for the third 18-qubit JSSP benchmarking instance shown in Figure A.5.
The red line denotes the boundary value Ebval, and the blue line denotes the
boundary value Ebopt. VQE finds optimal solutions, but its expectation values
vary strongly between optimisation iterations. QAOA does not seem to find
good solutions. It also experiences swings in expectation value. Furthermore,
the long distances between reported expectation values indicate that SPSA is
having difficulties finding good parameter value updates, as it rejects many
update steps.

78

8.2. Noiseless Simulation

value prevent VQE from terminating.
For QAOA, shown with the yellow box plots, on the other hand, it seems that the optimisa-

tion process works very inconsistently, as there are large variances in the NEXPterm values.
There is also no identifiable trend of the number of expectation value evaluations rising over
increasing problem sizes. This matches the bad solution quality obtained by QAOA, which
we discuss in the next subsection. For now, let us look at an individual optimisation run of
QAOA in Figure 8.5b. As it can be seen, like for VQE, there is a wide variance between
expectation values between iterations. But in contrast to VQE, QAOA never finds expecta-
tion values below the boundary value Ebval, shown in red, indicating that QAOA does not
even find valid solutions with a high measurement likelihood. Furthermore, there are long
distances between reported expectation values. This is due to the fact that for QAOA’s
configuration, as explained earlier, SPSA’s blocking parameter was enabled. This parameter
prevents update steps, which would worsen the expectation value too much. As a result, one
can infer from the long pauses between reported expectation values that SPSA often rejects
many update steps consecutively. This implies that SPSA, as it was configured for QAOA,
has major issues stepping effectively through the search space spanned by QAOA’s ansatz.

Looking at a single EVQE optimisation run in Figure 8.5c, it is clear that EVQE’s well-
behaved termination is due to the fact that its reported expectation values are much more
consistent between optimisation iterations. This comes as no surprise, as in EVQE, an
optimisation iteration encompasses a whole generation of its population. As a result, the
reported best expectation value per generation has been aggregated over many individuals,
which makes it much more robust to the stochastic nature of SPSA’s gradient approximation.

In summary, the SPSA optimizer does not seem to be very stable for VQE and QAOA. This
prevents QAOA and VQE from terminating due to our termination criterion being based on
the stability of the observed expectation values. As a result, the NEXPterm values reported
in Figure 8.4 are not particularly useful for gauging the computational effort needed by
VQE and QAOA. Still, it is interesting that EVQE enables a decoupling of the termination
criterion from the instabilities of the classical optimizer used in its subroutines.

8.2.2. Solution Quality and Success Rate
As explained in Section 7.2, we rate the quality of the quantum state found by the VQAs by
evaluating both the likelihood of measuring a solution with an optimal makespan Popt and
the likelihood of measuring a valid solution Pval from that state. Aggregating the results
from our benchmarks yields Figure 8.6a for the measurement likelihoods of valid solutions
and Figure 8.6b for the measurement likelihoods of optimal solutions.

For QAOA, it can be seen that in the median case, for 12 qubit problem instances, QAOA
finds valid solutions with a measurement likelihood below 10%. For increasing problem
sizes, the median measurement likelihood of both valid and optimal solutions quickly tends
towards zero. This indicates that QAOA, in its basic form, with the configuration found by
SMAC3, is not likely to find either valid or optimal solutions for increasing problem sizes.

For both VQE and EVQE, it can be seen in Figure 8.6b that for nearly all problem sizes,
the 0.25-quantile of the measurement probabilities for optimal solutions is above 60%. This
indicates that in the majority of the optimisation runs, both VQE and EVQE successfully
find optimal solutions with large measurement probabilities. In the median case, the meas-
urement likelihoods of VQE seem to be about 10% higher than the measurement likelihoods
provided by EVQE. Still, both measurement likelihoods of VQE and EVQE are surprisingly

79

8. Results

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0.0

0.2

0.4

0.6

0.8
P_

va
l

Likelihood for measuring valid Solutions

Algorithm
EVQE
VQE
QAOA

(a)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0.0

0.2

0.4

0.6

0.8

P_
op

t

Likelihood for measuring optimal Solutions

Algorithm
EVQE
VQE
QAOA

(b)

Figure 8.6.: These figures show the likelihood of measuring a valid solution Pval (a) or an
optimal solution Popt (b) when measuring the best quantum state found by the
VQAs over multiple problem sizes. Since for each problem size, each algorithm
is run 25 times, box plots are used to aggregate the results.

high, as the CVaR objective only rewards measurement likelihoods up to 50%.
Yet, as the lower box plot whiskers indicate, there are still outlier optimisation runs in

which VQE or EVQE find quantum states that do not contain optimal solutions. While
VQE always at least finds valid solutions, as can be seen in Figure 8.6a, EVQE even some-
times seems to get stuck in states with zero measurement likelihood for valid solutions. To
investigate how often such bad optimisation runs actually happen, we have a look at the
“success rate” for the VQAs. We define a VQA run to be successful with respect to valid
solutions if, in the quantum state found by the VQA, the measurement likelihood for valid
solutions is at least 1%. Similarly, we define a VQA run to be successful with respect to
optimal solutions if, in the quantum state found by the VQA, the measurement likelihood

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate for finding valid solutions

Algorithm
EVQE
VQE
QAOA

(a)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate for finding optimal solutions

Algorithm
EVQE
VQE
QAOA

(b)

Figure 8.7.: These figures show the success rate for the VQAs over multiple problem sizes
of finding quantum states in which valid (a) or optimal (b) solutions can be
measured with a likelihood higher than 0.01.

80

8.2. Noiseless Simulation

for an optimal solution is at least 1%. In Figure 8.7a, we now plot what portion of the 25
optimisation runs per algorithm and problem size are successful in finding valid solutions.
In Figure 8.7b, we compare what portion of them is successful in finding optimal solutions.

The fact that QAOA’s success rate is non-zero for most problem sizes shows that for at
least some optimisation runs, it finds measurement likelihoods that exceed 1%. Even so, its
success rate plummets with increasing problem sizes, again indicating that the basic form of
QAOA does not scale well with increasing problem sizes.

For VQE, it can be seen in Figure 8.7a that for all optimisation runs, VQE successfully
finds valid solutions. While this is also mostly true for EVQE, it can be seen that EVQE
has a very low likelihood of not being successful in finding valid states. Interestingly, in
the success rate for finding optimal solutions, EVQE outperforms VQE. This can be seen
in Figure 8.7b. Here, EVQE is consistently more likely to be successful in finding quantum
states that contain optimal solutions.

8.2.3. Convergence Speed
Given that the computational effort until termination is not a fair metric for comparing the
VQAs, as our termination criterion does not seem to work well for QAOA and VQE, we now
compare how much computational effort the VQAs need to reach certain milestones during
the optimisation procedure. The exact milestones we use were discussed in Section 7.2. As a
short summary, we consider the number of expectation value evaluations needed to reach a
quantum state, which must contain valid solutions NEXPbval . We also consider the number of
expectation value evaluations needed to reach a quantum state, which must contain optimal
solutions NEXPbopt . Finally, we consider the number of expectation value evaluations needed
to reach a quantum state with the lowest expectation value seen by the VQA, referred to as
NEXPbest . We aggregate the results for the 25 optimisation runs for each problem size and
algorithm using box plots. Figure 8.8a shows the number of expectation values needed to
reach a quantum state that must contain valid solutions. Figure 8.8b shows the number of
expectation value evaluations needed to reach a state that must contain optimal solutions.
Finally, Figure 8.8c shows the number of expectation value evaluations needed to reach the
best quantum state seen by the VQA.

For QAOA, the number of expectation value evaluations needed to reach its best observed
quantum state varies highly within the problem sizes, but no identifiable trend can be seen
over increasing problem sizes. Yet, the best quantum states QAOA reaches, generally, are
not good, as discussed in the previous subsection. This can be seen in Figures 8.8a and 8.8b,
in which data on QAOA is mostly missing. This is due to the fact that for larger problem
sizes, QAOA never reaches states with expectation values below the boundaries Ebval and
Ebopt, which we use to identify whether a quantum state must contain valid or optimal
solutions. Therefore, we cannot plot the number of expectation value evaluations needed by
QAOA as it never reaches these milestones.

For VQE and EVQE, it can be seen in Figure 8.8a that VQE for all problem sizes is faster
to reach quantum states, which must contain valid solutions. While for both VQE and
EVQE, the computational effort to reach such quantum states seems to rise linearly with
the problem size, it is interesting to observe that the effort needed by EVQE seems to rise
faster than that of VQE. This trend is reversed in Figures 8.8b and 8.8c. While for smaller
problem instances, VQE still needs less computational effort to reach quantum states that
contain optimal solutions, for increasing problem sizes, the computational effort needed by

81

8. Results

VQE rises drastically. As a result, VQE needs more computational effort than EVQE for the
21-qubit problem size. At the same time, the variance in the computational effort needed
by VQE also rises with the problem size. This shows that for larger problem sizes, EVQE is
not only faster to obtain optimal solutions but is also more consistent in the computational
effort it needs.

Given the results from this and the previous subsection, it seems clear that VQE is more
useful when it suffices to find any valid solution, whereas EVQE is beneficial for larger
problem instances when it matters that solutions with as high a quality as possible should
be found. QAOA, on the other hand, given our results so far, does not seem like a promising
competitor to VQE or QAOA due to the low solution quality it provides with seemingly no
advantage in computational effort.

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0

2000

4000

6000

8000

NE
XP

_b
va

l

Expectation Value Evaluations until State with valid Solutions

Algorithm
EVQE
VQE
QAOA

(a)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0

2000

4000

6000

8000

10000

12000

14000

NE
XP

_b
op

t

Expectation Value Evaluations until State with optimal Solutions

Algorithm
EVQE
VQE
QAOA

(b)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0

2000

4000

6000

8000

10000

12000

14000

NE
XP

_b
es

t

Expectation Value Evaluations until best Expectation Value

Algorithm
EVQE
VQE
QAOA

(c)

Figure 8.8.: These figures show how many expectation value evaluations the VQAs need to
hit certain milestones during the optimisation process for multiple problem sizes.
Since for each problem size, each algorithm was run 25 times, these values are
aggregated using box plots. In (a), it is shown how many expectation value
evaluations the VQAs need to reach expectation values below the boundary
Ebval. In (b), it is shown how many expectation value evaluations the VQAs
need to reach expectation values below the boundary Ebopt. In (c), it is shown
how many expectation value evaluations the VQAs need to reach the quantum
state with the lowest expectation value seen during the optimisation procedure.

82

8.2. Noiseless Simulation

8.2.4. Ansatz Complexity

Since EVQE adapts its ansatz circuits during the optimisation process, it is interesting to
see how complex the ansatz circuits found during the optimisation procedure are. To that
end, we investigate the ansatz circuit depth and controlled gate count for the ansatz circuit
used by EVQE to reach the best quantum state. We also compare them to the ansatz depth
and controlled gate count for QAOA and VQE. The comparison of the ansatz depth over the
benchmarking problem sizes can be seen in Figure 8.9a. The comparison of the controlled
gate count over the problem sizes can be seen in Figure 8.9b.

In those figures, it can be seen that the problem-inspired ansatz circuits of QAOA are
much deeper and use many more controlled gates than both the hardware-efficient VQE
ansatz and the ansatz circuits generated by EVQE. It can also be seen that, as we fixed the
number of layer repetitions for VQE at 2, the ansatz circuit depth for VQE was constant
over the problem sizes. Yet, for increasing numbers of qubits, more controlled gates were
needed in the VQE ansatz.

For all problem sizes and the majority of the optimisation runs, the ansatz depth found
by EVQE was lower than the depth of the fixed ansatz of VQE. It is also apparent that
the ansatz circuit depth found by EVQE increased with increasing problem sizes. This
indicates that EVQE only creates ansatz circuits as deep as needed to solve the problem
instances of increasing complexity. For the controlled gate count, it can be seen that until
the 18 qubit problem sizes, the majority of the EVQE optimisation runs contained fewer
controlled gates in the final ansatz circuit than the fixed ansatz of VQE. Yet, it can also
be seen that with increasing problem sizes, the number of controlled gates rises faster for
EVQE than for VQE. This leads to EVQE needing more controlled gates than VQE for 21
qubits. One possible reason for the strong increase in the number of controlled quantum
gates over increasing problem sizes is that SMAC3 chose a very small β penalty for EVQE.
This penalty decreases the fitness of individuals with too many controlled gates. Therefore,
setting it too low might have incentivised EVQE to add controlled gates more often than
necessary.

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

101

102

Ci
rc

ui
t D

ep
th

Ansatz Circuit Depth

Algorithm
EVQE
VQE
QAOA

(a)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

101

102

Co
nt

ro
lle

d
Ga

te
 C

ou
nt

Controlled Gate Count

Algorithm
EVQE
VQE
QAOA

(b)

Figure 8.9.: These figures show the depth of the ansatz circuit over all problem sizes and
algorithms, aggregated using box plots. The ansatz circuit depth is shown in
(a), and the number of controlled gates is shown in (b).

83

8. Results

8.2.5. Comparison of EVQE Population Sizes
As we noted in Section 7.5, we did not let SMAC3 choose a population size during the
hyperparameter optimisation. Instead, during the hyperparameter optimisation and the
benchmarks shown so far, we used EVQE with a fixed population size of 10. To gauge
how much the population size influences the performance of EVQE, we also ran the same
benchmarks for EVQE with the population sizes 5 and 20. Selected results from these
benchmarks are compared to the results provided by EVQE with a population size of 10 in
the Figure 8.10.

In Figure 8.10a, we compare the computational effort needed by EVQE with a population
size of 5 (EVQE 5), EVQE with a population size of 10 (EVQE 10), and EVQE with a
population size of 20 (EVQE 20) to terminate. As it can be seen, increasing the population

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

2000

4000

6000

8000

10000

12000

14000

16000

NE
XP

_t
er

m

Expectation Value Evaluations until Termination

Algorithm
EVQE5
EVQE10
EVQE20

(a)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate for finding optimal solutions

Algorithm
EVQE5
EVQE10
EVQE20

(b)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

100

101

Ci
rc

ui
t D

ep
th

Ansatz Circuit Depth

Algorithm
EVQE5
EVQE10
EVQE20

(c)

12 Qubits 15 Qubits 18 Qubits 21 Qubits
Problem Size

101

Co
nt

ro
lle

d
Ga

te
 C

ou
nt

Controlled Gate Count

Algorithm
EVQE5
EVQE10
EVQE20

(d)

Figure 8.10.: These figures show how changing the population size of EVQE influences the
performance of EVQE. To that end, they represent the results of running EVQE
with the population sizes 5, 10, and 20 for each problem size. In (a), the
computational effort needed by these EVQE variants over the problem sizes
is shown. In (b), it is shown how many of the EVQE optimisation runs are
successful at finding optimal solutions. Success is defined as measuring an
optimal solution from the quantum state found by EVQE with a likelihood
higher than 0.01. In (c), the depth of the best ansatz and in (d), the number
of controlled gates in the best ansatz found by EVQE during each optimisation
run is shown.

84

8.3. Noisy Simulation

size increases the number of expectation value evaluations needed by the same factor as
the population size increase. This comes as no surprise, as an increase in the number of
individuals within the population also increases the number of times the last layer optim-
isation and the other variation operators are applied during each generation. Interestingly,
the same pattern occurred for the computational effort needed to reach the milestones we
defined during the optimisation procedure, implying that larger population sizes do not aid
with the speed of convergence.

We also noted that increasing or decreasing the population size does not affect the meas-
urement likelihoods of good solutions in the quantum states if the optimisation run was
successful. But it can be seen that increasing the population size increases the portion of
optimisation runs that are successful in finding quantum states that contain optimal solu-
tions. This behaviour is shown in Figure 8.10b. Thus, it seems likely that larger population
sizes help EVQE explore a wider range of ansatz circuits, which increasingly help it to avoid
or escape local minima or barren plateaus.

The effect of a wider exploration of ansatz circuits can also be seen in the Figures 8.10c
and 8.10d. There it is shown that for larger population sizes, EVQE generally finds ansatz
circuits of lower depth and lower controlled gate counts.

8.3. Noisy Simulation

To investigate how noise affects the VQAs, we ran each VQA 25 times on the 18 qubit
problem instances, using different numbers of shots to induce varying amounts of shot noise.
Since VQAs are explicitly designed for the usage on noisy quantum hardware, we expect that
each VQA should be able to cope with the shot noise to some extent. Still, it is interesting
to see whether EVQE is inherently more resistant to noise than the other algorithms.

In Figure 8.11a, we then compare how fast the VQAs reach quantum states, which contain
optimal solutions, over the different shot noise scenarios. QAOA, in no optimisation run,

Shotless 1024 Shots 256 Shots 64 Shots
Amount of Shots

2000

4000

6000

8000

10000

12000

14000

NE
XP

_b
op

t

Expectation Evaluations until State with optimal Solutions

Algorithm
EVQE
VQE
QAOA

(a)

Shotless 1024 Shots 256 Shots 64 Shots
Amount of Shots

0.0

0.2

0.4

0.6

0.8

P_
op

t

Likelihood for measuring optimal Solutions

Algorithm
EVQE
VQE
QAOA

(b)

Figure 8.11.: These figures show how EVQE, VQE, and QAOA compare under varying shot
noise scenarios. Shotless refers to the noise-free state vector simulation. In (a),
it is shown how many expectation value evaluations the VQAs need to reach a
quantum state that contains optimal solutions. In (b) it is shown how likely it
is to measure an optimal solution from the quantum states found by the VQAs.

85

8. Results

reached such quantum states, which is why it is missing from that plot. For both EVQE
and VQE, the effect of the increasing shot noise can be seen. For EVQE, the median
number of expectation value evaluations needed increases slightly over the increasingly noisy
scenarios. For VQE, this does not happen, and the median number of needed expectation
value evaluations remains about the same over all shot noise scenarios. Yet interestingly, the
variance in the number of needed expectation evaluations for VQE raises drastically over
increasingly noisy scenarios. Such a large increase in variance cannot be observed for EVQE,
indicating that EVQE is much more consistent in its convergence speed even in highly noisy
scenarios.

This can also be observed for the quality of the quantum states found by the VQAs in
noisy scenarios. We show the likelihood of measuring optimal solutions from the quantum
states found by the VQAs in Figure 8.11b. For QAOA, that likelihood is always close to zero.
For low shot noise scenarios, both VQE and EVQE provide high measurement likelihoods of
optimal solutions with outliers towards 0, if the optimisation run was unsuccessful. Initially,
as observed for the noiseless statevector simulations, the measurement likelihoods of VQE
are higher than those for EVQE. But for increasing amounts of shot noise, it can be seen that
VQE’s measurement likelihoods begin to vary strongly and finally fall well below EVQE’s
measurement likelihoods for the 64 shot scenario.

Both plots together indicate that, under high shot noise levels, VQE is much more incon-
sistent than EVQE, even though we used the noise-tolerant SPSA optimisation algorithm
for both VQAs.

8.4. Real Quantum Hardware
As explained in Section 7.6, EVQE was run on the IBM ibm_nazca 127-qubit quantum
computer thanks to E.ON Digital Technology. It was configured to run for three generations
with a population size of 5. The results of that optimisation run can be seen in Figure 8.12.

The best expectation values found per generation are shown in Figure 8.12a. It can be
seen, that EVQE, after the first generation, has already found the optimal expectation value
of 22.75. As a result, subsequent generations cannot improve on that expectation value,
explaining why the graph in Figure 8.12a is a flat line.

Figure 8.12b then shows the distribution of classical states when measuring the ansatz of
the best individual. As it can be seen, state 5 (00000101 in binary) has the highest likelihood
of being observed. It represents the optimal solution schedule shown in Figure 8.12c. Since
this is the only possible optimal solution, Popt is 0.73 for this optimisation run. Pval is only
slightly higher at 0.74.

These results show that EVQE can find optimal solutions to the JSSP even on real, noisy
quantum hardware.

8.5. Discussion
As discussed in Chapter 3, evolving ansatz VQE algorithms have been shown to be promising
due to their noise resistance and their ability to escape local minima and avoid barren
plateaus. These advantages are gained by evaluating and adapting a whole population of
ansatz circuits during the normal VQA routine. This naturally needs more computational
effort in terms of expectation value evaluations than for VQA routines that use only one fixed

86

8.5. Discussion

300 400 500 600 700 800 900
Expectation Value Evaluations

102

Ex
pe

ct
at

io
n

Va
lu

e
EVQE Runhistory on ibm_nazca

(a)

1 4 5 7 13 21 36 37 69 13
3

re
st

0.0

0.2

0.4

0.6

0.8

Qu
as

i-p
ro

ba
bi

lit
y

0.01

0.07

0.73

0.006 0.01 0.012 0.01

0.082
0.025 0.016 0.029

EVQE Measurement Distribution on ibm_nazca

(b)

0 1 2 3 4
Time

m0

m1

M
ac

hi
ne

s

Scheduling Result: Simple Instance

Jobs
j0
j1

(c)

Figure 8.12.: These figures show the results for the EVQE optimisation run on IBM’s
ibm_nazca 127-qubit quantum computer. In (a), the best expectation value
found during each generation is shown. The red horizontal line denotes the
boundary value Ebval, and the blue horizontal line denotes the boundary value
Ebopt. EVQE finds the best possible expectation value during the first gen-
eration. As a result, it cannot improve the expectation value further dur-
ing subsequent generations. In (b), the measurement distribution of classical
states, retrieved by measuring the ansatz of the best individual multiple times,
is shown. For readability, the bitstrings retrieved by the measurement are
referred to by their decimal representation. State 5 with the measurement
probability of 73% translates to the schedule with the optimal makespan 4,
shown in (c).

ansatz, such as VQE. The goal of our benchmarks was to determine how this additional effort,
in the case of EVQE, scales over increasing problem sizes, as this is central to determining
whether the additional computational effort is worth the advantages afforded by evolving
ansatz VQE methods.

We demonstrated the scaling of EVQE’s computational effort in Figures 8.4, 8.8a,8.8b,
and 8.8c. These results clearly show that the computational effort of EVQE rises with
increasing problem sizes. In particular, it can also be seen that the computational effort for
finding valid solutions rises slower with the problem size, than the computational effort to

87

8. Results

find optimal solutions. Yet, due to the limited number of problem sizes and optimisation
runs we evaluated, we cannot definitely determine whether the increase in computational
effort is linear, polynomial, or even exponential.

While we cannot make exact statements on the computational complexity of EVQE, we
also benchmarked the scaling of the computational effort needed by the established QAOA
and VQE algorithms as a frame of reference. This enables us to compare EVQE’s scaling
against more established VQAs. While QAOA did not provide good results, VQE reached
good solutions and provided a good frame of reference for the computational effort needed
to reach valid or optimal solutions. We could observe that VQE found valid solutions faster
than EVQE and scaled better than EVQE for finding valid solutions. This is not necessarily
surprising, due to the high computational effort involved in evolving and optimising multiple
ansatz circuits. We see no indication that this trend may change for larger problem sizes.
As a result, if finding any valid solution is enough, VQE likely seems like a better choice
than EVQE. On the other hand, if a better solution or even an optimal solution is needed,
the advantages of EVQE start to show. In our benchmarks, it could be seen that the
computational effort for finding optimal solutions needed by VQE, while starting out lower
than that of EVQE for small problem sizes, scaled worse than the computational effort
needed by EVQE. This results in EVQE needing less computational effort on average than
VQE to find optimal solutions for the problem size of 21 qubits. The fact that VQE scales
worse than EVQE for this use case seems to be a clear trend. As a result, we expect EVQE’s
advantage over VQE in terms of the computational effort to widen for problem instances of
even larger sizes when optimal solutions are required. On top of that, it could also be seen
that the success rate for finding optimal solutions for EVQE was consistently higher than
that of VQE, meaning EVQE would need fewer optimisation runs than VQE to find optimal
solutions. As a result, EVQE seems to be a more promising candidate than VQE for finding
solutions of high quality.

VQE finding valid solutions quickly likely indicates that VQE converges to a local min-
imum but then has a hard time leaving that minimum and navigating the search space
towards better solutions. EVQE’s population-based, adaptive ansatz approach, on the other
hand, while more computationally expensive per iteration, seems to help with avoiding local
minima and barren plateaus, as indicated in prior research. This might explain why EVQE
outperforms VQE at finding optimal solutions for larger problem sizes, where the search
space is increasingly complicated.

Note that for approximating the VQAs’ computational effort, we counted all expectation
value evaluations needed by the VQAs. While, as we discussed in Section 7.2, this is a
passable approximation of computational effort, it does not translate easily to approximating
the runtime of EVQE. This is due to EVQE’s population-based nature, which enables many
of these expectation value evaluations to be done in parallel. This stands in contrast to both
VQE and QAOA, where parallelisation opportunities fully depend on the classical optimiser.
In the case of the SPSA optimiser we used, all expectation value evaluations for QAOA and
VQE were done in serial. This helped EVQE run much faster in simulation than VQE or
QAOA. We did not present this finding with the other results, as access to quantum hardware
is currently very limited and expensive. Therefore, assuming easy parallel access to multiple
quantum computers seems premature. Yet, should quantum computers become ubiquitous,
the easy parallelisation offered by EVQE might yield good speed-ups in runtime over VQE
or QAOA.

Note that the degree of parallelisation is easily controlled by EVQE’s population size.

88

8.5. Discussion

Increasing the population size allows for more parallel expectation value evaluations while at
the same time enabling a wider exploration of the search space. We have shown that adjusting
the population size of the EVQE algorithm allows a trade-off between its computational
cost and the benefits offered by its population-based approach. Lower population sizes
needed fewer expectation value evaluations but also offered lower success rates for finding
optimal solutions, while larger population sizes increased the success rate and the number of
expectation value evaluations. At the same time, these effects do not seem to scale linearly
with the population size, so care needs to be taken when choosing the population size to
avoid overt diminishing returns.

We also observed further advantages posed by EVQE’s population-based approach. On the
one hand, we have shown that EVQE, due to its population-based approach, is less affected
by noisy optimisation iterations in its classical optimisation subroutine. This allows EVQE to
be terminated based on a stability-based termination criterion. Furthermore, we have shown
that EVQE behaves very consistently even under strong shot noise, which is likely also due
to its population-based approach, as it is less affected by individual erroneous expectation
value measurements. Finally, we have shown that these advantages enable EVQE to work
well for optimising the JSSP on real, noisy, quantum hardware.

These findings suggest that there are some use cases in which the benefits of evolving
ansatz VQE approaches outweigh their heavy computational cost, which in these cases allows
evolving ansatz VQE approaches to outperform other VQAs such as VQE or QAOA.

89

9. Conclusion and Future Work
The goal of this thesis was to investigate how evolving ansatz VQE algorithms scale in terms
of computational effort and solution quality for job shop scheduling problems. To that
end, we chose to investigate and implement the EVQE algorithm in the open-source Py-
thon library QUEASARS12. To enable the solving of JSSP instances with EVQE and VQA
algorithms in general, we also implemented a mapping of JSSP instances to Ising Hamilto-
nians, which is a problem formulation widely used with VQAs. We then used a random
problem instance generation scheme, similar to that proposed by Taillard et al. [Tai93], to
generate a dataset of JSSP problem instances of varying sizes for our benchmarks. Using
these problem instances, we benchmarked EVQE as well as VQE and QAOA on multiple
JSSP instances of increasing sizes. For these benchmarks, we observed both the solution
quality and the computational effort needed in terms of how often the expectation value has
to be evaluated with respect to the ansatz circuit.

While QAOA did not provide good results, both EVQE and VQE were capable of providing
good results for our benchmarking problem instances. When investigating the computational
effort the VQAs needed to solve the JSSP benchmarking instances, we found that it had
to be distinguished whether finding any valid solution to the JSSP is enough or whether
solutions with an optimal makespan are desired. In the first case, our results showcased that
VQE consistently found valid solutions to the JSSP instances, using few expectation value
evaluations. This also scaled well to larger problem instances. EVQE, on the other hand,
due to its population-based approach, needed many more expectation value evaluations to
find valid solutions and scaled worse than VQE. The opposite could be observed if the goal is
to find solutions with an optimal makespan. While for smaller problem instances, VQE still
needs fewer expectation value evaluations than EVQE to find optimal solutions, VQE scales
worse in this case. This leads to EVQE needing fewer expectation value evaluations than
VQE to find optimal solutions for larger problem instances. We reason that EVQE’s ability
to escape and avoid local minima and barren plateaus benefits it in finding optimal solutions
across the search space as the search space becomes increasingly complex with increasing
problem sizes. We expect this trend to continue for even larger problem instances, making
EVQE the preferred choice over VQE if high-quality solutions are required.

Given the further benefits of EVQE we encountered, namely its good parallelizability, its
stable optimisation progress that enables its consistent termination, its ability to consistently
deal with noise, and its low-depth ansatz circuits, we believe that evolving ansatz VQE
algorithms can be useful quantum heuristics where good solution qualities are required.

Future Work

For future work, we believe there are multiple promising avenues of research.

1QUEASARS is licenced under the Apache Licence 2.0.
2The QUEASARS GitHub repository can be found at: https://github.com/DLR-RB/QUEASARS

91

https://github.com/DLR-RB/QUEASARS

9. Conclusion and Future Work

While we have shown that the high computational effort per generation in Evolving An-
satz VQE algorithms can be well worth it in certain scenarios, it would still be helpful to
reduce the computational effort per generation as far as possible. Since evaluating the fit-
ness in EVQE entails the optimisation of the last layer of an individual, which involves many
expectation value evaluations, reducing the number of costly fitness evaluations per genera-
tion could drastically reduce the computational effort per generation of EVQE. One possible
approach to this can be found in the work of Ansotegui et al. [AST09]. They split the pop-
ulation of the evolutionary algorithm into two pools of individuals with separate genders:
the competitive and non-competitive genders. New individuals are randomly assigned to the
gender. For the competitive gender, the fitness function is calculated as normal, whereas
for the non-competitive gender, individuals are selected randomly without calculating their
fitness. Ansotegui et al. have shown that this drastically reduces the number of costly fitness
evaluations needed by the evolutionary algorithm, as only half the population needs to be
evaluated per generation [AST09].

Another good avenue for future research would be to investigate improvements that have
been proposed for the VQE algorithm. Such improvements include the application of filter-
ing operators [ARF+22] or the use of quantum natural gradients [KB22], which can also be
approximated within SPSA [GZCW21]. Many more improvements can be found in literat-
ure reviews for the VQE method [TCC+22] [BCLK+22]. These improvements could then be
investigated twice. On the one hand, since we only benchmarked EVQE against the basic
variant of VQE, it could stand to reason that improved versions of VQE might outperform
EVQE even when searching for high-quality solutions. On the other hand, since the optim-
isation subroutine of EVQE is basically a short VQE optimisation run, improvements that
have been proposed for VQE should also be applicable for the optimisation subroutines of
EVQE. It would then be interesting to see whether, when using these improvements for both
VQE and EVQE, EVQE still outperforms VQE on larger problem instances.

Finally, once access to quantum computing hardware has become more ubiquitous, scaling
benchmarks over many more problem instances and problem sizes should be carried out to
investigate whether the promise of evolving ansatz VQE methods holds true even on real
quantum hardware. This would then also allow the usage of the runtime performance metric,
as the overhead of quantum simulation would not be an issue any more. This would also
enable a fair comparison of EVQE against classical optimisation heuristics.

92

A. Additional Figures

A.1. Example QAOA Ansatz

Global Phase: -2679.16666666667* [0]

q0

q1

q2

q3

q4

q5

q6

q7

q0

q1

q2

q3

q4

q5

q6

q7

q0

q1

q2

q3

q4

q5

q6

q7

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

/2, 0,
U3

ZZ (75.0* [0])

75.0* [0]
RZ

ZZ (75.0* [0])

75.0* [0]
RZ

ZZ (75.0* [0])

ZZ (75.0* [0])

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

75.0* [0]
RZ

ZZ (75.0* [0])

75.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (75.0* [0])

1200.0* [0]
RZ

1200.0* [0]
RZ

75.0* [0]
RZ

75.0* [0]
RZ

ZZ (75.0* [0])

ZZ (75.0* [0])

ZZ (1200.0* [0])

ZZ (1200.0* [0])

1200.0* [0]
RZ

1200.0* [0]
RZ

3.125* [0]
RZ

1200.0* [0]
RZ

ZZ (75.0* [0])

2.0* [0]
RX

3.125* [0]
RZ

3.125* [0]
RZ

1200.0* [0]
RZ

ZZ (1200.0* [0])

ZZ (1200.0* [0])

6.25* [0]
RZ

2.0* [0]
RX

3.125* [0]
RZ

4.16666666666667* [0]
RZ

1200.0* [0]
RZ

4.16666666666667* [0]
RZ

1200.0* [0]
RZ

2.0* [0]
RX

6.25* [0]
RZ

12.5* [0]
RZ

12.5* [0]
RZ

12.5* [0]
RZ

12.5* [0]
RZ

2.0* [0]
RX

3.125* [0]
RZ

37.5* [0]
RZ

3.125* [0]
RZ

37.5* [0]
RZ

2.0* [0]
RX

3.125* [0]
RZ

2.0* [0]
RX

3.125* [0]
RZ

6.25* [0]
RZ

6.25* [0]
RZ

2.0* [0]
RX

2.0* [0]
RX

Figure A.1.: This figure shows one automatically generated QAOA ansatz layer for the JSSP
instance shown in Figure 5.1.

93

A. Additional Figures

A.2. Hyperparameter Optimisation Training Instances

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_192

Machines
m0
m1
m2

(a) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_1

Machines
m0
m1
m2

(b) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_827

Machines
m0
m1
m2

(c) optimal makespan: 5

0 1 2 3 4
Time

job0

job1
Jo

bs

Problem Instance: 2_jobs_3_machines_seed_306

Machines
m0
m1
m2

(d) optimal makespan: 5

0 1 2 3
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_41

Machines
m0
m1
m2

(e) optimal makespan: 4

Figure A.2.: This figure shows all training JSSP instances used in the hyperparameter op-
timisation. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration, each
training instance needs 12 qubits to be solved.

94

A.3. 12 Qubit Benchmarking Instances

A.3. 12 Qubit Benchmarking Instances

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_84

Machines
m0
m1
m2

(a) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_121

Machines
m0
m1
m2

(b) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_500

Machines
m0
m1
m2

(c) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_395

Machines
m0
m1
m2

(d) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_20

Machines
m0
m1
m2

(e) optimal makespan: 5

Figure A.3.: This figure shows all benchmarking JSSP instances used for benchmarking with
12 qubits. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration, each
training instance needs 12 qubits to be solved.

95

A. Additional Figures

A.4. 15 Qubit Benchmarking Instances

0 1 2 3 4 5 6
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_507

Machines
m0
m1
m2

(a) optimal makespan: 7

0 1 2 3 4 5
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_289

Machines
m0
m1
m2

(b) optimal makespan: 6

0 1 2 3 4 5
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_55

Machines
m0
m1
m2

(c) optimal makespan: 6

0 1 2 3 4 5
Time

job0

job1
Jo

bs

Problem Instance: 2_jobs_3_machines_seed_374

Machines
m0
m1
m2

(d) optimal makespan: 6

0 1 2 3 4 5
Time

job0

job1

Jo
bs

Problem Instance: 2_jobs_3_machines_seed_714

Machines
m0
m1
m2

(e) optimal makespan: 6

Figure A.4.: This figure shows all benchmarking JSSP instances used for benchmarking with
15 qubits. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration, each
training instance needs 15 qubits to be solved.

96

A.5. 18 Qubit Benchmarking Instances

A.5. 18 Qubit Benchmarking Instances

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_848

Machines
m0
m1
m2

(a) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_795

Machines
m0
m1
m2

(b) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_373

Machines
m0
m1
m2

(c) optimal makespan: 5

0 1 2 3
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_141

Machines
m0
m1
m2

(d) optimal makespan: 4

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_59

Machines
m0
m1
m2

(e) optimal makespan: 5

Figure A.5.: This figure shows all benchmarking JSSP instances used for benchmarking with
18 qubits. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration, each
training instance needs 18 qubits to be solved.

97

A. Additional Figures

A.6. 21 Qubit Benchmarking Instances

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_524

Machines
m0
m1
m2

(a) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_692

Machines
m0
m1
m2

(b) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_518

Machines
m0
m1
m2

(c) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_156

Machines
m0
m1
m2

(d) optimal makespan: 5

0 1 2 3 4
Time

job0

job1

job2

Jo
bs

Problem Instance: 3_jobs_3_machines_seed_255

Machines
m0
m1
m2

(e) optimal makespan: 5

Figure A.6.: This figure shows all benchmarking JSSP instances used for benchmarking with
21 qubits. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration, each
training instance needs 21 qubits to be solved.

98

B. Hyperparameter Values

B.1. QAOA Hyperparameter Values

QAOA Configurations 0 1 2 3 4
encoding penalty weight 492.8 307.4 241.5 408.3 536.1

precedence penalty weight 492.8 307.4 241.5 408.3 536.1
overlap penalty weight 429.8 307.4 241.5 408.3 536.1

early start term importance 0.23 0.33 0.25 0.02 0.06
perturbation 0.45 0.28 0.1 0.43 0.42
learning_rate 0.35 0.47 0.43 0.36 0.36
resamplings 1 1 2 2 2
trust_region False False False True True

blocking True True True True True
allowed_increase 414.2 223.4 300.1 359.6 355.2

ansatz layer repetitions 2 3 2 3 3

Figure B.1.: This table shows all hyperparameter values for all QAOA hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded to
represent their origin. Light blue hyperparameters belong to the Hamiltonian
encoding process, light yellow hyperparameters belong to SPSA, and light red
hyperparameters belong to QAOA itself. The QAOA hyperparameter configur-
ation, which we chose for our benchmarks, is highlighted in light green.

99

B. Hyperparameter Values

B.2. VQE Hyperparameter Values

Configuration 0 1 2 3 4 5 6 7
encoding penalty weight 600.4 714.7 681.8 838.8 677.3 840.7 697.2 704.6

precedence penalty weight 600.4 700.1 681.8 838.8 677.3 840.7 697.2 704.6
overlap penalty weight 600.4 714.7 681.8 793.1 677.3 805.7 697.2 704.6

early start term importance 0.48 0.45 0.16 0.17 0.18 0.15 0.06 0.37
perturbation 0.08 0.12 0.17 0.17 0.21 0.21 0.20 0.21
learning_rate 0.31 0.28 0.29 0.3 0.18 0.26 0.18 0.19
resamplings 3 1 2 4 2 2 2 3
trust_region True True True True True True True True

blocking False False False False False False False False
allowed_increase - - - - - - - -

ansatz layer repetitions 2 2 2 2 2 2 3 3

Figure B.2.: This table shows all hyperparameter values for all VQE hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded to
represent their origin. Light blue hyperparameters belong to the Hamiltonian
encoding process, light yellow hyperparameters belong to SPSA, and light red
hyperparameters belong to VQE itself. The VQE hyperparameter configura-
tion, which we chose for our benchmarks, is highlighted in light green.

100

B.3. EVQE Hyperparameter Values

B.3. EVQE Hyperparameter Values

Configuration 0 1 2 3 4 5 6 7 8
encoding penalty weight 459.4 318.6 231.0 193.6 971.7 820.8 858.3 288.5 111.1

precedence penalty weight 113.2 274.9 231.0 193.6 337.8 623.8 517.9 288.5 111.1
overlap penalty weight 386.4 318.6 231.0 193.6 598.5 588.4 621.8 288.5 111.1

early start term importance 0.33 0.19 0.19 0.45 0.18 0.30 0.29 0.43 0.34
maxiter 44 33 37 41 42 38 38 31 19

perturbation 0.35 0.35 0.36 0.32 0.37 0.50 0.44 0.24 0.37
learning_rate 0.48 0.43 0.48 0.40 0.48 0.47 0.47 0.34 0.13
resamplings 1 1 2 3 3 3 3 1 1
trust_region True True True True True True True False False

blocking False False False False False False False False False
allowed_increase - - - - - - - - -

termination behaviour 1 2 3 4 4 6 6 3 3
last_avg 1 1 2 1 4 4 4 1 4

genetic distance 1 1 2 2 2 1 2 3 2
alpha penalty 0.28 0.15 0.04 0.11 0.31 0.39 0.36 0.18 0.20
beta penalty 0.09 0.02 0.07 0.03 0.35 0.34 0.35 0.11 0.21

likelihood of topological search 0.75 0.79 0.80 0.66 0.53 0.61 0.61 0.67 0.55
likelihood of parameter search 0.32 0.39 0.26 0.12 0.33 0.33 0.34 0.08 0.22

likelihood of layer removal 0.06 0.02 0.08 0.10 0.13 0.13 0.13 0.14 0.15
tournament size 3 2 3 3 3 3 3 2 3

Figure B.3.: This table shows all hyperparameter values for all EVQE hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded to
represent their origin. Light blue hyperparameters belong to the Hamiltonian
encoding process, light yellow hyperparameters belong to SPSA, and light red
hyperparameters belong to EVQE itself. The EVQE hyperparameter configur-
ation, which we chose for our benchmarks, is highlighted in light green.

101

List of Figures

2.1. This figure shows a visualisation of the operation order in each job for an
example JSSP instance, with 3 jobs on 3 machines. 3

2.2. This figure shows a comparison of valid scheduling results with different
makespans for the JSSP instance shown in Figure 2.1. The schedule shown
in (a) is optimal. The schedule shown in (b) is suboptimal. 4

2.3. This figure shows a quantum circuit consisting of a quantum register of two
qubits (a), a classical register to store results (a), quantum gates (b), and
measurement instructions (c). 5

2.4. This figure shows a Bloch sphere representation of the state |0⟩. 6
2.5. This figure shows a qubit’s state before (a) and after (b) applying a Pauli-X

gate. 7
2.6. Qubit state before (a) and after (b) applying a Hadamard gate. 8
2.7. This figure shows the simulated measurement results (noiseless, 500 shots) of

the circuit in Figure 2.3. 10
2.8. This figure shows the general workflow of VQA algorithms, which is an iter-

ative loop. In it, a quantum state |ψ(θ)⟩ is created based on the parameter
values θ. This state is then evaluated using objective function O. Based on
the resulting objective value, the classical optimiser improves the parameter
values θ. 12

2.9. This figure shows a parameterised version of the circuit in Figure 2.3 that uses
U3 gates. 12

2.10. This figure shows the simulated measurement results (noiseless, 500 shots)
of the circuit in Figure 2.9 for different parameter values. The parameter
values that were applied are shown below the individual figures in the order
[θ1, ϕ1, λ1, θ2, ϕ2, λ2]. 13

2.11. This table shows the eigenstates and eigenvalues of the example Hamiltonian
(Equation 2.32) with the corresponding QUBO variable assignments. 15

2.12. This table demonstrates the one-hot encoding for a variable y ∈ {0, 1, 2}. . . . 16
2.13. This table demonstrates the domain wall encoding for a variable y ∈ {0, 1, 2, 3},

with | visualising the domain wall. The variable bits are preceded and followed
by an imagined bit in grey. 17

2.14. This figure shows the general workflow of evolutionary algorithms, in which
selection, variation, and replacement are used to, over many generations, im-
prove the fitness of the individuals within the population. 22

3.1. This figure shows the hardware-efficient VQA ansatz used in Amaro et al.’s
comparison of VQA algorithms with two layer repetitions. 25

3.2. This figure shows an EVQE individual with two circuit layers. The separation
between layers is indicated by the grey barriers. 28

103

List of Figures

3.3. This figure illustrates the gate block structure used in the MoG-VQE al-
gorithm [CSU+20]. Combinations of multiple such gate blocks form an ansatz. 29

3.4. This figure illustrates the ansatz structure of the QNEAT algorithm. Taken
from Giovagnoli et al.’s paper on QNEAT [GTMS23] (CC BY 4.0 License1).
In the first layer of the individual, all possible gates are placed, showcasing
the structure of a layer. In the other layers, not all gates have been placed. . 29

4.1. This figure shows a graphical representation of the EVQE algorithm’s cyclical
evolutionary optimisation procedure. 32

4.2. This figure illustrates the differences between genes, genomes, and gene in-
stances in EVQE [RHP+19]. (a) and (b) show two different genes γs and γt,
each representing a circuit layer, without fixed parameter values. (c) and (d)
show the genomes of two different individuals, i and j. They each consist of
two gene instances, highlighted by the grey boxes. 33

4.3. This figure illustrates the stages of the basic random gene generation. (a):
First, the qubits are either designated for a CU3 (red pentagon) or a U3 (blue
pentagon) gate with a 50% chance each. Then the CU3s are randomly placed
(b). Finally, the U3 gates are placed (c). 34

4.4. This figure illustrates how a random gene is generated to follow the gene
shown in (a) without placing redundant gates. As shown in (b), following an
identity or U3 gate in (a), the qubits are directly designated as CU3 qubits (red
pentagons). Following a CU3 gate in (a), the qubits are randomly designated
as either U3 (blue pentagons) or CU3 qubits (c). After the random gate
placement, no gate could be placed on qubit 3, leaving it with an identity
gate, as shown in (d). 35

4.5. This figure shows an individual before (a) and after (b) topological search was
applied. 40

4.6. This figure shows an individual before (a) and after (b) layer removal for one
layer was applied. 40

5.1. This figure shows a small JSSP problem instance using 2 jobs and 2 machines.
Its minimum makespan is 3. 47

5.2. This figure visualises the full energy landscape for the small JSSP instance.
The red line denotes wopt = 100. Any state with less energy than that is valid.
All other states are invalid. It can be seen that the vast majority of states are
invalid. 47

5.3. This figure visualises the energy landscape for the small JSSP instance if all
energies larger than wopt = 100 are filtered out. The remaining energies are
energies for fully valid states. The global minima at x = 5 and x=80 both
have an identical energy of 22.9. 48

5.4. This figure shows the solutions to the small JSSP instance with makespan 3.
These correspond to the global minima at (a) x = 5 and (b) x = 80 of the
QUBO’s energy landscape. Both represent ideal solutions with makespan 3,
differing only in their ordering of the jobs. 48

6.1. This figure shows a problematic JSSP problem instance with 2 jobs and 3
machines. 49

104

List of Figures

6.2. This figure demonstrates the issues of the EVQE algorithm during an op-
timisation run for the problem instance shown in Figure 6.1. (a) shows the
expectation value of the best individual for each generation. (b) shows the
measurement result for the best individual found during the evolution. As it
can be seen, EVQE was incapable of finding better states than the |0⟩⊗n state. 50

6.3. This table shows eigenstates with their eigenvalues (energy) for the Hamilto-
nian of the JSSP instance shown in Figure 6.1. Specifically, these are eigen-
states with energies lower than the energy of the zero state |0⟩⊗n, which need
the fewest bit flips to be reached from the zero state. For reference, it also
contains the energy of the zero state and the range of energies for all states,
which only need up to three bitflips. 51

6.4. This figure shows two EVQE optimisation runs for the JSSP instance shown in
Figure 6.1. (a) uses an initialisation approach with two random gene instances
and random parameters for each initial individual. (b) uses an initialisation
approach by prepending Hadamard gates to each individual’s ansatz. (a)
converges faster, presumably due to its ability to explore a range of good
initial states. Note that the y-axis scales are different. (a) finds a state with
an expectation value below 100 in generation 2, whereas (b) only finds such
a state in generation 6. 52

6.5. This table shows selection probabilities for a population of five fictional in-
dividuals when using proportional selection as explained in Section 4.3.3. In
particular, it shows the issue of low selection pressure if the fitness values do
not differ greatly. See, for instance, the individual with fitness 30, which is
only slightly likelier to be selected as a parent than the individual with fitness
32. 53

6.6. This figure illustrates the tournament selection process, with a tournament
size of k = 2, where five parents are selected from a population of five in-
dividuals. The numbers represent the fitness values of the individuals. Five
tournaments are held to select five parents. The fittest individual for each
tournament that is selected as a parent, is highlighted in red. 53

6.7. This table shows selection probabilities for a population of five fictional indi-
viduals when using tournament selection with replacement and a tournament
size of k = 2. When compared to the selection likelihoods for the proportional
selection shown in Table 6.5, one can see that for small differences in fitness
values, tournament selection still applies a reasonable selection pressure. . . . 54

105

List of Figures

7.1. This figure shows the optimisation history of an example run of the EVQE
algorithm. Each point in the plot shows the best expectation value found
during a generation of the evolutionary algorithm and the total number of
expectation value evaluations used at the end of that generation. The red
horizontal line shows the energy boundary for valid states Ebval, while the
blue horizontal line shows the energy boundary for optimal states Ebopt. As
can be seen in the graph, EVQE first provably found valid solutions in the
third generation (highlighted in red), first provably found optimal solutions in
the fifth generation (highlighted in blue), found its best expectation value in
the 7th generation (highlighted in yellow), and terminated after 9 generations
(highlighted in brown). This amounts to the following amounts of expectation
value evaluations: NEXPval = 2387, NEXPopt = 6102, NEXP best = 7844,
NEXP term = 9810 . 58

7.2. These figures show the number of randomly generated problem instances,
which satisfy our filtering criteria, distributed over the number of qubits that
they require: (a) shows the number of problem instances with 6 operations;
(b) shows the number of problem instances with 9 operations; and (c) shows
the number of problem instances with 12 operations. 60

7.3. This figure shows the problem instance used for the optimisation run on real
quantum hardware. Its optimal makespan is 4, and it needs 8 qubits to
optimise with a makespan limit of 5. 71

8.1. This figure shows the average cost values for the best QAOA hyperparameter
configurations found by SMAC3. Lower values are better for both the inverted
state quality and the expectation value evaluations. The error bars show the
0.1 and 0.9 quantiles of the cost values, respectively. The triangles denote
the absolute minimum and absolute maximum of the ISQ observed for each
configuration. The individual configurations are numbered to ease referencing
them. 74

8.2. This figure shows the average cost values for the best VQE hyperparameter
configurations found by SMAC3 over all their optimisation runs. Lower val-
ues are better for both the inverted state quality and the expectation value
evaluations. The error bars show the 0.1 and 0.9 quantiles of the cost val-
ues, respectively. The triangles denote the absolute minimum and absolute
maximum of the ISQ observed for each configuration. The individual config-
urations are numbered to ease referencing them. 75

8.3. This figure shows the average cost values for the best EVQE hyperparameter
configurations found by SMAC3 over all their optimisation runs. Lower val-
ues are better for both the inverted state quality and the expectation value
evaluations. The error bars show the 0.1 and 0.9 quantiles of the cost val-
ues, respectively. The triangles denote the absolute minimum and absolute
maximum of the ISQ observed for each configuration. The individual config-
urations are numbered to ease referencing them. 76

106

List of Figures

8.4. This figure shows the number of expectation value evaluations needed for the
algorithms to terminate over multiple problem sizes. Since for each problem
size, each algorithm was run 25 times, box plots are used to aggregate the
individual results. The lower and upper edges of the boxes show the 0.25
and 0.75 quantiles, respectively. The horizontal line within the boxes shows
the median, and the whiskers extending from the box show the minimum and
maximum values. 77

8.5. These figures show one optimisation run for VQE (a), QAOA (b), and EVQE
(c) for the third 18-qubit JSSP benchmarking instance shown in Figure A.5.
The red line denotes the boundary value Ebval, and the blue line denotes the
boundary value Ebopt. VQE finds optimal solutions, but its expectation values
vary strongly between optimisation iterations. QAOA does not seem to find
good solutions. It also experiences swings in expectation value. Furthermore,
the long distances between reported expectation values indicate that SPSA is
having difficulties finding good parameter value updates, as it rejects many
update steps. 78

8.6. These figures show the likelihood of measuring a valid solution Pval (a) or
an optimal solution Popt (b) when measuring the best quantum state found
by the VQAs over multiple problem sizes. Since for each problem size, each
algorithm is run 25 times, box plots are used to aggregate the results. 80

8.7. These figures show the success rate for the VQAs over multiple problem sizes
of finding quantum states in which valid (a) or optimal (b) solutions can be
measured with a likelihood higher than 0.01. 80

8.8. These figures show how many expectation value evaluations the VQAs need
to hit certain milestones during the optimisation process for multiple problem
sizes. Since for each problem size, each algorithm was run 25 times, these
values are aggregated using box plots. In (a), it is shown how many expecta-
tion value evaluations the VQAs need to reach expectation values below the
boundary Ebval. In (b), it is shown how many expectation value evaluations
the VQAs need to reach expectation values below the boundary Ebopt. In
(c), it is shown how many expectation value evaluations the VQAs need to
reach the quantum state with the lowest expectation value seen during the
optimisation procedure. 82

8.9. These figures show the depth of the ansatz circuit over all problem sizes and
algorithms, aggregated using box plots. The ansatz circuit depth is shown in
(a), and the number of controlled gates is shown in (b). 83

8.10. These figures show how changing the population size of EVQE influences the
performance of EVQE. To that end, they represent the results of running
EVQE with the population sizes 5, 10, and 20 for each problem size. In (a),
the computational effort needed by these EVQE variants over the problem
sizes is shown. In (b), it is shown how many of the EVQE optimisation runs
are successful at finding optimal solutions. Success is defined as measuring an
optimal solution from the quantum state found by EVQE with a likelihood
higher than 0.01. In (c), the depth of the best ansatz and in (d), the number of
controlled gates in the best ansatz found by EVQE during each optimisation
run is shown. 84

107

List of Figures

8.11. These figures show how EVQE, VQE, and QAOA compare under varying shot
noise scenarios. Shotless refers to the noise-free state vector simulation. In
(a), it is shown how many expectation value evaluations the VQAs need to
reach a quantum state that contains optimal solutions. In (b) it is shown how
likely it is to measure an optimal solution from the quantum states found by
the VQAs. 85

8.12. These figures show the results for the EVQE optimisation run on IBM’s
ibm_nazca 127-qubit quantum computer. In (a), the best expectation value
found during each generation is shown. The red horizontal line denotes the
boundary value Ebval, and the blue horizontal line denotes the boundary value
Ebopt. EVQE finds the best possible expectation value during the first genera-
tion. As a result, it cannot improve the expectation value further during sub-
sequent generations. In (b), the measurement distribution of classical states,
retrieved by measuring the ansatz of the best individual multiple times, is
shown. For readability, the bitstrings retrieved by the measurement are re-
ferred to by their decimal representation. State 5 with the measurement
probability of 73% translates to the schedule with the optimal makespan 4,
shown in (c). 87

A.1. This figure shows one automatically generated QAOA ansatz layer for the
JSSP instance shown in Figure 5.1. 93

A.2. This figure shows all training JSSP instances used in the hyperparameter op-
timisation. For each instance, the Hamiltonian is generated with a makespan
limit that is 1 greater than their optimal makespan. In that configuration,
each training instance needs 12 qubits to be solved. 94

A.3. This figure shows all benchmarking JSSP instances used for benchmarking
with 12 qubits. For each instance, the Hamiltonian is generated with a
makespan limit that is 1 greater than their optimal makespan. In that con-
figuration, each training instance needs 12 qubits to be solved. 95

A.4. This figure shows all benchmarking JSSP instances used for benchmarking
with 15 qubits. For each instance, the Hamiltonian is generated with a
makespan limit that is 1 greater than their optimal makespan. In that con-
figuration, each training instance needs 15 qubits to be solved. 96

A.5. This figure shows all benchmarking JSSP instances used for benchmarking
with 18 qubits. For each instance, the Hamiltonian is generated with a
makespan limit that is 1 greater than their optimal makespan. In that con-
figuration, each training instance needs 18 qubits to be solved. 97

A.6. This figure shows all benchmarking JSSP instances used for benchmarking
with 21 qubits. For each instance, the Hamiltonian is generated with a
makespan limit that is 1 greater than their optimal makespan. In that con-
figuration, each training instance needs 21 qubits to be solved. 98

108

List of Figures

B.1. This table shows all hyperparameter values for all QAOA hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded to
represent their origin. Light blue hyperparameters belong to the Hamiltonian
encoding process, light yellow hyperparameters belong to SPSA, and light
red hyperparameters belong to QAOA itself. The QAOA hyperparameter
configuration, which we chose for our benchmarks, is highlighted in light green. 99

B.2. This table shows all hyperparameter values for all VQE hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded
to represent their origin. Light blue hyperparameters belong to the Hamilto-
nian encoding process, light yellow hyperparameters belong to SPSA, and
light red hyperparameters belong to VQE itself. The VQE hyperparameter
configuration, which we chose for our benchmarks, is highlighted in light green.100

B.3. This table shows all hyperparameter values for all EVQE hyperparameter con-
figurations found by SMAC3. The hyperparameter names are colour-coded to
represent their origin. Light blue hyperparameters belong to the Hamiltonian
encoding process, light yellow hyperparameters belong to SPSA, and light red
hyperparameters belong to EVQE itself. The EVQE hyperparameter config-
uration, which we chose for our benchmarks, is highlighted in light green. . . 101

109

Bibliography
[AHY22] Ajagekar, Akshay ; Hamoud, Kumail A. ; You, Fengqi: Hybrid Classical-

Quantum Optimization Techniques for Solving Mixed-Integer Programming
Problems in Production Scheduling. In: IEEE Transactions on Quantum
Engineering 3 (2022), S. 1–16. http://dx.doi.org/10.1109/TQE.2022.
3187367. – DOI 10.1109/TQE.2022.3187367

[AK22] Anschuetz, Eric R. ; Kiani, Bobak T.: Quantum variational algorithms
are swamped with traps. In: Nature Communications 13 (2022), Nr. 1, 7760.
http://dx.doi.org/10.1038/s41467-022-35364-5. – DOI 10.1038/s41467–
022–35364–5. – ISSN 2041–1723

[ARF+22] Amaro, David ; Rosenkranz, Matthias ; Fitzpatrick, Nathan ; Hirano,
Koji ; Fiorentini, Mattia: A case study of variational quantum algorithms
for a job shop scheduling problem. In: EPJ Quantum Technology 9 (2022), Nr.
1, 1–20. http://dx.doi.org/10.1140/epjqt/s40507-022-00123-4. – DOI
10.1140/epjqt/s40507–022–00123–4. – ISSN 2196–0763

[AST09] Ansótegui, Carlos ; Sellmann, Meinolf ; Tierney, Kevin: A Gender-
Based Genetic Algorithm for the Automatic Configuration of Algorithms.
Version: 2009. http://dx.doi.org/10.1007/978-3-642-04244-7_14. In:
Gent, Ian P. (Hrsg.): Principles and Practice of Constraint Programming
- CP 2002 Bd. 5732. Berlin, Heidelberg : Springer Nature, 2009. – DOI
10.1007/978–3–642–04244–7_14. – ISBN 978–3–642–04243–0, S. 142–157

[BBC+23] Bestuzheva, Ksenia ; Besançon, Mathieu ; Chen, Wei-Kun ; Chmiela,
Antonia ; Donkiewicz, Tim ; van Doornmalen, Jasper ; Eifler, Leon ;
Gaul, Oliver ; Gamrath, Gerald ; Gleixner, Ambros ; Gottwald, Le-
ona ; Graczyk, Christoph ; Halbig, Katrin ; Hoen, Alexander ; Hojny,
Christopher ; van der Hulst, Rolf ; Koch, Thorsten ; Lübbecke, Marco ;
Maher, Stephen J. ; Matter, Frederic ; Mühmer, Erik ; Müller, Benjamin
; Pfetsch, Marc E. ; Rehfeldt, Daniel ; Schlein, Steffan ; Schlösser,
Franziska ; Serrano, Felipe ; Shinano, Yuji ; Sofranac, Boro ; Turner,
Mark ; Vigerske, Stefan ; Wegscheider, Fabian ; Wellner, Philipp ;
Weninger, Dieter ; Witzig, Jakob: Enabling Research through the SCIP
Optimization Suite 8.0. In: ACM Transactions on Mathematical Software
49 (2023), Nr. 2, S. 1–21. http://dx.doi.org/10.1145/3585516. – DOI
10.1145/3585516. – ISSN 0098–3500

[BC95] BARNES, J. W. ; CHAMBERS, JOHN B.: Solving the job shop schedul-
ing problem with tabu search. In: IIE Transactions 27 (1995), Nr. 2,
S. 257–263. http://dx.doi.org/10.1080/07408179508936739. – DOI
10.1080/07408179508936739. – ISSN 0740–817X

111

http://dx.doi.org/10.1109/TQE.2022.3187367
http://dx.doi.org/10.1109/TQE.2022.3187367
http://dx.doi.org/10.1038/s41467-022-35364-5
http://dx.doi.org/10.1140/epjqt/s40507-022-00123-4
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1145/3585516
http://dx.doi.org/10.1080/07408179508936739

Bibliography

[BCCS22] Berahas, Albert S. ; Cao, Liyuan ; Choromanski, Krzysztof ; Schein-
berg, Katya: A Theoretical and Empirical Comparison of Gradient Ap-
proximations in Derivative-Free Optimization. In: Foundations of Computa-
tional Mathematics 22 (2022), Nr. 2, 507–560. http://dx.doi.org/10.1007/
s10208-021-09513-z. – DOI 10.1007/s10208–021–09513–z. – ISSN 1615–3383

[BCLK+22] Bharti, Kishor ; Cervera-Lierta, Alba ; Kyaw, Thi H. ; Haug, To-
bias ; Alperin-Lea, Sumner ; Anand, Abhinav ; Degroote, Matthias ;
Heimonen, Hermanni ; Kottmann, Jakob S. ; Menke, Tim ; Mok, Wai-
Keong ; Sim, Sukin ; Kwek, Leong-Chuan ; Aspuru-Guzik, Alán: Noisy
intermediate-scale quantum algorithms. In: Reviews of Modern Physics 94
(2022), Nr. 1. http://dx.doi.org/10.1103/RevModPhys.94.015004. – DOI
10.1103/RevModPhys.94.015004. – ISSN 0034–6861

[BCV+23] Bilkis, M. ; Cerezo, M. ; Verdon, Guillaume ; Coles, Patrick J. ; Cin-
cio, Lukasz: A semi-agnostic ansatz with variable structure for variational
quantum algorithms. In: Quantum Machine Intelligence 5 (2023), Nr. 2, 1–22.
http://dx.doi.org/10.1007/s42484-023-00132-1. – DOI 10.1007/s42484–
023–00132–1. – ISSN 2524–4914

[BD95] B. L. Miller ; D. Goldberg: Genetic Algorithms, Tournament Selection,
and the Effects of Noise. In: Complex Systems (1995)

[BGK+95] Barr, Richard S. ; Golden, Bruce L. ; Kelly, James P. ; Resende, Mauricio
G. C. ; Stewart, William R.: Designing and reporting on computational ex-
periments with heuristic methods. In: Journal of Heuristics 1 (1995), Nr. 1, 9–
32. http://dx.doi.org/10.1007/BF02430363. – DOI 10.1007/BF02430363.
– ISSN 1572–9397

[BM85] Barker, Jeffrey R. ; McMahon, Graham B.: Scheduling the General Job-
Shop. In: Management Science 31 (1985), Nr. 5, S. 594–598. http://dx.
doi.org/10.1287/mnsc.31.5.594. – DOI 10.1287/mnsc.31.5.594. – ISSN
0025–1909

[BMWV+23] Bonet-Monroig, Xavier ; Wang, Hao ; Vermetten, Diederick ; Sen-
jean, Bruno ; Moussa, Charles ; Bäck, Thomas ; Dunjko, Vedran ;
O’Brien, Thomas E.: Performance comparison of optimization methods on
variational quantum algorithms. In: Physical Review A 107 (2023), Nr. 3.
http://dx.doi.org/10.1103/PhysRevA.107.032407. – DOI 10.1103/Phys-
RevA.107.032407. – ISSN 2469–9926

[BNR+20] Barkoutsos, Panagiotis K. ; Nannicini, Giacomo ; Robert, Anton ; Tav-
ernelli, Ivano ; Woerner, Stefan: Improving Variational Quantum Optim-
ization using CVaR. In: Quantum 4 (2020), 256. http://dx.doi.org/10.
22331/q-2020-04-20-256. – DOI 10.22331/q–2020–04–20–256

[BOM15] Brabazon, Anthony ; O’Neill, Michael ; McGarraghy, Seán: Natural
Computing Algorithms. 1st ed. 2015. Berlin, Heidelberg : Springer Berlin
Heidelberg, 2015 (Natural Computing Series). http://dx.doi.org/10.1007/

112

http://dx.doi.org/10.1007/s10208-021-09513-z
http://dx.doi.org/10.1007/s10208-021-09513-z
http://dx.doi.org/10.1103/RevModPhys.94.015004
http://dx.doi.org/10.1007/s42484-023-00132-1
http://dx.doi.org/10.1007/BF02430363
http://dx.doi.org/10.1287/mnsc.31.5.594
http://dx.doi.org/10.1287/mnsc.31.5.594
http://dx.doi.org/10.1103/PhysRevA.107.032407
http://dx.doi.org/10.22331/q-2020-04-20-256
http://dx.doi.org/10.22331/q-2020-04-20-256
http://dx.doi.org/10.1007/978-3-662-43631-8
http://dx.doi.org/10.1007/978-3-662-43631-8

Bibliography

978-3-662-43631-8. http://dx.doi.org/10.1007/978-3-662-43631-8. –
ISBN 9783662436318

[Bur17] Burton, Virgil L., III: Job Shop. In: Encyclopedia of Small Business Bd. 2.
Farmington Hills, MI : Gale, 2017, S. 639–641

[CAB+21] Cerezo, M. ; Arrasmith, Andrew ; Babbush, Ryan ; Benjamin, Simon C.
; Endo, Suguru ; Fujii, Keisuke ; McClean, Jarrod R. ; Mitarai, Kosuke
; Yuan, Xiao ; Cincio, Lukasz ; Coles, Patrick J.: Variational quantum
algorithms. In: Nature Reviews Physics 3 (2021), Nr. 9, S. 625–644. http:
//dx.doi.org/10.1038/s42254-021-00348-9. – DOI 10.1038/s42254–021–
00348–9

[ÇB15] Çaliş, Banu ; Bulkan, Serol: A research survey: review of AI solu-
tion strategies of job shop scheduling problem. In: Journal of Intelligent
Manufacturing 26 (2015), Nr. 5, 961–973. http://dx.doi.org/10.1007/
s10845-013-0837-8. – DOI 10.1007/s10845–013–0837–8. – ISSN 1572–8145

[CFC22] Carugno, Costantino ; Ferrari Dacrema, Maurizio ; Cremonesi, Paolo:
Evaluating the job shop scheduling problem on a D-wave quantum annealer.
In: Scientific Reports 12 (2022), Nr. 1, 6539. http://dx.doi.org/10.1038/
s41598-022-10169-0. – DOI 10.1038/s41598–022–10169–0. – ISSN 2045–
2322

[CS20] Chauhan, Amit K. ; Sanadhya, Somitra K.: Quantum resource estimates of
grover’s key search on aria. In: Security, Privacy, and Applied Cryptography
Engineering: 10th International Conference, SPACE 2020, Kolkata, India,
December 17–21, 2020, Proceedings 10, 2020, S. 238–258

[CSU+20] Chivilikhin, D. ; Samarin, A. ; Ulyantsev, V. ; Iorsh, I. ; Oganov, A. R.
; Kyriienko, O.: MoG-VQE: Multiobjective genetic variational quantum
eigensolver. https://arxiv.org/pdf/2007.04424.pdf. Version: 2020

[CWMH20] Claudino, Daniel ; Wright, Jerimiah ; McCaskey, Alexander J. ; Humble,
Travis S.: Benchmarking Adaptive Variational Quantum Eigensolvers. In:
Frontiers in Chemistry 8 (2020), 606863. http://dx.doi.org/10.3389/
fchem.2020.606863. – DOI 10.3389/fchem.2020.606863. – ISSN 2296–2646

[ES15] Eiben, A.E ; Smith, James E.: Introduction to Evolutionary Computing.
2nd ed. 2015. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015 (Nat-
ural Computing Series). http://dx.doi.org/10.1007/978-3-662-44874-8.
http://dx.doi.org/10.1007/978-3-662-44874-8. – ISBN 9783662448748

[FB91] Falkenauer, E. ; Bouffouix, S.: A genetic algorithm for job shop. In: Pro-
ceedings. 1991 IEEE International Conference on Robotics and Automation.
Los Alamitos, Calif. and Piscataway, NJ : IEEE Computer Society Press and
Order from IEEE Service Center, 1991. – ISBN 0–8186–2163–X, S. 824–829

[FGG14] Farhi, Edward ; Goldstone, Jeffrey ; Gutmann, Sam: A Quantum Ap-
proximate Optimization Algorithm. In: MIT-CTP (2014). https://arxiv.
org/pdf/1411.4028.pdf

113

http://dx.doi.org/10.1007/978-3-662-43631-8
http://dx.doi.org/10.1007/978-3-662-43631-8
http://dx.doi.org/10.1007/978-3-662-43631-8
http://dx.doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1038/s41598-022-10169-0
http://dx.doi.org/10.1038/s41598-022-10169-0
https://arxiv.org/pdf/2007.04424.pdf
http://dx.doi.org/10.3389/fchem.2020.606863
http://dx.doi.org/10.3389/fchem.2020.606863
http://dx.doi.org/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1007/978-3-662-44874-8
https://arxiv.org/pdf/1411.4028.pdf
https://arxiv.org/pdf/1411.4028.pdf

Bibliography

[FGS+94] Finnila, A. B. ; Gomez, M. A. ; Sebenik, C. ; Stenson, C. ; Doll,
J. D.: Quantum annealing: A new method for minimizing multidi-
mensional functions. In: Chemical Physics Letters 219 (1994), Nr. 5-6,
343–348. http://dx.doi.org/10.1016/0009-2614(94)00117-0. – DOI
10.1016/0009–2614(94)00117–0. – ISSN 00092614

[GBB+23] Grimsley, Harper R. ; Barron, George S. ; Barnes, Edwin ; Eco-
nomou, Sophia E. ; Mayhall, Nicholas J.: Adaptive, problem-tailored
variational quantum eigensolver mitigates rough parameter landscapes and
barren plateaus. In: npj Quantum Information 9 (2023), Nr. 1, 1–8. http:
//dx.doi.org/10.1038/s41534-023-00681-0. – DOI 10.1038/s41534–023–
00681–0

[GEBM19] Grimsley, Harper R. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall,
Nicholas J.: An adaptive variational algorithm for exact molecular simulations
on a quantum computer. In: Nature Communications 10 (2019), Nr. 1, 3007.
http://dx.doi.org/10.1038/s41467-019-10988-2. – DOI 10.1038/s41467–
019–10988–2. – ISSN 2041–1723

[GJS76] Garey, M. R. ; Johnson, D. S. ; Sethi, Ravi: The Complexity of Flow-
shop and Jobshop Scheduling. In: Mathematics of Operations Research 1
(1976), Nr. 2, S. 117–129. http://dx.doi.org/10.1287/moor.1.2.117. –
DOI 10.1287/moor.1.2.117. – ISSN 0364–765X

[Gro96] Grover, Lov K.: A fast quantum mechanical algorithm for database search.
In: Miller, Gary L. (Hrsg.): Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing. New York : ACM, 1996. – ISBN
0897917855, S. 212–219

[GS06] Gupta, Amit K. ; Sivakumar, Appa I.: Job shop scheduling techniques
in semiconductor manufacturing. In: The International Journal of Ad-
vanced Manufacturing Technology 27 (2006), Nr. 11-12, 1163–1169. http:
//dx.doi.org/10.1007/s00170-004-2296-z. – DOI 10.1007/s00170–004–
2296–z. – ISSN 1433–3015

[GTMS23] Giovagnoli, Alessandro ; Tresp, Volker ; Ma, Yunpu ; Schubert, Mat-
thias: QNEAT: Natural Evolution of Variational Quantum Circuit Architec-
ture. In: Silva, Sara (Hrsg.) ; Paquete, Luís (Hrsg.): GECCO’23 companion.
New York : �The �Association for Computing Machinery, op. 2023. – ISBN
9798400701207, S. 647–650

[Gur24] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual. https:
//www.gurobi.com. Version: 2024

[GZCW21] Gacon, Julien ; Zoufal, Christa ; Carleo, Giuseppe ; Woerner, Stefan:
Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher
Information. In: Quantum 5 (2021), 567. http://dx.doi.org/10.22331/
q-2021-10-20-567. – DOI 10.22331/q–2021–10–20–567

114

http://dx.doi.org/10.1016/0009-2614(94)00117-0
http://dx.doi.org/10.1038/s41534-023-00681-0
http://dx.doi.org/10.1038/s41534-023-00681-0
http://dx.doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1007/s00170-004-2296-z
http://dx.doi.org/10.1007/s00170-004-2296-z
https://www.gurobi.com
https://www.gurobi.com
http://dx.doi.org/10.22331/q-2021-10-20-567
http://dx.doi.org/10.22331/q-2021-10-20-567

Bibliography

[HHLB11] Hutter, Frank ; Hoos, Holger H. ; Leyton-Brown, Kevin: Sequential
Model-Based Optimization for General Algorithm Configuration. In: Coello
Coello, Carlos A. (Hrsg.): Learning and Intelligent Optimization. Berlin,
Heidelberg : Springer Berlin Heidelberg and Imprint: Springer, 2011 (The-
oretical Computer Science and General Issues). – ISBN 978–3–642–25566–3,
507–523

[Hom22] Homeister, Matthias: Quantum Computing verstehen: Grundlagen - An-
wendungen - Perspektiven. 6., erweiterte und überarbeitete Auflage. Wies-
baden, Germany : Springer Vieweg, 2022 (Computational Intelligence).
http://dx.doi.org/10.1007/978-3-658-36434-2. http://dx.doi.org/
10.1007/978-3-658-36434-2. – ISBN 9783658364342

[HSCC22] Holmes, Zoë ; Sharma, Kunal ; Cerezo, M. ; Coles, Patrick J.: Con-
necting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus.
In: PRX Quantum 3 (2022), Nr. 1, S. 010313. http://dx.doi.org/10.1103/
PRXQuantum.3.010313. – DOI 10.1103/PRXQuantum.3.010313

[IBM22] IBM: User’s Manual for CPLEX. https://www.ibm.com/docs/en/icos/22.
1.1?topic=optimizers-users-manual-cplex. Version: 2022

[JC23] Jiang, Jehn-Ruey ; Chu, Chun-Wei: Classifying and Benchmarking Quantum
Annealing Algorithms Based on Quadratic Unconstrained Binary Optim-
ization for Solving NP-Hard Problems. In: IEEE Access 11 (2023), S.
104165–104178. http://dx.doi.org/10.1109/ACCESS.2023.3318206. – DOI
10.1109/ACCESS.2023.3318206

[JM+98] Jain, Anant S. ; Meeran, Sheik u. a.: A state-of-the-art review of job-
shop scheduling techniques. In: Workin paper, Department of applied physics,
electronic and mechanical engineering. University of Dundee, Dundee, Scotland
(1998)

[JNRV20] Jaques, Samuel ; Naehrig, Michael ; Roetteler, Martin ; Virdia,
Fernando: Implementing Grover oracles for quantum key search on AES
and LowMC. In: Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30, 2020,
S. 280–310

[Juk11] Jukna, Stasys: Extremal combinatorics: With applications in computer sci-
ence. 2nd ed. Heidelberg and New York : Springer, 2011 (Texts in theoret-
ical computer science). http://dx.doi.org/10.1007/978-3-642-17364-6.
http://dx.doi.org/10.1007/978-3-642-17364-6. – ISBN 978–3–642–
17363–9

[KB16] Ku, Wen-Yang ; Beck, J. C.: Mixed Integer Programming models for job
shop scheduling: A computational analysis. In: Computers & Operations
Research 73 (2016), 165–173. http://dx.doi.org/10.1016/j.cor.2016.04.
006. – DOI 10.1016/j.cor.2016.04.006. – ISSN 0305–0548

115

http://dx.doi.org/10.1007/978-3-658-36434-2
http://dx.doi.org/10.1007/978-3-658-36434-2
http://dx.doi.org/10.1007/978-3-658-36434-2
http://dx.doi.org/10.1103/PRXQuantum.3.010313
http://dx.doi.org/10.1103/PRXQuantum.3.010313
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
http://dx.doi.org/10.1109/ACCESS.2023.3318206
http://dx.doi.org/10.1007/978-3-642-17364-6
http://dx.doi.org/10.1007/978-3-642-17364-6
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://dx.doi.org/10.1016/j.cor.2016.04.006

Bibliography

[KB22] Koczor, Bálint ; Benjamin, Simon C.: Quantum natural gradient general-
ized to noisy and nonunitary circuits. In: Physical Review A 106 (2022), Nr. 6.
http://dx.doi.org/10.1103/PhysRevA.106.062416. – DOI 10.1103/Phys-
RevA.106.062416. – ISSN 2469–9926

[KN98] Kadowaki, Tadashi ; Nishimori, Hidetoshi: Quantum annealing in the trans-
verse Ising model. In: Physical Review E 58 (1998), Nr. 5, 5355–5363. http://
dx.doi.org/10.1103/PhysRevE.58.5355. – DOI 10.1103/PhysRevE.58.5355

[KPS+23] Kurowski, Krzysztof ; Pecyna, Tomasz ; Slysz, Mateusz ; Różycki, Rafał
; Waligóra, Grzegorz ; W�glarz, Jan: Application of quantum approximate
optimization algorithm to job shop scheduling problem. In: European Journal
of Operational Research 310 (2023), Nr. 2, 518–528. http://dx.doi.org/10.
1016/j.ejor.2023.03.013. – DOI 10.1016/j.ejor.2023.03.013. – ISSN 0377–
2217

[KWS+20] Kurowski, Krzysztof ; W�glarz, Jan ; Subocz, Marek ; Różycki, Rafał ;
Waligóra, Grzegorz: Hybrid Quantum Annealing Heuristic Method for Solv-
ing Job Shop Scheduling Problem. Version: 2020. http://dx.doi.org/10.
1007/978-3-030-50433-5_39. In: Krzhizhanovskaya, Valeria V. (Hrsg.)
; Závodszky, Gábor (Hrsg.) ; Lees, Michael H. (Hrsg.) ; Dongarra, Jack
(Hrsg.) ; Sloot, Peter (Hrsg.) ; Brissos, Sérgio (Hrsg.) ; Teixeira, João
(Hrsg.): Computational Science - ICCS 2020 Bd. 12142. Cham : Springer,
2020. – DOI 10.1007/978–3–030–50433–5_39. – ISBN 978–3–030–50432–8, S.
502–515

[LHWK21] Liaqait, Raja A. ; Hamid, Shermeen ; Warsi, Salman S. ; Khalid, Az-
far: A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0.
In: Sustainability 13 (2021), Nr. 14, 7684. http://dx.doi.org/10.3390/
su13147684. – DOI 10.3390/su13147684. – ISSN 2071–1050

[LKB77] Lenstra, J. K. ; Kan, A. H. G. R. ; Brucker, P.: Complexity of Ma-
chine Scheduling Problems. Version: 1977. http://dx.doi.org/10.1016/
S0167-5060(08)70743-X. In: Hammer, P. L. (Hrsg.) ; Johnson, E. L.
(Hrsg.) ; Korte, B. H. (Hrsg.) ; Nemhauser, G. L. (Hrsg.): Studies in Integer
Programming Bd. 1. Elsevier, 1977. – DOI 10.1016/S0167–5060(08)70743–X,
343–362

[LMW19] Larson, Jeffrey ; Menickelly, Matt ; Wild, Stefan M.: Derivative-free
optimization methods. In: Acta Numerica 28 (2019), 287–404. http://dx.
doi.org/10.1017/S0962492919000060. – DOI 10.1017/S0962492919000060.
– ISSN 1474–0508

[Loc22] Lockwood, Owen: An Empirical Review of Optimization Techniques
for Quantum Variational Circuits. http://arxiv.org/pdf/2202.01389.
Version: 2022

[Lom65] Lomnicki, Z. A.: A “Branch-and-Bound” Algorithm for the Exact Solution
of the Three-Machine Scheduling Problem. In: Journal of the Operational

116

http://dx.doi.org/10.1103/PhysRevA.106.062416
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1016/j.ejor.2023.03.013
http://dx.doi.org/10.1016/j.ejor.2023.03.013
http://dx.doi.org/10.1007/978-3-030-50433-5_39
http://dx.doi.org/10.1007/978-3-030-50433-5_39
http://dx.doi.org/10.3390/su13147684
http://dx.doi.org/10.3390/su13147684
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1017/S0962492919000060
http://dx.doi.org/10.1017/S0962492919000060
http://arxiv.org/pdf/2202.01389

Bibliography

Research Society 16 (1965), Nr. 1, 89–100. http://dx.doi.org/10.1057/
jors.1965.7. – DOI 10.1057/jors.1965.7. – ISSN 1476–9360

[Luc14] Lucas, Andrew: Ising formulations of many NP problems. In: Frontiers in
Physics 2 (2014), 74887. http://dx.doi.org/10.3389/fphy.2014.00005. –
DOI 10.3389/fphy.2014.00005. – ISSN 2296–424X

[Man60] Manne, Alan S.: On the Job-Shop Scheduling Problem. In: Operations
Research 8 (1960), Nr. 2, S. 219–223. http://dx.doi.org/10.1287/opre.8.
2.219. – DOI 10.1287/opre.8.2.219. – ISSN 0030–364X

[MFP+22] Miháliková, Ivana ; Friák, Martin ; Pivoluska, Matej ; Plesch, Martin
; Saip, Martin ; Šob, Mojmír: Best-Practice Aspects of Quantum-Computer
Calculations: A Case Study of the Hydrogen Molecule. In: Molecules 27
(2022), Nr. 3. http://dx.doi.org/10.3390/molecules27030597. – DOI
10.3390/molecules27030597. – ISSN 1420–3049

[MKM+22] Marius Lindauer ; Katharina Eggensperger ; Matthias Feurer ;
André Biedenkapp ; Difan Deng ; Carolin Benjamins ; Tim Ruhkopf
; René Sass ; Frank Hutter: SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization. In: Journal of Machine Learn-
ing Research 23 (2022), Nr. 54, 1–9. https://www.jmlr.org/papers/v23/
21-0888.html. – ISSN 1533–7928

[Nan19] Nannicini, Giacomo: Performance of hybrid quantum-classical variational
heuristics for combinatorial optimization. In: Physical review. E 99 (2019),
Nr. 1-1, S. 013304. http://dx.doi.org/10.1103/PhysRevE.99.013304. –
DOI 10.1103/PhysRevE.99.013304

[NW06] Nocedal, Jorge ; Wright, Stephen J.: Numerical Optimization.
Second edition. New York, NY : Springer Science+Business Media,
LLC. and Springer e-books, 2006 (Mathematics and Statistics (Springer-
11649). https://ebookcentral.proquest.com/lib/kxp/detail.action?
docID=6315051. – ISBN 9780387400655

[PJSPP21] Pellow-Jarman, Aidan ; Sinayskiy, Ilya ; Pillay, Anban ; Petruc-
cione, Francesco: A comparison of various classical optimizers for a vari-
ational quantum linear solver. In: Quantum Information Processing 20 (2021),
Nr. 6, 1–14. http://dx.doi.org/10.1007/s11128-021-03140-x. – DOI
10.1007/s11128–021–03140–x. – ISSN 1573–1332

[PMS+14] Peruzzo, Alberto ; McClean, Jarrod ; Shadbolt, Peter ; Yung, Man-
Hong ; Zhou, Xiao-Qi ; Love, Peter J. ; Aspuru-Guzik, Alán ; O’Brien,
Jeremy L.: A variational eigenvalue solver on a photonic quantum processor.
In: Nature communications 5 (2014), 4213. http://dx.doi.org/10.1038/
ncomms5213. – DOI 10.1038/ncomms5213

[PSR21] Plewa, Julia ; Sieńko, Joanna ; Rycerz, Katarzyna: Variational Algorithms
for Workflow Scheduling Problem in Gate-Based Quantum Devices. In: COM-
PUTING AND INFORMATICS 40 (2021), Nr. 4, 897–929. http://dx.doi.
org/10.31577/cai_2021_4_897. – DOI 10.31577/cai_2021_4_897

117

http://dx.doi.org/10.1057/jors.1965.7
http://dx.doi.org/10.1057/jors.1965.7
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1287/opre.8.2.219
http://dx.doi.org/10.1287/opre.8.2.219
http://dx.doi.org/10.3390/molecules27030597
https://www.jmlr.org/papers/v23/21-0888.html
https://www.jmlr.org/papers/v23/21-0888.html
http://dx.doi.org/10.1103/PhysRevE.99.013304
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6315051
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6315051
http://dx.doi.org/10.1007/s11128-021-03140-x
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.31577/cai_2021_4_897
http://dx.doi.org/10.31577/cai_2021_4_897

Bibliography

[Qis23] Qiskit contributors: Qiskit: An Open-source Framework for Quantum
Computing. http://dx.doi.org/10.5281/zenodo.2573505. Version: 2023

[RDD23] Rajwar, Kanchan ; Deep, Kusum ; Das, Swagatam: An exhaustive review
of the metaheuristic algorithms for search and optimization: taxonomy, ap-
plications, and open challenges. In: Artificial Intelligence Review 56 (2023),
Nr. 11, 1–71. http://dx.doi.org/10.1007/s10462-023-10470-y. – DOI
10.1007/s10462–023–10470–y. – ISSN 1573–7462

[RHP+19] Rattew, Arthur G. ; Hu, Shaohan ; Pistoia, Marco ; Chen, Richard ;
Wood, Steve: A Domain-agnostic, Noise-resistant, Hardware-efficient Evol-
utionary Variational Quantum Eigensolver. https://arxiv.org/pdf/1910.
09694.pdf. Version: 2019

[RJ16] Rabelo, Luis C. ; Jones, Albert: Job Shop Scheduling. Version: 2016.
http://dx.doi.org/10.1007/978-1-4419-1153-7_490. In: Gass, Saul I.
(Hrsg.) ; Fu, Michael C. (Hrsg.): Encyclopedia of operations research and ma-
nagement science. New York, New York and Boston, Massachusetts : Springer
Berlin Heidelberg and Credo Reference, 2016. – DOI 10.1007/978–1–4419–
1153–7_490. – ISBN 978–1–4419–1137–7, S. 817–830

[SEBB22] Stork, Jörg ; Eiben, A. E. ; Bartz-Beielstein, Thomas: A new tax-
onomy of global optimization algorithms. In: Natural Computing 21 (2022),
Nr. 2, 219–242. http://dx.doi.org/10.1007/s11047-020-09820-4. – DOI
10.1007/s11047–020–09820–4. – ISSN 1572–9796

[SMM23] Singh, Harshdeep ; Majumder, Sonjoy ; Mishra, Sabyashachi: Benchmark-
ing of different optimizers in the variational quantum algorithms for applica-
tions in quantum chemistry. In: The Journal of Chemical Physics 159 (2023),
Nr. 4. http://dx.doi.org/10.1063/5.0161057. – DOI 10.1063/5.0161057.
– ISSN 0021–9606

[Spa98] Spall, J. C.: An overview of the simultaneous perturbation method for effi-
cient optimization. In: Johns Hopkins APL technical digest 19 (1998), Nr. 4,
S. 482. – ISSN 0270–5214

[SWGA23a] Schworm, Philipp ; Wu, Xiangqian ; Glatt, Moritz ; Aurich, Jan C.:
Responsiveness to sudden disturbances in manufacturing through dynamic
job shop scheduling using Quantum Annealing. In: Procedia CIRP 120
(2023), 511–516. http://dx.doi.org/10.1016/j.procir.2023.09.028. –
DOI 10.1016/j.procir.2023.09.028. – ISSN 2212–8271

[SWGA23b] Schworm, Philipp ; Wu, Xiangqian ; Glatt, Moritz ; Aurich, Jan C.:
Solving flexible job shop scheduling problems in manufacturing with Quantum
Annealing. In: Production Engineering 17 (2023), Nr. 1, 105–115. http:
//dx.doi.org/10.1007/s11740-022-01145-8. – DOI 10.1007/s11740–022–
01145–8. – ISSN 1863–7353

[SWK+24] Schworm, Philipp ; Wu, Xiangqian ; Klar, Matthias ; Glatt, Moritz ;
Aurich, Jan C.: Multi-objective Quantum Annealing approach for solving

118

http://dx.doi.org/10.5281/zenodo.2573505
http://dx.doi.org/10.1007/s10462-023-10470-y
https://arxiv.org/pdf/1910.09694.pdf
https://arxiv.org/pdf/1910.09694.pdf
http://dx.doi.org/10.1007/978-1-4419-1153-7_490
http://dx.doi.org/10.1007/s11047-020-09820-4
http://dx.doi.org/10.1063/5.0161057
http://dx.doi.org/10.1016/j.procir.2023.09.028
http://dx.doi.org/10.1007/s11740-022-01145-8
http://dx.doi.org/10.1007/s11740-022-01145-8

Bibliography

flexible job shop scheduling in manufacturing. In: Journal of Manufacturing
Systems 72 (2024), 142–153. http://dx.doi.org/10.1016/j.jmsy.2023.11.
015. – DOI 10.1016/j.jmsy.2023.11.015. – ISSN 0278–6125

[Tai93] Taillard, E.: Benchmarks for basic scheduling problems. In: European
Journal of Operational Research 64 (1993), Nr. 2, 278–285. http://dx.doi.
org/10.1016/0377-2217(93)90182-M. – DOI 10.1016/0377–2217(93)90182–
M. – ISSN 0377–2217

[Tal09] Talbi, El-Ghazali: Metaheuristics: From design to implementation. Hoboken,
N.J. : John Wiley & Sons, 2009. – ISBN 9780470496909

[TAM+22] Tasseff, Byron ; Albash, Tameem ; Morrell, Zachary ; Vuffray, Marc ;
Lokhov, Andrey Y. ; Misra, Sidhant ; Coffrin, Carleton: On the Emerging
Potential of Quantum Annealing Hardware for Combinatorial Optimization.
In: LA-UR-22- (2022). http://arxiv.org/pdf/2210.04291

[TCC+22] Tilly, Jules ; Chen, Hongxiang ; Cao, Shuxiang ; Picozzi, Dario ; Setia,
Kanav ; Li, Ying ; Grant, Edward ; Wossnig, Leonard ; Rungger, Ivan
; Booth, George H. ; Tennyson, Jonathan: The Variational Quantum
Eigensolver: A review of methods and best practices. In: Physics Reports 986
(2022), S. 1–128

[TSB+21] Tang, Ho L. ; Shkolnikov, V. O. ; Barron, George S. ; Grimsley,
Harper R. ; Mayhall, Nicholas J. ; Barnes, Edwin ; Economou, Sophia E.:
Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-
Efficient Ansätze on a Quantum Processor. In: PRX Quantum 2 (2021), Nr.
2, S. 020310. http://dx.doi.org/10.1103/PRXQuantum.2.020310. – DOI
10.1103/PRXQuantum.2.020310

[TZS24] Toma, Lilia ; Zajac, Markus ; Störl, Uta: Solving Distributed Flexible
Job Shop Scheduling Problems in the Wool Textile Industry with Quantum
Annealing. http://arxiv.org/pdf/2403.06699. Version: 2024

[VGS+20] Vikstål, Pontus ; Grönkvist, Mattias ; Svensson, Marika ; An-
dersson, Martin ; Johansson, Göran ; Ferrini, Giulia: Applying the
Quantum Approximate Optimization Algorithm to the Tail-Assignment Prob-
lem. In: Physical Review Applied 14 (2020), Nr. 3, S. 034009. http:
//dx.doi.org/10.1103/PhysRevApplied.14.034009. – DOI 10.1103/Phys-
RevApplied.14.034009

[VMR15] Venturelli, Davide ; Marchand, Dominic J. J. ; Rojo, Galo: Quantum
Annealing Implementation of Job-Shop Scheduling. http://arxiv.org/pdf/
1506.08479. Version: 2015

[WCA+24] Wang, Samson ; Czarnik, Piotr ; Arrasmith, Andrew ; Cerezo, M.
; Cincio, Lukasz ; Coles, Patrick J.: Can Error Mitigation Improve
Trainability of Noisy Variational Quantum Algorithms? In: Quantum 8
(2024), 1287. http://dx.doi.org/10.22331/q-2024-03-14-1287. – DOI
10.22331/q–2024–03–14–1287

119

http://dx.doi.org/10.1016/j.jmsy.2023.11.015
http://dx.doi.org/10.1016/j.jmsy.2023.11.015
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://arxiv.org/pdf/2210.04291
http://dx.doi.org/10.1103/PRXQuantum.2.020310
http://arxiv.org/pdf/2403.06699
http://dx.doi.org/10.1103/PhysRevApplied.14.034009
http://dx.doi.org/10.1103/PhysRevApplied.14.034009
http://arxiv.org/pdf/1506.08479
http://arxiv.org/pdf/1506.08479
http://dx.doi.org/10.22331/q-2024-03-14-1287

Bibliography

[WFC+21] Wang, Samson ; Fontana, Enrico ; Cerezo, M. ; Sharma, Kunal ; Sone,
Akira ; Cincio, Lukasz ; Coles, Patrick J.: Noise-induced barren plateaus
in variational quantum algorithms. In: Nature Communications 12 (2021),
Nr. 1, 6961. http://dx.doi.org/10.1038/s41467-021-27045-6. – DOI
10.1038/s41467–021–27045–6. – ISSN 2041–1723

[WK20] Wang, Yulun ; Krstic, Predrag S.: Prospect of using Grover’s search in the
noisy-intermediate-scale quantum-computer era. In: Physical Review A 102
(2020), Nr. 4, S. 042609. – ISSN 2469–9926

[XSRH22] Xiong, Hegen ; Shi, Shuangyuan ; Ren, Danni ; Hu, Jinjin: A survey
of job shop scheduling problem: The types and models. In: Computers &
Operations Research 142 (2022), 105731. http://dx.doi.org/10.1016/j.
cor.2022.105731. – DOI 10.1016/j.cor.2022.105731. – ISSN 0305–0548

[YRBS22] Yarkoni, Sheir ; Raponi, Elena ; Bäck, Thomas ; Schmitt, Sebastian:
Quantum annealing for industry applications: introduction and review. In:
Reports on progress in physics. Physical Society (Great Britain) 85 (2022),
Nr. 10, 104001. http://dx.doi.org/10.1088/1361-6633/ac8c54. – DOI
10.1088/1361–6633/ac8c54

[ZDZ+19] Zhang, Jian ; Ding, Guofu ; Zou, Yisheng ; Qin, Shengfeng ; Fu, Jianlin:
Review of job shop scheduling research and its new perspectives under Industry
4.0. In: Journal of Intelligent Manufacturing 30 (2019), Nr. 4, 1809–1830.
http://dx.doi.org/10.1007/s10845-017-1350-2. – DOI 10.1007/s10845–
017–1350–2. – ISSN 1572–8145

[ZLRG08] Zhang, Chao Y. ; Li, PeiGen ; Rao, YunQing ; Guan, ZaiLin: A very
fast TS/SA algorithm for the job shop scheduling problem. In: Computers
& Operations Research 35 (2008), Nr. 1, 282–294. http://dx.doi.org/10.
1016/j.cor.2006.02.024. – DOI 10.1016/j.cor.2006.02.024. – ISSN 0305–
0548

[ZTB+20] Zhu, Linghua ; Tang, Ho L. ; Barron, George S. ; Calderon-Vargas,
F. A. ; Mayhall, Nicholas J. ; Barnes, Edwin ; Economou, Sophia E.: An
adaptive quantum approximate optimization algorithm for solving combinator-
ial problems on a quantum computer. http://arxiv.org/pdf/2005.10258.
Version: 2020

[ZWC+20] Zhou, Leo ; Wang, Sheng-Tao ; Choi, Soonwon ; Pichler, Hannes ; Lukin,
Mikhail D.: Quantum Approximate Optimization Algorithm: Performance,
Mechanism, and Implementation on Near-Term Devices. In: Physical Review
X 10 (2020), Nr. 2, S. 021067. http://dx.doi.org/10.1103/PhysRevX.10.
021067. – DOI 10.1103/PhysRevX.10.021067

[Zyg18] Zygelman, Bernard: A first introduction to quantum computing and inform-
ation. ham : Springer Nature Switzerland, 2018. – ISBN 3319916289

120

http://dx.doi.org/10.1038/s41467-021-27045-6
http://dx.doi.org/10.1016/j.cor.2022.105731
http://dx.doi.org/10.1016/j.cor.2022.105731
http://dx.doi.org/10.1088/1361-6633/ac8c54
http://dx.doi.org/10.1007/s10845-017-1350-2
http://dx.doi.org/10.1016/j.cor.2006.02.024
http://dx.doi.org/10.1016/j.cor.2006.02.024
http://arxiv.org/pdf/2005.10258
http://dx.doi.org/10.1103/PhysRevX.10.021067
http://dx.doi.org/10.1103/PhysRevX.10.021067

	Introduction
	Foundations
	The Job Shop Scheduling Problem
	Gate-based Quantum Computing
	Qubits and Quantum Registers
	Quantum Gates and Entanglement
	Measurement

	Variational Quantum Algorithms
	Parameterised Quantum Circuits
	Hamiltonians
	Discrete Variable Encodings
	The Variational Quantum Eigensolver (VQE)
	The Quantum Approximate Optimisation Algorithm (QAOA)

	Classical Optimisation Algorithms
	Optimisation Problems
	Optimisation Algorithms

	Related Work
	The Evolutionary VQE Algorithm
	Overview
	Population
	Individual Genomes
	Random Gene Generation
	Population Initialisation
	Speciation and Population Diversity

	Evaluation and Selection
	Last Layer Optimisation
	Fitness Score
	Selection of fit individuals

	Variation
	Parameter Search
	Topological Search
	Layer Removal

	Termination Criteria

	Encoding the JSSP as a Hamiltonian
	Definitions
	Variables and Variable Encoding
	Penalties
	Encoding Penalties
	Precedence Penalties
	Overlap Penalties
	Invalid Penalty Interactions

	Optimisation Goal
	Makespan Minimisation
	Early Start for all Operations

	Resulting Energy Landscape

	EVQE - Issues and Improvements
	Individual Initialisation
	Selection Pressure

	Methodology
	Objectives
	Performance Metrics
	Random Problem Instance Generation
	Generating a Single JSSP Instance
	Generating Datasets of JSSP Instances

	Manual Algorithm Configuration Decisions
	Automatic Algorithm Configuration
	SMAC3
	Hyperparameters
	Configuring SMAC3

	Benchmarking Procedure
	Real Quantum Hardware

	Results
	Hyperparameter Optimisation
	QAOA Pareto Optimal Configurations
	VQE Pareto Optimal Configurations
	EVQE Pareto Optimal Configurations

	Noiseless Simulation
	Termination Behaviour
	Solution Quality and Success Rate
	Convergence Speed
	Ansatz Complexity
	Comparison of EVQE Population Sizes

	Noisy Simulation
	Real Quantum Hardware
	Discussion

	Conclusion and Future Work
	Additional Figures
	Example QAOA Ansatz
	Hyperparameter Optimisation Training Instances
	12 Qubit Benchmarking Instances
	15 Qubit Benchmarking Instances
	18 Qubit Benchmarking Instances
	21 Qubit Benchmarking Instances

	Hyperparameter Values
	QAOA Hyperparameter Values
	VQE Hyperparameter Values
	EVQE Hyperparameter Values

	List of Figures
	Bibliography

